Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yannick Fertre | 4567 | 77.02% | 14 | 28.57% |
Philippe Cornu | 955 | 16.10% | 18 | 36.73% |
Benjamin Gaignard | 176 | 2.97% | 4 | 8.16% |
Thomas Zimmermann | 156 | 2.63% | 2 | 4.08% |
Sam Ravnborg | 23 | 0.39% | 1 | 2.04% |
Fabien Dessenne | 22 | 0.37% | 2 | 4.08% |
Laurent Pinchart | 15 | 0.25% | 4 | 8.16% |
Ahmad Fatoum | 8 | 0.13% | 1 | 2.04% |
Maxime Ripard | 4 | 0.07% | 1 | 2.04% |
Daniel Vetter | 3 | 0.05% | 1 | 2.04% |
Ben Widawsky | 1 | 0.02% | 1 | 2.04% |
Total | 5930 | 49 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics SA 2017 * * Authors: Philippe Cornu <philippe.cornu@st.com> * Yannick Fertre <yannick.fertre@st.com> * Fabien Dessenne <fabien.dessenne@st.com> * Mickael Reulier <mickael.reulier@st.com> */ #include <linux/clk.h> #include <linux/component.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_graph.h> #include <linux/pinctrl/consumer.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/reset.h> #include <drm/drm_atomic.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_device.h> #include <drm/drm_fb_cma_helper.h> #include <drm/drm_fourcc.h> #include <drm/drm_gem_cma_helper.h> #include <drm/drm_gem_framebuffer_helper.h> #include <drm/drm_of.h> #include <drm/drm_plane_helper.h> #include <drm/drm_probe_helper.h> #include <drm/drm_vblank.h> #include <video/videomode.h> #include "ltdc.h" #define NB_CRTC 1 #define CRTC_MASK GENMASK(NB_CRTC - 1, 0) #define MAX_IRQ 4 #define MAX_ENDPOINTS 2 #define HWVER_10200 0x010200 #define HWVER_10300 0x010300 #define HWVER_20101 0x020101 /* * The address of some registers depends on the HW version: such registers have * an extra offset specified with reg_ofs. */ #define REG_OFS_NONE 0 #define REG_OFS_4 4 /* Insertion of "Layer Conf. 2" reg */ #define REG_OFS (ldev->caps.reg_ofs) #define LAY_OFS 0x80 /* Register Offset between 2 layers */ /* Global register offsets */ #define LTDC_IDR 0x0000 /* IDentification */ #define LTDC_LCR 0x0004 /* Layer Count */ #define LTDC_SSCR 0x0008 /* Synchronization Size Configuration */ #define LTDC_BPCR 0x000C /* Back Porch Configuration */ #define LTDC_AWCR 0x0010 /* Active Width Configuration */ #define LTDC_TWCR 0x0014 /* Total Width Configuration */ #define LTDC_GCR 0x0018 /* Global Control */ #define LTDC_GC1R 0x001C /* Global Configuration 1 */ #define LTDC_GC2R 0x0020 /* Global Configuration 2 */ #define LTDC_SRCR 0x0024 /* Shadow Reload Configuration */ #define LTDC_GACR 0x0028 /* GAmma Correction */ #define LTDC_BCCR 0x002C /* Background Color Configuration */ #define LTDC_IER 0x0034 /* Interrupt Enable */ #define LTDC_ISR 0x0038 /* Interrupt Status */ #define LTDC_ICR 0x003C /* Interrupt Clear */ #define LTDC_LIPCR 0x0040 /* Line Interrupt Position Conf. */ #define LTDC_CPSR 0x0044 /* Current Position Status */ #define LTDC_CDSR 0x0048 /* Current Display Status */ /* Layer register offsets */ #define LTDC_L1LC1R (0x80) /* L1 Layer Configuration 1 */ #define LTDC_L1LC2R (0x84) /* L1 Layer Configuration 2 */ #define LTDC_L1CR (0x84 + REG_OFS)/* L1 Control */ #define LTDC_L1WHPCR (0x88 + REG_OFS)/* L1 Window Hor Position Config */ #define LTDC_L1WVPCR (0x8C + REG_OFS)/* L1 Window Vert Position Config */ #define LTDC_L1CKCR (0x90 + REG_OFS)/* L1 Color Keying Configuration */ #define LTDC_L1PFCR (0x94 + REG_OFS)/* L1 Pixel Format Configuration */ #define LTDC_L1CACR (0x98 + REG_OFS)/* L1 Constant Alpha Config */ #define LTDC_L1DCCR (0x9C + REG_OFS)/* L1 Default Color Configuration */ #define LTDC_L1BFCR (0xA0 + REG_OFS)/* L1 Blend Factors Configuration */ #define LTDC_L1FBBCR (0xA4 + REG_OFS)/* L1 FrameBuffer Bus Control */ #define LTDC_L1AFBCR (0xA8 + REG_OFS)/* L1 AuxFB Control */ #define LTDC_L1CFBAR (0xAC + REG_OFS)/* L1 Color FrameBuffer Address */ #define LTDC_L1CFBLR (0xB0 + REG_OFS)/* L1 Color FrameBuffer Length */ #define LTDC_L1CFBLNR (0xB4 + REG_OFS)/* L1 Color FrameBuffer Line Nb */ #define LTDC_L1AFBAR (0xB8 + REG_OFS)/* L1 AuxFB Address */ #define LTDC_L1AFBLR (0xBC + REG_OFS)/* L1 AuxFB Length */ #define LTDC_L1AFBLNR (0xC0 + REG_OFS)/* L1 AuxFB Line Number */ #define LTDC_L1CLUTWR (0xC4 + REG_OFS)/* L1 CLUT Write */ #define LTDC_L1YS1R (0xE0 + REG_OFS)/* L1 YCbCr Scale 1 */ #define LTDC_L1YS2R (0xE4 + REG_OFS)/* L1 YCbCr Scale 2 */ /* Bit definitions */ #define SSCR_VSH GENMASK(10, 0) /* Vertical Synchronization Height */ #define SSCR_HSW GENMASK(27, 16) /* Horizontal Synchronization Width */ #define BPCR_AVBP GENMASK(10, 0) /* Accumulated Vertical Back Porch */ #define BPCR_AHBP GENMASK(27, 16) /* Accumulated Horizontal Back Porch */ #define AWCR_AAH GENMASK(10, 0) /* Accumulated Active Height */ #define AWCR_AAW GENMASK(27, 