Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Deucher | 15274 | 99.50% | 26 | 76.47% |
Samuel Li | 48 | 0.31% | 1 | 2.94% |
Dan Carpenter | 10 | 0.07% | 1 | 2.94% |
Kees Cook | 5 | 0.03% | 1 | 2.94% |
Christian König | 5 | 0.03% | 1 | 2.94% |
Sam Ravnborg | 4 | 0.03% | 1 | 2.94% |
Dave Jones | 2 | 0.01% | 1 | 2.94% |
Thomas Zimmermann | 2 | 0.01% | 1 | 2.94% |
Heloise | 1 | 0.01% | 1 | 2.94% |
Total | 15351 | 34 |
/* * Copyright 2013 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include <linux/pci.h> #include <linux/seq_file.h> #include "cikd.h" #include "kv_dpm.h" #include "r600_dpm.h" #include "radeon.h" #include "radeon_asic.h" #define KV_MAX_DEEPSLEEP_DIVIDER_ID 5 #define KV_MINIMUM_ENGINE_CLOCK 800 #define SMC_RAM_END 0x40000 static int kv_enable_nb_dpm(struct radeon_device *rdev, bool enable); static void kv_init_graphics_levels(struct radeon_device *rdev); static int kv_calculate_ds_divider(struct radeon_device *rdev); static int kv_calculate_nbps_level_settings(struct radeon_device *rdev); static int kv_calculate_dpm_settings(struct radeon_device *rdev); static void kv_enable_new_levels(struct radeon_device *rdev); static void kv_program_nbps_index_settings(struct radeon_device *rdev, struct radeon_ps *new_rps); static int kv_set_enabled_level(struct radeon_device *rdev, u32 level); static int kv_set_enabled_levels(struct radeon_device *rdev); static int kv_force_dpm_highest(struct radeon_device *rdev); static int kv_force_dpm_lowest(struct radeon_device *rdev); static void kv_apply_state_adjust_rules(struct radeon_device *rdev, struct radeon_ps *new_rps, struct radeon_ps *old_rps); static int kv_set_thermal_temperature_range(struct radeon_device *rdev, int min_temp, int max_temp); static int kv_init_fps_limits(struct radeon_device *rdev); void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate); static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate); static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate); static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate); extern void cik_enter_rlc_safe_mode(struct radeon_device *rdev); extern void cik_exit_rlc_safe_mode(struct radeon_device *rdev); extern void cik_update_cg(struct radeon_device *rdev, u32 block, bool enable); static const struct kv_lcac_config_values sx_local_cac_cfg_kv[] = { { 0, 4, 1 }, { 1, 4, 1 }, { 2, 5, 1 }, { 3, 4, 2 }, { 4, 1, 1 }, { 5, 5, 2 }, { 6, 6, 1 }, { 7, 9, 2 }, { 0xffffffff } }; static const struct kv_lcac_config_values mc0_local_cac_cfg_kv[] = { { 0, 4, 1 }, { 0xffffffff } }; static const struct kv_lcac_config_values mc1_local_cac_cfg_kv[] = { { 0, 4, 1 }, { 0xffffffff } }; static const struct kv_lcac_config_values mc2_local_cac_cfg_kv[] = { { 0, 4, 1 }, { 0xffffffff } }; static const struct kv_lcac_config_values mc3_local_cac_cfg_kv[] = { { 0, 4, 1 }, { 0xffffffff } }; static const struct kv_lcac_config_values cpl_local_cac_cfg_kv[] = { { 0, 4, 1 }, { 1, 4, 1 }, { 2, 5, 1 }, { 3, 4, 1 }, { 4, 1, 1 }, { 5, 5, 1 }, { 6, 6, 1 }, { 7, 9, 1 }, { 8, 4, 1 }, { 9, 2, 1 }, { 10, 3, 1 }, { 11, 6, 1 }, { 12, 8, 2 }, { 13, 1, 1 }, { 14, 2, 1 }, { 15, 3, 1 }, { 16, 1, 1 }, { 17, 4, 1 }, { 18, 3, 1 }, { 19, 1, 1 }, { 20, 8, 1 }, { 21, 5, 1 }, { 22, 1, 1 }, { 23, 1, 1 }, { 24, 4, 1 }, { 27, 6, 1 }, { 28, 1, 1 }, { 0xffffffff } }; static const struct kv_lcac_config_reg sx0_cac_config_reg[] = { { 0xc0400d00, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 } }; static const struct kv_lcac_config_reg mc0_cac_config_reg[] = { { 0xc0400d30, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 } }; static const struct kv_lcac_config_reg mc1_cac_config_reg[] = { { 0xc0400d3c, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 } }; static const struct kv_lcac_config_reg mc2_cac_config_reg[] = { { 0xc0400d48, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 } }; static const struct kv_lcac_config_reg mc3_cac_config_reg[] = { { 0xc0400d54, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 } }; static const struct kv_lcac_config_reg cpl_cac_config_reg[] = { { 0xc0400d80, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 } }; static const struct kv_pt_config_reg didt_config_kv[] = { { 0x10, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x10, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x10, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x10, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x11, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x11, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x11, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x11, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x12, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x12, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x12, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x12, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x2, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND }, { 0x2, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND }, { 0x2, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND }, { 0x1, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND }, { 0x1, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND }, { 0x0, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x30, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x30, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x30, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x30, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x31, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x31, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x31, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x31, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x32, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x32, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x32, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x32, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x22, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND }, { 0x22, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND }, { 0x22, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND }, { 0x21, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND }, { 0x21, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND }, { 0x20, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x50, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x50, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x50, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x50, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x51, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x51, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x51, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x51, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x52, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x52, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x52, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x52, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x42, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND }, { 0x42, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND }, { 0x42, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND }, { 0x41, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND }, { 0x41, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND }, { 0x40, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x70, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x70, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x70, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x70, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x71, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x71, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x71, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x71, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x72, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x72, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x72, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x72, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND }, { 0x62, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND }, { 0x62, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND }, { 0x62, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND }, { 0x61, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND }, { 0x61, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND }, { 0x60, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND }, { 0xFFFFFFFF } }; static struct kv_ps *kv_get_ps(struct radeon_ps *rps) { struct kv_ps *ps = rps->ps_priv; return ps; } static struct kv_power_info *kv_get_pi(struct radeon_device *rdev) { struct kv_power_info *pi = rdev->pm.dpm.priv; return pi; } #if 0 static void kv_program_local_cac_table(struct radeon_device *rdev, const struct kv_lcac_config_values *local_cac_table, const struct kv_lcac_config_reg *local_cac_reg) { u32 i, count, data; const struct kv_lcac_config_values *values = local_cac_table; while (values->block_id != 0xffffffff) { count = values->signal_id; for (i = 0; i < count; i++) { data = ((values->block_id << local_cac_reg->block_shift) & local_cac_reg->block_mask); data |= ((i << local_cac_reg->signal_shift) & local_cac_reg->signal_mask); data |= ((values->t << local_cac_reg->t_shift) & local_cac_reg->t_mask); data |= ((1 << local_cac_reg->enable_shift) & local_cac_reg->enable_mask); WREG32_SMC(local_cac_reg->cntl, data); } values++; } } #endif static int kv_program_pt_config_registers(struct radeon_device *rdev, const struct kv_pt_config_reg *cac_config_regs) { const struct kv_pt_config_reg *config_regs = cac_config_regs; u32 data; u32 cache = 0; if (config_regs == NULL) return -EINVAL; while (config_regs->offset != 0xFFFFFFFF) { if (config_regs->type == KV_CONFIGREG_CACHE) { cache |= ((config_regs->value << config_regs->shift) & config_regs->mask); } else { switch (config_regs->type) { case KV_CONFIGREG_SMC_IND: data = RREG32_SMC(config_regs->offset); break; case KV_CONFIGREG_DIDT_IND: data = RREG32_DIDT(config_regs->offset); break; default: data = RREG32(config_regs->offset << 2); break; } data &= ~config_regs->mask; data |= ((config_regs->value << config_regs->shift) & config_regs->mask); data |= cache; cache = 0; switch (config_regs->type) { case KV_CONFIGREG_SMC_IND: WREG32_SMC(config_regs->offset, data); break; case KV_CONFIGREG_DIDT_IND: WREG32_DIDT(config_regs->offset, data); break; default: WREG32(config_regs->offset << 2, data); break; } } config_regs++; } return 0; } static void kv_do_enable_didt(struct radeon_device *rdev, bool enable) { struct kv_power_info *pi = kv_get_pi(rdev); u32 data; if (pi->caps_sq_ramping) { data = RREG32_DIDT(DIDT_SQ_CTRL0); if (enable) data |= DIDT_CTRL_EN; else data &= ~DIDT_CTRL_EN; WREG32_DIDT(DIDT_SQ_CTRL0, data); } if (pi->caps_db_ramping) { data = RREG32_DIDT(DIDT_DB_CTRL0); if (enable) data |= DIDT_CTRL_EN; else data &= ~DIDT_CTRL_EN; WREG32_DIDT(DIDT_DB_CTRL0, data); } if (pi->caps_td_ramping) { data = RREG32_DIDT(DIDT_TD_CTRL0); if (enable) data |= DIDT_CTRL_EN; else data &= ~DIDT_CTRL_EN; WREG32_DIDT(DIDT_TD_CTRL0, data); } if (pi->caps_tcp_ramping) { data = RREG32_DIDT(DIDT_TCP_CTRL0); if (enable) data |= DIDT_CTRL_EN; else data &= ~DIDT_CTRL_EN; WREG32_DIDT(DIDT_TCP_CTRL0, data); } } static int kv_enable_didt(struct radeon_device *rdev, bool enable) { struct kv_power_info *pi = kv_get_pi(rdev); int ret; if (pi->caps_sq_ramping || pi->caps_db_ramping || pi->caps_td_ramping || pi->caps_tcp_ramping) { cik_enter_rlc_safe_mode(rdev); if (enable) { ret = kv_program_pt_config_registers(rdev, didt_config_kv); if (ret) { cik_exit_rlc_safe_mode(rdev); return ret; } } kv_do_enable_didt(rdev, enable); cik_exit_rlc_safe_mode(rdev); } return 0; } #if 0 static void kv_initialize_hardware_cac_manager(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); if (pi->caps_cac) { WREG32_SMC(LCAC_SX0_OVR_SEL, 0); WREG32_SMC(LCAC_SX0_OVR_VAL, 0); kv_program_local_cac_table(rdev, sx_local_cac_cfg_kv, sx0_cac_config_reg); WREG32_SMC(LCAC_MC0_OVR_SEL, 0); WREG32_SMC(LCAC_MC0_OVR_VAL, 0); kv_program_local_cac_table(rdev, mc0_local_cac_cfg_kv, mc0_cac_config_reg); WREG32_SMC(LCAC_MC1_OVR_SEL, 0); WREG32_SMC(LCAC_MC1_OVR_VAL, 0); kv_program_local_cac_table(rdev, mc1_local_cac_cfg_kv, mc1_cac_config_reg); WREG32_SMC(LCAC_MC2_OVR_SEL, 0); WREG32_SMC(LCAC_MC2_OVR_VAL, 0); kv_program_local_cac_table(rdev, mc2_local_cac_cfg_kv, mc2_cac_config_reg); WREG32_SMC(LCAC_MC3_OVR_SEL, 0); WREG32_SMC(LCAC_MC3_OVR_VAL, 0); kv_program_local_cac_table(rdev, mc3_local_cac_cfg_kv, mc3_cac_config_reg); WREG32_SMC(LCAC_CPL_OVR_SEL, 0); WREG32_SMC(LCAC_CPL_OVR_VAL, 0); kv_program_local_cac_table(rdev, cpl_local_cac_cfg_kv, cpl_cac_config_reg); } } #endif static int kv_enable_smc_cac(struct radeon_device *rdev, bool enable) { struct kv_power_info *pi = kv_get_pi(rdev); int ret = 0; if (pi->caps_cac) { if (enable) { ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_EnableCac); if (ret) pi->cac_enabled = false; else pi->cac_enabled = true; } else if (pi->cac_enabled) { kv_notify_message_to_smu(rdev, PPSMC_MSG_DisableCac); pi->cac_enabled = false; } } return ret; } static int kv_process_firmware_header(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); u32 tmp; int ret; ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, DpmTable), &tmp, pi->sram_end); if (ret == 0) pi->dpm_table_start = tmp; ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU7_Firmware_Header, SoftRegisters), &tmp, pi->sram_end); if (ret == 0) pi->soft_regs_start = tmp; return ret; } static int kv_enable_dpm_voltage_scaling(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); int ret; pi->graphics_voltage_change_enable = 1; ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, GraphicsVoltageChangeEnable), &pi->graphics_voltage_change_enable, sizeof(u8), pi->sram_end); return ret; } static int kv_set_dpm_interval(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); int ret; pi->graphics_interval = 1; ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, GraphicsInterval), &pi->graphics_interval, sizeof(u8), pi->sram_end); return ret; } static int kv_set_dpm_boot_state(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); int ret; ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, GraphicsBootLevel), &pi->graphics_boot_level, sizeof(u8), pi->sram_end); return ret; } static void kv_program_vc(struct radeon_device *rdev) { WREG32_SMC(CG_FTV_0, 0x3FFFC100); } static void kv_clear_vc(struct radeon_device *rdev) { WREG32_SMC(CG_FTV_0, 0); } static int kv_set_divider_value(struct radeon_device *rdev, u32 index, u32 sclk) { struct kv_power_info *pi = kv_get_pi(rdev); struct atom_clock_dividers dividers; int ret; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, sclk, false, ÷rs); if (ret) return ret; pi->graphics_level[index].SclkDid = (u8)dividers.post_div; pi->graphics_level[index].SclkFrequency = cpu_to_be32(sclk); return 0; } static u32 kv_convert_vid2_to_vid7(struct radeon_device *rdev, struct sumo_vid_mapping_table *vid_mapping_table, u32 vid_2bit) { struct radeon_clock_voltage_dependency_table *vddc_sclk_table = &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk; u32 i; if (vddc_sclk_table && vddc_sclk_table->count) { if (vid_2bit < vddc_sclk_table->count) return vddc_sclk_table->entries[vid_2bit].v; else return vddc_sclk_table->entries[vddc_sclk_table->count - 1].v; } else { for (i = 0; i < vid_mapping_table->num_entries; i++) { if (vid_mapping_table->entries[i].vid_2bit == vid_2bit) return vid_mapping_table->entries[i].vid_7bit; } return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_7bit; } } static u32 kv_convert_vid7_to_vid2(struct radeon_device *rdev, struct sumo_vid_mapping_table *vid_mapping_table, u32 vid_7bit) { struct radeon_clock_voltage_dependency_table *vddc_sclk_table = &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk; u32 i; if (vddc_sclk_table && vddc_sclk_table->count) { for (i = 0; i < vddc_sclk_table->count; i++) { if (vddc_sclk_table->entries[i].v == vid_7bit) return i; } return vddc_sclk_table->count - 1; } else { for (i = 0; i < vid_mapping_table->num_entries; i++) { if (vid_mapping_table->entries[i].vid_7bit == vid_7bit) return vid_mapping_table->entries[i].vid_2bit; } return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_2bit; } } static u16 kv_convert_8bit_index_to_voltage(struct radeon_device *rdev, u16 voltage) { return 6200 - (voltage * 25); } static u16 kv_convert_2bit_index_to_voltage(struct radeon_device *rdev, u32 vid_2bit) { struct kv_power_info *pi = kv_get_pi(rdev); u32 vid_8bit = kv_convert_vid2_to_vid7(rdev, &pi->sys_info.vid_mapping_table, vid_2bit); return kv_convert_8bit_index_to_voltage(rdev, (u16)vid_8bit); } static int kv_set_vid(struct radeon_device *rdev, u32 index, u32 vid) { struct kv_power_info *pi = kv_get_pi(rdev); pi->graphics_level[index].VoltageDownH = (u8)pi->voltage_drop_t; pi->graphics_level[index].MinVddNb = cpu_to_be32(kv_convert_2bit_index_to_voltage(rdev, vid)); return 0; } static int kv_set_at(struct radeon_device *rdev, u32 index, u32 at) { struct kv_power_info *pi = kv_get_pi(rdev); pi->graphics_level[index].AT = cpu_to_be16((u16)at); return 0; } static void kv_dpm_power_level_enable(struct radeon_device *rdev, u32 index, bool enable) { struct kv_power_info *pi = kv_get_pi(rdev); pi->graphics_level[index].EnabledForActivity = enable ? 