Contributors: 41
Author Tokens Token Proportion Commits Commit Proportion
Mark Yao 5313 55.61% 29 24.79%
Ezequiel García 746 7.81% 2 1.71%
Tomasz Figa 461 4.83% 7 5.98%
Sean Paul 389 4.07% 7 5.98%
Enric Balletbò i Serra 327 3.42% 1 0.85%
Daniele Castagna 324 3.39% 2 1.71%
Yakir Yang 316 3.31% 1 0.85%
Heiko Stübner 151 1.58% 5 4.27%
Tomeu Vizoso 149 1.56% 1 0.85%
Jeffy Chen 140 1.47% 4 3.42%
Sandy Huang 132 1.38% 2 1.71%
Marc Zyngier 116 1.21% 3 2.56%
Jonas Karlman 91 0.95% 1 0.85%
Zain Wang 86 0.90% 1 0.85%
Daniel Vetter 83 0.87% 3 2.56%
Kumar, Mahesh 74 0.77% 1 0.85%
Helen Mae Koike Fornazier 73 0.76% 1 0.85%
Doug Anderson 67 0.70% 4 3.42%
Urja Rannikko 60 0.63% 1 0.85%
Chris Zhong 60 0.63% 3 2.56%
Maarten Lankhorst 59 0.62% 2 1.71%
Nickey Yang 53 0.55% 1 0.85%
John Keeping 47 0.49% 6 5.13%
Ville Syrjälä 46 0.48% 9 7.69%
Sam Ravnborg 30 0.31% 1 0.85%
Sjoerd Simons 23 0.24% 1 0.85%
Kristian H. Kristensen 21 0.22% 1 0.85%
Gustavo Padovan 18 0.19% 1 0.85%
Laurent Pinchart 15 0.16% 2 1.71%
Haneen Mohammed 15 0.16% 1 0.85%
Ayan Halder 13 0.14% 1 0.85%
Maxime Ripard 12 0.13% 3 2.56%
Shawn Guo 10 0.10% 1 0.85%
Gustavo A. R. Silva 10 0.10% 1 0.85%
Daniel Stone 8 0.08% 1 0.85%
Stephen Rothwell 5 0.05% 1 0.85%
Ben Widawsky 4 0.04% 1 0.85%
Paul Gortmaker 2 0.02% 1 0.85%
Cihangir Akturk 2 0.02% 1 0.85%
Thomas Gleixner 2 0.02% 1 0.85%
Rob Herring 1 0.01% 1 0.85%
Total 9554 117


// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
 * Author:Mark Yao <mark.yao@rock-chips.com>
 */

#include <linux/clk.h>
#include <linux/component.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/overflow.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>

#include <drm/drm.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_uapi.h>
#include <drm/drm_crtc.h>
#include <drm/drm_flip_work.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_self_refresh_helper.h>
#include <drm/drm_vblank.h>

#ifdef CONFIG_DRM_ANALOGIX_DP
#include <drm/bridge/analogix_dp.h>
#endif

#include "rockchip_drm_drv.h"
#include "rockchip_drm_gem.h"
#include "rockchip_drm_fb.h"
#include "rockchip_drm_vop.h"
#include "rockchip_rgb.h"

#define VOP_WIN_SET(vop, win, name, v) \
		vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
#define VOP_SCL_SET(vop, win, name, v) \
		vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
#define VOP_SCL_SET_EXT(vop, win, name, v) \
		vop_reg_set(vop, &win->phy->scl->ext->name, \
			    win->base, ~0, v, #name)

#define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
	do { \
		if (win_yuv2yuv && win_yuv2yuv->name.mask) \
			vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
	} while (0)

#define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
	do { \
		if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
			vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
	} while (0)

#define VOP_INTR_SET_MASK(vop, name, mask, v) \
		vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)

#define VOP_REG_SET(vop, group, name, v) \
		    vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)

#define VOP_INTR_SET_TYPE(vop, name, type, v) \
	do { \
		int i, reg = 0, mask = 0; \
		for (i = 0; i < vop->data->intr->nintrs; i++) { \
			if (vop->data->intr->intrs[i] & type) { \
				reg |= (v) << i; \
				mask |= 1 << i; \
			} \
		} \
		VOP_INTR_SET_MASK(vop, name, mask, reg); \
	} while (0)
#define VOP_INTR_GET_TYPE(vop, name, type) \
		vop_get_intr_type(vop, &vop->data->intr->name, type)

#define VOP_WIN_GET(vop, win, name) \
		vop_read_reg(vop, win->base, &win->phy->name)

#define VOP_WIN_HAS_REG(win, name) \
	(!!(win->phy->name.mask))

#define VOP_WIN_GET_YRGBADDR(vop, win) \
		vop_readl(vop, win->base + win->phy->yrgb_mst.offset)

#define VOP_WIN_TO_INDEX(vop_win) \
	((vop_win) - (vop_win)->vop->win)

#define to_vop(x) container_of(x, struct vop, crtc)
#define to_vop_win(x) container_of(x, struct vop_win, base)

/*
 * The coefficients of the following matrix are all fixed points.
 * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
 * They are all represented in two's complement.
 */
static const uint32_t bt601_yuv2rgb[] = {
	0x4A8, 0x0,    0x662,
	0x4A8, 0x1E6F, 0x1CBF,
	0x4A8, 0x812,  0x0,
	0x321168, 0x0877CF, 0x2EB127
};

enum vop_pending {
	VOP_PENDING_FB_UNREF,
};

struct vop_win {
	struct drm_plane base;
	const struct vop_win_data *data;
	const struct vop_win_yuv2yuv_data *yuv2yuv_data;
	struct vop *vop;
};

struct rockchip_rgb;
struct vop {
	struct drm_crtc crtc;
	struct device *dev;
	struct drm_device *drm_dev;
	bool is_enabled;

	struct completion dsp_hold_completion;
	unsigned int win_enabled;

	/* protected by dev->event_lock */
	struct drm_pending_vblank_event *event;

	struct drm_flip_work fb_unref_work;
	unsigned long pending;

	struct completion line_flag_completion;

	const struct vop_data *data;

	uint32_t *regsbak;
	void __iomem *regs;
	void __iomem *lut_regs;

	/* physical map length of vop register */
	uint32_t len;

	/* one time only one process allowed to config the register */
	spinlock_t reg_lock;
	/* lock vop irq reg */
	spinlock_t irq_lock;
	/* protects crtc enable/disable */
	struct mutex vop_lock;

	unsigned int irq;

	/* vop AHP clk */
	struct clk *hclk;
	/* vop dclk */
	struct clk *dclk;
	/* vop share memory frequency */
	struct clk *aclk;

	/* vop dclk reset */
	struct reset_control *dclk_rst;