16) /* Accumulated Active Width */ #define TWCR_TOTALH GENMASK(10, 0) /* TOTAL Height */ #define TWCR_TOTALW GENMASK(27, 16) /* TOTAL Width */ #define GCR_LTDCEN BIT(0) /* LTDC ENable */ #define GCR_DEN BIT(16) /* Dither ENable */ #define GCR_PCPOL BIT(28) /* Pixel Clock POLarity-Inverted */ #define GCR_DEPOL BIT(29) /* Data Enable POLarity-High */ #define GCR_VSPOL BIT(30) /* Vertical Synchro POLarity-High */ #define GCR_HSPOL BIT(31) /* Horizontal Synchro POLarity-High */ #define GC1R_WBCH GENMASK(3, 0) /* Width of Blue CHannel output */ #define GC1R_WGCH GENMASK(7, 4) /* Width of Green Channel output */ #define GC1R_WRCH GENMASK(11, 8) /* Width of Red Channel output */ #define GC1R_PBEN BIT(12) /* Precise Blending ENable */ #define GC1R_DT GENMASK(15, 14) /* Dithering Technique */ #define GC1R_GCT GENMASK(19, 17) /* Gamma Correction Technique */ #define GC1R_SHREN BIT(21) /* SHadow Registers ENabled */ #define GC1R_BCP BIT(22) /* Background Colour Programmable */ #define GC1R_BBEN BIT(23) /* Background Blending ENabled */ #define GC1R_LNIP BIT(24) /* Line Number IRQ Position */ #define GC1R_TP BIT(25) /* Timing Programmable */ #define GC1R_IPP BIT(26) /* IRQ Polarity Programmable */ #define GC1R_SPP BIT(27) /* Sync Polarity Programmable */ #define GC1R_DWP BIT(28) /* Dither Width Programmable */ #define GC1R_STREN BIT(29) /* STatus Registers ENabled */ #define GC1R_BMEN BIT(31) /* Blind Mode ENabled */ #define GC2R_EDCA BIT(0) /* External Display Control Ability */ #define GC2R_STSAEN BIT(1) /* Slave Timing Sync Ability ENabled */ #define GC2R_DVAEN BIT(2) /* Dual-View Ability ENabled */ #define GC2R_DPAEN BIT(3) /* Dual-Port Ability ENabled */ #define GC2R_BW GENMASK(6, 4) /* Bus Width (log2 of nb of bytes) */ #define GC2R_EDCEN BIT(7) /* External Display Control ENabled */ #define SRCR_IMR BIT(0) /* IMmediate Reload */ #define SRCR_VBR BIT(1) /* Vertical Blanking Reload */ #define BCCR_BCBLACK 0x00 /* Background Color BLACK */ #define BCCR_BCBLUE GENMASK(7, 0) /* Background Color BLUE */ #define BCCR_BCGREEN GENMASK(15, 8) /* Background Color GREEN */ #define BCCR_BCRED GENMASK(23, 16) /* Background Color RED */ #define BCCR_BCWHITE GENMASK(23, 0) /* Background Color WHITE */ #define IER_LIE BIT(0) /* Line Interrupt Enable */ #define IER_FUIE BIT(1) /* Fifo Underrun Interrupt Enable */ #define IER_TERRIE BIT(2) /* Transfer ERRor Interrupt Enable */ #define IER_RRIE BIT(3) /* Register Reload Interrupt enable */ #define CPSR_CYPOS GENMASK(15, 0) /* Current Y position */ #define ISR_LIF BIT(0) /* Line Interrupt Flag */ #define ISR_FUIF BIT(1) /* Fifo Underrun Interrupt Flag */ #define ISR_TERRIF BIT(2) /* Transfer ERRor Interrupt Flag */ #define ISR_RRIF BIT(3) /* Register Reload Interrupt Flag */ #define LXCR_LEN BIT(0) /* Layer ENable */ #define LXCR_COLKEN BIT(1) /* Color Keying Enable */ #define LXCR_CLUTEN BIT(4) /* Color Look-Up Table ENable */ #define LXWHPCR_WHSTPOS GENMASK(11, 0) /* Window Horizontal StarT POSition */ #define LXWHPCR_WHSPPOS GENMASK(27, 16) /* Window Horizontal StoP POSition */ #define LXWVPCR_WVSTPOS GENMASK(10, 0) /* Window Vertical StarT POSition */ #define LXWVPCR_WVSPPOS GENMASK(26, 16) /* Window Vertical StoP POSition */ #define LXPFCR_PF GENMASK(2, 0) /* Pixel Format */ #define LXCACR_CONSTA GENMASK(7, 0) /* CONSTant Alpha */ #define LXBFCR_BF2 GENMASK(2, 0) /* Blending Factor 2 */ #define LXBFCR_BF1 GENMASK(10, 8) /* Blending Factor 1 */ #define LXCFBLR_CFBLL GENMASK(12, 0) /* Color Frame Buffer Line Length */ #define LXCFBLR_CFBP GENMASK(28, 16) /* Color Frame Buffer Pitch in bytes */ #define LXCFBLNR_CFBLN GENMASK(10, 0) /* Color Frame Buffer Line Number */ #define CLUT_SIZE 256 #define CONSTA_MAX 0xFF /* CONSTant Alpha MAX= 1.0 */ #define BF1_PAXCA 0x600 /* Pixel Alpha x Constant Alpha */ #define BF1_CA 0x400 /* Constant Alpha */ #define BF2_1PAXCA 0x007 /* 1 - (Pixel Alpha x Constant Alpha) */ #define BF2_1CA 0x005 /* 1 - Constant Alpha */ #define NB_PF 8 /* Max nb of HW pixel format */ enum ltdc_pix_fmt { PF_NONE, /* RGB formats */ PF_ARGB8888, /* ARGB [32 bits] */ PF_RGBA8888, /* RGBA [32 bits] */ PF_RGB888, /* RGB [24 bits] */ PF_RGB565, /* RGB [16 bits] */ PF_ARGB1555, /* ARGB A:1 bit RGB:15 bits [16 bits] */ PF_ARGB4444, /* ARGB A:4 bits R/G/B: 4 bits each [16 bits] */ /* Indexed formats */ PF_L8, /* Indexed 8 bits [8 bits] */ PF_AL44, /* Alpha:4 bits + indexed 4 bits [8 bits] */ PF_AL88 /* Alpha:8 bits + indexed 8 bits [16 bits] */ }; /* The index gives the encoding of the pixel format for an HW version */ static const enum ltdc_pix_fmt ltdc_pix_fmt_a0[NB_PF] = { PF_ARGB8888, /* 0x00 */ PF_RGB888, /* 0x01 */ PF_RGB565, /* 0x02 */ PF_ARGB1555, /* 