Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Zhi Wang | 3174 | 93.82% | 2 | 13.33% |
Pankaj Bharadiya | 67 | 1.98% | 1 | 6.67% |
Xiong Zhang | 40 | 1.18% | 1 | 6.67% |
Xu Han | 33 | 0.98% | 1 | 6.67% |
Chris Wilson | 29 | 0.86% | 2 | 13.33% |
Changbin Du | 23 | 0.68% | 2 | 13.33% |
Zhenyu Wang | 5 | 0.15% | 2 | 13.33% |
Colin Xu | 4 | 0.12% | 1 | 6.67% |
Xinyun Liu | 4 | 0.12% | 1 | 6.67% |
fred gao | 3 | 0.09% | 1 | 6.67% |
Colin Ian King | 1 | 0.03% | 1 | 6.67% |
Total | 3383 | 15 |
/* * Copyright(c) 2011-2016 Intel Corporation. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Kevin Tian <kevin.tian@intel.com> * Zhi Wang <zhi.a.wang@intel.com> * * Contributors: * Min he <min.he@intel.com> * */ #include "i915_drv.h" #include "gvt.h" #include "trace.h" /* common offset among interrupt control registers */ #define regbase_to_isr(base) (base) #define regbase_to_imr(base) (base + 0x4) #define regbase_to_iir(base) (base + 0x8) #define regbase_to_ier(base) (base + 0xC) #define iir_to_regbase(iir) (iir - 0x8) #define ier_to_regbase(ier) (ier - 0xC) #define get_event_virt_handler(irq, e) (irq->events[e].v_handler) #define get_irq_info(irq, e) (irq->events[e].info) #define irq_to_gvt(irq) \ container_of(irq, struct intel_gvt, irq) static void update_upstream_irq(struct intel_vgpu *vgpu, struct intel_gvt_irq_info *info); static const char * const irq_name[INTEL_GVT_EVENT_MAX] = { [RCS_MI_USER_INTERRUPT] = "Render CS MI USER INTERRUPT", [RCS_DEBUG] = "Render EU debug from SVG", [RCS_MMIO_SYNC_FLUSH] = "Render MMIO sync flush status", [RCS_CMD_STREAMER_ERR] = "Render CS error interrupt", [RCS_PIPE_CONTROL] = "Render PIPE CONTROL notify", [RCS_WATCHDOG_EXCEEDED] = "Render CS Watchdog counter exceeded", [RCS_PAGE_DIRECTORY_FAULT] = "Render page directory faults", [RCS_AS_CONTEXT_SWITCH] = "Render AS Context Switch Interrupt", [VCS_MI_USER_INTERRUPT] = "Video CS MI USER INTERRUPT", [VCS_MMIO_SYNC_FLUSH] = "Video MMIO sync flush status", [VCS_CMD_STREAMER_ERR] = "Video CS error interrupt", [VCS_MI_FLUSH_DW] = "Video MI FLUSH DW notify", [VCS_WATCHDOG_EXCEEDED] = "Video CS Watchdog counter exceeded", [VCS_PAGE_DIRECTORY_FAULT] = "Video page directory faults", [VCS_AS_CONTEXT_SWITCH] = "Video AS Context Switch Interrupt", [VCS2_MI_USER_INTERRUPT] = "VCS2 Video CS MI USER INTERRUPT", [VCS2_MI_FLUSH_DW] = "VCS2 Video MI FLUSH DW notify", [VCS2_AS_CONTEXT_SWITCH] = "VCS2 Context Switch Interrupt", [BCS_MI_USER_INTERRUPT] = "Blitter CS MI USER INTERRUPT", [BCS_MMIO_SYNC_FLUSH] = "Billter MMIO sync flush status", [BCS_CMD_STREAMER_ERR] = "Blitter CS error interrupt", [BCS_MI_FLUSH_DW] = "Blitter MI FLUSH DW notify", [BCS_PAGE_DIRECTORY_FAULT] = "Blitter page directory faults", [BCS_AS_CONTEXT_SWITCH] = "Blitter AS Context Switch Interrupt", [VECS_MI_FLUSH_DW] = "Video Enhanced Streamer MI FLUSH DW notify", [VECS_AS_CONTEXT_SWITCH] = "VECS Context Switch Interrupt", [PIPE_A_FIFO_UNDERRUN] = "Pipe