	/* optional internal rgb encoder */
	struct rockchip_rgb *rgb;

	struct vop_win win[];
};

static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
{
	writel(v, vop->regs + offset);
	vop->regsbak[offset >> 2] = v;
}

static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
{
	return readl(vop->regs + offset);
}

static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
				    const struct vop_reg *reg)
{
	return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
}

static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
			uint32_t _offset, uint32_t _mask, uint32_t v,
			const char *reg_name)
{
	int offset, mask, shift;

	if (!reg || !reg->mask) {
		DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
		return;
	}

	offset = reg->offset + _offset;
	mask = reg->mask & _mask;
	shift = reg->shift;

	if (reg->write_mask) {
		v = ((v << shift) & 0xffff) | (mask << (shift + 16));
	} else {
		uint32_t cached_val = vop->regsbak[offset >> 2];

		v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
		vop->regsbak[offset >> 2] = v;
	}

	if (reg->relaxed)
		writel_relaxed(v, vop->regs + offset);
	else
		writel(v, vop->regs + offset);
}

static inline uint32_t vop_get_intr_type(struct vop *vop,
					 const struct vop_reg *reg, int type)
{
	uint32_t i, ret = 0;
	uint32_t regs = vop_read_reg(vop, 0, reg);

	for (i = 0; i < vop->data->intr->nintrs; i++) {
		if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
			ret |= vop->data->intr->intrs[i];
	}

	return ret;
}

static inline void vop_cfg_done(struct vop *vop)
{
	VOP_REG_SET(vop, common, cfg_done, 1);
}

static bool has_rb_swapped(uint32_t format)
{
	switch (format) {
	case DRM_FORMAT_XBGR8888:
	case DRM_FORMAT_ABGR8888:
	case DRM_FORMAT_BGR888:
	case DRM_FORMAT_BGR565:
		return true;
	default:
		return false;
	}
}

static enum vop_data_format vop_convert_format(uint32_t format)
{
	switch (format) {
	case DRM_FORMAT_XRGB8888:
	case DRM_FORMAT_ARGB8888:
	case DRM_FORMAT_XBGR8888:
	case DRM_FORMAT_ABGR8888:
		return VOP_FMT_ARGB8888;
	case DRM_FORMAT_RGB888:
	case DRM_FORMAT_BGR888:
		return VOP_FMT_RGB888;
	case DRM_FORMAT_RGB565:
	case DRM_FORMAT_BGR565:
		return VOP_FMT_RGB565;
	case DRM_FORMAT_NV12:
		return VOP_FMT_YUV420SP;
	case DRM_FORMAT_NV16:
		return VOP_FMT_YUV422SP;
	case DRM_FORMAT_NV24:
		return VOP_FMT_YUV444SP;
	default:
		DRM_ERROR("unsupported format[%08x]\n", format);
		return -EINVAL;
	}
}

static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
				  uint32_t dst, bool is_horizontal,
				  int vsu_mode, int *vskiplines)
{
	uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;

	if (vskiplines)
		*vskiplines = 0;

	if (is_horizontal) {
		if (mode == SCALE_UP)
			val = GET_SCL_FT_BIC(src, dst);
		else if (mode == SCALE_DOWN)
			val = GET_SCL_FT_BILI_DN(src, dst);
	} else {
		if (mode == SCALE_UP) {
			if (vsu_mode == SCALE_UP_BIL)
				val = GET_SCL_FT_BILI_UP(src, dst);
			else
				val = GET_SCL_FT_BIC(src, dst);
		} else if (mode == SCALE_DOWN) {
			if (vskiplines) {
				*vskiplines = scl_get_vskiplines(src, dst);
				val = scl_get_bili_dn_vskip(src, dst,
							    *vskiplines);
			} else {
				val = GET_SCL_FT_BILI_DN(src, dst);
			}
		}
	}

	return val;
}

static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
			     uint32_t src_w, uint32_t src_h, uint32_t dst_w,
			     uint32_t dst_h, const struct drm_format_info *info)
{
	uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
	uint16_t cbcr_hor_scl_mode = SCALE_NONE;
	uint16_t cbcr_ver_scl_mode = SCALE_NONE;
	bool is_yuv = false;
	uint16_t cbcr_src_w = src_w / info->hsub;
	uint16_t cbcr_src_h = src_h / info->vsub;
	uint16_t vsu_mode;
	uint16_t lb_mode;
	uint32_t val;
	int vskiplines;

	if (info->is_yuv)
		is_yuv = true;

	if (dst_w > 3840) {
		DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
		return;
	}

	if (!win->phy->scl->ext) {
		VOP_SCL_SET(vop, win, scale_yrgb_x,
			    scl_cal_scale2(src_w, dst_w));
		VOP_SCL_SET(vop, win, scale_yrgb_y,
			    scl_cal_scale2(src_h, dst_h));
		if (is_yuv) {
			VOP_SCL_SET(vop, win, scale_cbcr_x,
				    scl_cal_scale2(cbcr_src_w, dst_w));
			VOP_SCL_SET(vop, win, scale_cbcr_y,
				    scl_cal_scale2(cbcr_src_h, dst_h));
		}
		return;
	}

	yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
	yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);

	if (is_yuv) {
		cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
		cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
		if (cbcr_hor_scl_mode == SCALE_DOWN)
			lb_mode = scl_vop_cal_lb_mode(dst_w, true);
		else
			lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
	} else {
		if (yrgb_hor_scl_mode == SCALE_DOWN)
			lb_mode = scl_vop_cal_lb_mode(dst_w, false);
		else
			lb_mode = scl_vop_cal_lb_mode(src_w, false);
	}

	VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
	if (lb_mode == LB_RGB_3840X2) {
		if (yrgb_ver_scl_mode != SCALE_NONE) {
			DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
			return;
		}
		if (cbcr_ver_scl_mode != SCALE_NONE) {
			DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
			return;
		}
		vsu_mode = SCALE_UP_BIL;
	} else if (lb_mode == LB_RGB_2560X4) {
		vsu_mode = SCALE_UP_BIL;
	} else {
		vsu_mode = SCALE_UP_BIC;
	}

	val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
				true, 0, NULL);
	VOP_SCL_SET(vop, win, scale_yrgb_x, val);
	val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
				false, vsu_mode, &vskiplines);
	VOP_SCL_SET(vop, win, scale_yrgb_y, val);

	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
	VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);

	VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
	VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
	VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
	VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
	VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
	if (is_yuv) {
		val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
					dst_w, true, 0, NULL);
		VOP_SCL_SET(vop, win, scale_cbcr_x, val);
		val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
					dst_h, false, vsu_mode, &vskiplines);
		VOP_SCL_SET(vop, win, scale_cbcr_y, val);

		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
		VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
		VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
		VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
		VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
	}
}

static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
{
	unsigned long flags;

	if (WARN_ON(!vop->is_enabled))
		return;

	spin_lock_irqsave(&vop->irq_lock, flags);

	VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);

	spin_unlock_irqrestore(&vop->irq_lock, flags);
}

static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
{
	unsigned long flags;

	if (WARN_ON(!vop->is_enabled))
		return;

	spin_lock_irqsave(&vop->irq_lock, flags);

	VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);

	spin_unlock_irqrestore(&vop->irq_lock, flags);
}

/*
 * (1) each frame starts at the start of the Vsync pulse which is signaled by
 *     the "FRAME_SYNC" interrupt.
 * (2) the active data region of each frame ends at dsp_vact_end
 * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
 *      to get "LINE_FLAG" interrupt at the end of the active on screen data.
 *
 * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
 * Interrupts
 * LINE_FLAG -------------------------------+
 * FRAME_SYNC ----+                         |
 *                |                         |
 *                v                         v
 *                | Vsync | Vbp |  Vactive  | Vfp |
 *                        ^     ^           ^     ^
 *                        |     |           |     |
 *                        |     |           |     |
 * dsp_vs_end ------------+     |           |     |   VOP_DSP_VTOTAL_VS_END
 * dsp_vact_start --------------+           |     |   VOP_DSP_VACT_ST_END
 * dsp_vact_end ----------------------------+     |   VOP_DSP_VACT_ST_END
 * dsp_total -------------------------------------+   VOP_DSP_VTOTAL_VS_END
 */
static bool vop_line_flag_irq_is_enabled(struct vop *vop)
{
	uint32_t line_flag_irq;
	unsigned long flags;

	spin_lock_irqsave(&vop->irq_lock, flags);

	line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);

	spin_unlock_irqrestore(&vop->irq_lock, flags);

	return !!line_flag_irq;
}

static void vop_line_flag_irq_enable(struct vop *vop)
{
	unsigned long flags;

	if (WARN_ON(!vop->is_enabled))
		return;

	spin_lock_irqsave(&vop->irq_lock, flags);

	VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);

	spin_unlock_irqrestore(&vop->irq_lock, flags);
}

static void vop_line_flag_irq_disable(struct vop *vop)
{
	unsigned long flags;

	if (WARN_ON(!vop->is_enabled))
		return;

	spin_lock_irqsave(&vop->irq_lock, flags);

	VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);

	spin_unlock_irqrestore(&vop->irq_lock, flags);
}

static int vop_core_clks_enable(struct vop *vop)
{
	int ret;

	ret = clk_enable(vop->hclk);
	if (ret < 0)
		return ret;

	ret = clk_enable(vop->aclk);
	if (ret < 0)
		goto err_disable_hclk;

	return 0;

err_disable_hclk:
	clk_disable(vop->hclk);
	return ret;
}

static void vop_core_clks_disable(struct vop *vop)
{
	clk_disable(vop->aclk);
	clk_disable(vop->hclk);
}

static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
{
	const struct vop_win_data *win = vop_win->data;

	if (win->phy->scl && win->phy->scl->ext) {
		VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
		VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
		VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
		VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
	}

	VOP_WIN_SET(vop, win, enable, 0);
	vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
}

static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
{
	struct vop *vop = to_vop(crtc);
	int ret, i;

	ret = pm_runtime_get_sync(vop->dev);
	if (ret < 0) {
		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
		return ret;
	}

	ret = vop_core_clks_enable(vop);
	if (WARN_ON(ret < 0))
		goto err_put_pm_runtime;

	ret = clk_enable(vop->dclk);
	if (WARN_ON(ret < 0))
		goto err_disable_core;

	/*
	 * Slave iommu shares power, irq and clock with vop.  It was associated
	 * automatically with this master device via common driver code.
	 * Now that we have enabled the clock we attach it to the shared drm
	 * mapping.
	 */
	ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
	if (ret) {
		DRM_DEV_ERROR(vop->dev,
			      "failed to attach dma mapping, %d\n", ret);
		goto err_disable_dclk;
	}

	spin_lock(&vop->reg_lock);
	for (i = 0; i < vop->len; i += 4)
		writel_relaxed(vop->regsbak[i / 4], vop->regs + i);

	/*
	 * We need to make sure that all windows are disabled before we
	 * enable the crtc. Otherwise we might try to scan from a destroyed
	 * buffer later.
	 *
	 * In the case of enable-after-PSR, we don't need to worry about this
	 * case since the buffer is guaranteed to be valid and disabling the
	 * window will result in screen glitches on PSR exit.
	 */
	if (!old_state || !old_state->self_refresh_active) {
		for (i = 0; i < vop->data->win_size; i++) {
			struct vop_win *vop_win = &vop->win[i];

			vop_win_disable(vop, vop_win);
		}
	}
	spin_unlock(&vop->reg_lock);

	vop_cfg_done(vop);

	/*
	 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
	 */
	vop->is_enabled = true;

	spin_lock(&vop->reg_lock);

	VOP_REG_SET(vop, common, standby, 1);

	spin_unlock(&vop->reg_lock);

	drm_crtc_vblank_on(crtc);

	return 0;

err_disable_dclk:
	clk_disable(vop->dclk);
err_disable_core:
	vop_core_clks_disable(vop);
err_put_pm_runtime:
	pm_runtime_put_sync(vop->dev);
	return ret;
}

static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
{
        struct vop *vop = to_vop(crtc);
        int i;

        spin_lock(&vop->reg_lock);

        for (i = 0; i < vop->data->win_size; i++) {
                struct vop_win *vop_win = &vop->win[i];
                const struct vop_win_data *win = vop_win->data;

                VOP_WIN_SET(vop, win, enable,
                            enabled && (vop->win_enabled & BIT(i)));
        }
        vop_cfg_done(vop);

        spin_unlock(&vop->reg_lock);
}

static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
				    struct drm_crtc_state *old_state)
{
	struct vop *vop = to_vop(crtc);

	WARN_ON(vop->event);

	if (crtc->state->self_refresh_active)
		rockchip_drm_set_win_enabled(crtc, false);

	mutex_lock(&vop->vop_lock);

	drm_crtc_vblank_off(crtc);

	if (crtc->state->self_refresh_active)
		goto out;

	/*
	 * Vop standby will take effect at end of current frame,
	 * if dsp hold valid irq happen, it means standby complete.
	 *
	 * we must wait standby complete when we want to disable aclk,
	 * if not, memory bus maybe dead.
	 */
	reinit_completion(&vop->dsp_hold_completion);
	vop_dsp_hold_valid_irq_enable(vop);

	spin_lock(&vop->reg_lock);

	VOP_REG_SET(vop, common, standby, 1);

	spin_unlock(&vop->reg_lock);

	wait_for_completion(&vop->dsp_hold_completion);

	vop_dsp_hold_valid_irq_disable(vop);

	vop->is_enabled = false;

	/*
	 * vop standby complete, so iommu detach is safe.
	 */
	rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);

	clk_disable(vop->dclk);
	vop_core_clks_disable(vop);
	pm_runtime_put(vop->dev);

out:
	mutex_unlock(&vop->vop_lock);

	if (crtc->state->event && !crtc->state->active) {
		spin_lock_irq(&crtc->dev->event_lock);
		drm_crtc_send_vblank_event(crtc, crtc->state->event);
		spin_unlock_irq(&crtc->dev->event_lock);

		crtc->state->event = NULL;
	}
}

static void vop_plane_destroy(struct drm_plane *plane)
{
	drm_plane_cleanup(plane);
}

static int vop_plane_atomic_check(struct drm_plane *plane,
			   struct drm_plane_state *state)
{
	struct drm_crtc *crtc = state->crtc;
	struct drm_crtc_state *crtc_state;
	struct drm_framebuffer *fb = state->fb;
	struct vop_win *vop_win = to_vop_win(plane);
	const struct vop_win_data *win = vop_win->data;
	int ret;
	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
					DRM_PLANE_HELPER_NO_SCALING;
	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
					DRM_PLANE_HELPER_NO_SCALING;

	if (!crtc || WARN_ON(!fb))
		return 0;

	crtc_state = drm_atomic_get_existing_crtc_state(state->state, crtc);
	if (WARN_ON(!crtc_state))
		return -EINVAL;

	ret = drm_atomic_helper_check_plane_state(state, crtc_state,
						  min_scale, max_scale,
						  true, true);
	if (ret)
		return ret;

	if (!state->visible)
		return 0;

	ret = vop_convert_format(fb->format->format);
	if (ret < 0)
		return ret;

