Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Wilson | 6352 | 64.92% | 100 | 48.31% |
Mika Kuoppala | 1444 | 14.76% | 15 | 7.25% |
Ben Widawsky | 472 | 4.82% | 13 | 6.28% |
Michal Wajdeczko | 307 | 3.14% | 7 | 3.38% |
Daniele Ceraolo Spurio | 265 | 2.71% | 4 | 1.93% |
Tvrtko A. Ursulin | 229 | 2.34% | 13 | 6.28% |
Rodrigo Vivi | 134 | 1.37% | 4 | 1.93% |
Oscar Mateo | 93 | 0.95% | 3 | 1.45% |
Lucas De Marchi | 92 | 0.94% | 4 | 1.93% |
Lionel Landwerlin | 82 | 0.84% | 3 | 1.45% |
Jani Nikula | 62 | 0.63% | 12 | 5.80% |
Matthew Auld | 60 | 0.61% | 3 | 1.45% |
Michel Thierry | 46 | 0.47% | 4 | 1.93% |
Ville Syrjälä | 35 | 0.36% | 4 | 1.93% |
Stuart Summers | 20 | 0.20% | 1 | 0.48% |
Arun Siluvery | 15 | 0.15% | 2 | 0.97% |
Akash Goel | 12 | 0.12% | 2 | 0.97% |
Daniel Vetter | 12 | 0.12% | 2 | 0.97% |
Imre Deak | 11 | 0.11% | 1 | 0.48% |
David Weinehall | 10 | 0.10% | 1 | 0.48% |
Joonas Lahtinen | 9 | 0.09% | 2 | 0.97% |
Jordan Crouse | 7 | 0.07% | 1 | 0.48% |
Bruce Chang | 6 | 0.06% | 1 | 0.48% |
Sagar Arun Kamble | 2 | 0.02% | 1 | 0.48% |
Arnd Bergmann | 2 | 0.02% | 1 | 0.48% |
Paulo Zanoni | 2 | 0.02% | 1 | 0.48% |
Carlos Santa | 2 | 0.02% | 1 | 0.48% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 0.48% |
Total | 9784 | 207 |
/* * Copyright (c) 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt <eric@anholt.net> * Keith Packard <keithp@keithp.com> * Mika Kuoppala <mika.kuoppala@intel.com> * */ #include <linux/ascii85.h> #include <linux/nmi.h> #include <linux/pagevec.h> #include <linux/scatterlist.h> #include <linux/utsname.h> #include <linux/zlib.h> #include <drm/drm_print.h> #include "display/intel_atomic.h" #include "display/intel_csr.h" #include "display/intel_overlay.h" #include "gem/i915_gem_context.h" #include "gem/i915_gem_lmem.h" #include "gt/intel_gt_pm.h" #include "i915_drv.h" #include "i915_gpu_error.h" #include "i915_memcpy.h" #include "i915_scatterlist.h" #define ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) #define ATOMIC_MAYFAIL (GFP_ATOMIC | __GFP_NOWARN) static void __sg_set_buf(struct scatterlist *sg, void *addr, unsigned int len, loff_t it) { sg->page_link = (unsigned long)virt_to_page(addr); sg->offset = offset_in_page(addr); sg->length = len; sg->dma_address = it; } static bool __i915_error_grow(struct drm_i915_error_state_buf *e, size_t len) { if (!len) return false; if (e->bytes + len + 1 <= e->size) return true; if (e->bytes) { __sg_set_buf(e->cur++, e->buf, e->bytes, e->iter); e->iter += e->bytes; e->buf = NULL; e->bytes = 0; } if (e->cur == e->end) { struct scatterlist *sgl; sgl = (typeof(sgl))__get_free_page(ALLOW_FAIL); if (!sgl) { e->err = -ENOMEM; return false; } if (e->cur) { e->cur->offset = 0; e->cur->length = 0; e->cur->page_link = (unsigned long)sgl | SG_CHAIN; } else { e->sgl = sgl; } e->cur = sgl; e->end = sgl + SG_MAX_SINGLE_ALLOC - 1; } e->size = ALIGN(len + 1, SZ_64K); e->buf = kmalloc(e->size, ALLOW_FAIL); if (!e->buf) { e->size = PAGE_ALIGN(len + 1); e->buf = kmalloc(e->size, GFP_KERNEL); } if (!e->buf) { e->err = -ENOMEM; return false; } return true; } __printf(2, 0) static void i915_error_vprintf(struct drm_i915_error_state_buf *e, const char *fmt, va_list args) { va_list ap; int len; if (e->err) return; va_copy(ap, args); len = vsnprintf(NULL, 0, fmt, ap); va_end(ap); if (len <= 0) { e->err = len; return; } if (!__i915_error_grow(e, len)) return; GEM_BUG_ON(e->bytes >= e->size); len = vscnprintf(e->buf + e->bytes, e->size - e->bytes, fmt, args); if (len < 0) { e->err = len; return; } e->bytes += len; } static void i915_error_puts(struct drm_i915_error_state_buf *e, const char *str) { unsigned len; if (e->err || !str) return; len = strlen(str); if (!__i915_error_grow(e, len)) return; GEM_BUG_ON(e->bytes + len > e->size); memcpy(e->buf + e->bytes, str, len); e->bytes += len; } #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) #define err_puts(e, s) i915_error_puts(e, s) static void __i915_printfn_error(struct drm_printer *p, struct va_format *vaf) { i915_error_vprintf(p->arg, vaf->fmt, *vaf->va); } static inline struct drm_printer i915_error_printer(struct drm_i915_error_state_buf *e) { struct drm_printer p = { .printfn = __i915_printfn_error, .arg = e, }; return p; } /* single threaded page allocator with a reserved stash for emergencies */ static void pool_fini(struct pagevec *pv) { pagevec_release(pv); } static int pool_refill(struct pagevec *pv, gfp_t gfp) { while (pagevec_space(pv)) { struct page *p; p = alloc_page(gfp); if (!p) return -ENOMEM; pagevec_add(pv, p); } return 0; } static int pool_init(struct pagevec *pv, gfp_t gfp) { int err; pagevec_init(pv); err = pool_refill(pv, gfp); if (err) pool_fini(pv); return err; } static void *pool_alloc(struct pagevec *pv, gfp_t gfp) { struct page *p; p = alloc_page(gfp); if (!p && pagevec_count(pv)) p = pv->pages[--pv->nr]; return p ? page_address(p) : NULL; } static void pool_free(struct pagevec *pv, void *addr) { struct page *p = virt_to_page(addr); if (pagevec_space(pv)) pagevec_add(pv, p); else __free_page(p); } #ifdef CONFIG_DRM_I915_COMPRESS_ERROR struct i915_vma_compress { struct pagevec pool; struct z_stream_s zstream; void *tmp; }; static bool compress_init(struct i915_vma_compress *c) { struct z_stream_s *zstream = &c->zstream; if (pool_init(&c->pool, ALLOW_FAIL)) return false; zstream->workspace = kmalloc(zlib_deflate_workspacesize(MAX_WBITS, MAX_MEM_LEVEL), ALLOW_FAIL); if (!zstream->workspace) { pool_fini(&c->pool); return false; } c->tmp = NULL; if (i915_has_memcpy_from_wc()) c->tmp = pool_alloc(&c->pool, ALLOW_FAIL); return