Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Darrick J. Wong | 9226 | 93.53% | 2 | 10.00% |
Guenter Roeck | 399 | 4.05% | 6 | 30.00% |
Axel Lin | 204 | 2.07% | 3 | 15.00% |
Frans Meulenbroeks | 14 | 0.14% | 1 | 5.00% |
Jean Delvare | 7 | 0.07% | 1 | 5.00% |
Gustavo A. R. Silva | 4 | 0.04% | 1 | 5.00% |
Dan Carpenter | 3 | 0.03% | 2 | 10.00% |
Tejun Heo | 3 | 0.03% | 1 | 5.00% |
Thomas Gleixner | 2 | 0.02% | 1 | 5.00% |
Roger Blofeld | 1 | 0.01% | 1 | 5.00% |
Ray Copeland | 1 | 0.01% | 1 | 5.00% |
Total | 9864 | 20 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * A hwmon driver for the Analog Devices ADT7462 * Copyright (C) 2008 IBM * * Author: Darrick J. Wong <darrick.wong@oracle.com> */ #include <linux/module.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/log2.h> #include <linux/slab.h> /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x58, 0x5C, I2C_CLIENT_END }; /* ADT7462 registers */ #define ADT7462_REG_DEVICE 0x3D #define ADT7462_REG_VENDOR 0x3E #define ADT7462_REG_REVISION 0x3F #define ADT7462_REG_MIN_TEMP_BASE_ADDR 0x44 #define ADT7462_REG_MIN_TEMP_MAX_ADDR 0x47 #define ADT7462_REG_MAX_TEMP_BASE_ADDR 0x48 #define ADT7462_REG_MAX_TEMP_MAX_ADDR 0x4B #define ADT7462_REG_TEMP_BASE_ADDR 0x88 #define ADT7462_REG_TEMP_MAX_ADDR 0x8F #define ADT7462_REG_FAN_BASE_ADDR 0x98 #define ADT7462_REG_FAN_MAX_ADDR 0x9F #define ADT7462_REG_FAN2_BASE_ADDR 0xA2 #define ADT7462_REG_FAN2_MAX_ADDR 0xA9 #define ADT7462_REG_FAN_ENABLE 0x07 #define ADT7462_REG_FAN_MIN_BASE_ADDR 0x78 #define ADT7462_REG_FAN_MIN_MAX_ADDR 0x7F #define ADT7462_REG_CFG2 0x02 #define ADT7462_FSPD_MASK 0x20 #define ADT7462_REG_PWM_BASE_ADDR 0xAA #define ADT7462_REG_PWM_MAX_ADDR 0xAD #define ADT7462_REG_PWM_MIN_BASE_ADDR 0x28 #define ADT7462_REG_PWM_MIN_MAX_ADDR 0x2B #define ADT7462_REG_PWM_MAX 0x2C #define ADT7462_REG_PWM_TEMP_MIN_BASE_ADDR 0x5C #define ADT7462_REG_PWM_TEMP_MIN_MAX_ADDR 0x5F #define ADT7462_REG_PWM_TEMP_RANGE_BASE_ADDR 0x60 #define ADT7462_REG_PWM_TEMP_RANGE_MAX_ADDR 0x63 #define ADT7462_PWM_HYST_MASK 0x0F #define ADT7462_PWM_RANGE_MASK 0xF0 #define ADT7462_PWM_RANGE_SHIFT 4 #define ADT7462_REG_PWM_CFG_BASE_ADDR 0x21 #define ADT7462_REG_PWM_CFG_MAX_ADDR 0x24 #define ADT7462_PWM_CHANNEL_MASK 0xE0 #define ADT7462_PWM_CHANNEL_SHIFT 5 #define ADT7462_REG_PIN_CFG_BASE_ADDR 0x10 #define ADT7462_REG_PIN_CFG_MAX_ADDR 0x13 #define ADT7462_PIN7_INPUT 0x01 /* cfg0 */ #define ADT7462_DIODE3_INPUT 0x20 #define ADT7462_DIODE1_INPUT 0x40 #define ADT7462_VID_INPUT 0x80 #define ADT7462_PIN22_INPUT 0x04 /* cfg1 */ #define ADT7462_PIN21_INPUT 0x08 #define ADT7462_PIN19_INPUT 0x10 #define ADT7462_PIN15_INPUT 0x20 #define ADT7462_PIN13_INPUT 0x40 #define ADT7462_PIN8_INPUT 0x80 #define ADT7462_PIN23_MASK 0x03 #define ADT7462_PIN23_SHIFT 0 #define ADT7462_PIN26_MASK 0x0C /* cfg2 */ #define ADT7462_PIN26_SHIFT 2 #define ADT7462_PIN25_MASK 0x30 #define ADT7462_PIN25_SHIFT 4 #define ADT7462_PIN24_MASK 0xC0 #define ADT7462_PIN24_SHIFT 6 #define ADT7462_PIN26_VOLT_INPUT 0x08 #define ADT7462_PIN25_VOLT_INPUT 0x20 #define ADT7462_PIN28_SHIFT 4 /* cfg3 */ #define ADT7462_PIN28_VOLT 0x5 #define ADT7462_REG_ALARM1 0xB8 #define ADT7462_LT_ALARM 0x02 #define ADT7462_R1T_ALARM 0x04 #define ADT7462_R2T_ALARM 0x08 #define ADT7462_R3T_ALARM 0x10 #define