	/*
	 * Src.x1 can be odd when do clip, but yuv plane start point
	 * need align with 2 pixel.
	 */
	if (fb->format->is_yuv && ((state->src.x1 >> 16) % 2)) {
		DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n");
		return -EINVAL;
	}

	if (fb->format->is_yuv && state->rotation & DRM_MODE_REFLECT_Y) {
		DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n");
		return -EINVAL;
	}

	return 0;
}

static void vop_plane_atomic_disable(struct drm_plane *plane,
				     struct drm_plane_state *old_state)
{
	struct vop_win *vop_win = to_vop_win(plane);
	struct vop *vop = to_vop(old_state->crtc);

	if (!old_state->crtc)
		return;

	spin_lock(&vop->reg_lock);

	vop_win_disable(vop, vop_win);

	spin_unlock(&vop->reg_lock);
}

static void vop_plane_atomic_update(struct drm_plane *plane,
		struct drm_plane_state *old_state)
{
	struct drm_plane_state *state = plane->state;
	struct drm_crtc *crtc = state->crtc;
	struct vop_win *vop_win = to_vop_win(plane);
	const struct vop_win_data *win = vop_win->data;
	const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
	struct vop *vop = to_vop(state->crtc);
	struct drm_framebuffer *fb = state->fb;
	unsigned int actual_w, actual_h;
	unsigned int dsp_stx, dsp_sty;
	uint32_t act_info, dsp_info, dsp_st;
	struct drm_rect *src = &state->src;
	struct drm_rect *dest = &state->dst;
	struct drm_gem_object *obj, *uv_obj;
	struct rockchip_gem_object *rk_obj, *rk_uv_obj;
	unsigned long offset;
	dma_addr_t dma_addr;
	uint32_t val;
	bool rb_swap;
	int win_index = VOP_WIN_TO_INDEX(vop_win);
	int format;
	int is_yuv = fb->format->is_yuv;
	int i;

	/*
	 * can't update plane when vop is disabled.
	 */
	if (WARN_ON(!crtc))
		return;

	if (WARN_ON(!vop->is_enabled))
		return;

	if (!state->visible) {
		vop_plane_atomic_disable(plane, old_state);
		return;
	}

	obj = fb->obj[0];
	rk_obj = to_rockchip_obj(obj);

	actual_w = drm_rect_width(src) >> 16;
	actual_h = drm_rect_height(src) >> 16;
	act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);

	dsp_info = (drm_rect_height(dest) - 1) << 16;
	dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;

	dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
	dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
	dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);

	offset = (src->x1 >> 16) * fb->format->cpp[0];
	offset += (src->y1 >> 16) * fb->pitches[0];
	dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];

	/*
	 * For y-mirroring we need to move address
	 * to the beginning of the last line.
	 */
	if (state->rotation & DRM_MODE_REFLECT_Y)
		dma_addr += (actual_h - 1) * fb->pitches[0];

	format = vop_convert_format(fb->format->format);

	spin_lock(&vop->reg_lock);

	VOP_WIN_SET(vop, win, format, format);
	VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
	VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
	VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
	VOP_WIN_SET(vop, win, y_mir_en,
		    (state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
	VOP_WIN_SET(vop, win, x_mir_en,
		    (state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);

	if (is_yuv) {
		int hsub = fb->format->hsub;
		int vsub = fb->format->vsub;
		int bpp = fb->format->cpp[1];

		uv_obj = fb->obj[1];
		rk_uv_obj = to_rockchip_obj(uv_obj);

		offset = (src->x1 >> 16) * bpp / hsub;
		offset += (src->y1 >> 16) * fb->pitches[1] / vsub;

		dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
		VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
		VOP_WIN_SET(vop, win, uv_mst, dma_addr);

		for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
			VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
							win_yuv2yuv,
							y2r_coefficients[i],
							bt601_yuv2rgb[i]);
		}
	}

	if (win->phy->scl)
		scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
				    drm_rect_width(dest), drm_rect_height(dest),
				    fb->format);

	VOP_WIN_SET(vop, win, act_info, act_info);
	VOP_WIN_SET(vop, win, dsp_info, dsp_info);
	VOP_WIN_SET(vop, win, dsp_st, dsp_st);

	rb_swap = has_rb_swapped(fb->format->format);
	VOP_WIN_SET(vop, win, rb_swap, rb_swap);

	/*
	 * Blending win0 with the background color doesn't seem to work
	 * correctly. We only get the background color, no matter the contents
	 * of the win0 framebuffer.  However, blending pre-multiplied color
	 * with the default opaque black default background color is a no-op,
	 * so we can just disable blending to get the correct result.
	 */
	if (fb->format->has_alpha && win_index > 0) {
		VOP_WIN_SET(vop, win, dst_alpha_ctl,
			    DST_FACTOR_M0(ALPHA_SRC_INVERSE));
		val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
			SRC_ALPHA_M0(ALPHA_STRAIGHT) |
			SRC_BLEND_M0(ALPHA_PER_PIX) |
			SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
			SRC_FACTOR_M0(ALPHA_ONE);
		VOP_WIN_SET(vop, win, src_alpha_ctl, val);
	} else {
		VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
	}

	VOP_WIN_SET(vop, win, enable, 1);
	vop->win_enabled |= BIT(win_index);
	spin_unlock(&vop->reg_lock);
}

static int vop_plane_atomic_async_check(struct drm_plane *plane,
					struct drm_plane_state *state)
{
	struct vop_win *vop_win = to_vop_win(plane);
	const struct vop_win_data *win = vop_win->data;
	int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
					DRM_PLANE_HELPER_NO_SCALING;
	int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
					DRM_PLANE_HELPER_NO_SCALING;
	struct drm_crtc_state *crtc_state;

	if (plane != state->crtc->cursor)
		return -EINVAL;

	if (!plane->state)
		return -EINVAL;

	if (!plane->state->fb)
		return -EINVAL;

	if (state->state)
		crtc_state = drm_atomic_get_existing_crtc_state(state->state,
								state->crtc);
	else /* Special case for asynchronous cursor updates. */
		crtc_state = plane->crtc->state;

	return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
						   min_scale, max_scale,
						   true, true);
}

static void vop_plane_atomic_async_update(struct drm_plane *plane,
					  struct drm_plane_state *new_state)
{
	struct vop *vop = to_vop(plane->state->crtc);
	struct drm_framebuffer *old_fb = plane->state->fb;

	plane->state->crtc_x = new_state->crtc_x;
	plane->state->crtc_y = new_state->crtc_y;
	plane->state->crtc_h = new_state->crtc_h;
	plane->state->crtc_w = new_state->crtc_w;
	plane->state->src_x = new_state->src_x;
	plane->state->src_y = new_state->src_y;
	plane->state->src_h = new_state->src_h;
	plane->state->src_w = new_state->src_w;
	swap(plane->state->fb, new_state->fb);

	if (vop->is_enabled) {
		vop_plane_atomic_update(plane, plane->state);
		spin_lock(&vop->reg_lock);
		vop_cfg_done(vop);
		spin_unlock(&vop->reg_lock);