A FIFO underrun", [PIPE_A_CRC_ERR] = "Pipe A CRC error", [PIPE_A_CRC_DONE] = "Pipe A CRC done", [PIPE_A_VSYNC] = "Pipe A vsync", [PIPE_A_LINE_COMPARE] = "Pipe A line compare", [PIPE_A_ODD_FIELD] = "Pipe A odd field", [PIPE_A_EVEN_FIELD] = "Pipe A even field", [PIPE_A_VBLANK] = "Pipe A vblank", [PIPE_B_FIFO_UNDERRUN] = "Pipe B FIFO underrun", [PIPE_B_CRC_ERR] = "Pipe B CRC error", [PIPE_B_CRC_DONE] = "Pipe B CRC done", [PIPE_B_VSYNC] = "Pipe B vsync", [PIPE_B_LINE_COMPARE] = "Pipe B line compare", [PIPE_B_ODD_FIELD] = "Pipe B odd field", [PIPE_B_EVEN_FIELD] = "Pipe B even field", [PIPE_B_VBLANK] = "Pipe B vblank", [PIPE_C_VBLANK] = "Pipe C vblank", [DPST_PHASE_IN] = "DPST phase in event", [DPST_HISTOGRAM] = "DPST histogram event", [GSE] = "GSE", [DP_A_HOTPLUG] = "DP A Hotplug", [AUX_CHANNEL_A] = "AUX Channel A", [PERF_COUNTER] = "Performance counter", [POISON] = "Poison", [GTT_FAULT] = "GTT fault", [PRIMARY_A_FLIP_DONE] = "Primary Plane A flip done", [PRIMARY_B_FLIP_DONE] = "Primary Plane B flip done", [PRIMARY_C_FLIP_DONE] = "Primary Plane C flip done", [SPRITE_A_FLIP_DONE] = "Sprite Plane A flip done", [SPRITE_B_FLIP_DONE] = "Sprite Plane B flip done", [SPRITE_C_FLIP_DONE] = "Sprite Plane C flip done", [PCU_THERMAL] = "PCU Thermal Event", [PCU_PCODE2DRIVER_MAILBOX] = "PCU pcode2driver mailbox event", [FDI_RX_INTERRUPTS_TRANSCODER_A] = "FDI RX Interrupts Combined A", [AUDIO_CP_CHANGE_TRANSCODER_A] = "Audio CP Change Transcoder A", [AUDIO_CP_REQUEST_TRANSCODER_A] = "Audio CP Request Transcoder A", [FDI_RX_INTERRUPTS_TRANSCODER_B] = "FDI RX Interrupts Combined B", [AUDIO_CP_CHANGE_TRANSCODER_B] = "Audio CP Change Transcoder B", [AUDIO_CP_REQUEST_TRANSCODER_B] = "Audio CP Request Transcoder B", [FDI_RX_INTERRUPTS_TRANSCODER_C] = "FDI RX Interrupts Combined C", [AUDIO_CP_CHANGE_TRANSCODER_C] = "Audio CP Change Transcoder C", [AUDIO_CP_REQUEST_TRANSCODER_C] = "Audio CP Request Transcoder C", [ERR_AND_DBG] = "South Error and Debug Interrupts Combined", [GMBUS] = "Gmbus", [SDVO_B_HOTPLUG] = "SDVO B hotplug", [CRT_HOTPLUG] = "CRT Hotplug", [DP_B_HOTPLUG] = "DisplayPort/HDMI/DVI B Hotplug", [DP_C_HOTPLUG] = "DisplayPort/HDMI/DVI C Hotplug", [DP_D_HOTPLUG] = "DisplayPort/HDMI/DVI D Hotplug", [AUX_CHANNEL_B] = "AUX Channel B", [AUX_CHANNEL_C] = "AUX Channel C", [AUX_CHANNEL_D] = "AUX Channel D", [AUDIO_POWER_STATE_CHANGE_B] = "Audio Power State change Port B", [AUDIO_POWER_STATE_CHANGE_C] = "Audio Power State change Port C", [AUDIO_POWER_STATE_CHANGE_D] = "Audio Power State change Port D", [INTEL_GVT_EVENT_RESERVED] = "RESERVED EVENTS!!!", }; static inline struct intel_gvt_irq_info *regbase_to_irq_info( struct intel_gvt *gvt, unsigned int reg) { struct intel_gvt_irq *irq = &gvt->irq; int i; for_each_set_bit(i, irq->irq_info_bitmap, INTEL_GVT_IRQ_INFO_MAX) { if (i915_mmio_reg_offset(irq->info[i]->reg_base) == reg) return irq->info[i]; } return NULL; } /** * intel_vgpu_reg_imr_handler - Generic IMR register emulation write handler * @vgpu: a vGPU * @reg: register offset written by guest * @p_data: register data written by guest * @bytes: register data length * * This function is used to emulate the generic IMR register bit change * behavior. * * Returns: * Zero on success, negative error code if failed. * */ int intel_vgpu_reg_imr_handler(struct intel_vgpu *vgpu, unsigned int reg, void *p_data, unsigned int bytes) { struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_irq_ops *ops = gvt->irq.ops; u32 imr = *(u32 *)p_data; trace_write_ir(vgpu->id, "IMR", reg, imr, vgpu_vreg(vgpu, reg), (vgpu_vreg(vgpu, reg) ^ imr)); vgpu_vreg(vgpu, reg) = imr; ops->check_pending_irq(vgpu); return 0; } /** * intel_vgpu_reg_master_irq_handler - master IRQ write emulation handler * @vgpu: a vGPU * @reg: register offset written by guest * @p_data: register data written by guest * @bytes: register data length * * This function is used to emulate the master IRQ register on gen8+. * * Returns: * Zero on success, negative error code if failed. * */ int intel_vgpu_reg_master_irq_handler(struct intel_vgpu *vgpu, unsigned int reg, void *p_data, unsigned int bytes) { struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_irq_ops *ops = gvt->irq.ops; u32 ier = *(u32 *)p_data; u32 virtual_ier = vgpu_vreg(vgpu, reg); trace_write_ir(vgpu->id, "MASTER_IRQ", reg, ier, virtual_ier, (virtual_ier ^ ier)); /* * GEN8_MASTER_IRQ is a special irq register, * only bit 31 is allowed to be modified * and treated as an IER bit. */ ier &= GEN8_MASTER_IRQ_CONTROL; virtual_ier &= GEN8_MASTER_IRQ_CONTROL; vgpu_vreg(vgpu, reg) &= ~GEN8_MASTER_IRQ_CONTROL; vgpu_vreg(vgpu, reg) |= ier; ops->check_pending_irq(vgpu); return 0; } /** * intel_vgpu_reg_ier_handler - Generic IER write emulation handler * @vgpu: a vGPU * @reg: register offset written by guest * @p_data: register data written by guest * @bytes: register data length * * This function is used to emulate the generic IER register behavior. * * Returns: * Zero on success, negative error code if failed. * */ int intel_vgpu_reg_ier_handler(struct intel_vgpu *vgpu, unsigned int reg, void *p_data, unsigned int bytes) { struct intel_gvt *gvt = vgpu->gvt; struct drm_i915_private *i915 = gvt->gt->i915; struct intel_gvt_irq_ops *ops = gvt->irq.ops; struct intel_gvt_irq_info *info; u32 ier = *(u32 *)p_data; trace_write_ir(vgpu->id, "IER", reg, ier, vgpu_vreg(vgpu, reg), (vgpu_vreg(vgpu, reg) ^ ier)); vgpu_vreg(vgpu, reg) = ier; info = regbase_to_irq_info(gvt, ier_to_regbase(reg)); if (drm_WARN_ON(&i915->drm, !info)) return -EINVAL; if (info->has_upstream_irq) update_upstream_irq(vgpu, info); ops->check_pending_irq(vgpu); return 0; } /** * intel_vgpu_reg_iir_handler - Generic IIR write emulation handler * @vgpu: a vGPU * @reg: register offset written by guest * @p_data: register data written by guest * @bytes: register data length * * This