1 : 0; } static void kv_start_dpm(struct radeon_device *rdev) { u32 tmp = RREG32_SMC(GENERAL_PWRMGT); tmp |= GLOBAL_PWRMGT_EN; WREG32_SMC(GENERAL_PWRMGT, tmp); kv_smc_dpm_enable(rdev, true); } static void kv_stop_dpm(struct radeon_device *rdev) { kv_smc_dpm_enable(rdev, false); } static void kv_start_am(struct radeon_device *rdev) { u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL); sclk_pwrmgt_cntl &= ~(RESET_SCLK_CNT | RESET_BUSY_CNT); sclk_pwrmgt_cntl |= DYNAMIC_PM_EN; WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl); } static void kv_reset_am(struct radeon_device *rdev) { u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL); sclk_pwrmgt_cntl |= (RESET_SCLK_CNT | RESET_BUSY_CNT); WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl); } static int kv_freeze_sclk_dpm(struct radeon_device *rdev, bool freeze) { return kv_notify_message_to_smu(rdev, freeze ? PPSMC_MSG_SCLKDPM_FreezeLevel : PPSMC_MSG_SCLKDPM_UnfreezeLevel); } static int kv_force_lowest_valid(struct radeon_device *rdev) { return kv_force_dpm_lowest(rdev); } static int kv_unforce_levels(struct radeon_device *rdev) { if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) return kv_notify_message_to_smu(rdev, PPSMC_MSG_NoForcedLevel); else return kv_set_enabled_levels(rdev); } static int kv_update_sclk_t(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); u32 low_sclk_interrupt_t = 0; int ret = 0; if (pi->caps_sclk_throttle_low_notification) { low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t); ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, LowSclkInterruptT), (u8 *)&low_sclk_interrupt_t, sizeof(u32), pi->sram_end); } return ret; } static int kv_program_bootup_state(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); u32 i; struct radeon_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk; if (table && table->count) { for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) { if (table->entries[i].clk == pi->boot_pl.sclk) break; } pi->graphics_boot_level = (u8)i; kv_dpm_power_level_enable(rdev, i, true); } else { struct sumo_sclk_voltage_mapping_table *table = &pi->sys_info.sclk_voltage_mapping_table; if (table->num_max_dpm_entries == 0) return -EINVAL; for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) { if (table->entries[i].sclk_frequency == pi->boot_pl.sclk) break; } pi->graphics_boot_level = (u8)i; kv_dpm_power_level_enable(rdev, i, true); } return 0; } static int kv_enable_auto_thermal_throttling(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); int ret; pi->graphics_therm_throttle_enable = 1; ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, GraphicsThermThrottleEnable), &pi->graphics_therm_throttle_enable, sizeof(u8), pi->sram_end); return ret; } static int kv_upload_dpm_settings(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); int ret; ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, GraphicsLevel), (u8 *)&pi->graphics_level, sizeof(SMU7_Fusion_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS, pi->sram_end); if (ret) return ret; ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, GraphicsDpmLevelCount), &pi->graphics_dpm_level_count, sizeof(u8), pi->sram_end); return ret; } static u32 kv_get_clock_difference(u32 a, u32 b) { return (a >= b) ? a - b : b - a; } static u32 kv_get_clk_bypass(struct radeon_device *rdev, u32 clk) { struct kv_power_info *pi = kv_get_pi(rdev); u32 value; if (pi->caps_enable_dfs_bypass) { if (kv_get_clock_difference(clk, 40000) < 200) value = 3; else if (kv_get_clock_difference(clk, 30000) < 200) value = 2; else if (kv_get_clock_difference(clk, 20000) < 200) value = 7; else if (kv_get_clock_difference(clk, 15000) < 200) value = 6; else if (kv_get_clock_difference(clk, 10000) < 200) value = 8; else value = 0; } else { value = 0; } return value; } static int kv_populate_uvd_table(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); struct radeon_uvd_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table; struct atom_clock_dividers dividers; int ret; u32 i; if (table == NULL || table->count == 0) return 0; pi->uvd_level_count = 0; for (i = 0; i < table->count; i++) { if (pi->high_voltage_t && (pi->high_voltage_t < table->entries[i].v)) break; pi->uvd_level[i].VclkFrequency = cpu_to_be32(table->entries[i].vclk); pi->uvd_level[i].DclkFrequency = cpu_to_be32(table->entries[i].dclk); pi->uvd_level[i].MinVddNb = cpu_to_be16(table->entries[i].v); pi->uvd_level[i].VClkBypassCntl = (u8)kv_get_clk_bypass(rdev, table->entries[i].vclk); pi->uvd_level[i].DClkBypassCntl = (u8)kv_get_clk_bypass(rdev, table->entries[i].dclk); ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, table->entries[i].vclk, false, ÷rs); if (ret) return ret; pi->uvd_level[i].VclkDivider = (u8)dividers.post_div; ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, table->entries[i].dclk, false, ÷rs); if (ret) return ret; pi->uvd_level[i].DclkDivider = (u8)dividers.post_div; pi->uvd_level_count++; } ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, UvdLevelCount), (u8 *)&pi->uvd_level_count, sizeof(u8), pi->sram_end); if (ret) return ret; pi->uvd_interval = 1; ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, UVDInterval), &pi->uvd_interval, sizeof(u8), pi->sram_end); if (ret) return ret; ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, UvdLevel), (u8 *)&pi->uvd_level, sizeof(SMU7_Fusion_UvdLevel) * SMU7_MAX_LEVELS_UVD, pi->sram_end); return ret; } static int kv_populate_vce_table(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); int ret; u32 i; struct radeon_vce_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table; struct atom_clock_dividers dividers; if (table == NULL || table->count == 0) return 0; pi->vce_level_count = 0; for (i = 0; i < table->count; i++) { if (pi->high_voltage_t && pi->high_voltage_t < table->entries[i].v) break; pi->vce_level[i].Frequency = cpu_to_be32(table->entries[i].evclk); pi->vce_level[i].MinVoltage = cpu_to_be16(table->entries[i].v); pi->vce_level[i].ClkBypassCntl = (u8)kv_get_clk_bypass(rdev, table->entries[i].evclk); ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, table->entries[i].evclk, false, ÷rs); if (ret) return ret; pi->vce_level[i].Divider = (u8)dividers.post_div; pi->vce_level_count++; } ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, VceLevelCount), (u8 *)&pi->vce_level_count, sizeof(u8), pi->sram_end); if (ret) return ret; pi->vce_interval = 1; ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, VCEInterval), (u8 *)&pi->vce_interval, sizeof(u8), pi->sram_end); if (ret) return ret; ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, VceLevel), (u8 *)&pi->vce_level, sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_VCE, pi->sram_end); return ret; } static int kv_populate_samu_table(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); struct radeon_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table; struct atom_clock_dividers dividers; int ret; u32 i; if (table == NULL || table->count == 0) return 0; pi->samu_level_count = 0; for (i = 0; i < table->count; i++) { if (pi->high_voltage_t && pi->high_voltage_t < table->entries[i].v) break; pi->samu_level[i].Frequency = cpu_to_be32(table->entries[i].clk); pi->samu_level[i].MinVoltage = cpu_to_be16(table->entries[i].v); pi->samu_level[i].ClkBypassCntl = (u8)kv_get_clk_bypass(rdev, table->entries[i].clk); ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, table->entries[i].clk, false, ÷rs); if (ret) return ret; pi->samu_level[i].Divider = (u8)dividers.post_div; pi->samu_level_count++; } ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, SamuLevelCount), (u8 *)&pi->samu_level_count, sizeof(u8), pi->sram_end); if (ret) return ret; pi->samu_interval = 1; ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, SAMUInterval), (u8 *)&pi->samu_interval, sizeof(u8), pi->sram_end); if (ret) return ret; ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, SamuLevel), (u8 *)&pi->samu_level, sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_SAMU, pi->sram_end); if (ret) return ret; return ret; } static int kv_populate_acp_table(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); struct radeon_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table; struct atom_clock_dividers dividers; int ret; u32 i; if (table == NULL || table->count == 0) return 0; pi->acp_level_count = 0; for (i = 0; i < table->count; i++) { pi->acp_level[i].Frequency = cpu_to_be32(table->entries[i].clk); pi->acp_level[i].MinVoltage = cpu_to_be16(table->entries[i].v); ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM, table->entries[i].clk, false, ÷rs); if (ret) return ret; pi->acp_level[i].Divider = (u8)dividers.post_div; pi->acp_level_count++; } ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, AcpLevelCount), (u8 *)&pi->acp_level_count, sizeof(u8), pi->sram_end); if (ret) return ret; pi->acp_interval = 1; ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, ACPInterval), (u8 *)&pi->acp_interval, sizeof(u8), pi->sram_end); if (ret) return ret; ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, AcpLevel), (u8 *)&pi->acp_level, sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_ACP, pi->sram_end); if (ret) return ret; return ret; } static void kv_calculate_dfs_bypass_settings(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); u32 i; struct radeon_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk; if (table && table->count) { for (i = 0; i < pi->graphics_dpm_level_count; i++) { if (pi->caps_enable_dfs_bypass) { if (kv_get_clock_difference(table->entries[i].clk, 40000) < 