Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Zhi Wang | 926 | 49.92% | 1 | 6.25% |
Changbin Du | 820 | 44.20% | 7 | 43.75% |
Pankaj Bharadiya | 74 | 3.99% | 1 | 6.25% |
Chris Wilson | 12 | 0.65% | 1 | 6.25% |
Min He | 9 | 0.49% | 1 | 6.25% |
Jike Song | 6 | 0.32% | 1 | 6.25% |
Zhenyu Wang | 6 | 0.32% | 2 | 12.50% |
Pei Zhang | 1 | 0.05% | 1 | 6.25% |
Xiong Zhang | 1 | 0.05% | 1 | 6.25% |
Total | 1855 | 16 |
/* * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Eddie Dong <eddie.dong@intel.com> * Jike Song <jike.song@intel.com> * * Contributors: * Zhi Wang <zhi.a.wang@intel.com> * Min He <min.he@intel.com> * Bing Niu <bing.niu@intel.com> * */ #include "i915_drv.h" #include "gvt.h" enum { INTEL_GVT_PCI_BAR_GTTMMIO = 0, INTEL_GVT_PCI_BAR_APERTURE, INTEL_GVT_PCI_BAR_PIO, INTEL_GVT_PCI_BAR_MAX, }; /* bitmap for writable bits (RW or RW1C bits, but cannot co-exist in one * byte) byte by byte in standard pci configuration space. (not the full * 256 bytes.) */ static const u8 pci_cfg_space_rw_bmp[PCI_INTERRUPT_LINE + 4] = { [PCI_COMMAND] = 0xff, 0x07, [PCI_STATUS] = 0x00, 0xf9, /* the only one RW1C byte */ [PCI_CACHE_LINE_SIZE] = 0xff, [PCI_BASE_ADDRESS_0 ... PCI_CARDBUS_CIS - 1] = 0xff, [PCI_ROM_ADDRESS] = 0x01, 0xf8, 0xff, 0xff, [PCI_INTERRUPT_LINE] = 0xff, }; /** * vgpu_pci_cfg_mem_write - write virtual cfg space memory * @vgpu: target vgpu * @off: offset * @src: src ptr to write * @bytes: number of bytes * * Use this function to write virtual cfg space memory. * For standard cfg space, only RW bits can be changed, * and we emulates the RW1C behavior of PCI_STATUS register. */ static void vgpu_pci_cfg_mem_write(struct intel_vgpu *vgpu, unsigned int off, u8 *src, unsigned int bytes) { u8 *cfg_base = vgpu_cfg_space(vgpu); u8 mask, new, old; int i = 0; for (; i < bytes && (off + i < sizeof(pci_cfg_space_rw_bmp)); i++) { mask = pci_cfg_space_rw_bmp[off + i]; old = cfg_base[off + i]; new = src[i] & mask; /** * The PCI_STATUS high byte has RW1C bits, here * emulates clear by writing 1 for these bits. * Writing a 0b to RW1C bits has no effect. */ if (off + i == PCI_STATUS + 1) new = (~new & old) & mask; cfg_base[off + i] = (old & ~mask) | new; } /* For other configuration space directly copy as it is. */ if (i < bytes) memcpy(cfg_base + off + i, src + i, bytes - i); } /** * intel_vgpu_emulate_cfg_read - emulate vGPU configuration space read * @vgpu: target vgpu * @offset: offset * @p_data: return data ptr * @bytes: number of bytes to read * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_emulate_cfg_read(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; if (drm_WARN_ON(&i915->drm, bytes > 4)) return -EINVAL; if (drm_WARN_ON(&i915->drm, offset + bytes > vgpu->gvt->device_info.cfg_space_size)) return -EINVAL; memcpy(p_data, vgpu_cfg_space(vgpu) + offset, bytes); return 0; } static int map_aperture(struct intel_vgpu *vgpu, bool map) { phys_addr_t aperture_pa = vgpu_aperture_pa_base(vgpu); unsigned long aperture_sz = vgpu_aperture_sz(vgpu); u64 first_gfn; u64 val; int ret; if (map == vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_APERTURE].tracked) return 0; val = vgpu_cfg_space(vgpu)[PCI_BASE_ADDRESS_2]; if (val & PCI_BASE_ADDRESS_MEM_TYPE_64) val = *(u64 *)(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_2); else val = *(u32 *)(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_2); first_gfn = (val + vgpu_aperture_offset(vgpu)) >> PAGE_SHIFT; ret = intel_gvt_hypervisor_map_gfn_to_mfn(vgpu, first_gfn, aperture_pa >> PAGE_SHIFT, aperture_sz >> PAGE_SHIFT, map); if (ret) return