true; } static bool compress_start(struct i915_vma_compress *c) { struct z_stream_s *zstream = &c->zstream; void *workspace = zstream->workspace; memset(zstream, 0, sizeof(*zstream)); zstream->workspace = workspace; return zlib_deflateInit(zstream, Z_DEFAULT_COMPRESSION) == Z_OK; } static void *compress_next_page(struct i915_vma_compress *c, struct i915_vma_coredump *dst) { void *page; if (dst->page_count >= dst->num_pages) return ERR_PTR(-ENOSPC); page = pool_alloc(&c->pool, ALLOW_FAIL); if (!page) return ERR_PTR(-ENOMEM); return dst->pages[dst->page_count++] = page; } static int compress_page(struct i915_vma_compress *c, void *src, struct i915_vma_coredump *dst, bool wc) { struct z_stream_s *zstream = &c->zstream; zstream->next_in = src; if (wc && c->tmp && i915_memcpy_from_wc(c->tmp, src, PAGE_SIZE)) zstream->next_in = c->tmp; zstream->avail_in = PAGE_SIZE; do { if (zstream->avail_out == 0) { zstream->next_out = compress_next_page(c, dst); if (IS_ERR(zstream->next_out)) return PTR_ERR(zstream->next_out); zstream->avail_out = PAGE_SIZE; } if (zlib_deflate(zstream, Z_NO_FLUSH) != Z_OK) return -EIO; } while (zstream->avail_in); /* Fallback to uncompressed if we increase size? */ if (0 && zstream->total_out > zstream->total_in) return -E2BIG; return 0; } static int compress_flush(struct i915_vma_compress *c, struct i915_vma_coredump *dst) { struct z_stream_s *zstream = &c->zstream; do { switch (zlib_deflate(zstream, Z_FINISH)) { case Z_OK: /* more space requested */ zstream->next_out = compress_next_page(c, dst); if (IS_ERR(zstream->next_out)) return PTR_ERR(zstream->next_out); zstream->avail_out = PAGE_SIZE; break; case Z_STREAM_END: goto end; default: /* any error */ return -EIO; } } while (1); end: memset(zstream->next_out, 0, zstream->avail_out); dst->unused = zstream->avail_out; return 0; } static void compress_finish(struct i915_vma_compress *c) { zlib_deflateEnd(&c->zstream); } static void compress_fini(struct i915_vma_compress *c) { kfree(c->zstream.workspace); if (c->tmp) pool_free(&c->pool, c->tmp); pool_fini(&c->pool); } static void err_compression_marker(struct drm_i915_error_state_buf *m) { err_puts(m, ":"); } #else struct i915_vma_compress { struct pagevec pool; }; static bool compress_init(struct i915_vma_compress *c) { return pool_init(&c->pool, ALLOW_FAIL) == 0; } static bool compress_start(struct i915_vma_compress *c) { return true; } static int compress_page(struct i915_vma_compress *c, void *src, struct i915_vma_coredump *dst, bool wc) { void *ptr; ptr = pool_alloc(&c->pool, ALLOW_FAIL); if (!ptr) return -ENOMEM; if (!(wc && i915_memcpy_from_wc(ptr, src, PAGE_SIZE))) memcpy(ptr, src, PAGE_SIZE); dst->pages[dst->page_count++] = ptr; return 0; } static int compress_flush(struct i915_vma_compress *c, struct i915_vma_coredump *dst) { return 0; } static void compress_finish(struct i915_vma_compress *c) { } static void compress_fini(struct i915_vma_compress *c) { pool_fini(&c->pool); } static void err_compression_marker(struct drm_i915_error_state_buf *m) { err_puts(m, "~"); } #endif static void error_print_instdone(struct drm_i915_error_state_buf *m, const struct intel_engine_coredump *ee) { const struct sseu_dev_info *sseu = &RUNTIME_INFO(m->i915)->sseu; int slice; int subslice; err_printf(m, " INSTDONE: 0x%08x\n", ee->instdone.instdone); if (ee->engine->class != RENDER_CLASS || INTEL_GEN(m->i915) <= 3) return; err_printf(m, " SC_INSTDONE: 0x%08x\n", ee->instdone.slice_common); if (INTEL_GEN(m->i915) <= 6) return; for_each_instdone_slice_subslice(m->i915, sseu, slice, subslice) err_printf(m, " SAMPLER_INSTDONE[%d][%d]: 0x%08x\n", slice, subslice, ee->instdone.sampler[slice][subslice]); for_each_instdone_slice_subslice(m->i915, sseu, slice, subslice) err_printf(m, " ROW_INSTDONE[%d][%d]: 0x%08x\n", slice, subslice, ee->instdone.row[slice][subslice]); if (INTEL_GEN(m->i915) < 12) return; err_printf(m, " SC_INSTDONE_EXTRA: 0x%08x\n", ee->instdone.slice_common_extra[0]); err_printf(m, " SC_INSTDONE_EXTRA2: 0x%08x\n", ee->instdone.slice_common_extra[1]); } static void error_print_request(struct drm_i915_error_state_buf *m, const char *prefix, const struct i915_request_coredump *erq) { if (!erq->seqno) return; err_printf(m, "%s pid %d, seqno %8x:%08x%s%s, prio %d, start %08x, head %08x, tail %08x\n", prefix, erq->pid, erq->context, erq->seqno, test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &erq->flags) ? "!" : "", test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &erq->flags) ? "+" : "", erq->sched_attr.priority, erq->start, erq->head, erq->tail); } static void error_print_context(struct drm_i915_error_state_buf *m, const char *header, const struct i915_gem_context_coredump *ctx) { const u32 period = RUNTIME_INFO(m->i915)->cs_timestamp_period_ns; err_printf(m, "%s%s[%d] prio %d, guilty %d active %d, runtime total %lluns, avg %lluns\n", header, ctx->comm, ctx->pid, ctx->sched_attr.priority, ctx->guilty, ctx->active, ctx->total_runtime * period, mul_u32_u32(ctx->avg_runtime, period)); } static struct i915_vma_coredump * __find_vma(struct i915_vma_coredump *vma, const char *name) { while (vma) { if (strcmp(vma->name, name) == 0) return vma; vma = vma->next; } return NULL; } static struct i915_vma_coredump * find_batch(const struct intel_engine_coredump *ee) { return __find_vma(ee->vma, "batch"); } static void error_print_engine(struct drm_i915_error_state_buf *m, const struct intel_engine_coredump *ee) { struct i915_vma_coredump *batch; int n; err_printf(m, "%s command stream:\n", ee->engine->name); err_printf(m, " CCID: 