function is used to emulate the generic IIR register behavior. * * Returns: * Zero on success, negative error code if failed. * */ int intel_vgpu_reg_iir_handler(struct intel_vgpu *vgpu, unsigned int reg, void *p_data, unsigned int bytes) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; struct intel_gvt_irq_info *info = regbase_to_irq_info(vgpu->gvt, iir_to_regbase(reg)); u32 iir = *(u32 *)p_data; trace_write_ir(vgpu->id, "IIR", reg, iir, vgpu_vreg(vgpu, reg), (vgpu_vreg(vgpu, reg) ^ iir)); if (drm_WARN_ON(&i915->drm, !info)) return -EINVAL; vgpu_vreg(vgpu, reg) &= ~iir; if (info->has_upstream_irq) update_upstream_irq(vgpu, info); return 0; } static struct intel_gvt_irq_map gen8_irq_map[] = { { INTEL_GVT_IRQ_INFO_MASTER, 0, INTEL_GVT_IRQ_INFO_GT0, 0xffff }, { INTEL_GVT_IRQ_INFO_MASTER, 1, INTEL_GVT_IRQ_INFO_GT0, 0xffff0000 }, { INTEL_GVT_IRQ_INFO_MASTER, 2, INTEL_GVT_IRQ_INFO_GT1, 0xffff }, { INTEL_GVT_IRQ_INFO_MASTER, 3, INTEL_GVT_IRQ_INFO_GT1, 0xffff0000 }, { INTEL_GVT_IRQ_INFO_MASTER, 4, INTEL_GVT_IRQ_INFO_GT2, 0xffff }, { INTEL_GVT_IRQ_INFO_MASTER, 6, INTEL_GVT_IRQ_INFO_GT3, 0xffff }, { INTEL_GVT_IRQ_INFO_MASTER, 16, INTEL_GVT_IRQ_INFO_DE_PIPE_A, ~0 }, { INTEL_GVT_IRQ_INFO_MASTER, 17, INTEL_GVT_IRQ_INFO_DE_PIPE_B, ~0 }, { INTEL_GVT_IRQ_INFO_MASTER, 18, INTEL_GVT_IRQ_INFO_DE_PIPE_C, ~0 }, { INTEL_GVT_IRQ_INFO_MASTER, 20, INTEL_GVT_IRQ_INFO_DE_PORT, ~0 }, { INTEL_GVT_IRQ_INFO_MASTER, 22, INTEL_GVT_IRQ_INFO_DE_MISC, ~0 }, { INTEL_GVT_IRQ_INFO_MASTER, 23, INTEL_GVT_IRQ_INFO_PCH, ~0 }, { INTEL_GVT_IRQ_INFO_MASTER, 30, INTEL_GVT_IRQ_INFO_PCU, ~0 }, { -1, -1, ~0 }, }; static void update_upstream_irq(struct intel_vgpu *vgpu, struct intel_gvt_irq_info *info) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; struct intel_gvt_irq *irq = &vgpu->gvt->irq; struct intel_gvt_irq_map *map = irq->irq_map; struct intel_gvt_irq_info *up_irq_info = NULL; u32 set_bits = 0; u32 clear_bits = 0; int bit; u32 val = vgpu_vreg(vgpu, regbase_to_iir(i915_mmio_reg_offset(info->reg_base))) & vgpu_vreg(vgpu, regbase_to_ier(i915_mmio_reg_offset(info->reg_base))); if (!info->has_upstream_irq) return; for (map = irq->irq_map; map->up_irq_bit != -1; map++) { if (info->group != map->down_irq_group) continue; if (!up_irq_info) up_irq_info = irq->info[map->up_irq_group]; else drm_WARN_ON(&i915->drm, up_irq_info != irq->info[map->up_irq_group]); bit = map->up_irq_bit; if (val & map->down_irq_bitmask) set_bits |= (1 << bit); else clear_bits |= (1 << bit); } if (drm_WARN_ON(&i915->drm, !up_irq_info)) return; if (up_irq_info->group == INTEL_GVT_IRQ_INFO_MASTER) { u32 isr = i915_mmio_reg_offset(up_irq_info->reg_base); vgpu_vreg(vgpu, isr) &= ~clear_bits; vgpu_vreg(vgpu, isr) |= set_bits; } else { u32 iir = regbase_to_iir( i915_mmio_reg_offset(up_irq_info->reg_base)); u32 imr = regbase_to_imr( i915_mmio_reg_offset(up_irq_info->reg_base)); vgpu_vreg(vgpu, iir) |= (set_bits & ~vgpu_vreg(vgpu, imr)); } if (up_irq_info->has_upstream_irq) update_upstream_irq(vgpu, up_irq_info); } static void init_irq_map(struct intel_gvt_irq *irq) { struct intel_gvt_irq_map *map; struct intel_gvt_irq_info *up_info, *down_info; int up_bit; for (map = irq->irq_map; map->up_irq_bit != -1; map++) { up_info = irq->info[map->up_irq_group]; up_bit = map->up_irq_bit; down_info = irq->info[map->down_irq_group]; set_bit(up_bit, up_info->downstream_irq_bitmap); down_info->has_upstream_irq = true; gvt_dbg_irq("[up] grp %d bit %d -> [down] grp %d bitmask %x\n", up_info->group, up_bit, down_info->group, map->down_irq_bitmask); } } /* =======================vEvent injection===================== */ static int inject_virtual_interrupt(struct intel_vgpu *vgpu) { return intel_gvt_hypervisor_inject_msi(vgpu); } static void propagate_event(struct intel_gvt_irq *irq, enum intel_gvt_event_type event, struct intel_vgpu *vgpu) { struct intel_gvt_irq_info *info; unsigned int reg_base; int bit; info = get_irq_info(irq, event); if (WARN_ON(!info)) return; reg_base = i915_mmio_reg_offset(info->reg_base); bit = irq->events[event].bit; if (!test_bit(bit, (void *)&vgpu_vreg(vgpu, regbase_to_imr(reg_base)))) { trace_propagate_event(vgpu->id, irq_name[event], bit); set_bit(bit, (void *)&vgpu_vreg(vgpu, regbase_to_iir(reg_base))); } } /* =======================vEvent Handlers===================== */ static void handle_default_event_virt(struct intel_gvt_irq *irq, enum intel_gvt_event_type event, struct intel_vgpu *vgpu) { if (!vgpu->irq.irq_warn_once[event]) { gvt_dbg_core("vgpu%d: IRQ receive event %d (%s)\n", vgpu->id, event, irq_name[event]); vgpu->irq.irq_warn_once[event] = true; } propagate_event(irq, event, vgpu); } /* =====================GEN specific logic======================= */ /* GEN8 interrupt routines. */ #define DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(regname, regbase) \ static struct intel_gvt_irq_info gen8_##regname##_info = { \ .name = #regname"-IRQ", \ .reg_base = (regbase), \ .bit_to_event = {[0 ... INTEL_GVT_IRQ_BITWIDTH-1] = \ INTEL_GVT_EVENT_RESERVED}, \ } DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt0, GEN8_GT_ISR(0)); DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt1, GEN8_GT_ISR(1)); DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt2, GEN8_GT_ISR(2)); DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(gt3, GEN8_GT_ISR(3)); DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_pipe_a, GEN8_DE_PIPE_ISR(PIPE_A)); DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_pipe_b, GEN8_DE_PIPE_ISR(PIPE_B)); DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_pipe_c, GEN8_DE_PIPE_ISR(PIPE_C)); DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_port, GEN8_DE_PORT_ISR); DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(de_misc, GEN8_DE_MISC_ISR); DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(pcu, GEN8_PCU_ISR); DEFINE_GVT_GEN8_INTEL_GVT_IRQ_INFO(master, GEN8_MASTER_IRQ); static struct intel_gvt_irq_info gvt_base_pch_info = { .name = "PCH-IRQ", .reg_base = SDEISR, .bit_to_event = {[0 ... INTEL_GVT_IRQ_BITWIDTH-1] = INTEL_GVT_EVENT_RESERVED}, }; static void gen8_check_pending_irq(struct intel_vgpu *vgpu) { struct intel_gvt_irq *irq = &vgpu->gvt->irq; int i; if (!