		/*
		 * A scanout can still be occurring, so we can't drop the
		 * reference to the old framebuffer. To solve this we get a
		 * reference to old_fb and set a worker to release it later.
		 * FIXME: if we perform 500 async_update calls before the
		 * vblank, then we can have 500 different framebuffers waiting
		 * to be released.
		 */
		if (old_fb && plane->state->fb != old_fb) {
			drm_framebuffer_get(old_fb);
			WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
			drm_flip_work_queue(&vop->fb_unref_work, old_fb);
			set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
		}
	}
}

static const struct drm_plane_helper_funcs plane_helper_funcs = {
	.atomic_check = vop_plane_atomic_check,
	.atomic_update = vop_plane_atomic_update,
	.atomic_disable = vop_plane_atomic_disable,
	.atomic_async_check = vop_plane_atomic_async_check,
	.atomic_async_update = vop_plane_atomic_async_update,
	.prepare_fb = drm_gem_fb_prepare_fb,
};

static const struct drm_plane_funcs vop_plane_funcs = {
	.update_plane	= drm_atomic_helper_update_plane,
	.disable_plane	= drm_atomic_helper_disable_plane,
	.destroy = vop_plane_destroy,
	.reset = drm_atomic_helper_plane_reset,
	.atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
	.atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
};

static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
{
	struct vop *vop = to_vop(crtc);
	unsigned long flags;

	if (WARN_ON(!vop->is_enabled))
		return -EPERM;

	spin_lock_irqsave(&vop->irq_lock, flags);

	VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);

	spin_unlock_irqrestore(&vop->irq_lock, flags);

	return 0;
}

static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
{
	struct vop *vop = to_vop(crtc);
	unsigned long flags;

	if (WARN_ON(!vop->is_enabled))
		return;

	spin_lock_irqsave(&vop->irq_lock, flags);

	VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);

	spin_unlock_irqrestore(&vop->irq_lock, flags);
}

static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
				const struct drm_display_mode *mode,
				struct drm_display_mode *adjusted_mode)
{
	struct vop *vop = to_vop(crtc);
	unsigned long rate;

	/*
	 * Clock craziness.
	 *
	 * Key points:
	 *
	 * - DRM works in in kHz.
	 * - Clock framework works in Hz.
	 * - Rockchip's clock driver picks the clock rate that is the
	 *   same _OR LOWER_ than the one requested.
	 *
	 * Action plan:
	 *
	 * 1. When DRM gives us a mode, we should add 999 Hz to it.  That way
	 *    if the clock we need is 60000001 Hz (~60 MHz) and DRM tells us to
	 *    make 60000 kHz then the clock framework will actually give us
	 *    the right clock.
	 *
	 *    NOTE: if the PLL (maybe through a divider) could actually make
	 *    a clock rate 999 Hz higher instead of the one we want then this
	 *    could be a problem.  Unfortunately there's not much we can do
	 *    since it's baked into DRM to use kHz.  It shouldn't matter in
	 *    practice since Rockchip PLLs are controlled by tables and
	 *    even if there is a divider in the middle I wouldn't expect PLL
	 *    rates in the table that are just a few kHz different.
	 *
	 * 2. Get the clock framework to round the rate for us to tell us
	 *    what it will actually make.
	 *
	 * 3. Store the rounded up rate so that we don't need to worry about
	 *    this in the actual clk_set_rate().
	 */
	rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000 + 999);
	adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);

	return true;
}

static bool vop_dsp_lut_is_enabled(struct vop *vop)
{
	return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
}

static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
{
	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
	unsigned int i;

	for (i = 0; i < crtc->gamma_size; i++) {
		u32 word;

		word = (drm_color_lut_extract(lut[i].red, 10) << 20) |
		       (drm_color_lut_extract(lut[i].green, 10) << 10) |
			drm_color_lut_extract(lut[i].blue, 10);
		writel(word, vop->lut_regs + i * 4);
	}
}

static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
			       struct drm_crtc_state *old_state)
{
	struct drm_crtc_state *state = crtc->state;
	unsigned int idle;
	int ret;

	if (!vop->lut_regs)
		return;
	/*
	 * To disable gamma (gamma_lut is null) or to write
	 * an update to the LUT, clear dsp_lut_en.
	 */
	spin_lock(&vop->reg_lock);
	VOP_REG_SET(vop, common, dsp_lut_en, 0);
	vop_cfg_done(vop);
	spin_unlock(&vop->reg_lock);

	/*
	 * In order to write the LUT to the internal memory,
	 * we need to first make sure the dsp_lut_en bit is cleared.
	 */
	ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
				 idle, !idle, 5, 30 * 1000);
	if (ret) {
		DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
		return;
	}

	if (!state->gamma_lut)
		return;

	spin_lock(&vop->reg_lock);
	vop_crtc_write_gamma_lut(vop, crtc);
	VOP_REG_SET(vop, common, dsp_lut_en, 1);
	vop_cfg_done(vop);
	spin_unlock(&vop->reg_lock);
}

static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
				  struct drm_crtc_state *old_crtc_state)
{
	struct vop *vop = to_vop(crtc);

	/*
	 * Only update GAMMA if the 'active' flag is not changed,
	 * otherwise it's updated by .atomic_enable.
	 */
	if (crtc->state->color_mgmt_changed &&
	    !crtc->state->active_changed)
		vop_crtc_gamma_set(vop, crtc, old_crtc_state);
}

static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
				   struct drm_crtc_state *old_state)
{
	struct vop *vop = to_vop(crtc);
	const struct vop_data *vop_data = vop->data;
	struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
	struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
	u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
	u16 hdisplay = adjusted_mode->hdisplay;
	u16 htotal = adjusted_mode->htotal;
	u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
	u16 hact_end = hact_st + hdisplay;
	u16 vdisplay = adjusted_mode->vdisplay;
	u16 vtotal = adjusted_mode->vtotal;
	u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
	u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
	u16 vact_end = vact_st + vdisplay;
	uint32_t pin_pol, val;
	int dither_bpc = s->output_bpc ? s->output_bpc : 10;
	int ret;

	if (old_state && old_state->self_refresh_active) {
		drm_crtc_vblank_on(crtc);
		rockchip_drm_set_win_enabled(crtc, true);
		return;
	}

	/*
	 * If we have a GAMMA LUT in the state, then let's make sure
	 * it's updated. We might be coming out of suspend,
	 * which means the LUT internal memory needs to be re-written.
	 */
	if (crtc->state->gamma_lut)
		vop_crtc_gamma_set(vop, crtc, old_state);

	mutex_lock(&vop->vop_lock);