200) pi->graphics_level[i].ClkBypassCntl = 3; else if (kv_get_clock_difference(table->entries[i].clk, 30000) < 200) pi->graphics_level[i].ClkBypassCntl = 2; else if (kv_get_clock_difference(table->entries[i].clk, 26600) < 200) pi->graphics_level[i].ClkBypassCntl = 7; else if (kv_get_clock_difference(table->entries[i].clk , 20000) < 200) pi->graphics_level[i].ClkBypassCntl = 6; else if (kv_get_clock_difference(table->entries[i].clk , 10000) < 200) pi->graphics_level[i].ClkBypassCntl = 8; else pi->graphics_level[i].ClkBypassCntl = 0; } else { pi->graphics_level[i].ClkBypassCntl = 0; } } } else { struct sumo_sclk_voltage_mapping_table *table = &pi->sys_info.sclk_voltage_mapping_table; for (i = 0; i < pi->graphics_dpm_level_count; i++) { if (pi->caps_enable_dfs_bypass) { if (kv_get_clock_difference(table->entries[i].sclk_frequency, 40000) < 200) pi->graphics_level[i].ClkBypassCntl = 3; else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 30000) < 200) pi->graphics_level[i].ClkBypassCntl = 2; else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 26600) < 200) pi->graphics_level[i].ClkBypassCntl = 7; else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 20000) < 200) pi->graphics_level[i].ClkBypassCntl = 6; else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 10000) < 200) pi->graphics_level[i].ClkBypassCntl = 8; else pi->graphics_level[i].ClkBypassCntl = 0; } else { pi->graphics_level[i].ClkBypassCntl = 0; } } } } static int kv_enable_ulv(struct radeon_device *rdev, bool enable) { return kv_notify_message_to_smu(rdev, enable ? PPSMC_MSG_EnableULV : PPSMC_MSG_DisableULV); } static void kv_reset_acp_boot_level(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); pi->acp_boot_level = 0xff; } static void kv_update_current_ps(struct radeon_device *rdev, struct radeon_ps *rps) { struct kv_ps *new_ps = kv_get_ps(rps); struct kv_power_info *pi = kv_get_pi(rdev); pi->current_rps = *rps; pi->current_ps = *new_ps; pi->current_rps.ps_priv = &pi->current_ps; } static void kv_update_requested_ps(struct radeon_device *rdev, struct radeon_ps *rps) { struct kv_ps *new_ps = kv_get_ps(rps); struct kv_power_info *pi = kv_get_pi(rdev); pi->requested_rps = *rps; pi->requested_ps = *new_ps; pi->requested_rps.ps_priv = &pi->requested_ps; } void kv_dpm_enable_bapm(struct radeon_device *rdev, bool enable) { struct kv_power_info *pi = kv_get_pi(rdev); int ret; if (pi->bapm_enable) { ret = kv_smc_bapm_enable(rdev, enable); if (ret) DRM_ERROR("kv_smc_bapm_enable failed\n"); } } static void kv_enable_thermal_int(struct radeon_device *rdev, bool enable) { u32 thermal_int; thermal_int = RREG32_SMC(CG_THERMAL_INT_CTRL); if (enable) thermal_int |= THERM_INTH_MASK | THERM_INTL_MASK; else thermal_int &= ~(THERM_INTH_MASK | THERM_INTL_MASK); WREG32_SMC(CG_THERMAL_INT_CTRL, thermal_int); } int kv_dpm_enable(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); int ret; ret = kv_process_firmware_header(rdev); if (ret) { DRM_ERROR("kv_process_firmware_header failed\n"); return ret; } kv_init_fps_limits(rdev); kv_init_graphics_levels(rdev); ret = kv_program_bootup_state(rdev); if (ret) { DRM_ERROR("kv_program_bootup_state failed\n"); return ret; } kv_calculate_dfs_bypass_settings(rdev); ret = kv_upload_dpm_settings(rdev); if (ret) { DRM_ERROR("kv_upload_dpm_settings failed\n"); return ret; } ret = kv_populate_uvd_table(rdev); if (ret) { DRM_ERROR("kv_populate_uvd_table failed\n"); return ret; } ret = kv_populate_vce_table(rdev); if (ret) { DRM_ERROR("kv_populate_vce_table failed\n"); return ret; } ret = kv_populate_samu_table(rdev); if (ret) { DRM_ERROR("kv_populate_samu_table failed\n"); return ret; } ret = kv_populate_acp_table(rdev); if (ret) { DRM_ERROR("kv_populate_acp_table failed\n"); return ret; } kv_program_vc(rdev); #if 0 kv_initialize_hardware_cac_manager(rdev); #endif kv_start_am(rdev); if (pi->enable_auto_thermal_throttling) { ret = kv_enable_auto_thermal_throttling(rdev); if (ret) { DRM_ERROR("kv_enable_auto_thermal_throttling failed\n"); return ret; } } ret = kv_enable_dpm_voltage_scaling(rdev); if (ret) { DRM_ERROR("kv_enable_dpm_voltage_scaling failed\n"); return ret; } ret = kv_set_dpm_interval(rdev); if (ret) { DRM_ERROR("kv_set_dpm_interval failed\n"); return ret; } ret = kv_set_dpm_boot_state(rdev); if (ret) { DRM_ERROR("kv_set_dpm_boot_state failed\n"); return ret; } ret = kv_enable_ulv(rdev, true); if (ret) { DRM_ERROR("kv_enable_ulv failed\n"); return ret; } kv_start_dpm(rdev); ret = kv_enable_didt(rdev, true); if (ret) { DRM_ERROR("kv_enable_didt failed\n"); return ret; } ret = kv_enable_smc_cac(rdev, true); if (ret) { DRM_ERROR("kv_enable_smc_cac failed\n"); return ret; } kv_reset_acp_boot_level(rdev); ret = kv_smc_bapm_enable(rdev, false); if (ret) { DRM_ERROR("kv_smc_bapm_enable failed\n"); return ret; } kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps); return ret; } int kv_dpm_late_enable(struct radeon_device *rdev) { int ret = 0; if (rdev->irq.installed && r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) { ret = kv_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX); if (ret) { DRM_ERROR("kv_set_thermal_temperature_range failed\n"); return ret; } kv_enable_thermal_int(rdev, true); } /* powerdown unused blocks for now */ kv_dpm_powergate_acp(rdev, true); kv_dpm_powergate_samu(rdev, true); kv_dpm_powergate_vce(rdev, true); kv_dpm_powergate_uvd(rdev, true); return ret; } void kv_dpm_disable(struct radeon_device *rdev) { kv_smc_bapm_enable(rdev, false); if (rdev->family == CHIP_MULLINS) kv_enable_nb_dpm(rdev, false); /* powerup blocks */ kv_dpm_powergate_acp(rdev, false); kv_dpm_powergate_samu(rdev, false); kv_dpm_powergate_vce(rdev, false); kv_dpm_powergate_uvd(rdev, false); kv_enable_smc_cac(rdev, false); kv_enable_didt(rdev, false); kv_clear_vc(rdev); kv_stop_dpm(rdev); kv_enable_ulv(rdev, false); kv_reset_am(rdev); kv_enable_thermal_int(rdev, false); kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps); } #if 0 static int kv_write_smc_soft_register(struct radeon_device *rdev, u16 reg_offset, u32 value) { struct kv_power_info *pi = kv_get_pi(rdev); return kv_copy_bytes_to_smc(rdev, pi->soft_regs_start + reg_offset, (u8 *)&value, sizeof(u16), pi->sram_end); } static int kv_read_smc_soft_register(struct radeon_device *rdev, u16 reg_offset, u32 *value) { struct kv_power_info *pi = kv_get_pi(rdev); return kv_read_smc_sram_dword(rdev, pi->soft_regs_start + reg_offset, value, pi->sram_end); } #endif static void kv_init_sclk_t(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); pi->low_sclk_interrupt_t = 0; } static int kv_init_fps_limits(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); int ret = 0; if (pi->caps_fps) { u16 tmp; tmp = 45; pi->fps_high_t = cpu_to_be16(tmp); ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, FpsHighT), (u8 *)&pi->fps_high_t, sizeof(u16), pi->sram_end); tmp = 30; pi->fps_low_t = cpu_to_be16(tmp); ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, FpsLowT), (u8 *)&pi->fps_low_t, sizeof(u16), pi->sram_end); } return ret; } static void kv_init_powergate_state(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); pi->uvd_power_gated = false; pi->vce_power_gated = false; pi->samu_power_gated = false; pi->acp_power_gated = false; } static int kv_enable_uvd_dpm(struct radeon_device *rdev, bool enable) { return kv_notify_message_to_smu(rdev, enable ? PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable); } static int kv_enable_vce_dpm(struct radeon_device *rdev, bool enable) { return kv_notify_message_to_smu(rdev, enable ? PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable); } static int kv_enable_samu_dpm(struct radeon_device *rdev, bool enable) { return kv_notify_message_to_smu(rdev, enable ? PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable); } static int kv_enable_acp_dpm(struct radeon_device *rdev, bool enable) { return kv_notify_message_to_smu(rdev, enable ? PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable); } static int kv_update_uvd_dpm(struct radeon_device *rdev, bool gate) { struct kv_power_info *pi = kv_get_pi(rdev); struct radeon_uvd_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table; int ret; u32 mask; if (!gate) { if (table->count) pi->uvd_boot_level = table->count - 1; else pi->uvd_boot_level = 0; if (!pi->caps_uvd_dpm || pi->caps_stable_p_state) { mask = 1 << pi->uvd_boot_level; } else { mask = 0x1f; } ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, UvdBootLevel), (uint8_t *)&pi->uvd_boot_level, sizeof(u8), pi->sram_end); if (ret) return ret; kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_UVDDPM_SetEnabledMask, mask); } return kv_enable_uvd_dpm(rdev, !gate); } static u8 kv_get_vce_boot_level(struct radeon_device *rdev, u32 evclk) { u8 i; struct radeon_vce_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table; for (i = 0; i < table->count; i++) { if (table->entries[i].evclk >= evclk) break; } return i; } static int kv_update_vce_dpm(struct radeon_device *rdev, struct radeon_ps *radeon_new_state, struct radeon_ps *radeon_current_state) { struct kv_power_info *pi = kv_get_pi(rdev); struct radeon_vce_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table; int ret; if (radeon_new_state->evclk > 0 && radeon_current_state->evclk == 0) { kv_dpm_powergate_vce(rdev, false); /* turn the clocks on when encoding */ cik_update_cg(rdev, RADEON_CG_BLOCK_VCE, false); if (pi->caps_stable_p_state) pi->vce_boot_level = table->count - 1; else pi->vce_boot_level = kv_get_vce_boot_level(rdev, radeon_new_state->evclk); ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, VceBootLevel), (u8 *)&pi->vce_boot_level, sizeof(u8), pi->sram_end); if (ret) return ret; if (pi->caps_stable_p_state) kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_VCEDPM_SetEnabledMask, (1 << pi->vce_boot_level)); kv_enable_vce_dpm(rdev, true); } else if (radeon_new_state->evclk == 0 && radeon_current_state->evclk > 0) { kv_enable_vce_dpm(rdev, false); /* turn the clocks off when not encoding */ cik_update_cg(rdev, RADEON_CG_BLOCK_VCE, true); kv_dpm_powergate_vce(rdev, true); } return 0; } static int kv_update_samu_dpm(struct radeon_device *rdev, bool gate) { struct kv_power_info *pi = kv_get_pi(rdev); struct radeon_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table; int ret; if (!gate) { if (pi->caps_stable_p_state) pi->samu_boot_level = table->count - 1; else pi->samu_boot_level = 0; ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, SamuBootLevel), (u8 *)&pi->samu_boot_level, sizeof(u8), pi->sram_end); if (ret) return ret; if (pi->caps_stable_p_state) kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SAMUDPM_SetEnabledMask, (1 << pi->samu_boot_level)); } return kv_enable_samu_dpm(rdev, !gate); } static u8 kv_get_acp_boot_level(struct radeon_device *rdev) { u8 i; struct radeon_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table; for (i = 0; i < table->count; i++) { if (table->entries[i].clk >= 0) /* XXX */ break; } if (i >= table->count) i = table->count - 1; return i; } static void kv_update_acp_boot_level(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); u8 acp_boot_level; if (!pi->caps_stable_p_state) { acp_boot_level = kv_get_acp_boot_level(rdev); if (acp_boot_level != pi->acp_boot_level) { pi->acp_boot_level = acp_boot_level; kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_ACPDPM_SetEnabledMask, (1 << pi->acp_boot_level)); } } } static int kv_update_acp_dpm(struct radeon_device *rdev, bool gate) { struct kv_power_info *pi = kv_get_pi(rdev); struct radeon_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table; int ret; if (!gate) { if (pi->caps_stable_p_state) pi->acp_boot_level = table->count - 1; else pi->acp_boot_level = kv_get_acp_boot_level(rdev); ret = kv_copy_bytes_to_smc(rdev, pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, AcpBootLevel), (u8 *)&pi->acp_boot_level, sizeof(u8), pi->sram_end); if (ret) return ret; if (pi->caps_stable_p_state) kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_ACPDPM_SetEnabledMask, (1 << pi->acp_boot_level)); } return kv_enable_acp_dpm(rdev, !gate); } void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate) { struct kv_power_info *pi = kv_get_pi(rdev); if (pi->uvd_power_gated == gate) return; pi->uvd_power_gated = gate; if (gate) { if (pi->caps_uvd_pg) { uvd_v1_0_stop(rdev); cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, false); } kv_update_uvd_dpm(rdev, gate); if (pi->caps_uvd_pg) kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerOFF); } else { if (pi->caps_uvd_pg) { kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerON); uvd_v4_2_resume(rdev); uvd_v1_0_start(rdev); cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, true); } kv_update_uvd_dpm(rdev, gate); } } static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate) { struct kv_power_info *pi = kv_get_pi(rdev); if (pi->vce_power_gated == gate) return; pi->vce_power_gated = gate; if (gate) { if (pi->caps_vce_pg) { /* XXX do we need a vce_v1_0_stop() ? */ kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerOFF); } } else { if (pi->caps_vce_pg) { kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerON); vce_v2_0_resume(rdev); vce_v1_0_start(rdev); } } } static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate) { struct kv_power_info *pi = kv_get_pi(rdev); if (pi->samu_power_gated == gate) return; pi->samu_power_gated = gate; if (gate) { kv_update_samu_dpm(rdev, true); if (pi->caps_samu_pg) kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerOFF); } else { if (pi->caps_samu_pg) kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerON); kv_update_samu_dpm(rdev, false); } } static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate) { struct kv_power_info *pi = kv_get_pi(rdev); if (pi->acp_power_gated == gate) return; if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) return; pi->acp_power_gated = gate; if (gate) { kv_update_acp_dpm(rdev, true); if (pi->caps_acp_pg) kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerOFF); } else { if (pi->caps_acp_pg) kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerON); kv_update_acp_dpm(rdev, false); } } static void kv_set_valid_clock_range(struct radeon_device *rdev, struct radeon_ps *new_rps) { struct kv_ps *new_ps = kv_get_ps(new_rps); struct kv_power_info *pi = kv_get_pi(rdev); u32 i; struct radeon_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk; if (table && table->count) { for (i = 0; i < pi->graphics_dpm_level_count; i++) { if ((table->entries[i].clk >= new_ps->levels[0].sclk) || (i == (pi->graphics_dpm_level_count - 1))) { pi->lowest_valid = i; break; } } for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) { if (table->entries[i].clk <= new_ps->levels[new_ps->num_levels - 1].sclk) break; } pi->highest_valid = i; if (pi->lowest_valid > pi->highest_valid) { if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].clk) > (table->entries[pi->lowest_valid].clk - new_ps->levels[new_ps->num_levels - 1].sclk)) pi->highest_valid = pi->lowest_valid; else pi->lowest_valid = pi->highest_valid; } } else { struct sumo_sclk_voltage_mapping_table *table = &pi->sys_info.sclk_voltage_mapping_table; for (i = 0; i < (int)pi->graphics_dpm_level_count; i++) { if (table->entries[i].sclk_frequency >= new_ps->levels[0].sclk || i == (int)(pi->graphics_dpm_level_count - 1)) { pi->lowest_valid = i; break; } } for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) { if (table->entries[i].sclk_frequency <= new_ps->levels[new_ps->num_levels - 1].sclk) break; } pi->highest_valid = i; if (pi->lowest_valid > pi->highest_valid) { if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].sclk_frequency) > (table->entries[pi->lowest_valid].sclk_frequency - new_ps->levels[new_ps->num_levels -1].sclk)) pi->highest_valid = pi->lowest_valid; else pi->lowest_valid = pi->highest_valid; } } } static int kv_update_dfs_bypass_settings(struct radeon_device *rdev, struct radeon_ps *new_rps) { struct kv_ps *new_ps = kv_get_ps(new_rps); struct kv_power_info *pi = kv_get_pi(rdev); int ret = 0; u8 clk_bypass_cntl; if (pi->caps_enable_dfs_bypass) { clk_bypass_cntl = new_ps->need_dfs_bypass ? pi->graphics_level[pi->graphics_boot_level].ClkBypassCntl : 0; ret = kv_copy_bytes_to_smc(rdev, (pi->dpm_table_start + offsetof(SMU7_Fusion_DpmTable, GraphicsLevel) + (pi->graphics_boot_level * sizeof(SMU7_Fusion_GraphicsLevel)) + offsetof(SMU7_Fusion_GraphicsLevel, ClkBypassCntl)), &clk_bypass_cntl, sizeof(u8), pi->sram_end); } return ret; } static int kv_enable_nb_dpm(struct radeon_device *rdev, bool enable) { struct kv_power_info *pi = kv_get_pi(rdev); int ret = 0; if (enable) { if (pi->enable_nb_dpm && !pi->nb_dpm_enabled) { ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_NBDPM_Enable); if (ret == 0) pi->nb_dpm_enabled = true; } } else { if (pi->enable_nb_dpm && pi->nb_dpm_enabled) { ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_NBDPM_Disable); if (ret == 0) pi->nb_dpm_enabled = false; } } return ret; } int kv_dpm_force_performance_level(struct radeon_device *rdev, enum radeon_dpm_forced_level level) { int ret; if (level == RADEON_DPM_FORCED_LEVEL_HIGH) { ret = kv_force_dpm_highest(rdev); if (ret) return ret; } else if (level == RADEON_DPM_FORCED_LEVEL_LOW) { ret = kv_force_dpm_lowest(rdev); if (ret) return ret; } else if (level == RADEON_DPM_FORCED_LEVEL_AUTO) { ret = kv_unforce_levels(rdev); if (ret) return ret; } rdev->pm.dpm.forced_level = level; return 0; } int kv_dpm_pre_set_power_state(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps; struct radeon_ps *new_ps = &requested_ps; kv_update_requested_ps(rdev, new_ps); kv_apply_state_adjust_rules(rdev, &pi->requested_rps, &pi->current_rps); return 0; } int kv_dpm_set_power_state(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); struct radeon_ps *new_ps = &pi->requested_rps; struct radeon_ps *old_ps = &pi->current_rps; int ret; if (pi->bapm_enable) { ret = kv_smc_bapm_enable(rdev, rdev->pm.dpm.ac_power); if (ret) { DRM_ERROR("kv_smc_bapm_enable