0x03 */ PF_ARGB4444, /* 0x04 */ PF_L8, /* 0x05 */ PF_AL44, /* 0x06 */ PF_AL88 /* 0x07 */ }; static const enum ltdc_pix_fmt ltdc_pix_fmt_a1[NB_PF] = { PF_ARGB8888, /* 0x00 */ PF_RGB888, /* 0x01 */ PF_RGB565, /* 0x02 */ PF_RGBA8888, /* 0x03 */ PF_AL44, /* 0x04 */ PF_L8, /* 0x05 */ PF_ARGB1555, /* 0x06 */ PF_ARGB4444 /* 0x07 */ }; static const u64 ltdc_format_modifiers[] = { DRM_FORMAT_MOD_LINEAR, DRM_FORMAT_MOD_INVALID }; static inline u32 reg_read(void __iomem *base, u32 reg) { return readl_relaxed(base + reg); } static inline void reg_write(void __iomem *base, u32 reg, u32 val) { writel_relaxed(val, base + reg); } static inline void reg_set(void __iomem *base, u32 reg, u32 mask) { reg_write(base, reg, reg_read(base, reg) | mask); } static inline void reg_clear(void __iomem *base, u32 reg, u32 mask) { reg_write(base, reg, reg_read(base, reg) & ~mask); } static inline void reg_update_bits(void __iomem *base, u32 reg, u32 mask, u32 val) { reg_write(base, reg, (reg_read(base, reg) & ~mask) | val); } static inline struct ltdc_device *crtc_to_ltdc(struct drm_crtc *crtc) { return (struct ltdc_device *)crtc->dev->dev_private; } static inline struct ltdc_device *plane_to_ltdc(struct drm_plane *plane) { return (struct ltdc_device *)plane->dev->dev_private; } static inline struct ltdc_device *encoder_to_ltdc(struct drm_encoder *enc) { return (struct ltdc_device *)enc->dev->dev_private; } static inline enum ltdc_pix_fmt to_ltdc_pixelformat(u32 drm_fmt) { enum ltdc_pix_fmt pf; switch (drm_fmt) { case DRM_FORMAT_ARGB8888: case DRM_FORMAT_XRGB8888: pf = PF_ARGB8888; break; case DRM_FORMAT_RGBA8888: case DRM_FORMAT_RGBX8888: pf = PF_RGBA8888; break; case DRM_FORMAT_RGB888: pf = PF_RGB888; break; case DRM_FORMAT_RGB565: pf = PF_RGB565; break; case DRM_FORMAT_ARGB1555: case DRM_FORMAT_XRGB1555: pf = PF_ARGB1555; break; case DRM_FORMAT_ARGB4444: case DRM_FORMAT_XRGB4444: pf = PF_ARGB4444; break; case DRM_FORMAT_C8: pf = PF_L8; break; default: pf = PF_NONE; break; /* Note: There are no DRM_FORMAT for AL44 and AL88 */ } return pf; } static inline u32 to_drm_pixelformat(enum ltdc_pix_fmt pf) { switch (pf) { case PF_ARGB8888: return DRM_FORMAT_ARGB8888; case PF_RGBA8888: return DRM_FORMAT_RGBA8888; case PF_RGB888: return DRM_FORMAT_RGB888; case PF_RGB565: return DRM_FORMAT_RGB565; case PF_ARGB1555: return DRM_FORMAT_ARGB1555; case PF_ARGB4444: return DRM_FORMAT_ARGB4444; case PF_L8: return DRM_FORMAT_C8; case PF_AL44: /* No DRM support */ case PF_AL88: /* No DRM support */ case PF_NONE: default: return 0; } } static inline u32 get_pixelformat_without_alpha(u32 drm) { switch (drm) { case DRM_FORMAT_ARGB4444: return DRM_FORMAT_XRGB4444; case DRM_FORMAT_RGBA4444: return DRM_FORMAT_RGBX4444; case DRM_FORMAT_ARGB1555: return DRM_FORMAT_XRGB1555; case DRM_FORMAT_RGBA5551: return DRM_FORMAT_RGBX5551; case DRM_FORMAT_ARGB8888: return DRM_FORMAT_XRGB8888; case DRM_FORMAT_RGBA8888: return DRM_FORMAT_RGBX8888; default: return 0; } } static irqreturn_t ltdc_irq_thread(int irq, void *arg) { struct drm_device *ddev = arg; struct ltdc_device *ldev = ddev->dev_private; struct drm_crtc *crtc = drm_crtc_from_index(ddev, 0); /* Line IRQ : trigger the vblank event */ if (ldev->irq_status & ISR_LIF) drm_crtc_handle_vblank(crtc); /* Save FIFO Underrun & Transfer Error status */ mutex_lock(&ldev->err_lock); if (ldev->irq_status & ISR_FUIF) ldev->error_status |= ISR_FUIF; if (ldev->irq_status & ISR_TERRIF) ldev->error_status |= ISR_TERRIF; mutex_unlock(&ldev->err_lock); return IRQ_HANDLED; } static irqreturn_t ltdc_irq(int irq, void *arg) { struct drm_device *ddev = arg; struct ltdc_device *ldev = ddev->dev_private; /* Read & Clear the interrupt status */ ldev->irq_status = reg_read(ldev->regs, LTDC_ISR); reg_write(ldev->regs, LTDC_ICR, ldev->irq_status); return IRQ_WAKE_THREAD; } /* * DRM_CRTC */ static void ltdc_crtc_update_clut(struct drm_crtc *crtc) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); struct drm_color_lut *lut; u32 val; int i; if (!crtc->state->color_mgmt_changed || !crtc->state->gamma_lut) return; lut = (struct drm_color_lut *)crtc->state->gamma_lut->data; for (i = 0; i < CLUT_SIZE; i++, lut++) { val = ((lut->red << 8) & 0xff0000) | (lut->green & 0xff00) | (lut->blue >> 8) | (i << 24); reg_write(ldev->regs, LTDC_L1CLUTWR, val); } } static void ltdc_crtc_atomic_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); DRM_DEBUG_DRIVER("\n"); /* Sets the background color value */ reg_write(ldev->regs, LTDC_BCCR, BCCR_BCBLACK); /* Enable IRQ */ reg_set(ldev->regs, LTDC_IER, IER_RRIE | IER_FUIE | IER_TERRIE); /* Commit shadow registers = update planes at next vblank */ reg_set(ldev->regs, LTDC_SRCR, SRCR_VBR); drm_crtc_vblank_on(crtc); } static