0x%08x\n", ee->ccid); err_printf(m, " START: 0x%08x\n", ee->start); err_printf(m, " HEAD: 0x%08x [0x%08x]\n", ee->head, ee->rq_head); err_printf(m, " TAIL: 0x%08x [0x%08x, 0x%08x]\n", ee->tail, ee->rq_post, ee->rq_tail); err_printf(m, " CTL: 0x%08x\n", ee->ctl); err_printf(m, " MODE: 0x%08x\n", ee->mode); err_printf(m, " HWS: 0x%08x\n", ee->hws); err_printf(m, " ACTHD: 0x%08x %08x\n", (u32)(ee->acthd>>32), (u32)ee->acthd); err_printf(m, " IPEIR: 0x%08x\n", ee->ipeir); err_printf(m, " IPEHR: 0x%08x\n", ee->ipehr); err_printf(m, " ESR: 0x%08x\n", ee->esr); error_print_instdone(m, ee); batch = find_batch(ee); if (batch) { u64 start = batch->gtt_offset; u64 end = start + batch->gtt_size; err_printf(m, " batch: [0x%08x_%08x, 0x%08x_%08x]\n", upper_32_bits(start), lower_32_bits(start), upper_32_bits(end), lower_32_bits(end)); } if (INTEL_GEN(m->i915) >= 4) { err_printf(m, " BBADDR: 0x%08x_%08x\n", (u32)(ee->bbaddr>>32), (u32)ee->bbaddr); err_printf(m, " BB_STATE: 0x%08x\n", ee->bbstate); err_printf(m, " INSTPS: 0x%08x\n", ee->instps); } err_printf(m, " INSTPM: 0x%08x\n", ee->instpm); err_printf(m, " FADDR: 0x%08x %08x\n", upper_32_bits(ee->faddr), lower_32_bits(ee->faddr)); if (INTEL_GEN(m->i915) >= 6) { err_printf(m, " RC PSMI: 0x%08x\n", ee->rc_psmi); err_printf(m, " FAULT_REG: 0x%08x\n", ee->fault_reg); } if (HAS_PPGTT(m->i915)) { err_printf(m, " GFX_MODE: 0x%08x\n", ee->vm_info.gfx_mode); if (INTEL_GEN(m->i915) >= 8) { int i; for (i = 0; i < 4; i++) err_printf(m, " PDP%d: 0x%016llx\n", i, ee->vm_info.pdp[i]); } else { err_printf(m, " PP_DIR_BASE: 0x%08x\n", ee->vm_info.pp_dir_base); } } err_printf(m, " engine reset count: %u\n", ee->reset_count); for (n = 0; n < ee->num_ports; n++) { err_printf(m, " ELSP[%d]:", n); error_print_request(m, " ", &ee->execlist[n]); } error_print_context(m, " Active context: ", &ee->context); } void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...) { va_list args; va_start(args, f); i915_error_vprintf(e, f, args); va_end(args); } static void print_error_vma(struct drm_i915_error_state_buf *m, const struct intel_engine_cs *engine, const struct i915_vma_coredump *vma) { char out[ASCII85_BUFSZ]; int page; if (!vma) return; err_printf(m, "%s --- %s = 0x%08x %08x\n", engine ? engine->name : "global", vma->name, upper_32_bits(vma->gtt_offset), lower_32_bits(vma->gtt_offset)); if (vma->gtt_page_sizes > I915_GTT_PAGE_SIZE_4K) err_printf(m, "gtt_page_sizes = 0x%08x\n", vma->gtt_page_sizes); err_compression_marker(m); for (page = 0; page < vma->page_count; page++) { int i, len; len = PAGE_SIZE; if (page == vma->page_count - 1) len -= vma->unused; len = ascii85_encode_len(len); for (i = 0; i < len; i++) err_puts(m, ascii85_encode(vma->pages[page][i], out)); } err_puts(m, "\n"); } static void err_print_capabilities(struct drm_i915_error_state_buf *m, const struct intel_device_info *info, const struct intel_runtime_info *runtime, const struct intel_driver_caps *caps) { struct drm_printer p = i915_error_printer(m); intel_device_info_print_static(info, &p); intel_device_info_print_runtime(runtime, &p); intel_device_info_print_topology(&runtime->sseu, &p); intel_driver_caps_print(caps, &p); } static void err_print_params(struct drm_i915_error_state_buf *m, const struct i915_params *params) { struct drm_printer p = i915_error_printer(m); i915_params_dump(params, &p); } static void err_print_pciid(struct drm_i915_error_state_buf *m, struct drm_i915_private *i915) { struct pci_dev *pdev = i915->drm.pdev; err_printf(m, "PCI ID: 0x%04x\n", pdev->device); err_printf(m, "PCI Revision: 0x%02x\n", pdev->revision); err_printf(m, "PCI Subsystem: %04x:%04x\n", pdev->subsystem_vendor, pdev->subsystem_device); } static void err_print_uc(struct drm_i915_error_state_buf *m, const struct intel_uc_coredump *error_uc) { struct drm_printer p = i915_error_printer(m); intel_uc_fw_dump(&error_uc->guc_fw, &p); intel_uc_fw_dump(&error_uc->huc_fw, &p); print_error_vma(m, NULL, error_uc->guc_log); } static void err_free_sgl(struct scatterlist *sgl) { while (sgl) { struct scatterlist *sg; for (sg = sgl; !sg_is_chain(sg); sg++) { kfree(sg_virt(sg)); if (sg_is_last(sg)) break; } sg = sg_is_last(sg) ? NULL : sg_chain_ptr(sg); free_page((unsigned long)sgl); sgl = sg; } } static void err_print_gt(struct drm_i915_error_state_buf *m, struct intel_gt_coredump *gt) { const struct intel_engine_coredump *ee; int i; err_printf(m, "GT awake: %s\n", yesno(gt->awake)); err_printf(m, "EIR: 0x%08x\n", gt->eir); err_printf(m, "IER: 0x%08x\n", gt->ier); for (i = 0; i < gt->ngtier; i++) err_printf(m, "GTIER[%d]: 0x%08x\n", i, gt->gtier[i]); err_printf(m, "PGTBL_ER: 0x%08x\n", gt->pgtbl_er); err_printf(m, "FORCEWAKE: 0x%08x\n", gt->forcewake); err_printf(m, "DERRMR: 0x%08x\n", gt->derrmr); for (i = 0; i < gt->nfence; i++) err_printf(m, " fence[%d] = %08llx\n", i, gt->fence[i]); if (IS_GEN_RANGE(m->i915, 6, 11)) { err_printf(m, "ERROR: 0x%08x\n", gt->error); err_printf(m, "DONE_REG: 0x%08x\n", gt->done_reg); } if (INTEL_GEN(m->i915) >= 8) err_printf(m, "FAULT_TLB_DATA: 0x%08x 0x%08x\n", gt->fault_data1, gt->fault_data0); if (IS_GEN(m->i915, 7)) err_printf(m, "ERR_INT: 0x%08x\n", gt->err_int); if (IS_GEN_RANGE(m->i915, 8, 11)) err_printf(m, "GTT_CACHE_EN: 0x%08x\n", gt->gtt_cache); if (IS_GEN(m->i915, 12)) err_printf(m, "AUX_ERR_DBG: 0x%08x\n", gt->aux_err); if (INTEL_GEN(m->i915) >= 12) { int i; for (i = 0; i < GEN12_SFC_DONE_MAX; i++) err_printf(m, " SFC_DONE[%d]: 0x%08x\n", i, gt->sfc_done[i]); err_printf(m, " GAM_DONE: 0x%08x\n", gt->gam_done); } for (ee = gt->engine; ee; ee = ee->next) { const struct i915_vma_coredump *vma; error_print_engine(m, ee); for (vma = ee->vma; vma; vma = vma->next) print_error_vma(m, ee->engine, vma); } if (gt->uc) err_print_uc(m, gt->uc); } static void __err_print_to_sgl(struct drm_i915_error_state_buf *m, struct i915_gpu_coredump *error) { const struct intel_engine_coredump *ee; struct timespec64 ts; if (*error->error_msg) err_printf(m, "%s\n", error->error_msg); err_printf(m, "Kernel: %s %s\n", init_utsname()->release, init_utsname()->machine); err_printf(m, "Driver: %s\n", DRIVER_DATE); ts = ktime_to_timespec64(error->time); err_printf(m, "Time: %lld s %ld us\n", (s64)ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC); ts = ktime_to_timespec64(error->boottime); err_printf(m, "Boottime: %lld s %ld us\n", (s64)ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC); ts = ktime_to_timespec64(error->uptime); err_printf(m, "Uptime: %lld s %ld us\n", (s64)ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC); err_printf(m, "Capture: %lu jiffies; %d ms ago\n", error->capture, jiffies_to_msecs(jiffies - error->capture)); for (ee = error->gt ? error->gt->engine : NULL; ee; ee = ee->next) err_printf(m, "Active process (on ring %s): %s [%d]\n", ee->engine->name, ee->context.comm, ee->context.pid); err_printf(m, "Reset count: %u\n", error->reset_count); err_printf(m, "Suspend count: %u\n", error->suspend_count); err_printf(m, "Platform: %s\n", intel_platform_name(error->device_info.platform)); err_printf(m, "Subplatform: 0x%x\n", intel_subplatform(&error->runtime_info, error->device_info.platform)); err_print_pciid(m, m->i915); err_printf(m, "IOMMU enabled?: %d\n", error->iommu); if (HAS_CSR(m->i915)) { struct intel_csr *csr = &m->i915->csr; err_printf(m, "DMC loaded: %s\n", yesno(csr->dmc_payload != NULL)); err_printf(m, "DMC fw version: %d.%d\n", CSR_VERSION_MAJOR(csr->version), CSR_VERSION_MINOR(csr->version)); } err_printf(m, "RPM wakelock: %s\n", yesno(error->wakelock)); err_printf(m, "PM suspended: %s\n", yesno(error->suspended)); if (error->gt) err_print_gt(m, error->gt); if (error->overlay) intel_overlay_print_error_state(m, error->overlay); if (error->display) intel_display_print_error_state(m, error->display); err_print_capabilities(m, &error->device_info, &error->runtime_info, &error->driver_caps); err_print_params(m, &error->params); } static int err_print_to_sgl(struct i915_gpu_coredump *error) { struct drm_i915_error_state_buf m; if (IS_ERR(error)) return PTR_ERR(error); if (READ_ONCE(error->sgl)) return 0; memset(&m, 0, sizeof(m)); m.i915 = error->i915; __err_print_to_sgl(&m, error); if (m.buf) { __sg_set_buf(m.cur++, m.buf, m.bytes, m.iter); m.bytes = 0; m.buf = NULL; } if (m.cur) { GEM_BUG_ON(m.end < m.cur); sg_mark_end(m.cur - 1); } GEM_BUG_ON(m.sgl && !m.cur); if (m.err) { err_free_sgl(m.sgl); return m.err; } if (cmpxchg(&error->sgl, NULL, m.sgl)) err_free_sgl(m.sgl); return 0; } ssize_t i915_gpu_coredump_copy_to_buffer(struct i915_gpu_coredump *error, char *buf, loff_t off, size_t rem) { struct scatterlist *sg; size_t count; loff_t pos; int err; if (!error || !rem) return 0; err = err_print_to_sgl(error); if (err) return err; sg = READ_ONCE(error->fit); if (!sg || off < sg->dma_address) sg = error->sgl; if (!sg) return 0; pos = sg->dma_address; count = 0; do { size_t len, start; if (sg_is_chain(sg)) { sg = sg_chain_ptr(sg); GEM_BUG_ON(sg_is_chain(sg)); } len = sg->length; if (pos + len <= off) { pos += len; continue; } start = sg->offset; if (pos < off) { GEM_BUG_ON(off - pos > len); len -= off - pos; start += off - pos; pos = off; } len = min(len, rem); GEM_BUG_ON(!len || len > sg->length); memcpy(buf, page_address(sg_page(sg)) + start, len); count += len; pos += len; buf += len; rem -= len; if (!rem) { WRITE_ONCE(error->fit, sg); break; } } while (!sg_is_last(sg++)); return count; } static void i915_vma_coredump_free(struct i915_vma_coredump *vma) { while (vma) { struct i915_vma_coredump *next = vma->next; int page; for (page = 0; page < vma->page_count; page++) free_page((unsigned long)vma->pages[page]); kfree(vma); vma = next; } } static void cleanup_params(struct i915_gpu_coredump *error) { i915_params_free(&error->params); } static void cleanup_uc(struct intel_uc_coredump *uc) { kfree(uc->guc_fw.path); kfree(uc->huc_fw.path); i915_vma_coredump_free(uc->guc_log); kfree(uc); } static void cleanup_gt(struct intel_gt_coredump *gt) { while (gt->engine) { struct intel_engine_coredump *ee = gt->engine; gt->engine = ee->next; i915_vma_coredump_free(ee->vma); kfree(ee); } if (gt->uc) cleanup_uc(gt->uc); kfree(gt); } void __i915_gpu_coredump_free(struct kref *error_ref) { struct i915_gpu_coredump *error = container_of(error_ref, typeof(*error), ref); while (error->gt) { struct intel_gt_coredump *gt = error->gt; error->gt = gt->next; cleanup_gt(gt); } kfree(error->overlay); kfree(error->display); cleanup_params(error); err_free_sgl(error->sgl); kfree(error); } static struct i915_vma_coredump * i915_vma_coredump_create(const struct intel_gt *gt, const struct i915_vma *vma, const char *name, struct i915_vma_compress *compress) { struct i915_ggtt *ggtt = gt->ggtt; const u64 slot = ggtt->error_capture.start; struct i915_vma_coredump *dst; unsigned long num_pages; struct sgt_iter iter; int ret; might_sleep(); if (!vma || !vma->pages || !compress) return NULL; num_pages = min_t(u64, vma->size, vma->obj->base.size) >> PAGE_SHIFT; num_pages = DIV_ROUND_UP(10 * num_pages, 8); /* worstcase zlib growth */ dst = kmalloc(sizeof(*dst) + num_pages * sizeof(u32 *), ALLOW_FAIL); if (!dst) return NULL; if (!compress_start(compress)) { kfree(dst); return NULL; } strcpy(dst->name, name); dst->next = NULL; dst->gtt_offset = vma->node.start; dst->gtt_size = vma->node.size; dst->gtt_page_sizes = vma->page_sizes.gtt; dst->num_pages = num_pages; dst->page_count = 0; dst->unused = 0; ret = -EINVAL; if (drm_mm_node_allocated(&ggtt->error_capture)) { void __iomem *s; dma_addr_t dma; for_each_sgt_daddr(dma, iter, vma->pages) { ggtt->vm.insert_page(&ggtt->vm, dma, slot, I915_CACHE_NONE, 0); mb(); s = io_mapping_map_wc(&ggtt->iomap, slot, PAGE_SIZE); ret = compress_page(compress, (void __force *)s, dst, true); io_mapping_unmap(s); if (ret) break; } } else if (i915_gem_object_is_lmem(vma->obj)) { struct intel_memory_region *mem = vma->obj->mm.region; dma_addr_t dma; for_each_sgt_daddr(dma, iter, vma->pages) { void __iomem *s; s = io_mapping_map_wc(&mem->iomap, dma, PAGE_SIZE); ret = compress_page(compress, (void __force *)s, dst, true); io_mapping_unmap(s); if (ret) break; } } else { struct page *page; for_each_sgt_page(page, iter, vma->pages) { void *s; drm_clflush_pages(&page, 1); s = kmap(page); ret = compress_page(compress, s, dst, false); kunmap(page); drm_clflush_pages(&page, 1); if (ret) break; } } if (ret || compress_flush(compress, dst)) { while (dst->page_count--) pool_free(&compress->pool, dst->pages[dst->page_count]); kfree(dst); dst = NULL; } compress_finish(compress); return dst; } static void gt_record_fences(struct intel_gt_coredump *gt) { struct i915_ggtt *ggtt = gt->_gt->ggtt; struct intel_uncore *uncore = gt->_gt->uncore; int i; if (INTEL_GEN(uncore->i915) >= 6) { for (i = 0; i < ggtt->num_fences; i++) gt->fence[i] = intel_uncore_read64(uncore, FENCE_REG_GEN6_LO(i)); } else if (INTEL_GEN(uncore->i915) >= 4) { for (i = 0; i < ggtt->num_fences; i++) gt->fence[i] = intel_uncore_read64(uncore, FENCE_REG_965_LO(i)); } else { for (i = 0; i < ggtt->num_fences; i++) gt->fence[i] = intel_uncore_read(uncore, FENCE_REG(i)); } gt->nfence = i; } static void engine_record_registers(struct intel_engine_coredump *ee) { const struct intel_engine_cs *engine = ee->engine; struct drm_i915_private *i915 = engine->i915; if (INTEL_GEN(i915) >= 6) { ee->rc_psmi = ENGINE_READ(engine, RING_PSMI_CTL); if (INTEL_GEN(i915) >= 12) ee->fault_reg = intel_uncore_read(engine->uncore, GEN12_RING_FAULT_REG); else if (INTEL_GEN(i915) >= 8) ee->fault_reg = intel_uncore_read(engine->uncore, GEN8_RING_FAULT_REG); else ee->fault_reg = GEN6_RING_FAULT_REG_READ(engine); } if (INTEL_GEN(i915) >= 4) { ee->esr = ENGINE_READ(engine, RING_ESR); ee->faddr = ENGINE_READ(engine, RING_DMA_FADD); ee->ipeir = ENGINE_READ(engine, RING_IPEIR); ee->ipehr = ENGINE_READ(engine, RING_IPEHR); ee->instps = ENGINE_READ(engine, RING_INSTPS); ee->bbaddr = ENGINE_READ(engine, RING_BBADDR); ee->ccid = ENGINE_READ(engine, CCID); if (INTEL_GEN(i915) >= 8) { ee->faddr |= (u64)ENGINE_READ(engine, RING_DMA_FADD_UDW) << 32; ee->bbaddr |= (u64)ENGINE_READ(engine, RING_BBADDR_UDW) << 32; } ee->bbstate = ENGINE_READ(engine, RING_BBSTATE); } else { ee->faddr = ENGINE_READ(engine, DMA_FADD_I8XX); ee->ipeir = ENGINE_READ(engine, IPEIR); ee->ipehr = ENGINE_READ(engine, IPEHR); } intel_engine_get_instdone(engine, &ee->instdone); ee->instpm = ENGINE_READ(engine, RING_INSTPM); ee->acthd = intel_engine_get_active_head(engine); ee->start = ENGINE_READ(engine, RING_START); ee->head = ENGINE_READ(engine, RING_HEAD); ee->tail = ENGINE_READ(engine, RING_TAIL); ee->ctl = ENGINE_READ(engine, RING_CTL); if (INTEL_GEN(i915) > 2) ee->mode = ENGINE_READ(engine, RING_MI_MODE); if (!HWS_NEEDS_PHYSICAL(i915)) { i915_reg_t mmio; if (IS_GEN(i915, 7)) { switch (engine->id) { default: MISSING_CASE(engine->id); /* fall through */ case RCS0: mmio = RENDER_HWS_PGA_GEN7; break; case BCS0: mmio = BLT_HWS_PGA_GEN7; break; case VCS0: mmio = BSD_HWS_PGA_GEN7; break; case VECS0: mmio = VEBOX_HWS_PGA_GEN7; break; } } else if (IS_GEN(engine->i915, 6)) { mmio = RING_HWS_PGA_GEN6(engine->mmio_base); } else { /* XXX: gen8 returns to sanity */ mmio = RING_HWS_PGA(engine->mmio_base); } ee->hws = intel_uncore_read(engine->uncore, mmio); } ee->reset_count = i915_reset_engine_count(&i915->gpu_error, engine); if (HAS_PPGTT(i915)) { int i; ee->vm_info.gfx_mode = ENGINE_READ(engine, RING_MODE_GEN7); if (IS_GEN(i915, 6)) { ee->vm_info.pp_dir_base = ENGINE_READ(engine, RING_PP_DIR_BASE_READ); } else if (IS_GEN(i915, 7)) { ee->vm_info.pp_dir_base = ENGINE_READ(engine, RING_PP_DIR_BASE); } else if (INTEL_GEN(i915) >= 8) { u32 base = engine->mmio_base; for (i = 0; i < 4; i++) { ee->vm_info.pdp[i] = intel_uncore_read(engine->uncore, GEN8_RING_PDP_UDW(base, i)); ee->vm_info.pdp[i] <<= 32; ee->vm_info.pdp[i] |= intel_uncore_read(engine->uncore, GEN8_RING_PDP_LDW(base, i)); } } } } static void record_request(const struct i915_request *request, struct i915_request_coredump *erq) { erq->flags = request->fence.flags; erq->context = request->fence.context; erq->seqno = request->fence.seqno; erq->sched_attr = request->sched.attr; erq->start = i915_ggtt_offset(request->ring->vma); erq->head = request->head; erq->tail = request->tail; erq->pid = 0; rcu_read_lock(); if (!intel_context_is_closed(request->context)) { const struct i915_gem_context *ctx; ctx = rcu_dereference(request->context->gem_context); if (ctx) erq->pid = pid_nr(ctx->pid); } rcu_read_unlock(); } static void engine_record_execlists(struct intel_engine_coredump *ee) { const struct intel_engine_execlists * const el = &ee->engine->execlists; struct i915_request * const *port = el->active; unsigned int n = 0; while (*port) record_request(*port++, &ee->execlist[n++]); ee->num_ports = n; } static bool record_context(struct i915_gem_context_coredump *e, const struct i915_request *rq) { struct i915_gem_context *ctx; struct task_struct *task; bool simulated; rcu_read_lock(); ctx = rcu_dereference(rq->context->gem_context); if (ctx && !kref_get_unless_zero(&ctx->ref)) ctx = NULL; rcu_read_unlock(); if (!ctx) return true; rcu_read_lock(); task = pid_task(ctx->pid, PIDTYPE_PID); if (task) { strcpy(e->comm, task->comm); e->pid = task->pid; } rcu_read_unlock(); e->sched_attr = ctx->sched; e->guilty = atomic_read(&ctx->guilty_count); e->active = atomic_read(&ctx->active_count); e->total_runtime = rq->context->runtime.total; e->avg_runtime = ewma_runtime_read(&rq->context->runtime.avg); simulated = i915_gem_context_no_error_capture(ctx); i915_gem_context_put(ctx); return simulated; } struct intel_engine_capture_vma { struct intel_engine_capture_vma *next; struct i915_vma *vma; char name[16]; }; static struct intel_engine_capture_vma * capture_vma(struct intel_engine_capture_vma *next, struct i915_vma *vma, const char *name, gfp_t gfp) { struct intel_engine_capture_vma *c; if (!vma) return next; c = kmalloc(sizeof(*c), gfp); if (!c) return next; if (!i915_active_acquire_if_busy(&vma->active)) { kfree(c); return next; } strcpy(c->name, name); c->vma = i915_vma_get(vma); c->next = next; return c; } static struct intel_engine_capture_vma * capture_user(struct intel_engine_capture_vma *capture, const struct i915_request *rq, gfp_t gfp) { struct i915_capture_list *c; for (c = rq->capture_list; c; c = c->next) capture = capture_vma(capture, c->vma, "user", gfp); return capture; } static struct i915_vma_coredump * capture_object(const struct intel_gt *gt, struct drm_i915_gem_object *obj, const char *name, struct i915_vma_compress *compress) { if (obj && i915_gem_object_has_pages(obj)) { struct i915_vma fake = { .node = { .start = U64_MAX, .size = obj->base.size }, .size = obj->base.size, .pages = obj->mm.pages, .obj = obj, }; return i915_vma_coredump_create(gt, &fake, name, compress); } else { return NULL; } } static void add_vma(struct intel_engine_coredump *ee, struct i915_vma_coredump *vma) { if (vma) { vma->next = ee->vma; ee->vma = vma; } } struct intel_engine_coredump * intel_engine_coredump_alloc(struct intel_engine_cs *engine, gfp_t gfp) { struct intel_engine_coredump *ee; ee = kzalloc(sizeof(*ee), gfp); if (!ee) return NULL; ee->engine = engine; engine_record_registers(ee); engine_record_execlists(ee); return ee; } struct intel_engine_capture_vma * intel_engine_coredump_add_request(struct intel_engine_coredump *ee, struct i915_request *rq, gfp_t gfp) { struct intel_engine_capture_vma *vma = NULL; ee->simulated |= record_context(&ee->context, rq); if (ee->simulated) return NULL; /* * We need to copy these to an anonymous buffer * as the simplest method to avoid being overwritten * by userspace. */ vma = capture_vma(vma, rq->batch, "batch", gfp); vma = capture_user(vma, rq, gfp); vma = capture_vma(vma, rq->ring->vma, "ring", gfp); vma = capture_vma(vma, rq->context->state, "HW context", gfp); ee->rq_head = rq->head; ee->rq_post = rq->postfix; ee->rq_tail = rq->tail; return vma; } void intel_engine_coredump_add_vma(struct intel_engine_coredump *ee, struct intel_engine_capture_vma *capture, struct i915_vma_compress *compress) { const struct intel_engine_cs *engine = ee->engine; while (capture) { struct intel_engine_capture_vma *this = capture; struct i915_vma *vma = this->vma; add_vma(ee, i915_vma_coredump_create(engine->gt, vma, this->name, compress)); i915_active_release(&vma->active); i915_vma_put(vma); capture = this->next; kfree(this); } add_vma(ee, i915_vma_coredump_create(engine->gt, engine->status_page.vma, "HW Status", compress)); add_vma(ee, i915_vma_coredump_create(engine->gt, engine->wa_ctx.vma, "WA context", compress)); add_vma(ee, capture_object(engine->gt, engine->default_state, "NULL context", compress)); } static struct intel_engine_coredump * capture_engine(struct intel_engine_cs *engine, struct i915_vma_compress *compress) { struct intel_engine_capture_vma *capture = NULL; struct intel_engine_coredump *ee; struct i915_request *rq; unsigned long flags; ee = intel_engine_coredump_alloc(engine, GFP_KERNEL); if (!ee) return NULL; spin_lock_irqsave(&engine->active.lock, flags); rq = intel_engine_find_active_request(engine); if (rq) capture = intel_engine_coredump_add_request(ee, rq, ATOMIC_MAYFAIL); spin_unlock_irqrestore(&engine->active.lock, flags); if (!capture) { kfree(ee); return NULL; } intel_engine_coredump_add_vma(ee, capture, compress); return ee; } static void gt_record_engines(struct intel_gt_coredump *gt, struct i915_vma_compress *compress) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, gt->_gt, id) { struct intel_engine_coredump *ee; /* Refill our page pool before entering atomic section */ pool_refill(&compress->pool, ALLOW_FAIL); ee = capture_engine(engine, compress); if (!ee) continue; gt->simulated |= ee->simulated; if (ee->simulated) { kfree(ee); continue; } ee->next = gt->engine; gt->engine = ee; } } static struct intel_uc_coredump * gt_record_uc(struct intel_gt_coredump *gt, struct i915_vma_compress *compress) { const struct intel_uc *uc = >->_gt->uc; struct intel_uc_coredump *error_uc; error_uc = kzalloc(sizeof(*error_uc), ALLOW_FAIL); if (!error_uc) return NULL; memcpy(&error_uc->guc_fw, &uc->guc.fw, sizeof(uc->guc.fw)); memcpy(&error_uc->huc_fw, &uc->huc.fw, sizeof(uc->huc.fw)); /* Non-default firmware paths will be specified by the