(vgpu_vreg(vgpu, i915_mmio_reg_offset(GEN8_MASTER_IRQ)) & GEN8_MASTER_IRQ_CONTROL)) return; for_each_set_bit(i, irq->irq_info_bitmap, INTEL_GVT_IRQ_INFO_MAX) { struct intel_gvt_irq_info *info = irq->info[i]; u32 reg_base; if (!info->has_upstream_irq) continue; reg_base = i915_mmio_reg_offset(info->reg_base); if ((vgpu_vreg(vgpu, regbase_to_iir(reg_base)) & vgpu_vreg(vgpu, regbase_to_ier(reg_base)))) update_upstream_irq(vgpu, info); } if (vgpu_vreg(vgpu, i915_mmio_reg_offset(GEN8_MASTER_IRQ)) & ~GEN8_MASTER_IRQ_CONTROL) inject_virtual_interrupt(vgpu); } static void gen8_init_irq( struct intel_gvt_irq *irq) { struct intel_gvt *gvt = irq_to_gvt(irq); #define SET_BIT_INFO(s, b, e, i) \ do { \ s->events[e].bit = b; \ s->events[e].info = s->info[i]; \ s->info[i]->bit_to_event[b] = e;\ } while (0) #define SET_IRQ_GROUP(s, g, i) \ do { \ s->info[g] = i; \ (i)->group = g; \ set_bit(g, s->irq_info_bitmap); \ } while (0) SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_MASTER, &gen8_master_info); SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT0, &gen8_gt0_info); SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT1, &gen8_gt1_info); SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT2, &gen8_gt2_info); SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_GT3, &gen8_gt3_info); SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PIPE_A, &gen8_de_pipe_a_info); SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PIPE_B, &gen8_de_pipe_b_info); SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PIPE_C, &gen8_de_pipe_c_info); SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_PORT, &gen8_de_port_info); SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_DE_MISC, &gen8_de_misc_info); SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_PCU, &gen8_pcu_info); SET_IRQ_GROUP(irq, INTEL_GVT_IRQ_INFO_PCH, &gvt_base_pch_info); /* GEN8 level 2 interrupts. */ /* GEN8 interrupt GT0 events */ SET_BIT_INFO(irq, 0, RCS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT0); SET_BIT_INFO(irq, 4, RCS_PIPE_CONTROL, INTEL_GVT_IRQ_INFO_GT0); SET_BIT_INFO(irq, 8, RCS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT0); SET_BIT_INFO(irq, 16, BCS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT0); SET_BIT_INFO(irq, 20, BCS_MI_FLUSH_DW, INTEL_GVT_IRQ_INFO_GT0); SET_BIT_INFO(irq, 24, BCS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT0); /* GEN8 interrupt GT1 events */ SET_BIT_INFO(irq, 0, VCS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT1); SET_BIT_INFO(irq, 4, VCS_MI_FLUSH_DW, INTEL_GVT_IRQ_INFO_GT1); SET_BIT_INFO(irq, 