void ltdc_crtc_atomic_disable(struct drm_crtc *crtc, struct drm_crtc_state *old_state) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); struct drm_device *ddev = crtc->dev; DRM_DEBUG_DRIVER("\n"); drm_crtc_vblank_off(crtc); /* disable IRQ */ reg_clear(ldev->regs, LTDC_IER, IER_RRIE | IER_FUIE | IER_TERRIE); /* immediately commit disable of layers before switching off LTDC */ reg_set(ldev->regs, LTDC_SRCR, SRCR_IMR); pm_runtime_put_sync(ddev->dev); } #define CLK_TOLERANCE_HZ 50 static enum drm_mode_status ltdc_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *mode) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); int target = mode->clock * 1000; int target_min = target - CLK_TOLERANCE_HZ; int target_max = target + CLK_TOLERANCE_HZ; int result; result = clk_round_rate(ldev->pixel_clk, target); DRM_DEBUG_DRIVER("clk rate target %d, available %d\n", target, result); /* Filter modes according to the max frequency supported by the pads */ if (result > ldev->caps.pad_max_freq_hz) return MODE_CLOCK_HIGH; /* * Accept all "preferred" modes: * - this is important for panels because panel clock tolerances are * bigger than hdmi ones and there is no reason to not accept them * (the fps may vary a little but it is not a problem). * - the hdmi preferred mode will be accepted too, but userland will * be able to use others hdmi "valid" modes if necessary. */ if (mode->type & DRM_MODE_TYPE_PREFERRED) return MODE_OK; /* * Filter modes according to the clock value, particularly useful for * hdmi modes that require precise pixel clocks. */ if (result < target_min || result > target_max) return MODE_CLOCK_RANGE; return MODE_OK; } static bool ltdc_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); struct drm_device *ddev = crtc->dev; int rate = mode->clock * 1000; bool runtime_active; int ret; runtime_active = pm_runtime_active(ddev->dev); if (runtime_active) pm_runtime_put_sync(ddev->dev); if (clk_set_rate(ldev->pixel_clk, rate) < 0) { DRM_ERROR("Cannot set rate (%dHz) for pixel clk\n", rate); return false; } adjusted_mode->clock = clk_get_rate(ldev->pixel_clk) / 1000; if (runtime_active) { ret = pm_runtime_get_sync(ddev->dev); if (ret) { DRM_ERROR("Failed to fixup mode, cannot get sync\n"); return false; } } DRM_DEBUG_DRIVER("requested clock %dkHz, adjusted clock %dkHz\n", mode->clock, adjusted_mode->clock); return true; } static void ltdc_crtc_mode_set_nofb(struct drm_crtc *crtc) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); struct drm_device *ddev = crtc->dev; struct drm_display_mode *mode = &crtc->state->adjusted_mode; struct videomode vm; u32 hsync, vsync, accum_hbp, accum_vbp, accum_act_w, accum_act_h; u32 total_width, total_height; u32 val; int ret; if (!pm_runtime_active(ddev->dev)) { ret = pm_runtime_get_sync(ddev->dev); if (ret) { DRM_ERROR("Failed to set mode, cannot get sync\n"); return; } } drm_display_mode_to_videomode(mode, &vm); DRM_DEBUG_DRIVER("CRTC:%d mode:%s\n", crtc->base.id, mode->name); DRM_DEBUG_DRIVER("Video mode: %dx%d", vm.hactive, vm.vactive); DRM_DEBUG_DRIVER(" hfp %d hbp %d hsl %d vfp %d vbp %d vsl %d\n", vm.hfront_porch, vm.hback_porch, vm.hsync_len, vm.vfront_porch, vm.vback_porch, vm.vsync_len); /* Convert video timings to ltdc timings */ hsync = vm.hsync_len - 1; vsync = vm.vsync_len - 1; accum_hbp = hsync + vm.hback_porch; accum_vbp = vsync + vm.vback_porch; accum_act_w = accum_hbp + vm.hactive; accum_act_h = accum_vbp + vm.vactive; total_width = accum_act_w + vm.hfront_porch; total_height = accum_act_h + vm.vfront_porch; /* Configures the HS, VS, DE and PC polarities. Default Active Low */ val = 0; if (vm.flags & DISPLAY_FLAGS_HSYNC_HIGH) val |= GCR_HSPOL; if (vm.flags & DISPLAY_FLAGS_VSYNC_HIGH) val |= GCR_VSPOL; if (vm.flags & DISPLAY_FLAGS_DE_LOW) val |= GCR_DEPOL; if (vm.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE) val |= GCR_PCPOL; reg_update_bits(ldev->regs, LTDC_GCR, GCR_HSPOL | GCR_VSPOL | GCR_DEPOL | GCR_PCPOL, val); /* Set Synchronization size */ val = (hsync << 16) | vsync; reg_update_bits(ldev->regs, LTDC_SSCR, SSCR_VSH | SSCR_HSW, val); /* Set Accumulated Back porch */ val = (accum_hbp << 16) | accum_vbp; reg_update_bits(ldev->regs, LTDC_BPCR, BPCR_AVBP | BPCR_AHBP, val); /* Set Accumulated Active Width */ val = (accum_act_w << 16) | accum_act_h; reg_update_bits(ldev->regs, LTDC_AWCR, AWCR_AAW | AWCR_AAH, val); /* Set total width & height */ val = (total_width << 16) | total_height; reg_update_bits(ldev->regs, LTDC_TWCR, TWCR_TOTALH | TWCR_TOTALW, val); reg_write(ldev->regs, LTDC_LIPCR, (accum_act_h + 1)); } static void ltdc_crtc_atomic_flush(struct drm_crtc *crtc, struct drm_crtc_state *old_crtc_state) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); struct drm_device *ddev = crtc->dev; struct drm_pending_vblank_event *event = crtc->state->event; DRM_DEBUG_ATOMIC("\n"); ltdc_crtc_update_clut(crtc); /* Commit shadow registers = update planes at next vblank */ reg_set(ldev->regs, LTDC_SRCR, SRCR_VBR); if (event) { crtc->state->event = NULL; spin_lock_irq(&ddev->event_lock); if (drm_crtc_vblank_get(crtc) == 0) drm_crtc_arm_vblank_event(crtc, event); else drm_crtc_send_vblank_event(crtc, event); spin_unlock_irq(&ddev->event_lock); } } static bool ltdc_crtc_get_scanout_position(struct drm_crtc *crtc, bool in_vblank_irq, int *vpos, int *hpos, ktime_t *stime, ktime_t *etime, const struct drm_display_mode *mode) { struct drm_device *ddev = crtc->dev; struct ltdc_device *ldev = ddev->dev_private; int line, vactive_start, vactive_end, vtotal; if (stime) *stime = ktime_get(); /* The active area starts after vsync + front porch and ends * at vsync + front porc + display size. * The total height also include back porch. * We have 3 possible cases to handle: * - line < vactive_start: vpos = line - vactive_start and will be * negative * - vactive_start < line < vactive_end: vpos = line - vactive_start * and will be positive * - line > vactive_end: vpos = line - vtotal - vactive_start * and will negative * * Computation for the two first cases are identical so we can * simplify the code and only test if line > vactive_end */ if (pm_runtime_active(ddev->dev)) { line = reg_read(ldev->regs, LTDC_CPSR) & CPSR_CYPOS; vactive_start = reg_read(ldev->regs, LTDC_BPCR) & BPCR_AVBP; vactive_end = reg_read(ldev->regs, LTDC_AWCR) & AWCR_AAH; vtotal = reg_read(ldev->regs, LTDC_TWCR) & TWCR_TOTALH; if (line > vactive_end) *vpos = line - vtotal - vactive_start; else *vpos = line - vactive_start; } else { *vpos = 0; } *hpos = 0; if (etime) *etime = ktime_get(); return true; } static const struct drm_crtc_helper_funcs ltdc_crtc_helper_funcs = { .mode_valid = ltdc_crtc_mode_valid, .mode_fixup = ltdc_crtc_mode_fixup, .mode_set_nofb = ltdc_crtc_mode_set_nofb, .atomic_flush = ltdc_crtc_atomic_flush, .atomic_enable = ltdc_crtc_atomic_enable, .atomic_disable = ltdc_crtc_atomic_disable, .get_scanout_position = ltdc_crtc_get_scanout_position, }; static int ltdc_crtc_enable_vblank(struct drm_crtc *crtc) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); struct drm_crtc_state *state = crtc->state; DRM_DEBUG_DRIVER("\n"); if (state->enable) reg_set(ldev->regs, LTDC_IER, IER_LIE); else return -EPERM; return 0; } static void ltdc_crtc_disable_vblank(struct drm_crtc *crtc) { struct ltdc_device *ldev = crtc_to_ltdc(crtc); DRM_DEBUG_DRIVER("\n"); reg_clear(ldev->regs, LTDC_IER, IER_LIE); } static const struct drm_crtc_funcs ltdc_crtc_funcs = { .destroy = drm_crtc_cleanup, .set_config = drm_atomic_helper_set_config, .page_flip = drm_atomic_helper_page_flip, .reset = drm_atomic_helper_crtc_reset, .atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state, .atomic_destroy_state = drm_atomic_helper_crtc_destroy_state, .enable_vblank = ltdc_crtc_enable_vblank, .disable_vblank = ltdc_crtc_disable_vblank, .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, .gamma_set = drm_atomic_helper_legacy_gamma_set, }; /* * DRM_PLANE */ static int ltdc_plane_atomic_check(struct drm_plane *plane, struct drm_plane_state *state) { struct drm_framebuffer *fb = state->fb; u32 src_w, src_h; DRM_DEBUG_DRIVER("\n"); if (!fb) return 0; /* convert src_ from 16:16 format */ src_w = state->src_w >> 16; src_h = state->src_h >> 16; /* Reject scaling */ if (src_w != state->crtc_w || src_h != state->crtc_h) { DRM_ERROR("Scaling is not supported"); return -EINVAL; } return 0; } static void ltdc_plane_atomic_update(struct drm_plane *plane, struct drm_plane_state *oldstate) { struct ltdc_device *ldev = plane_to_ltdc(plane); struct drm_plane_state *state = plane->state; struct drm_framebuffer *fb = state->fb; u32 lofs = plane->index * LAY_OFS; u32 x0 = state->crtc_x; u32 x1 = state->crtc_x + state->crtc_w - 1; u32 y0 = state->crtc_y; u32 y1 = state->crtc_y + state->crtc_h - 1; u32 src_x, src_y, src_w, src_h; u32 val, pitch_in_bytes, line_length, paddr, ahbp, avbp, bpcr; enum ltdc_pix_fmt pf; if (!state->crtc || !fb) { DRM_DEBUG_DRIVER("fb or crtc NULL"); return; } /* convert src_ from 16:16 format */ src_x = state->src_x >> 16; src_y = state->src_y >> 16; src_w = state->src_w >> 16; src_h = state->src_h >> 16; DRM_DEBUG_DRIVER("plane:%d fb:%d (%dx%d)@(%d,%d) -> (%dx%d)@(%d,%d)\n", plane->base.id, fb->base.id, src_w, src_h, src_x, src_y, state->crtc_w, state->crtc_h, state->crtc_x, state->crtc_y); bpcr = reg_read(ldev->regs, LTDC_BPCR); ahbp = (bpcr & BPCR_AHBP) >> 16; avbp = bpcr & BPCR_AVBP; /* Configures the horizontal start and stop position */ val = ((x1 + 1 + ahbp) << 16) + (x0 + 1 + ahbp); reg_update_bits(ldev->regs, LTDC_L1WHPCR + lofs, LXWHPCR_WHSTPOS | LXWHPCR_WHSPPOS, val); /* Configures the vertical start and stop position */ val = ((y1 + 1 + avbp) << 16) + (y0 + 1 + avbp); reg_update_bits(ldev->regs, LTDC_L1WVPCR + lofs, LXWVPCR_WVSTPOS | LXWVPCR_WVSPPOS, val); /* Specifies the pixel format */ pf = to_ltdc_pixelformat(fb->format->format); for (val = 0; val < NB_PF; val++) if (ldev->caps.pix_fmt_hw[val] == pf) break; if (val == NB_PF) { DRM_ERROR("Pixel format %.4s not supported\n", (char *)&fb->format->format); val = 0; /* set by default ARGB 32 bits */ } reg_update_bits(ldev->regs, LTDC_L1PFCR + lofs, LXPFCR_PF, val); /* Configures the color frame buffer pitch in bytes & line length */ pitch_in_bytes = fb->pitches[0]; line_length = fb->format->cpp[0] * (x1 - x0 + 1) + (ldev->caps.bus_width >> 3) - 1; val = ((pitch_in_bytes << 16) | line_length); reg_update_bits(ldev->regs, LTDC_L1CFBLR + lofs, LXCFBLR_CFBLL | LXCFBLR_CFBP, val); /* Specifies the constant alpha value */ val = CONSTA_MAX; reg_update_bits(ldev->regs, LTDC_L1CACR + lofs, LXCACR_CONSTA, val); /* Specifies the blending factors */ val = BF1_PAXCA | BF2_1PAXCA; if (!fb->format->has_alpha) val = BF1_CA | BF2_1CA; /* Manage hw-specific capabilities */ if (ldev->caps.non_alpha_only_l1 && plane->type != DRM_PLANE_TYPE_PRIMARY) val = BF1_PAXCA | BF2_1PAXCA; reg_update_bits(ldev->regs, LTDC_L1BFCR + lofs, LXBFCR_BF2 | LXBFCR_BF1, val); /* Configures the frame buffer line number */ val = y1 - y0 + 1; reg_update_bits(ldev->regs, LTDC_L1CFBLNR + lofs, LXCFBLNR_CFBLN, val); /* Sets the FB address */ paddr = (u32)drm_fb_cma_get_gem_addr(fb, state, 0); DRM_DEBUG_DRIVER("fb: phys 0x%08x", paddr); reg_write(ldev->regs, LTDC_L1CFBAR + lofs, paddr); /* Enable layer and CLUT if needed */ val = fb->format->format == DRM_FORMAT_C8 ? LXCR_CLUTEN : 0; val |= LXCR_LEN; reg_update_bits(ldev->regs, LTDC_L1CR + lofs, LXCR_LEN | LXCR_CLUTEN, val); ldev->plane_fpsi[plane->index].counter++; mutex_lock(&ldev->err_lock); if (ldev->error_status & ISR_FUIF) { DRM_WARN("ltdc fifo underrun: please verify display mode\n"); ldev->error_status &= ~ISR_FUIF; } if (ldev->error_status & ISR_TERRIF) { DRM_WARN("ltdc transfer error\n"); ldev->error_status &= ~ISR_TERRIF; } mutex_unlock(&ldev->err_lock); } static void ltdc_plane_atomic_disable(struct drm_plane *plane, struct drm_plane_state *oldstate) { struct ltdc_device *ldev = plane_to_ltdc(plane); u32 lofs = plane->index * LAY_OFS; /* disable layer */ reg_clear(ldev->regs, LTDC_L1CR + lofs, LXCR_LEN); DRM_DEBUG_DRIVER("CRTC:%d plane:%d\n", oldstate->crtc->base.id, plane->base.id); } static void ltdc_plane_atomic_print_state(struct drm_printer *p, const struct drm_plane_state *state) { struct drm_plane *plane = state->plane; struct ltdc_device *ldev = plane_to_ltdc(plane); struct fps_info *fpsi = &ldev->plane_fpsi[plane->index]; int ms_since_last; ktime_t now; now = ktime_get(); ms_since_last = ktime_to_ms(ktime_sub(now, fpsi->last_timestamp)); drm_printf(p, "\tuser_updates=%dfps\n", DIV_ROUND_CLOSEST(fpsi->counter * 1000, ms_since_last)); fpsi->last_timestamp = now; fpsi->counter = 0; } static bool ltdc_plane_format_mod_supported(struct drm_plane *plane, u32 format, u64 modifier) { if (modifier == DRM_FORMAT_MOD_LINEAR) return true; return false; } static const struct drm_plane_funcs ltdc_plane_funcs = { .update_plane = drm_atomic_helper_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = drm_plane_cleanup, .reset = drm_atomic_helper_plane_reset, .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state, .atomic_destroy_state = drm_atomic_helper_plane_destroy_state, .atomic_print_state = ltdc_plane_atomic_print_state, .format_mod_supported = ltdc_plane_format_mod_supported, }; static const struct drm_plane_helper_funcs ltdc_plane_helper_funcs = { .prepare_fb = drm_gem_fb_prepare_fb, .atomic_check = ltdc_plane_atomic_check, .atomic_update = ltdc_plane_atomic_update, .atomic_disable = ltdc_plane_atomic_disable, }; static struct drm_plane *ltdc_plane_create(struct drm_device *ddev, enum drm_plane_type type) { unsigned long possible_crtcs = CRTC_MASK; struct ltdc_device *ldev = ddev->dev_private; struct device *dev = ddev->dev; struct drm_plane *plane; unsigned int i, nb_fmt = 0; u32 formats[NB_PF * 2]; u32 drm_fmt, drm_fmt_no_alpha; const u64 *modifiers = ltdc_format_modifiers; int ret; /* Get supported pixel formats */ for (i = 0; i < NB_PF; i++) { drm_fmt = to_drm_pixelformat(ldev->caps.pix_fmt_hw[i]); if (!drm_fmt) continue; formats[nb_fmt++] = drm_fmt; /* Add the no-alpha