failed\n"); return ret; } } if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) { if (pi->enable_dpm) { kv_set_valid_clock_range(rdev, new_ps); kv_update_dfs_bypass_settings(rdev, new_ps); ret = kv_calculate_ds_divider(rdev); if (ret) { DRM_ERROR("kv_calculate_ds_divider failed\n"); return ret; } kv_calculate_nbps_level_settings(rdev); kv_calculate_dpm_settings(rdev); kv_force_lowest_valid(rdev); kv_enable_new_levels(rdev); kv_upload_dpm_settings(rdev); kv_program_nbps_index_settings(rdev, new_ps); kv_unforce_levels(rdev); kv_set_enabled_levels(rdev); kv_force_lowest_valid(rdev); kv_unforce_levels(rdev); ret = kv_update_vce_dpm(rdev, new_ps, old_ps); if (ret) { DRM_ERROR("kv_update_vce_dpm failed\n"); return ret; } kv_update_sclk_t(rdev); if (rdev->family == CHIP_MULLINS) kv_enable_nb_dpm(rdev, true); } } else { if (pi->enable_dpm) { kv_set_valid_clock_range(rdev, new_ps); kv_update_dfs_bypass_settings(rdev, new_ps); ret = kv_calculate_ds_divider(rdev); if (ret) { DRM_ERROR("kv_calculate_ds_divider failed\n"); return ret; } kv_calculate_nbps_level_settings(rdev); kv_calculate_dpm_settings(rdev); kv_freeze_sclk_dpm(rdev, true); kv_upload_dpm_settings(rdev); kv_program_nbps_index_settings(rdev, new_ps); kv_freeze_sclk_dpm(rdev, false); kv_set_enabled_levels(rdev); ret = kv_update_vce_dpm(rdev, new_ps, old_ps); if (ret) { DRM_ERROR("kv_update_vce_dpm failed\n"); return ret; } kv_update_acp_boot_level(rdev); kv_update_sclk_t(rdev); kv_enable_nb_dpm(rdev, true); } } return 0; } void kv_dpm_post_set_power_state(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); struct radeon_ps *new_ps = &pi->requested_rps; kv_update_current_ps(rdev, new_ps); } void kv_dpm_setup_asic(struct radeon_device *rdev) { sumo_take_smu_control(rdev, true); kv_init_powergate_state(rdev); kv_init_sclk_t(rdev); } #if 0 void kv_dpm_reset_asic(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) { kv_force_lowest_valid(rdev); kv_init_graphics_levels(rdev); kv_program_bootup_state(rdev); kv_upload_dpm_settings(rdev); kv_force_lowest_valid(rdev); kv_unforce_levels(rdev); } else { kv_init_graphics_levels(rdev); kv_program_bootup_state(rdev); kv_freeze_sclk_dpm(rdev, true); kv_upload_dpm_settings(rdev); kv_freeze_sclk_dpm(rdev, false); kv_set_enabled_level(rdev, pi->graphics_boot_level); } } #endif //XXX use sumo_dpm_display_configuration_changed static void kv_construct_max_power_limits_table(struct radeon_device *rdev, struct radeon_clock_and_voltage_limits *table) { struct kv_power_info *pi = kv_get_pi(rdev); if (pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries > 0) { int idx = pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1; table->sclk = pi->sys_info.sclk_voltage_mapping_table.entries[idx].sclk_frequency; table->vddc = kv_convert_2bit_index_to_voltage(rdev, pi->sys_info.sclk_voltage_mapping_table.entries[idx].vid_2bit); } table->mclk = pi->sys_info.nbp_memory_clock[0]; } static void kv_patch_voltage_values(struct radeon_device *rdev) { int i; struct radeon_uvd_clock_voltage_dependency_table *uvd_table = &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table; struct radeon_vce_clock_voltage_dependency_table *vce_table = &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table; struct radeon_clock_voltage_dependency_table *samu_table = &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table; struct radeon_clock_voltage_dependency_table *acp_table = &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table; if (uvd_table->count) { for (i = 0; i < uvd_table->count; i++) uvd_table->entries[i].v = kv_convert_8bit_index_to_voltage(rdev, uvd_table->entries[i].v); } if (vce_table->count) { for (i = 0; i < vce_table->count; i++) vce_table->entries[i].v = kv_convert_8bit_index_to_voltage(rdev, vce_table->entries[i].v); } if (samu_table->count) { for (i = 0; i < samu_table->count; i++) samu_table->entries[i].v = kv_convert_8bit_index_to_voltage(rdev, samu_table->entries[i].v); } if (acp_table->count) { for (i = 0; i < acp_table->count; i++) acp_table->entries[i].v = kv_convert_8bit_index_to_voltage(rdev, acp_table->entries[i].v); } } static void kv_construct_boot_state(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); pi->boot_pl.sclk = pi->sys_info.bootup_sclk; pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index; pi->boot_pl.ds_divider_index = 0; pi->boot_pl.ss_divider_index = 0; pi->boot_pl.allow_gnb_slow = 1; pi->boot_pl.force_nbp_state = 0; pi->boot_pl.display_wm = 0; pi->boot_pl.vce_wm = 0; } static int kv_force_dpm_highest(struct radeon_device *rdev) { int ret; u32 enable_mask, i; ret = kv_dpm_get_enable_mask(rdev, &enable_mask); if (ret) return ret; for (i = SMU7_MAX_LEVELS_GRAPHICS - 1; i > 0; i--) { if (enable_mask & (1 << i)) break; } if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i); else return kv_set_enabled_level(rdev, i); } static int kv_force_dpm_lowest(struct radeon_device *rdev) { int ret; u32 enable_mask, i; ret = kv_dpm_get_enable_mask(rdev, &enable_mask); if (ret) return ret; for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) { if (enable_mask & (1 << i)) break; } if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i); else return kv_set_enabled_level(rdev, i); } static u8 kv_get_sleep_divider_id_from_clock(struct radeon_device *rdev, u32 sclk, u32 min_sclk_in_sr) { struct kv_power_info *pi = kv_get_pi(rdev); u32 i; u32 temp; u32 min = (min_sclk_in_sr > KV_MINIMUM_ENGINE_CLOCK) ? min_sclk_in_sr : KV_MINIMUM_ENGINE_CLOCK; if (sclk < min) return 0; if (!pi->caps_sclk_ds) return 0; for (i = KV_MAX_DEEPSLEEP_DIVIDER_ID; i > 0; i--) { temp = sclk / sumo_get_sleep_divider_from_id(i); if (temp >= min) break; } return (u8)i; } static int kv_get_high_voltage_limit(struct radeon_device *rdev, int *limit) { struct kv_power_info *pi = kv_get_pi(rdev); struct radeon_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk; int i; if (table && table->count) { for (i = table->count - 1; i >= 0; i--) { if (pi->high_voltage_t && (kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v) <= pi->high_voltage_t)) { *limit = i; return 0; } } } else { struct sumo_sclk_voltage_mapping_table *table = &pi->sys_info.sclk_voltage_mapping_table; for (i = table->num_max_dpm_entries - 1; i >= 0; i--) { if (pi->high_voltage_t && (kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit) <= pi->high_voltage_t)) { *limit = i; return 0; } } } *limit = 0; return 0; } static void kv_apply_state_adjust_rules(struct radeon_device *rdev, struct radeon_ps *new_rps, struct radeon_ps *old_rps) { struct kv_ps *ps = kv_get_ps(new_rps); struct kv_power_info *pi = kv_get_pi(rdev); u32 min_sclk = 10000; /* ??? */ u32 sclk, mclk = 0; int i, limit; bool force_high; struct radeon_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk; u32 stable_p_state_sclk = 0; struct radeon_clock_and_voltage_limits *max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac; if (new_rps->vce_active) { new_rps->evclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].evclk; new_rps->ecclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].ecclk; } else { new_rps->evclk = 0; new_rps->ecclk = 0; } mclk = max_limits->mclk; sclk = min_sclk; if (pi->caps_stable_p_state) { stable_p_state_sclk = (max_limits->sclk * 75) / 100; for (i = table->count - 1; i >= 0; i--) { if (stable_p_state_sclk >= table->entries[i].clk) { stable_p_state_sclk = table->entries[i].clk; break; } } if (i > 0) stable_p_state_sclk = table->entries[0].clk; sclk = stable_p_state_sclk; } if (new_rps->vce_active) { if (sclk < rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].sclk) sclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].sclk; } ps->need_dfs_bypass = true; for (i = 0; i < ps->num_levels; i++) { if (ps->levels[i].sclk < sclk) ps->levels[i].sclk = sclk; } if (table && table->count) { for (i = 0; i < ps->num_levels; i++) { if (pi->high_voltage_t && (pi->high_voltage_t < kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) { kv_get_high_voltage_limit(rdev, &limit); ps->levels[i].sclk = table->entries[limit].clk; } } } else { struct sumo_sclk_voltage_mapping_table *table = &pi->sys_info.sclk_voltage_mapping_table; for (i = 0; i < ps->num_levels; i++) { if (pi->high_voltage_t && (pi->high_voltage_t < kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) { kv_get_high_voltage_limit(rdev, &limit); ps->levels[i].sclk = table->entries[limit].sclk_frequency; } } } if (pi->caps_stable_p_state) { for (i = 0; i < ps->num_levels; i++) { ps->levels[i].sclk = stable_p_state_sclk; } } pi->video_start = new_rps->dclk || new_rps->vclk || new_rps->evclk || new_rps->ecclk; if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) == ATOM_PPLIB_CLASSIFICATION_UI_BATTERY) pi->battery_state = true; else pi->battery_state = false; if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) { ps->dpm0_pg_nb_ps_lo = 0x1; ps->dpm0_pg_nb_ps_hi = 0x0; ps->dpmx_nb_ps_lo = 0x1; ps->dpmx_nb_ps_hi = 0x0; } else { ps->dpm0_pg_nb_ps_lo = 0x3; ps->dpm0_pg_nb_ps_hi = 0x0; ps->dpmx_nb_ps_lo = 0x3; ps->dpmx_nb_ps_hi = 0x0; if (pi->sys_info.nb_dpm_enable) { force_high = (mclk >= pi->sys_info.nbp_memory_clock[3]) || pi->video_start || (rdev->pm.dpm.new_active_crtc_count >= 3) || pi->disable_nb_ps3_in_battery; ps->dpm0_pg_nb_ps_lo = force_high ? 