ret; vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_APERTURE].tracked = map; return 0; } static int trap_gttmmio(struct intel_vgpu *vgpu, bool trap) { u64 start, end; u64 val; int ret; if (trap == vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_GTTMMIO].tracked) return 0; val = vgpu_cfg_space(vgpu)[PCI_BASE_ADDRESS_0]; if (val & PCI_BASE_ADDRESS_MEM_TYPE_64) start = *(u64 *)(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_0); else start = *(u32 *)(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_0); start &= ~GENMASK(3, 0); end = start + vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_GTTMMIO].size - 1; ret = intel_gvt_hypervisor_set_trap_area(vgpu, start, end, trap); if (ret) return ret; vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_GTTMMIO].tracked = trap; return 0; } static int emulate_pci_command_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u8 old = vgpu_cfg_space(vgpu)[offset]; u8 new = *(u8 *)p_data; u8 changed = old ^ new; int ret; vgpu_pci_cfg_mem_write(vgpu, offset, p_data, bytes); if (!(changed & PCI_COMMAND_MEMORY)) return 0; if (old & PCI_COMMAND_MEMORY) { ret = trap_gttmmio(vgpu, false); if (ret) return ret; ret = map_aperture(vgpu, false); if (ret) return ret; } else { ret = trap_gttmmio(vgpu, true); if (ret) return ret; ret = map_aperture(vgpu, true); if (ret) return ret; } return 0; } static int emulate_pci_rom_bar_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 *pval = (u32 *)(vgpu_cfg_space(vgpu) + offset); u32 new = *(u32 *)(p_data); if ((new & PCI_ROM_ADDRESS_MASK) == PCI_ROM_ADDRESS_MASK) /* We don't have rom, return size of 0. */ *pval = 0; else vgpu_pci_cfg_mem_write(vgpu, offset, p_data, bytes); return 0; } static int emulate_pci_bar_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { u32 new = *(u32 *)(p_data); bool lo = IS_ALIGNED(offset, 8); u64 size; int ret = 0; bool mmio_enabled = vgpu_cfg_space(vgpu)[PCI_COMMAND] & PCI_COMMAND_MEMORY; struct intel_vgpu_pci_bar *bars = vgpu->cfg_space.bar; /* * Power-up software can determine how much address * space the device requires by writing a value of * all 1's to the register and then reading the value * back. The device will return 0's in all don't-care * address bits. */ if (new == 0xffffffff) { switch (offset) { case PCI_BASE_ADDRESS_0: case PCI_BASE_ADDRESS_1: size = ~(bars[INTEL_GVT_PCI_BAR_GTTMMIO].size -1); intel_vgpu_write_pci_bar(vgpu, offset, size >> (lo ? 0 : 32), lo); /* * Untrap the BAR, since guest hasn't configured a * valid GPA */ ret = trap_gttmmio(vgpu, false); break; case PCI_BASE_ADDRESS_2: case PCI_BASE_ADDRESS_3: size = ~(bars[INTEL_GVT_PCI_BAR_APERTURE].size -1); intel_vgpu_write_pci_bar(vgpu, offset, size >> (lo ? 0 : 32), lo); ret = map_aperture(vgpu, false); break; default: /* Unimplemented BARs */ intel_vgpu_write_pci_bar(vgpu, offset, 0x0, false); } } else { switch (offset) { case PCI_BASE_ADDRESS_0: case PCI_BASE_ADDRESS_1: /* * Untrap the old BAR first, since guest has * re-configured the BAR */ trap_gttmmio(vgpu, false); intel_vgpu_write_pci_bar(vgpu, offset, new, lo); ret = trap_gttmmio(vgpu, mmio_enabled); break; case PCI_BASE_ADDRESS_2: case PCI_BASE_ADDRESS_3: map_aperture(vgpu, false); intel_vgpu_write_pci_bar(vgpu, offset, new, lo); ret = map_aperture(vgpu, mmio_enabled); break; default: intel_vgpu_write_pci_bar(vgpu, offset, new, lo); } } return ret; } /** * intel_vgpu_emulate_cfg_read - emulate vGPU configuration space write * @vgpu: target vgpu * @offset: offset * @p_data: write data ptr * @bytes: number of bytes to write * * Returns: * Zero on success, negative