	WARN_ON(vop->event);

	ret = vop_enable(crtc, old_state);
	if (ret) {
		mutex_unlock(&vop->vop_lock);
		DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
		return;
	}
	pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
		   BIT(HSYNC_POSITIVE) : 0;
	pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
		   BIT(VSYNC_POSITIVE) : 0;
	VOP_REG_SET(vop, output, pin_pol, pin_pol);
	VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);

	switch (s->output_type) {
	case DRM_MODE_CONNECTOR_LVDS:
		VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
		VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
		VOP_REG_SET(vop, output, rgb_en, 1);
		break;
	case DRM_MODE_CONNECTOR_eDP:
		VOP_REG_SET(vop, output, edp_dclk_pol, 1);
		VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
		VOP_REG_SET(vop, output, edp_en, 1);
		break;
	case DRM_MODE_CONNECTOR_HDMIA:
		VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
		VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
		VOP_REG_SET(vop, output, hdmi_en, 1);
		break;
	case DRM_MODE_CONNECTOR_DSI:
		VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
		VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
		VOP_REG_SET(vop, output, mipi_en, 1);
		VOP_REG_SET(vop, output, mipi_dual_channel_en,
			    !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
		break;
	case DRM_MODE_CONNECTOR_DisplayPort:
		VOP_REG_SET(vop, output, dp_dclk_pol, 0);
		VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
		VOP_REG_SET(vop, output, dp_en, 1);
		break;
	default:
		DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
			      s->output_type);
	}

	/*
	 * if vop is not support RGB10 output, need force RGB10 to RGB888.
	 */
	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
	    !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
		s->output_mode = ROCKCHIP_OUT_MODE_P888;

	if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
		VOP_REG_SET(vop, common, pre_dither_down, 1);
	else
		VOP_REG_SET(vop, common, pre_dither_down, 0);

	if (dither_bpc == 6) {
		VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
		VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
		VOP_REG_SET(vop, common, dither_down_en, 1);
	} else {
		VOP_REG_SET(vop, common, dither_down_en, 0);
	}

	VOP_REG_SET(vop, common, out_mode, s->output_mode);

	VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
	val = hact_st << 16;
	val |= hact_end;
	VOP_REG_SET(vop, modeset, hact_st_end, val);
	VOP_REG_SET(vop, modeset, hpost_st_end, val);

	VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
	val = vact_st << 16;
	val |= vact_end;
	VOP_REG_SET(vop, modeset, vact_st_end, val);
	VOP_REG_SET(vop, modeset, vpost_st_end, val);

	VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);

	clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);

	VOP_REG_SET(vop, common, standby, 0);
	mutex_unlock(&vop->vop_lock);
}

static bool vop_fs_irq_is_pending(struct vop *vop)
{
	return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
}

static void vop_wait_for_irq_handler(struct vop *vop)
{
	bool pending;
	int ret;

	/*
	 * Spin until frame start interrupt status bit goes low, which means
	 * that interrupt handler was invoked and cleared it. The timeout of
	 * 10 msecs is really too long, but it is just a safety measure if
	 * something goes really wrong. The wait will only happen in the very
	 * unlikely case of a vblank happening exactly at the same time and
	 * shouldn't exceed microseconds range.
	 */
	ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
					!pending, 0, 10 * 1000);
	if (ret)
		DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");

	synchronize_irq(vop->irq);
}

static int vop_crtc_atomic_check(struct drm_crtc *crtc,
				 struct drm_crtc_state *crtc_state)
{
	struct vop *vop = to_vop(crtc);

	if (vop->lut_regs && crtc_state->color_mgmt_changed &&
	    crtc_state->gamma_lut) {
		unsigned int len;

		len = drm_color_lut_size(crtc_state->gamma_lut);
		if (len != crtc->gamma_size) {
			DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
				      len, crtc->gamma_size);
			return -EINVAL;
		}
	}

	return 0;
}

static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
				  struct drm_crtc_state *old_crtc_state)
{
	struct drm_atomic_state *old_state = old_crtc_state->state;
	struct drm_plane_state *old_plane_state, *new_plane_state;
	struct vop *vop = to_vop(crtc);
	struct drm_plane *plane;
	int i;

	if (WARN_ON(!vop->is_enabled))
		return;

	spin_lock(&vop->reg_lock);

	vop_cfg_done(vop);

	spin_unlock(&vop->reg_lock);

	/*
	 * There is a (rather unlikely) possiblity that a vblank interrupt
	 * fired before we set the cfg_done bit. To avoid spuriously
	 * signalling flip completion we need to wait for it to finish.
	 */
	vop_wait_for_irq_handler(vop);

	spin_lock_irq(&crtc->dev->event_lock);
	if (crtc->state->event) {
		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
		WARN_ON(vop->event);

		vop->event = crtc->state->event;
		crtc->state->event = NULL;
	}
	spin_unlock_irq(&crtc->dev->event_lock);

	for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
				       new_plane_state, i) {
		if (!old_plane_state->fb)
			continue;

		if (old_plane_state->fb == new_plane_state->fb)
			continue;

		drm_framebuffer_get(old_plane_state->fb);
		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
		drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
		set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
	}
}

static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
	.mode_fixup = vop_crtc_mode_fixup,
	.atomic_check = vop_crtc_atomic_check,
	.atomic_begin = vop_crtc_atomic_begin,
	.atomic_flush = vop_crtc_atomic_flush,
	.atomic_enable = vop_crtc_atomic_enable,
	.atomic_disable = vop_crtc_atomic_disable,
};

static void vop_crtc_destroy(struct drm_crtc *crtc)
{
	drm_crtc_cleanup(crtc);
}

static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
{
	struct rockchip_crtc_state *rockchip_state;

	rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
	if (!rockchip_state)
		return NULL;

	__drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
	return &rockchip_state->base;
}

static void vop_crtc_destroy_state(struct drm_crtc *crtc,
				   struct drm_crtc_state *state)
{
	struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);

	__drm_atomic_helper_crtc_destroy_state(&s->base);
	kfree(s);
}

static void vop_crtc_reset(struct drm_crtc *crtc)
{
	struct rockchip_crtc_state *crtc_state =
		kzalloc(sizeof(*crtc_state), GFP_KERNEL);

	if (crtc->state)
		vop_crtc_destroy_state(crtc, crtc->state);

	__drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
}

#ifdef CONFIG_DRM_ANALOGIX_DP
static struct drm_connector *vop_get_edp_connector(struct vop *vop)
{
	struct drm_connector *connector;
	struct drm_connector_list_iter conn_iter;

	drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
		if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
			drm_connector_list_iter_end(&conn_iter);
			return connector;
		}
	}
	drm_connector_list_iter_end(&conn_iter);

	return NULL;
}

static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
				   const char *source_name)
{
	struct vop *vop = to_vop(crtc);
	struct drm_connector *connector;
	int ret;

	connector = vop_get_edp_connector(vop);
	if (!connector)
		return -EINVAL;

	if (source_name && strcmp(source_name, "auto") == 0)
		ret = analogix_dp_start_crc(connector);
	else if (!source_name)
		ret = analogix_dp_stop_crc(connector);
	else
		ret = -EINVAL;

	return ret;
}

static int
vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
			   size_t *values_cnt)
{
	if (source_name && strcmp(source_name, "auto") != 0)
		return -EINVAL;