8, VCS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT1); if (HAS_ENGINE(gvt->gt->i915, VCS1)) { SET_BIT_INFO(irq, 16, VCS2_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT1); SET_BIT_INFO(irq, 20, VCS2_MI_FLUSH_DW, INTEL_GVT_IRQ_INFO_GT1); SET_BIT_INFO(irq, 24, VCS2_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT1); } /* GEN8 interrupt GT3 events */ SET_BIT_INFO(irq, 0, VECS_MI_USER_INTERRUPT, INTEL_GVT_IRQ_INFO_GT3); SET_BIT_INFO(irq, 4, VECS_MI_FLUSH_DW, INTEL_GVT_IRQ_INFO_GT3); SET_BIT_INFO(irq, 8, VECS_AS_CONTEXT_SWITCH, INTEL_GVT_IRQ_INFO_GT3); SET_BIT_INFO(irq, 0, PIPE_A_VBLANK, INTEL_GVT_IRQ_INFO_DE_PIPE_A); SET_BIT_INFO(irq, 0, PIPE_B_VBLANK, INTEL_GVT_IRQ_INFO_DE_PIPE_B); SET_BIT_INFO(irq, 0, PIPE_C_VBLANK, INTEL_GVT_IRQ_INFO_DE_PIPE_C); /* GEN8 interrupt DE PORT events */ SET_BIT_INFO(irq, 0, AUX_CHANNEL_A, INTEL_GVT_IRQ_INFO_DE_PORT); SET_BIT_INFO(irq, 3, DP_A_HOTPLUG, INTEL_GVT_IRQ_INFO_DE_PORT); /* GEN8 interrupt DE MISC events */ SET_BIT_INFO(irq, 0, GSE, INTEL_GVT_IRQ_INFO_DE_MISC); /* PCH events */ SET_BIT_INFO(irq, 17, GMBUS, INTEL_GVT_IRQ_INFO_PCH); SET_BIT_INFO(irq, 19, CRT_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH); SET_BIT_INFO(irq, 21, DP_B_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH); SET_BIT_INFO(irq, 22, DP_C_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH); SET_BIT_INFO(irq, 23, DP_D_HOTPLUG, INTEL_GVT_IRQ_INFO_PCH); if (IS_BROADWELL(gvt->gt->i915)) { SET_BIT_INFO(irq, 25, AUX_CHANNEL_B, INTEL_GVT_IRQ_INFO_PCH); SET_BIT_INFO(irq, 26, AUX_CHANNEL_C, INTEL_GVT_IRQ_INFO_PCH); SET_BIT_INFO(irq, 27, AUX_CHANNEL_D, INTEL_GVT_IRQ_INFO_PCH); SET_BIT_INFO(irq, 4, PRIMARY_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A); SET_BIT_INFO(irq, 5, SPRITE_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A); SET_BIT_INFO(irq, 4, PRIMARY_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B); SET_BIT_INFO(irq, 5, SPRITE_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B); SET_BIT_INFO(irq, 4, PRIMARY_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C); SET_BIT_INFO(irq, 5, SPRITE_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C); } else if (INTEL_GEN(gvt->gt->i915) >= 9) { SET_BIT_INFO(irq, 25, AUX_CHANNEL_B, INTEL_GVT_IRQ_INFO_DE_PORT); SET_BIT_INFO(irq, 26, AUX_CHANNEL_C, INTEL_GVT_IRQ_INFO_DE_PORT); SET_BIT_INFO(irq, 27, AUX_CHANNEL_D, INTEL_GVT_IRQ_INFO_DE_PORT); SET_BIT_INFO(irq, 3, PRIMARY_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A); SET_BIT_INFO(irq, 3, PRIMARY_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B); SET_BIT_INFO(irq, 3, PRIMARY_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C); SET_BIT_INFO(irq, 4, SPRITE_A_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_A); SET_BIT_INFO(irq, 4, SPRITE_B_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_B); SET_BIT_INFO(irq, 4, SPRITE_C_FLIP_DONE, INTEL_GVT_IRQ_INFO_DE_PIPE_C); } /* GEN8 interrupt PCU events */ SET_BIT_INFO(irq, 