error code if failed. */ int intel_vgpu_emulate_cfg_write(struct intel_vgpu *vgpu, unsigned int offset, void *p_data, unsigned int bytes) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; int ret; if (drm_WARN_ON(&i915->drm, bytes > 4)) return -EINVAL; if (drm_WARN_ON(&i915->drm, offset + bytes > vgpu->gvt->device_info.cfg_space_size)) return -EINVAL; /* First check if it's PCI_COMMAND */ if (IS_ALIGNED(offset, 2) && offset == PCI_COMMAND) { if (drm_WARN_ON(&i915->drm, bytes > 2)) return -EINVAL; return emulate_pci_command_write(vgpu, offset, p_data, bytes); } switch (rounddown(offset, 4)) { case PCI_ROM_ADDRESS: if (drm_WARN_ON(&i915->drm, !IS_ALIGNED(offset, 4))) return -EINVAL; return emulate_pci_rom_bar_write(vgpu, offset, p_data, bytes); case PCI_BASE_ADDRESS_0 ... PCI_BASE_ADDRESS_5: if (drm_WARN_ON(&i915->drm, !IS_ALIGNED(offset, 4))) return -EINVAL; return emulate_pci_bar_write(vgpu, offset, p_data, bytes); case INTEL_GVT_PCI_SWSCI: if (drm_WARN_ON(&i915->drm, !IS_ALIGNED(offset, 4))) return -EINVAL; ret = intel_vgpu_emulate_opregion_request(vgpu, *(u32 *)p_data); if (ret) return ret; break; case INTEL_GVT_PCI_OPREGION: if (drm_WARN_ON(&i915->drm, !IS_ALIGNED(offset, 4))) return -EINVAL; ret = intel_vgpu_opregion_base_write_handler(vgpu, *(u32 *)p_data); if (ret) return ret; vgpu_pci_cfg_mem_write(vgpu, offset, p_data, bytes); break; default: vgpu_pci_cfg_mem_write(vgpu, offset, p_data, bytes); break; } return 0; } /** * intel_vgpu_init_cfg_space - init vGPU configuration space when create vGPU * * @vgpu: a vGPU * @primary: is the vGPU presented as primary * */ void intel_vgpu_init_cfg_space(struct intel_vgpu *vgpu, bool primary) { struct intel_gvt *gvt = vgpu->gvt; const struct intel_gvt_device_info *info = &gvt->device_info; u16 *gmch_ctl; memcpy(vgpu_cfg_space(vgpu), gvt->firmware.cfg_space, info->cfg_space_size); if (!primary) { vgpu_cfg_space(vgpu)[PCI_CLASS_DEVICE] = INTEL_GVT_PCI_CLASS_VGA_OTHER; vgpu_cfg_space(vgpu)[PCI_CLASS_PROG] = INTEL_GVT_PCI_CLASS_VGA_OTHER; } /* Show guest that there isn't any stolen memory.*/ gmch_ctl = (u16 *)(vgpu_cfg_space(vgpu) + INTEL_GVT_PCI_GMCH_CONTROL); *gmch_ctl &= ~(BDW_GMCH_GMS_MASK << BDW_GMCH_GMS_SHIFT); intel_vgpu_write_pci_bar(vgpu, PCI_BASE_ADDRESS_2, gvt_aperture_pa_base(gvt), true); vgpu_cfg_space(vgpu)[PCI_COMMAND] &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); /* * Clear the bar upper 32bit and let guest to assign the new value */ memset(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_1, 0, 4); memset(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_3, 0, 4); memset(vgpu_cfg_space(vgpu) + PCI_BASE_ADDRESS_4, 0, 8); memset(vgpu_cfg_space(vgpu) + INTEL_GVT_PCI_OPREGION, 0, 4); vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_GTTMMIO].size = pci_resource_len(gvt->gt->i915->drm.pdev, 0); vgpu->cfg_space.bar[INTEL_GVT_PCI_BAR_APERTURE].size = pci_resource_len(gvt->gt->i915->drm.pdev, 2); memset(vgpu_cfg_space(vgpu) + PCI_ROM_ADDRESS, 0, 4); } /** * intel_vgpu_reset_cfg_space - reset vGPU configuration space * * @vgpu: a vGPU * */ void intel_vgpu_reset_cfg_space(struct intel_vgpu *vgpu) { u8 cmd = vgpu_cfg_space(vgpu)[PCI_COMMAND]; bool primary = vgpu_cfg_space(vgpu)[PCI_CLASS_DEVICE] != INTEL_GVT_PCI_CLASS_VGA_OTHER; if (cmd & PCI_COMMAND_MEMORY) { trap_gttmmio(vgpu, false); map_aperture(vgpu, false); } /** * Currently we only do such reset when vGPU is not * owned by any VM, so we simply restore entire cfg * space to default value. */ intel_vgpu_init_cfg_space(vgpu, primary); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1