related format if any & supported */ drm_fmt_no_alpha = get_pixelformat_without_alpha(drm_fmt); if (!drm_fmt_no_alpha) continue; /* Manage hw-specific capabilities */ if (ldev->caps.non_alpha_only_l1 && type != DRM_PLANE_TYPE_PRIMARY) continue; formats[nb_fmt++] = drm_fmt_no_alpha; } plane = devm_kzalloc(dev, sizeof(*plane), GFP_KERNEL); if (!plane) return NULL; ret = drm_universal_plane_init(ddev, plane, possible_crtcs, <dc_plane_funcs, formats, nb_fmt, modifiers, type, NULL); if (ret < 0) return NULL; drm_plane_helper_add(plane, <dc_plane_helper_funcs); DRM_DEBUG_DRIVER("plane:%d created\n", plane->base.id); return plane; } static void ltdc_plane_destroy_all(struct drm_device *ddev) { struct drm_plane *plane, *plane_temp; list_for_each_entry_safe(plane, plane_temp, &ddev->mode_config.plane_list, head) drm_plane_cleanup(plane); } static int ltdc_crtc_init(struct drm_device *ddev, struct drm_crtc *crtc) { struct ltdc_device *ldev = ddev->dev_private; struct drm_plane *primary, *overlay; unsigned int i; int ret; primary = ltdc_plane_create(ddev, DRM_PLANE_TYPE_PRIMARY); if (!primary) { DRM_ERROR("Can not create primary plane\n"); return -EINVAL; } ret = drm_crtc_init_with_planes(ddev, crtc, primary, NULL, <dc_crtc_funcs, NULL); if (ret) { DRM_ERROR("Can not initialize CRTC\n"); goto cleanup; } drm_crtc_helper_add(crtc, <dc_crtc_helper_funcs); drm_mode_crtc_set_gamma_size(crtc, CLUT_SIZE); drm_crtc_enable_color_mgmt(crtc, 0, false, CLUT_SIZE); DRM_DEBUG_DRIVER("CRTC:%d created\n", crtc->base.id); /* Add planes. Note : the first layer is used by primary plane */ for (i = 1; i < ldev->caps.nb_layers; i++) { overlay = ltdc_plane_create(ddev, DRM_PLANE_TYPE_OVERLAY); if (!overlay) { ret = -ENOMEM; DRM_ERROR("Can not create overlay plane %d\n", i); goto cleanup; } } return 0; cleanup: ltdc_plane_destroy_all(ddev); return ret; } /* * DRM_ENCODER */ static const struct drm_encoder_funcs ltdc_encoder_funcs = { .destroy = drm_encoder_cleanup, }; static void ltdc_encoder_disable(struct drm_encoder *encoder) { struct drm_device *ddev = encoder->dev; struct ltdc_device *ldev = ddev->dev_private; DRM_DEBUG_DRIVER("\n"); /* Disable LTDC */ reg_clear(ldev->regs, LTDC_GCR, GCR_LTDCEN); /* Set to sleep state the pinctrl whatever type of encoder */ pinctrl_pm_select_sleep_state(ddev->dev); } static void ltdc_encoder_enable(struct drm_encoder *encoder) { struct drm_device *ddev = encoder->dev; struct ltdc_device *ldev = ddev->dev_private; DRM_DEBUG_DRIVER("\n"); /* Enable LTDC */ reg_set(ldev->regs, LTDC_GCR, GCR_LTDCEN); } static void ltdc_encoder_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *ddev = encoder->dev; DRM_DEBUG_DRIVER("\n"); /* * Set to default state the pinctrl only with DPI type. * Others types like DSI, don't need pinctrl due to * internal bridge (the signals do not come out of the chipset). */ if (encoder->encoder_type == DRM_MODE_ENCODER_DPI) pinctrl_pm_select_default_state(ddev->dev); } static const struct drm_encoder_helper_funcs ltdc_encoder_helper_funcs = { .disable = ltdc_encoder_disable, .enable = ltdc_encoder_enable, .mode_set = ltdc_encoder_mode_set, }; static int ltdc_encoder_init(struct drm_device *ddev, struct drm_bridge *bridge) { struct drm_encoder *encoder; int ret; encoder = devm_kzalloc(ddev->dev, sizeof(*encoder), GFP_KERNEL); if (!encoder) return -ENOMEM; encoder->possible_crtcs = CRTC_MASK; encoder->possible_clones = 0; /* No cloning support */ drm_encoder_init(ddev, encoder, <dc_encoder_funcs, DRM_MODE_ENCODER_DPI, NULL); drm_encoder_helper_add(encoder, <dc_encoder_helper_funcs); ret = drm_bridge_attach(encoder, bridge, NULL, 0); if (ret) { drm_encoder_cleanup(encoder); return -EINVAL; } DRM_DEBUG_DRIVER("Bridge encoder:%d created\n", encoder->base.id); return 0; } static int ltdc_get_caps(struct drm_device *ddev) { struct ltdc_device *ldev = ddev->dev_private; u32 bus_width_log2, lcr, gc2r; /* * at least 1 layer must be managed & the number of layers * must not exceed LTDC_MAX_LAYER */ lcr = reg_read(ldev->regs, LTDC_LCR); ldev->caps.nb_layers = clamp((int)lcr, 1, LTDC_MAX_LAYER); /* set data bus width */ gc2r = reg_read(ldev->regs, LTDC_GC2R); bus_width_log2 = (gc2r & GC2R_BW) >> 4; ldev->caps.bus_width = 8 << bus_width_log2; ldev->caps.hw_version = reg_read(ldev->regs, LTDC_IDR); switch (ldev->caps.hw_version) { case HWVER_10200: case HWVER_10300: ldev->caps.reg_ofs = REG_OFS_NONE; ldev->caps.pix_fmt_hw = ltdc_pix_fmt_a0; /* * Hw older versions support non-alpha color formats derived * from native alpha color formats only on the primary layer. * For instance, RG16 native format without alpha works fine * on 2nd layer but XR24 (derived color format from AR24) * does not