	*values_cnt = 3;
	return 0;
}

#else
static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
				   const char *source_name)
{
	return -ENODEV;
}

static int
vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
			   size_t *values_cnt)
{
	return -ENODEV;
}
#endif

static const struct drm_crtc_funcs vop_crtc_funcs = {
	.set_config = drm_atomic_helper_set_config,
	.page_flip = drm_atomic_helper_page_flip,
	.destroy = vop_crtc_destroy,
	.reset = vop_crtc_reset,
	.atomic_duplicate_state = vop_crtc_duplicate_state,
	.atomic_destroy_state = vop_crtc_destroy_state,
	.enable_vblank = vop_crtc_enable_vblank,
	.disable_vblank = vop_crtc_disable_vblank,
	.set_crc_source = vop_crtc_set_crc_source,
	.verify_crc_source = vop_crtc_verify_crc_source,
	.gamma_set = drm_atomic_helper_legacy_gamma_set,
};

static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
{
	struct vop *vop = container_of(work, struct vop, fb_unref_work);
	struct drm_framebuffer *fb = val;

	drm_crtc_vblank_put(&vop->crtc);
	drm_framebuffer_put(fb);
}

static void vop_handle_vblank(struct vop *vop)
{
	struct drm_device *drm = vop->drm_dev;
	struct drm_crtc *crtc = &vop->crtc;

	spin_lock(&drm->event_lock);
	if (vop->event) {
		drm_crtc_send_vblank_event(crtc, vop->event);
		drm_crtc_vblank_put(crtc);
		vop->event = NULL;
	}
	spin_unlock(&drm->event_lock);

	if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
		drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
}

static irqreturn_t vop_isr(int irq, void *data)
{
	struct vop *vop = data;
	struct drm_crtc *crtc = &vop->crtc;
	uint32_t active_irqs;
	int ret = IRQ_NONE;

	/*
	 * The irq is shared with the iommu. If the runtime-pm state of the
	 * vop-device is disabled the irq has to be targeted at the iommu.
	 */
	if (!pm_runtime_get_if_in_use(vop->dev))
		return IRQ_NONE;

	if (vop_core_clks_enable(vop)) {
		DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
		goto out;
	}

	/*
	 * interrupt register has interrupt status, enable and clear bits, we
	 * must hold irq_lock to avoid a race with enable/disable_vblank().
	*/
	spin_lock(&vop->irq_lock);

	active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
	/* Clear all active interrupt sources */
	if (active_irqs)
		VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);

	spin_unlock(&vop->irq_lock);

	/* This is expected for vop iommu irqs, since the irq is shared */
	if (!active_irqs)
		goto out_disable;

	if (active_irqs & DSP_HOLD_VALID_INTR) {
		complete(&vop->dsp_hold_completion);
		active_irqs &= ~DSP_HOLD_VALID_INTR;
		ret = IRQ_HANDLED;
	}

	if (active_irqs & LINE_FLAG_INTR) {
		complete(&vop->line_flag_completion);
		active_irqs &= ~LINE_FLAG_INTR;
		ret = IRQ_HANDLED;
	}

	if (active_irqs & FS_INTR) {
		drm_crtc_handle_vblank(crtc);
		vop_handle_vblank(vop);
		active_irqs &= ~FS_INTR;
		ret = IRQ_HANDLED;
	}

	/* Unhandled irqs are spurious. */
	if (active_irqs)
		DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
			      active_irqs);

out_disable:
	vop_core_clks_disable(vop);
out:
	pm_runtime_put(vop->dev);
	return ret;
}

static void vop_plane_add_properties(struct drm_plane *plane,
				     const struct vop_win_data *win_data)
{
	unsigned int flags = 0;

	flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
	flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
	if (flags)
		drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
						   DRM_MODE_ROTATE_0 | flags);
}

static int vop_create_crtc(struct vop *vop)
{
	const struct vop_data *vop_data = vop->data;
	struct device *dev = vop->dev;
	struct drm_device *drm_dev = vop->drm_dev;
	struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
	struct drm_crtc *crtc = &vop->crtc;
	struct device_node *port;
	int ret;
	int i;

	/*
	 * Create drm_plane for primary and cursor planes first, since we need
	 * to pass them to drm_crtc_init_with_planes, which sets the
	 * "possible_crtcs" to the newly initialized crtc.
	 */
	for (i = 0; i < vop_data->win_size; i++) {
		struct vop_win *vop_win = &vop->win[i];
		const struct vop_win_data *win_data = vop_win->data;

		if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
		    win_data->type != DRM_PLANE_TYPE_CURSOR)
			continue;

		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
					       0, &vop_plane_funcs,
					       win_data->phy->data_formats,
					       win_data->phy->nformats,
					       NULL, win_data->type, NULL);
		if (ret) {
			DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
				      ret);
			goto err_cleanup_planes;
		}

		plane = &vop_win->base;
		drm_plane_helper_add(plane, &plane_helper_funcs);
		vop_plane_add_properties(plane, win_data);
		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
			primary = plane;
		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
			cursor = plane;
	}

	ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
					&vop_crtc_funcs, NULL);
	if (ret)
		goto err_cleanup_planes;

	drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
	if (vop->lut_regs) {
		drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
		drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
	}

	/*
	 * Create drm_planes for overlay windows with possible_crtcs restricted
	 * to the newly created crtc.
	 */
	for (i = 0; i < vop_data->win_size; i++) {
		struct vop_win *vop_win = &vop->win[i];
		const struct vop_win_data *win_data = vop_win->data;
		unsigned long possible_crtcs = drm_crtc_mask(crtc);

		if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
			continue;

		ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
					       possible_crtcs,
					       &vop_plane_funcs,
					       win_data->phy->data_formats,
					       win_data->phy->nformats,
					       NULL, win_data->type, NULL);
		if (ret) {
			DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
				      ret);
			goto err_cleanup_crtc;
		}
		drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
		vop_plane_add_properties(&vop_win->base, win_data);
	}

	port = of_get_child_by_name(dev->of_node, "port");
	if (!port) {
		DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
			      dev->of_node);
		ret = -ENOENT;
		goto err_cleanup_crtc;
	}

	drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
			   vop_fb_unref_worker);

	init_completion(&vop->dsp_hold_completion);
	init_completion(&vop->line_flag_completion);
	crtc->port = port;

	ret = drm_self_refresh_helper_init(crtc);
	if (ret)
		DRM_DEV_DEBUG_KMS(vop->dev,
			"Failed to init %s with SR helpers %d, ignoring\n",
			crtc->name, ret);

	return 0;

err_cleanup_crtc:
	drm_crtc_cleanup(crtc);
err_cleanup_planes:
	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
				 head)
		drm_plane_cleanup(plane);
	return ret;
}

static void vop_destroy_crtc(struct vop *vop)
{
	struct drm_crtc *crtc = &vop->crtc;
	struct drm_device *drm_dev = vop->drm_dev;
	struct drm_plane *plane, *tmp;

	drm_self_refresh_helper_cleanup(crtc);

	of_node_put(crtc->port);

	/*
	 * We need to cleanup the planes now.  Why?
	 *
	 * The planes are "&vop->win[i].base".  That means the memory is
	 * all part of the big "struct vop" chunk of memory.  That memory
	 * was devm allocated and associated with this component.  We need to
	 * free it ourselves before vop_unbind() finishes.
	 */
	list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
				 head)
		vop_plane_destroy(plane);