24, PCU_THERMAL, INTEL_GVT_IRQ_INFO_PCU); SET_BIT_INFO(irq, 25, PCU_PCODE2DRIVER_MAILBOX, INTEL_GVT_IRQ_INFO_PCU); } static struct intel_gvt_irq_ops gen8_irq_ops = { .init_irq = gen8_init_irq, .check_pending_irq = gen8_check_pending_irq, }; /** * intel_vgpu_trigger_virtual_event - Trigger a virtual event for a vGPU * @vgpu: a vGPU * @event: interrupt event * * This function is used to trigger a virtual interrupt event for vGPU. * The caller provides the event to be triggered, the framework itself * will emulate the IRQ register bit change. * */ void intel_vgpu_trigger_virtual_event(struct intel_vgpu *vgpu, enum intel_gvt_event_type event) { struct drm_i915_private *i915 = vgpu->gvt->gt->i915; struct intel_gvt *gvt = vgpu->gvt; struct intel_gvt_irq *irq = &gvt->irq; gvt_event_virt_handler_t handler; struct intel_gvt_irq_ops *ops = gvt->irq.ops; handler = get_event_virt_handler(irq, event); drm_WARN_ON(&i915->drm, !handler); handler(irq, event, vgpu); ops->check_pending_irq(vgpu); } static void init_events( struct intel_gvt_irq *irq) { int i; for (i = 0; i < INTEL_GVT_EVENT_MAX; i++) { irq->events[i].info = NULL; irq->events[i].v_handler = handle_default_event_virt; } } static enum hrtimer_restart vblank_timer_fn(struct hrtimer *data) { struct intel_gvt_vblank_timer *vblank_timer; struct intel_gvt_irq *irq; struct intel_gvt *gvt; vblank_timer = container_of(data, struct intel_gvt_vblank_timer, timer); irq = container_of(vblank_timer, struct intel_gvt_irq, vblank_timer); gvt = container_of(irq, struct intel_gvt, irq); intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EMULATE_VBLANK); hrtimer_add_expires_ns(&vblank_timer->timer, vblank_timer->period); return HRTIMER_RESTART; } /** * intel_gvt_clean_irq - clean up GVT-g IRQ emulation subsystem * @gvt: a GVT device * * This function is called at driver unloading stage, to clean up GVT-g IRQ * emulation subsystem. * */ void intel_gvt_clean_irq(struct intel_gvt *gvt) { struct intel_gvt_irq *irq = &gvt->irq; hrtimer_cancel(&irq->vblank_timer.timer); } #define VBLANK_TIMER_PERIOD 16000000 /** * intel_gvt_init_irq - initialize GVT-g IRQ emulation subsystem * @gvt: a GVT device * * This function is called at driver loading stage, to initialize the GVT-g IRQ * emulation subsystem. * * Returns: * Zero on success, negative error code if failed. */ int intel_gvt_init_irq(struct intel_gvt *gvt) { struct intel_gvt_irq *irq = &gvt->irq; struct intel_gvt_vblank_timer *vblank_timer = &irq->vblank_timer; gvt_dbg_core("init irq framework\n"); irq->ops = &gen8_irq_ops; irq->irq_map = gen8_irq_map; /* common event initialization */ init_events(irq); /* gen specific initialization */ irq->ops->init_irq(irq); init_irq_map(irq); hrtimer_init(&vblank_timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); vblank_timer->timer.function = vblank_timer_fn; vblank_timer->period = VBLANK_TIMER_PERIOD; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1