0x2 : 0x3; ps->dpm0_pg_nb_ps_hi = 0x2; ps->dpmx_nb_ps_lo = force_high ? 0x2 : 0x3; ps->dpmx_nb_ps_hi = 0x2; } } } static void kv_dpm_power_level_enabled_for_throttle(struct radeon_device *rdev, u32 index, bool enable) { struct kv_power_info *pi = kv_get_pi(rdev); pi->graphics_level[index].EnabledForThrottle = enable ? 1 : 0; } static int kv_calculate_ds_divider(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); u32 sclk_in_sr = 10000; /* ??? */ u32 i; if (pi->lowest_valid > pi->highest_valid) return -EINVAL; for (i = pi->lowest_valid; i <= pi->highest_valid; i++) { pi->graphics_level[i].DeepSleepDivId = kv_get_sleep_divider_id_from_clock(rdev, be32_to_cpu(pi->graphics_level[i].SclkFrequency), sclk_in_sr); } return 0; } static int kv_calculate_nbps_level_settings(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); u32 i; bool force_high; struct radeon_clock_and_voltage_limits *max_limits = &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac; u32 mclk = max_limits->mclk; if (pi->lowest_valid > pi->highest_valid) return -EINVAL; if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) { for (i = pi->lowest_valid; i <= pi->highest_valid; i++) { pi->graphics_level[i].GnbSlow = 1; pi->graphics_level[i].ForceNbPs1 = 0; pi->graphics_level[i].UpH = 0; } if (!pi->sys_info.nb_dpm_enable) return 0; force_high = ((mclk >= pi->sys_info.nbp_memory_clock[3]) || (rdev->pm.dpm.new_active_crtc_count >= 3) || pi->video_start); if (force_high) { for (i = pi->lowest_valid; i <= pi->highest_valid; i++) pi->graphics_level[i].GnbSlow = 0; } else { if (pi->battery_state) pi->graphics_level[0].ForceNbPs1 = 1; pi->graphics_level[1].GnbSlow = 0; pi->graphics_level[2].GnbSlow = 0; pi->graphics_level[3].GnbSlow = 0; pi->graphics_level[4].GnbSlow = 0; } } else { for (i = pi->lowest_valid; i <= pi->highest_valid; i++) { pi->graphics_level[i].GnbSlow = 1; pi->graphics_level[i].ForceNbPs1 = 0; pi->graphics_level[i].UpH = 0; } if (pi->sys_info.nb_dpm_enable && pi->battery_state) { pi->graphics_level[pi->lowest_valid].UpH = 0x28; pi->graphics_level[pi->lowest_valid].GnbSlow = 0; if (pi->lowest_valid != pi->highest_valid) pi->graphics_level[pi->lowest_valid].ForceNbPs1 = 1; } } return 0; } static int kv_calculate_dpm_settings(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); u32 i; if (pi->lowest_valid > pi->highest_valid) return -EINVAL; for (i = pi->lowest_valid; i <= pi->highest_valid; i++) pi->graphics_level[i].DisplayWatermark = (i == pi->highest_valid) ? 1 : 0; return 0; } static void kv_init_graphics_levels(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); u32 i; struct radeon_clock_voltage_dependency_table *table = &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk; if (table && table->count) { u32 vid_2bit; pi->graphics_dpm_level_count = 0; for (i = 0; i < table->count; i++) { if (pi->high_voltage_t && (pi->high_voltage_t < kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v))) break; kv_set_divider_value(rdev, i, table->entries[i].clk); vid_2bit = kv_convert_vid7_to_vid2(rdev, &pi->sys_info.vid_mapping_table, table->entries[i].v); kv_set_vid(rdev, i, vid_2bit); kv_set_at(rdev, i, pi->at[i]); kv_dpm_power_level_enabled_for_throttle(rdev, i, true); pi->graphics_dpm_level_count++; } } else { struct sumo_sclk_voltage_mapping_table *table = &pi->sys_info.sclk_voltage_mapping_table; pi->graphics_dpm_level_count = 0; for (i = 0; i < table->num_max_dpm_entries; i++) { if (pi->high_voltage_t && pi->high_voltage_t < kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit)) break; kv_set_divider_value(rdev, i, table->entries[i].sclk_frequency); kv_set_vid(rdev, i, table->entries[i].vid_2bit); kv_set_at(rdev, i, pi->at[i]); kv_dpm_power_level_enabled_for_throttle(rdev, i, true); pi->graphics_dpm_level_count++; } } for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) kv_dpm_power_level_enable(rdev, i, false); } static void kv_enable_new_levels(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); u32 i; for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) { if (i >= pi->lowest_valid && i <= pi->highest_valid) kv_dpm_power_level_enable(rdev, i, true); } } static int kv_set_enabled_level(struct radeon_device *rdev, u32 level) { u32 new_mask = (1 << level); return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SCLKDPM_SetEnabledMask, new_mask); } static int kv_set_enabled_levels(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); u32 i, new_mask = 0; for (i = pi->lowest_valid; i <= pi->highest_valid; i++) new_mask |= (1 << i); return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_SCLKDPM_SetEnabledMask, new_mask); } static void kv_program_nbps_index_settings(struct radeon_device *rdev, struct radeon_ps *new_rps) { struct kv_ps *new_ps = kv_get_ps(new_rps); struct kv_power_info *pi = kv_get_pi(rdev); u32 nbdpmconfig1; if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) return; if (pi->sys_info.nb_dpm_enable) { nbdpmconfig1 = RREG32_SMC(NB_DPM_CONFIG_1); nbdpmconfig1 &= ~(Dpm0PgNbPsLo_MASK | Dpm0PgNbPsHi_MASK | DpmXNbPsLo_MASK | DpmXNbPsHi_MASK); nbdpmconfig1 |= (Dpm0PgNbPsLo(new_ps->dpm0_pg_nb_ps_lo) | Dpm0PgNbPsHi(new_ps->dpm0_pg_nb_ps_hi) | DpmXNbPsLo(new_ps->dpmx_nb_ps_lo) | DpmXNbPsHi(new_ps->dpmx_nb_ps_hi)); WREG32_SMC(NB_DPM_CONFIG_1, nbdpmconfig1); } } static int kv_set_thermal_temperature_range(struct radeon_device *rdev, int min_temp, int max_temp) { int low_temp = 0 * 1000; int high_temp = 255 * 1000; u32 tmp; if (low_temp < min_temp) low_temp = min_temp; if (high_temp > max_temp) high_temp = max_temp; if (high_temp < low_temp) { DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp); return -EINVAL; } tmp = RREG32_SMC(CG_THERMAL_INT_CTRL); tmp &= ~(DIG_THERM_INTH_MASK | DIG_THERM_INTL_MASK); tmp |= (DIG_THERM_INTH(49 + (high_temp / 1000)) | DIG_THERM_INTL(49 + (low_temp / 1000))); WREG32_SMC(CG_THERMAL_INT_CTRL, tmp); rdev->pm.dpm.thermal.min_temp = low_temp; rdev->pm.dpm.thermal.max_temp = high_temp; return 0; } union igp_info { struct _ATOM_INTEGRATED_SYSTEM_INFO info; struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2; struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5; struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6; struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7; struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8; }; static int kv_parse_sys_info_table(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); struct radeon_mode_info *mode_info = &rdev->mode_info; int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo); union igp_info *igp_info; u8 frev, crev; u16 data_offset; int i; if (atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) { igp_info = (union igp_info *)(mode_info->atom_context->bios + data_offset); if (crev != 8) { DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev); return -EINVAL; } pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_8.ulBootUpEngineClock); pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_8.ulBootUpUMAClock); pi->sys_info.bootup_nb_voltage_index = le16_to_cpu(igp_info->info_8.usBootUpNBVoltage); if (igp_info->info_8.ucHtcTmpLmt == 0) pi->sys_info.htc_tmp_lmt = 203; else pi->sys_info.htc_tmp_lmt = igp_info->info_8.ucHtcTmpLmt; if (igp_info->info_8.ucHtcHystLmt == 0) pi->sys_info.htc_hyst_lmt = 5; else pi->sys_info.htc_hyst_lmt = igp_info->info_8.ucHtcHystLmt; if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) { DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n"); } if (le32_to_cpu(igp_info->info_8.ulSystemConfig) & (1 << 3)) pi->sys_info.nb_dpm_enable = true; else pi->sys_info.nb_dpm_enable = false; for (i = 0; i < KV_NUM_NBPSTATES; i++) { pi->sys_info.nbp_memory_clock[i] = le32_to_cpu(igp_info->info_8.ulNbpStateMemclkFreq[i]); pi->sys_info.nbp_n_clock[i] = le32_to_cpu(igp_info->info_8.ulNbpStateNClkFreq[i]); } if (le32_to_cpu(igp_info->info_8.ulGPUCapInfo) & SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS) pi->caps_enable_dfs_bypass = true; sumo_construct_sclk_voltage_mapping_table(rdev, &pi->sys_info.sclk_voltage_mapping_table, igp_info->info_8.sAvail_SCLK); sumo_construct_vid_mapping_table(rdev, &pi->sys_info.vid_mapping_table, igp_info->info_8.sAvail_SCLK); kv_construct_max_power_limits_table(rdev, &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac); } return 0; } union power_info { struct _ATOM_POWERPLAY_INFO info; struct _ATOM_POWERPLAY_INFO_V2 info_2; struct _ATOM_POWERPLAY_INFO_V3 info_3; struct _ATOM_PPLIB_POWERPLAYTABLE pplib; struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2; struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3; }; union pplib_clock_info { struct _ATOM_PPLIB_R600_CLOCK_INFO