modparam. * As modparams are generally accesible from the userspace make * explicit copies of the firmware paths. */ error_uc->guc_fw.path = kstrdup(uc->guc.fw.path, ALLOW_FAIL); error_uc->huc_fw.path = kstrdup(uc->huc.fw.path, ALLOW_FAIL); error_uc->guc_log = i915_vma_coredump_create(gt->_gt, uc->guc.log.vma, "GuC log buffer", compress); return error_uc; } static void gt_capture_prepare(struct intel_gt_coredump *gt) { struct i915_ggtt *ggtt = gt->_gt->ggtt; mutex_lock(&ggtt->error_mutex); } static void gt_capture_finish(struct intel_gt_coredump *gt) { struct i915_ggtt *ggtt = gt->_gt->ggtt; if (drm_mm_node_allocated(&ggtt->error_capture)) ggtt->vm.clear_range(&ggtt->vm, ggtt->error_capture.start, PAGE_SIZE); mutex_unlock(&ggtt->error_mutex); } /* Capture all registers which don't fit into another category. */ static void gt_record_regs(struct intel_gt_coredump *gt) { struct intel_uncore *uncore = gt->_gt->uncore; struct drm_i915_private *i915 = uncore->i915; int i; /* * General organization * 1. Registers specific to a single generation * 2. Registers which belong to multiple generations * 3. Feature specific registers. * 4. Everything else * Please try to follow the order. */ /* 1: Registers specific to a single generation */ if (IS_VALLEYVIEW(i915)) { gt->gtier[0] = intel_uncore_read(uncore, GTIER); gt->ier = intel_uncore_read(uncore, VLV_IER); gt->forcewake = intel_uncore_read_fw(uncore, FORCEWAKE_VLV); } if (IS_GEN(i915, 7)) gt->err_int = intel_uncore_read(uncore, GEN7_ERR_INT); if (INTEL_GEN(i915) >= 12) { gt->fault_data0 = intel_uncore_read(uncore, GEN12_FAULT_TLB_DATA0); gt->fault_data1 = intel_uncore_read(uncore, GEN12_FAULT_TLB_DATA1); } else if (INTEL_GEN(i915) >= 8) { gt->fault_data0 = intel_uncore_read(uncore, GEN8_FAULT_TLB_DATA0); gt->fault_data1 = intel_uncore_read(uncore, GEN8_FAULT_TLB_DATA1); } if (IS_GEN(i915, 6)) { gt->forcewake = intel_uncore_read_fw(uncore, FORCEWAKE); gt->gab_ctl = intel_uncore_read(uncore, GAB_CTL); gt->gfx_mode = intel_uncore_read(uncore, GFX_MODE); } /* 2: Registers which belong to multiple generations */ if (INTEL_GEN(i915) >= 7) gt->forcewake = intel_uncore_read_fw(uncore, FORCEWAKE_MT); if (INTEL_GEN(i915) >= 6) { gt->derrmr = intel_uncore_read(uncore, DERRMR); if (INTEL_GEN(i915) < 12) { gt->error = intel_uncore_read(uncore, ERROR_GEN6); gt->done_reg = intel_uncore_read(uncore, DONE_REG); } } /* 3: Feature specific registers */ if (IS_GEN_RANGE(i915, 6, 7)) { gt->gam_ecochk = intel_uncore_read(uncore, GAM_ECOCHK); gt->gac_eco = intel_uncore_read(uncore, GAC_ECO_BITS); } if (IS_GEN_RANGE(i915, 8, 11)) gt->gtt_cache = intel_uncore_read(uncore, HSW_GTT_CACHE_EN); if (IS_GEN(i915, 12)) gt->aux_err = intel_uncore_read(uncore, GEN12_AUX_ERR_DBG); if (INTEL_GEN(i915) >= 12) { for (i = 0; i < GEN12_SFC_DONE_MAX; i++) { gt->sfc_done[i] = intel_uncore_read(uncore, GEN12_SFC_DONE(i)); } gt->gam_done = intel_uncore_read(uncore, GEN12_GAM_DONE); } /* 4: Everything else */ if (INTEL_GEN(i915) >= 11) { gt->ier = intel_uncore_read(uncore, GEN8_DE_MISC_IER); gt->gtier[0] = intel_uncore_read(uncore, GEN11_RENDER_COPY_INTR_ENABLE); gt->gtier[1] = intel_uncore_read(uncore, GEN11_VCS_VECS_INTR_ENABLE); gt->gtier[2] = intel_uncore_read(uncore, GEN11_GUC_SG_INTR_ENABLE); gt->gtier[3] = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE); gt->gtier[4] = intel_uncore_read(uncore, GEN11_CRYPTO_RSVD_INTR_ENABLE); gt->gtier[5] = intel_uncore_read(uncore, GEN11_GUNIT_CSME_INTR_ENABLE); gt->ngtier = 6; } else if (INTEL_GEN(i915) >= 8) { gt->ier = intel_uncore_read(uncore, GEN8_DE_MISC_IER); for (i = 0; i < 4; i++) gt->gtier[i] = intel_uncore_read(uncore, GEN8_GT_IER(i)); gt->ngtier = 4; } else if (HAS_PCH_SPLIT(i915)) { gt->ier = intel_uncore_read(uncore, DEIER); gt->gtier[0] = intel_uncore_read(uncore, GTIER); gt->ngtier = 1; } else if (IS_GEN(i915, 2)) { gt->ier = intel_uncore_read16(uncore, GEN2_IER); } else if (!IS_VALLEYVIEW(i915)) { gt->ier = intel_uncore_read(uncore, GEN2_IER); } gt->eir = intel_uncore_read(uncore, EIR); gt->pgtbl_er = intel_uncore_read(uncore, PGTBL_ER); } /* * Generate a semi-unique error code. The code is not meant to have meaning, The * code's only purpose is to try to prevent false duplicated bug reports by * grossly estimating a GPU error state. * * TODO Ideally, hashing the batchbuffer would be a very nice way to determine * the hang if we could strip the GTT offset information from it. * * It's only a small step better than a random number in its current form. */ static u32 generate_ecode(const struct intel_engine_coredump *ee) { /* * IPEHR would be an ideal way to detect errors, as it's the gross * measure of "the command that hung." However, has some very common * synchronization commands which almost always appear in the case * strictly a client bug. Use instdone to differentiate those some. */ return ee ? ee->ipehr ^ ee->instdone.instdone : 0; } static const char *error_msg(struct i915_gpu_coredump *error) { struct intel_engine_coredump *first = NULL; struct intel_gt_coredump *gt; intel_engine_mask_t engines; int len; engines = 0; for (gt = error->gt; gt; gt = gt->next) { struct intel_engine_coredump *cs; if (gt->engine && !first) first = gt->engine; for (cs = gt->engine; cs; cs = cs->next) engines |= cs->engine->mask; } len = scnprintf(error->error_msg, sizeof(error->error_msg), "GPU HANG: ecode %d:%x:%08x", INTEL_GEN(error->i915), engines, generate_ecode(first)); if (first && first->context.pid) { /* Just show the first executing process, more is confusing */ len += scnprintf(error->error_msg + len, sizeof(error->error_msg) - len, ", in %s [%d]", first->context.comm, first->context.pid); } return error->error_msg; } static void capture_gen(struct i915_gpu_coredump *error) { struct drm_i915_private *i915 = error->i915; error->wakelock = atomic_read(&i915->runtime_pm.wakeref_count); error->suspended = i915->runtime_pm.suspended; error->iommu = -1; #ifdef CONFIG_INTEL_IOMMU error->iommu = intel_iommu_gfx_mapped; #endif error->reset_count = i915_reset_count(&i915->gpu_error); error->suspend_count = i915->suspend_count; i915_params_copy(&error->params, &i915_modparams); memcpy(&error->device_info, INTEL_INFO(i915), sizeof(error->device_info)); memcpy(&error->runtime_info, RUNTIME_INFO(i915), sizeof(error->runtime_info)); error->driver_caps = i915->caps; } struct i915_gpu_coredump * i915_gpu_coredump_alloc(struct drm_i915_private *i915, gfp_t gfp) { struct i915_gpu_coredump *error; if (!i915_modparams.error_capture) return NULL; error = kzalloc(sizeof(*error), gfp); if (!error) return NULL; kref_init(&error->ref); error->i915 = i915; error->time = ktime_get_real(); error->boottime = ktime_get_boottime(); error->uptime = ktime_sub(ktime_get(), i915->gt.last_init_time); error->capture = jiffies; capture_gen(error); return error; } #define DAY_AS_SECONDS(x) (24 * 60 * 60 * (x)) struct intel_gt_coredump * intel_gt_coredump_alloc(struct intel_gt *gt, gfp_t gfp) { struct intel_gt_coredump *gc; gc = kzalloc(sizeof(*gc), gfp); if (!gc) return NULL; gc->_gt = gt; gc->awake = intel_gt_pm_is_awake(gt); gt_record_regs(gc); gt_record_fences(gc); return gc; } struct i915_vma_compress * i915_vma_capture_prepare(struct intel_gt_coredump *gt) { struct i915_vma_compress *compress; compress = kmalloc(sizeof(*compress), ALLOW_FAIL); if (!compress) return NULL; if (!compress_init(compress)) { kfree(compress); return NULL; } gt_capture_prepare(gt); return compress; } void i915_vma_capture_finish(struct intel_gt_coredump *gt, struct i915_vma_compress *compress) { if (!compress) return; gt_capture_finish(gt); compress_fini(compress); kfree(compress); } struct i915_gpu_coredump *i915_gpu_coredump(struct drm_i915_private *i915) { struct i915_gpu_coredump *error; /* Check if GPU capture has been disabled */ error = READ_ONCE(i915->gpu_error.first_error); if (IS_ERR(error)) return error; error = i915_gpu_coredump_alloc(i915, ALLOW_FAIL); if (!error) return ERR_PTR(-ENOMEM); error->gt = intel_gt_coredump_alloc(&i915->gt, ALLOW_FAIL); if (error->gt) { struct i915_vma_compress *compress; compress = i915_vma_capture_prepare(error->gt); if (!compress) { kfree(error->gt); kfree(error); return ERR_PTR(-ENOMEM); } gt_record_engines(error->gt, compress); if (INTEL_INFO(i915)->has_gt_uc) error->gt->uc = gt_record_uc(error->gt, compress); i915_vma_capture_finish(error->gt, compress); error->simulated |= error->gt->simulated; } error->overlay = intel_overlay_capture_error_state(i915); error->display = intel_display_capture_error_state(i915); return error; } void i915_error_state_store(struct i915_gpu_coredump *error) { struct drm_i915_private *i915; static bool warned; if (IS_ERR_OR_NULL(error)) return; i915 = error->i915; dev_info(i915->drm.dev, "%s\n", error_msg(error)); if (error->simulated || cmpxchg(&i915->gpu_error.first_error, NULL, error)) return; i915_gpu_coredump_get(error); if (!xchg(&warned, true) && ktime_get_real_seconds() - DRIVER_TIMESTAMP < DAY_AS_SECONDS(180)) { pr_info("GPU hangs can indicate a bug anywhere in the entire gfx stack, including userspace.\n"); pr_info("Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/intel/issues/new.\n"); pr_info("Please see https://gitlab.freedesktop.org/drm/intel/-/wikis/How-to-file-i915-bugs for details.\n"); pr_info("drm/i915 developers can then reassign to the right component if it's not a kernel issue.\n"); pr_info("The GPU crash dump is required to analyze GPU hangs, so please always attach it.\n"); pr_info("GPU crash dump saved to /sys/class/drm/card%d/error\n", i915->drm.primary->index); } } /** * i915_capture_error_state - capture an error record for later analysis * @i915: i915 device * * Should be called when an error is detected (either a hang or an error * interrupt) to capture error state from the time of the error. Fills * out a structure which becomes available in debugfs for user level tools * to pick up. */ void i915_capture_error_state(struct drm_i915_private *i915) { struct i915_gpu_coredump *error; error = i915_gpu_coredump(i915); if (IS_ERR(error)) { cmpxchg(&i915->gpu_error.first_error, NULL, error); return; } i915_error_state_store(error); i915_gpu_coredump_put(error); } struct i915_gpu_coredump * i915_first_error_state(struct drm_i915_private *i915) { struct i915_gpu_coredump *error; spin_lock_irq(&i915->gpu_error.lock); error = i915->gpu_error.first_error; if (!IS_ERR_OR_NULL(error)) i915_gpu_coredump_get(error); spin_unlock_irq(&i915->gpu_error.lock); return error; } void i915_reset_error_state(struct drm_i915_private *i915) { struct i915_gpu_coredump *error; spin_lock_irq(&i915->gpu_error.lock); error = i915->gpu_error.first_error; if (error != ERR_PTR(-ENODEV)) /* if disabled, always disabled */ i915->gpu_error.first_error = NULL; spin_unlock_irq(&i915->gpu_error.lock); if (!IS_ERR_OR_NULL(error)) i915_gpu_coredump_put(error); } void i915_disable_error_state(struct drm_i915_private *i915, int err) { spin_lock_irq(&i915->gpu_error.lock); if (!i915->gpu_error.first_error) i915->gpu_error.first_error = ERR_PTR(err); spin_unlock_irq(&i915->gpu_error.lock); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1