	/*
	 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
	 * references the CRTC.
	 */
	drm_crtc_cleanup(crtc);
	drm_flip_work_cleanup(&vop->fb_unref_work);
}

static int vop_initial(struct vop *vop)
{
	struct reset_control *ahb_rst;
	int i, ret;

	vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
	if (IS_ERR(vop->hclk)) {
		DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
		return PTR_ERR(vop->hclk);
	}
	vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
	if (IS_ERR(vop->aclk)) {
		DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
		return PTR_ERR(vop->aclk);
	}
	vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
	if (IS_ERR(vop->dclk)) {
		DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
		return PTR_ERR(vop->dclk);
	}

	ret = pm_runtime_get_sync(vop->dev);
	if (ret < 0) {
		DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
		return ret;
	}

	ret = clk_prepare(vop->dclk);
	if (ret < 0) {
		DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
		goto err_put_pm_runtime;
	}

	/* Enable both the hclk and aclk to setup the vop */
	ret = clk_prepare_enable(vop->hclk);
	if (ret < 0) {
		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
		goto err_unprepare_dclk;
	}

	ret = clk_prepare_enable(vop->aclk);
	if (ret < 0) {
		DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
		goto err_disable_hclk;
	}

	/*
	 * do hclk_reset, reset all vop registers.
	 */
	ahb_rst = devm_reset_control_get(vop->dev, "ahb");
	if (IS_ERR(ahb_rst)) {
		DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
		ret = PTR_ERR(ahb_rst);
		goto err_disable_aclk;
	}
	reset_control_assert(ahb_rst);
	usleep_range(10, 20);
	reset_control_deassert(ahb_rst);

	VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
	VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);

	for (i = 0; i < vop->len; i += sizeof(u32))
		vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);

	VOP_REG_SET(vop, misc, global_regdone_en, 1);
	VOP_REG_SET(vop, common, dsp_blank, 0);

	for (i = 0; i < vop->data->win_size; i++) {
		struct vop_win *vop_win = &vop->win[i];
		const struct vop_win_data *win = vop_win->data;
		int channel = i * 2 + 1;

		VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
		vop_win_disable(vop, vop_win);
		VOP_WIN_SET(vop, win, gate, 1);
	}

	vop_cfg_done(vop);

	/*
	 * do dclk_reset, let all config take affect.
	 */
	vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
	if (IS_ERR(vop->dclk_rst)) {
		DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
		ret = PTR_ERR(vop->dclk_rst);
		goto err_disable_aclk;
	}
	reset_control_assert(vop->dclk_rst);
	usleep_range(10, 20);
	reset_control_deassert(vop->dclk_rst);

	clk_disable(vop->hclk);
	clk_disable(vop->aclk);

	vop->is_enabled = false;

	pm_runtime_put_sync(vop->dev);

	return 0;

err_disable_aclk:
	clk_disable_unprepare(vop->aclk);
err_disable_hclk:
	clk_disable_unprepare(vop->hclk);
err_unprepare_dclk:
	clk_unprepare(vop->dclk);
err_put_pm_runtime:
	pm_runtime_put_sync(vop->dev);
	return ret;
}

/*
 * Initialize the vop->win array elements.
 */
static void vop_win_init(struct vop *vop)
{
	const struct vop_data *vop_data = vop->data;
	unsigned int i;

	for (i = 0; i < vop_data->win_size; i++) {
		struct vop_win *vop_win = &vop->win[i];
		const struct vop_win_data *win_data = &vop_data->win[i];

		vop_win->data = win_data;
		vop_win->vop = vop;

		if (vop_data->win_yuv2yuv)
			vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
	}
}

/**
 * rockchip_drm_wait_vact_end
 * @crtc: CRTC to enable line flag
 * @mstimeout: millisecond for timeout
 *
 * Wait for vact_end line flag irq or timeout.
 *
 * Returns:
 * Zero on success, negative errno on failure.
 */
int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
{
	struct vop *vop = to_vop(crtc);
	unsigned long jiffies_left;
	int ret = 0;

	if (!crtc || !vop->is_enabled)
		return -ENODEV;

	mutex_lock(&vop->vop_lock);
	if (mstimeout <= 0) {
		ret = -EINVAL;
		goto out;
	}

	if (vop_line_flag_irq_is_enabled(vop)) {
		ret = -EBUSY;
		goto out;
	}

	reinit_completion(&vop->line_flag_completion);
	vop_line_flag_irq_enable(vop);

	jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
						   msecs_to_jiffies(mstimeout));
	vop_line_flag_irq_disable(vop);

	if (jiffies_left == 0) {
		DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
		ret = -ETIMEDOUT;
		goto out;
	}

out:
	mutex_unlock(&vop->vop_lock);
	return ret;
}
EXPORT_SYMBOL(rockchip_drm_wait_vact_end);

static int vop_bind(struct device *dev, struct device *master, void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	const struct vop_data *vop_data;
	struct drm_device *drm_dev = data;
	struct vop *vop;
	struct resource *res;
	int ret, irq;

	vop_data = of_device_get_match_data(dev);
	if (!vop_data)
		return -ENODEV;

	/* Allocate vop struct and its vop_win array */
	vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
			   GFP_KERNEL);
	if (!vop)
		return -ENOMEM;

	vop->dev = dev;
	vop->data = vop_data;
	vop->drm_dev = drm_dev;
	dev_set_drvdata(dev, vop);

	vop_win_init(vop);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	vop->len = resource_size(res);
	vop->regs = devm_ioremap_resource(dev, res);
	if (IS_ERR(vop->regs))
		return PTR_ERR(vop->regs);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	if (res) {
		if (!vop_data->lut_size) {
			DRM_DEV_ERROR(dev, "no gamma LUT size defined\n");
			return -EINVAL;
		}
		vop->lut_regs = devm_ioremap_resource(dev, res);
		if (IS_ERR(vop->lut_regs))
			return PTR_ERR(vop->lut_regs);
	}

	vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
	if (!vop->regsbak)
		return -ENOMEM;

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
		return irq;
	}
	vop->irq = (unsigned int)irq;

	spin_lock_init(&vop->reg_lock);
	spin_lock_init(&vop->irq_lock);
	mutex_init(&vop->vop_lock);

	ret = vop_create_crtc(vop);
	if (ret)
		return ret;

	pm_runtime_enable(&pdev->dev);

	ret = vop_initial(vop);
	if (ret < 0) {
		DRM_DEV_ERROR(&pdev->dev,
			      "cannot initial vop dev - err %d\n", ret);
		goto err_disable_pm_runtime;
	}

	ret = devm_request_irq(dev, vop->irq, vop_isr,
			       IRQF_SHARED, dev_name(dev), vop);
	if (ret)
		goto err_disable_pm_runtime;

	if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
		vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev);
		if (IS_ERR(vop->rgb)) {
			ret = PTR_ERR(vop->rgb);
			goto err_disable_pm_runtime;
		}
	}

	return 0;

err_disable_pm_runtime:
	pm_runtime_disable(&pdev->dev);
	vop_destroy_crtc(vop);
	return ret;
}

static void vop_unbind(struct device *dev, struct device *master, void *data)
{
	struct vop *vop = dev_get_drvdata(dev);

	if (vop->rgb)
		rockchip_rgb_fini(vop->rgb);

	pm_runtime_disable(dev);
	vop_destroy_crtc(vop);

	clk_unprepare(vop->aclk);
	clk_unprepare(vop->hclk);
	clk_unprepare(vop->dclk);
}

const struct component_ops vop_component_ops = {
	.bind = vop_bind,
	.unbind = vop_unbind,
};
EXPORT_SYMBOL_GPL(vop_component_ops);