work on 2nd layer. */ ldev->caps.non_alpha_only_l1 = true; ldev->caps.pad_max_freq_hz = 90000000; if (ldev->caps.hw_version == HWVER_10200) ldev->caps.pad_max_freq_hz = 65000000; ldev->caps.nb_irq = 2; break; case HWVER_20101: ldev->caps.reg_ofs = REG_OFS_4; ldev->caps.pix_fmt_hw = ltdc_pix_fmt_a1; ldev->caps.non_alpha_only_l1 = false; ldev->caps.pad_max_freq_hz = 150000000; ldev->caps.nb_irq = 4; break; default: return -ENODEV; } return 0; } void ltdc_suspend(struct drm_device *ddev) { struct ltdc_device *ldev = ddev->dev_private; DRM_DEBUG_DRIVER("\n"); clk_disable_unprepare(ldev->pixel_clk); } int ltdc_resume(struct drm_device *ddev) { struct ltdc_device *ldev = ddev->dev_private; int ret; DRM_DEBUG_DRIVER("\n"); ret = clk_prepare_enable(ldev->pixel_clk); if (ret) { DRM_ERROR("failed to enable pixel clock (%d)\n", ret); return ret; } return 0; } int ltdc_load(struct drm_device *ddev) { struct platform_device *pdev = to_platform_device(ddev->dev); struct ltdc_device *ldev = ddev->dev_private; struct device *dev = ddev->dev; struct device_node *np = dev->of_node; struct drm_bridge *bridge[MAX_ENDPOINTS] = {NULL}; struct drm_panel *panel[MAX_ENDPOINTS] = {NULL}; struct drm_crtc *crtc; struct reset_control *rstc; struct resource *res; int irq, ret, i, endpoint_not_ready = -ENODEV; DRM_DEBUG_DRIVER("\n"); /* Get endpoints if any */ for (i = 0; i < MAX_ENDPOINTS; i++) { ret = drm_of_find_panel_or_bridge(np, 0, i, &panel[i], &bridge[i]); /* * If at least one endpoint is -EPROBE_DEFER, defer probing, * else if at least one endpoint is ready, continue probing. */ if (ret == -EPROBE_DEFER) return ret; else if (!ret) endpoint_not_ready = 0; } if (endpoint_not_ready) return endpoint_not_ready; rstc = devm_reset_control_get_exclusive(dev, NULL); mutex_init(&ldev->err_lock); ldev->pixel_clk = devm_clk_get(dev, "lcd"); if (IS_ERR(ldev->pixel_clk)) { if (PTR_ERR(ldev->pixel_clk) != -EPROBE_DEFER) DRM_ERROR("Unable to get lcd clock\n"); return PTR_ERR(ldev->pixel_clk); } if (clk_prepare_enable(ldev->pixel_clk)) { DRM_ERROR("Unable to prepare pixel clock\n"); return -ENODEV; } if (!IS_ERR(rstc)) { reset_control_assert(rstc); usleep_range(10, 20); reset_control_deassert(rstc); } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ldev->regs = devm_ioremap_resource(dev, res); if (IS_ERR(ldev->regs)) { DRM_ERROR("Unable to get ltdc registers\n"); ret = PTR_ERR(ldev->regs); goto err; } /* Disable interrupts */ reg_clear(ldev->regs, LTDC_IER, IER_LIE | IER_RRIE | IER_FUIE | IER_TERRIE); ret = ltdc_get_caps(ddev); if (ret) { DRM_ERROR("hardware identifier (0x%08x) not supported!\n", ldev->caps.hw_version); goto err; } DRM_DEBUG_DRIVER("ltdc hw version 0x%08x\n", ldev->caps.hw_version); for (i = 0; i < ldev->caps.nb_irq; i++) { irq = platform_get_irq(pdev, i); if (irq < 0) { ret = irq; goto err; } ret = devm_request_threaded_irq(dev, irq, ltdc_irq, ltdc_irq_thread, IRQF_ONESHOT, dev_name(dev), ddev); if (ret) { DRM_ERROR("Failed to register LTDC interrupt\n"); goto err; } } /* Add endpoints panels or bridges if any */ for (i = 0; i < MAX_ENDPOINTS; i++) { if (panel[i]) { bridge[i] = drm_panel_bridge_add_typed(panel[i], DRM_MODE_CONNECTOR_DPI); if (IS_ERR(bridge[i])) { DRM_ERROR("panel-bridge endpoint %d\n", i); ret = PTR_ERR(bridge[i]); goto err; } } if (bridge[i]) { ret = ltdc_encoder_init(ddev, bridge[i]); if (ret) { DRM_ERROR("init encoder endpoint %d\n", i); goto err; } } } crtc = devm_kzalloc(dev, sizeof(*crtc), GFP_KERNEL); if (!crtc) { DRM_ERROR("Failed to allocate crtc\n"); ret = -ENOMEM; goto err; } ddev->mode_config.allow_fb_modifiers = true; ret = ltdc_crtc_init(ddev, crtc); if (ret) { DRM_ERROR("Failed to init crtc\n"); goto err; } ret = drm_vblank_init(ddev, NB_CRTC); if (ret) { DRM_ERROR("Failed calling drm_vblank_init()\n"); goto err; } /* Allow usage of vblank without having to call drm_irq_install */ ddev->irq_enabled = 1; clk_disable_unprepare(ldev->pixel_clk); pinctrl_pm_select_sleep_state(ddev->dev); pm_runtime_enable(ddev->dev); return 0; err: for (i = 0; i < MAX_ENDPOINTS; i++) drm_panel_bridge_remove(bridge[i]); clk_disable_unprepare(ldev->pixel_clk); return ret; } void ltdc_unload(struct drm_device *ddev) { int i; DRM_DEBUG_DRIVER("\n"); for (i = 0; i < MAX_ENDPOINTS; i++) drm_of_panel_bridge_remove(ddev->dev->of_node, 0, i); pm_runtime_disable(ddev->dev); } MODULE_AUTHOR("Philippe Cornu <philippe.cornu@st.com>"); MODULE_AUTHOR("Yannick Fertre <yannick.fertre@st.com>"); MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>"); MODULE_AUTHOR("Mickael Reulier <mickael.reulier@st.com>"); MODULE_DESCRIPTION("STMicroelectronics ST DRM LTDC driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1