r600; struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780; struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen; struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo; }; union pplib_power_state { struct _ATOM_PPLIB_STATE v1; struct _ATOM_PPLIB_STATE_V2 v2; }; static void kv_patch_boot_state(struct radeon_device *rdev, struct kv_ps *ps) { struct kv_power_info *pi = kv_get_pi(rdev); ps->num_levels = 1; ps->levels[0] = pi->boot_pl; } static void kv_parse_pplib_non_clock_info(struct radeon_device *rdev, struct radeon_ps *rps, struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info, u8 table_rev) { struct kv_ps *ps = kv_get_ps(rps); rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings); rps->class = le16_to_cpu(non_clock_info->usClassification); rps->class2 = le16_to_cpu(non_clock_info->usClassification2); if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) { rps->vclk = le32_to_cpu(non_clock_info->ulVCLK); rps->dclk = le32_to_cpu(non_clock_info->ulDCLK); } else { rps->vclk = 0; rps->dclk = 0; } if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) { rdev->pm.dpm.boot_ps = rps; kv_patch_boot_state(rdev, ps); } if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE) rdev->pm.dpm.uvd_ps = rps; } static void kv_parse_pplib_clock_info(struct radeon_device *rdev, struct radeon_ps *rps, int index, union pplib_clock_info *clock_info) { struct kv_power_info *pi = kv_get_pi(rdev); struct kv_ps *ps = kv_get_ps(rps); struct kv_pl *pl = &ps->levels[index]; u32 sclk; sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow); sclk |= clock_info->sumo.ucEngineClockHigh << 16; pl->sclk = sclk; pl->vddc_index = clock_info->sumo.vddcIndex; ps->num_levels = index + 1; if (pi->caps_sclk_ds) { pl->ds_divider_index = 5; pl->ss_divider_index = 5; } } static int kv_parse_power_table(struct radeon_device *rdev) { struct radeon_mode_info *mode_info = &rdev->mode_info; struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info; union pplib_power_state *power_state; int i, j, k, non_clock_array_index, clock_array_index; union pplib_clock_info *clock_info; struct _StateArray *state_array; struct _ClockInfoArray *clock_info_array; struct _NonClockInfoArray *non_clock_info_array; union power_info *power_info; int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo); u16 data_offset; u8 frev, crev; u8 *power_state_offset; struct kv_ps *ps; if (!atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset)) return -EINVAL; power_info = (union power_info *)(mode_info->atom_context->bios + data_offset); state_array = (struct _StateArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usStateArrayOffset)); clock_info_array = (struct _ClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usClockInfoArrayOffset)); non_clock_info_array = (struct _NonClockInfoArray *) (mode_info->atom_context->bios + data_offset + le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset)); rdev->pm.dpm.ps = kcalloc(state_array->ucNumEntries, sizeof(struct radeon_ps), GFP_KERNEL); if (!rdev->pm.dpm.ps) return -ENOMEM; power_state_offset = (u8 *)state_array->states; for (i = 0; i < state_array->ucNumEntries; i++) { u8 *idx; power_state = (union pplib_power_state *)power_state_offset; non_clock_array_index = power_state->v2.nonClockInfoIndex; non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *) &non_clock_info_array->nonClockInfo[non_clock_array_index]; if (!rdev->pm.power_state[i].clock_info) return -EINVAL; ps = kzalloc(sizeof(struct kv_ps), GFP_KERNEL); if (ps == NULL) { kfree(rdev->pm.dpm.ps); return -ENOMEM; } rdev->pm.dpm.ps[i].ps_priv = ps; k = 0; idx = (u8 *)&power_state->v2.clockInfoIndex[0]; for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) { clock_array_index = idx[j]; if (clock_array_index >= clock_info_array->ucNumEntries) continue; if (k >= SUMO_MAX_HARDWARE_POWERLEVELS) break; clock_info = (union pplib_clock_info *) ((u8 *)&clock_info_array->clockInfo[0] + (clock_array_index * clock_info_array->ucEntrySize)); kv_parse_pplib_clock_info(rdev, &rdev->pm.dpm.ps[i], k, clock_info); k++; } kv_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i], non_clock_info, non_clock_info_array->ucEntrySize); power_state_offset += 2 + power_state->v2.ucNumDPMLevels; } rdev->pm.dpm.num_ps = state_array->ucNumEntries; /* fill in the vce power states */ for (i = 0; i < RADEON_MAX_VCE_LEVELS; i++) { u32 sclk; clock_array_index = rdev->pm.dpm.vce_states[i].clk_idx; clock_info = (union pplib_clock_info *) &clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize]; sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow); sclk |= clock_info->sumo.ucEngineClockHigh << 16; rdev->pm.dpm.vce_states[i].sclk = sclk; rdev->pm.dpm.vce_states[i].mclk = 0; } return 0; } int kv_dpm_init(struct radeon_device *rdev) { struct kv_power_info *pi; int ret, i; pi = kzalloc(sizeof(struct kv_power_info), GFP_KERNEL); if (pi == NULL) return -ENOMEM; rdev->pm.dpm.priv = pi; ret = r600_get_platform_caps(rdev); if (ret) return ret; ret = r600_parse_extended_power_table(rdev); if (ret) return ret; for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++) pi->at[i] = TRINITY_AT_DFLT; pi->sram_end = SMC_RAM_END; /* Enabling nb dpm on an asrock system prevents dpm from working */ if (rdev->pdev->subsystem_vendor == 0x1849) pi->enable_nb_dpm = false; else pi->enable_nb_dpm = true; pi->caps_power_containment = true; pi->caps_cac = true; pi->enable_didt = false; if (pi->enable_didt) { pi->caps_sq_ramping = true; pi->caps_db_ramping = true; pi->caps_td_ramping = true; pi->caps_tcp_ramping = true; } pi->caps_sclk_ds = true; pi->enable_auto_thermal_throttling = true; pi->disable_nb_ps3_in_battery = false; if (radeon_bapm == -1) { /* only enable bapm on KB, ML by default */ if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) pi->bapm_enable = true; else pi->bapm_enable = false; } else if (radeon_bapm == 0) { pi->bapm_enable = false; } else { pi->bapm_enable = true; } pi->voltage_drop_t = 0; pi->caps_sclk_throttle_low_notification = false; pi->caps_fps = false; /* true? */ pi->caps_uvd_pg = true; pi->caps_uvd_dpm = true; pi->caps_vce_pg = false; /* XXX true */ pi->caps_samu_pg = false; pi->caps_acp_pg = false; pi->caps_stable_p_state = false; ret = kv_parse_sys_info_table(rdev); if (ret) return ret; kv_patch_voltage_values(rdev); kv_construct_boot_state(rdev); ret = kv_parse_power_table(rdev); if (ret) return ret; pi->enable_dpm = true; return 0; } void kv_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev, struct seq_file *m) { struct kv_power_info *pi = kv_get_pi(rdev); u32 current_index = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) >> CURR_SCLK_INDEX_SHIFT; u32 sclk, tmp; u16 vddc; if (current_index >= SMU__NUM_SCLK_DPM_STATE) { seq_printf(m, "invalid dpm profile %d\n", current_index); } else { sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency); tmp = (RREG32_SMC(SMU_VOLTAGE_STATUS) & SMU_VOLTAGE_CURRENT_LEVEL_MASK) >> SMU_VOLTAGE_CURRENT_LEVEL_SHIFT; vddc = kv_convert_8bit_index_to_voltage(rdev, (u16)tmp); seq_printf(m, "uvd %sabled\n", pi->uvd_power_gated ? "dis" : "en"); seq_printf(m, "vce %sabled\n", pi->vce_power_gated ? "dis" : "en"); seq_printf(m, "power level %d sclk: %u vddc: %u\n", current_index, sclk, vddc); } } u32 kv_dpm_get_current_sclk(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); u32 current_index = (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) >> CURR_SCLK_INDEX_SHIFT; u32 sclk; if (current_index >= SMU__NUM_SCLK_DPM_STATE) { return 0; } else { sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency); return sclk; } } u32 kv_dpm_get_current_mclk(struct radeon_device *rdev) { struct kv_power_info *pi = kv_get_pi(rdev); return pi->sys_info.bootup_uma_clk; } void kv_dpm_print_power_state(struct radeon_device *rdev, struct radeon_ps *rps) { int i; struct kv_ps *ps = kv_get_ps(rps); r600_dpm_print_class_info(rps->class, rps->class2); r600_dpm_print_cap_info(rps->caps); printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk); for (i = 0; i < ps->num_levels; i++) { struct kv_pl *pl = &ps->levels[i]; printk("\t\tpower level %d sclk: %u vddc: %u\n", i, pl->sclk, kv_convert_8bit_index_to_voltage(rdev, pl->vddc_index)); } r600_dpm_print_ps_status(rdev, rps); } void kv_dpm_fini(struct radeon_device *rdev) { int i; for (i = 0; i < rdev->pm.dpm.num_ps; i++) { kfree(rdev->pm.dpm.ps[i].ps_priv); } kfree(rdev->pm.dpm.ps); kfree(rdev->pm.dpm.priv); r600_free_extended_power_table(rdev); } void kv_dpm_display_configuration_changed(struct radeon_device *rdev) { } u32 kv_dpm_get_sclk(struct radeon_device *rdev, bool low) { struct kv_power_info *pi = kv_get_pi(rdev); struct kv_ps *requested_state = kv_get_ps(&pi->requested_rps); if (low) return requested_state->levels[0].sclk; else return requested_state->levels[requested_state->num_levels - 1].sclk; } u32 kv_dpm_get_mclk(struct radeon_device *rdev, bool low) { struct kv_power_info *pi = kv_get_pi(rdev); return pi->sys_info.bootup_uma_clk; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1