ADT7462_REG_ALARM2 0xBB #define ADT7462_V0_ALARM 0x01 #define ADT7462_V1_ALARM 0x02 #define ADT7462_V2_ALARM 0x04 #define ADT7462_V3_ALARM 0x08 #define ADT7462_V4_ALARM 0x10 #define ADT7462_V5_ALARM 0x20 #define ADT7462_V6_ALARM 0x40 #define ADT7462_V7_ALARM 0x80 #define ADT7462_REG_ALARM3 0xBC #define ADT7462_V8_ALARM 0x08 #define ADT7462_V9_ALARM 0x10 #define ADT7462_V10_ALARM 0x20 #define ADT7462_V11_ALARM 0x40 #define ADT7462_V12_ALARM 0x80 #define ADT7462_REG_ALARM4 0xBD #define ADT7462_F0_ALARM 0x01 #define ADT7462_F1_ALARM 0x02 #define ADT7462_F2_ALARM 0x04 #define ADT7462_F3_ALARM 0x08 #define ADT7462_F4_ALARM 0x10 #define ADT7462_F5_ALARM 0x20 #define ADT7462_F6_ALARM 0x40 #define ADT7462_F7_ALARM 0x80 #define ADT7462_ALARM1 0x0000 #define ADT7462_ALARM2 0x0100 #define ADT7462_ALARM3 0x0200 #define ADT7462_ALARM4 0x0300 #define ADT7462_ALARM_REG_SHIFT 8 #define ADT7462_ALARM_FLAG_MASK 0x0F #define ADT7462_TEMP_COUNT 4 #define ADT7462_TEMP_REG(x) (ADT7462_REG_TEMP_BASE_ADDR + ((x) * 2)) #define ADT7462_TEMP_MIN_REG(x) (ADT7462_REG_MIN_TEMP_BASE_ADDR + (x)) #define ADT7462_TEMP_MAX_REG(x) (ADT7462_REG_MAX_TEMP_BASE_ADDR + (x)) #define TEMP_FRAC_OFFSET 6 #define ADT7462_FAN_COUNT 8 #define ADT7462_REG_FAN_MIN(x) (ADT7462_REG_FAN_MIN_BASE_ADDR + (x)) #define ADT7462_PWM_COUNT 4 #define ADT7462_REG_PWM(x) (ADT7462_REG_PWM_BASE_ADDR + (x)) #define ADT7462_REG_PWM_MIN(x) (ADT7462_REG_PWM_MIN_BASE_ADDR + (x)) #define ADT7462_REG_PWM_TMIN(x) \ (ADT7462_REG_PWM_TEMP_MIN_BASE_ADDR + (x)) #define ADT7462_REG_PWM_TRANGE(x) \ (ADT7462_REG_PWM_TEMP_RANGE_BASE_ADDR + (x)) #define ADT7462_PIN_CFG_REG_COUNT 4 #define ADT7462_REG_PIN_CFG(x) (ADT7462_REG_PIN_CFG_BASE_ADDR + (x)) #define ADT7462_REG_PWM_CFG(x) (ADT7462_REG_PWM_CFG_BASE_ADDR + (x)) #define ADT7462_ALARM_REG_COUNT 4 /* * The chip can measure 13 different voltage sources: * * 1. +12V1 (pin 7) * 2. Vccp1/+2.5V/+1.8V/+1.5V (pin 23) * 3. +12V3 (pin 22) * 4. +5V (pin 21) * 5. +1.25V/+0.9V (pin 19) * 6. +2.5V/+1.8V (pin 15) * 7. +3.3v (pin 13) * 8. +12V2 (pin 8) * 9. Vbatt/FSB_Vtt (pin 26) * A. +3.3V/+1.2V1 (pin 25) * B. Vccp2/+2.5V/+1.8V/+1.5V (pin 24) * C. +1.5V ICH (only if BOTH pin 28/29 are set to +1.5V) * D. +1.5V 3GPIO (only if BOTH pin 28/29 are set to +1.5V) * * Each of these 13 has a factor to convert raw to voltage. Even better, * the pins can be connected to other sensors (tach/gpio/hot/etc), which * makes the bookkeeping tricky. * * Some, but not all, of these voltages have low/high limits. */ #define ADT7462_VOLT_COUNT 13 #define ADT7462_VENDOR 0x41 #define ADT7462_DEVICE 0x62 /* datasheet only mentions a revision 4 */ #define ADT7462_REVISION 0x04 /* How often do we reread sensors values? (In jiffies) */ #define SENSOR_REFRESH_INTERVAL (2 * HZ) /* How often do we reread sensor limit values? (In jiffies) */ #define LIMIT_REFRESH_INTERVAL (60 * HZ) /* datasheet says to divide this number by the fan reading to get fan rpm */ #define FAN_PERIOD_TO_RPM(x) ((90000 * 60) / (x)) #define FAN_RPM_TO_PERIOD FAN_PERIOD_TO_RPM #define FAN_PERIOD_INVALID 65535 #define FAN_DATA_VALID(x) ((x) && (x) != FAN_PERIOD_INVALID) #define MASK_AND_SHIFT(value, prefix) \ (((value) & prefix##_MASK) >> prefix##_SHIFT) struct adt7462_data { struct i2c_client *client; struct mutex lock; char sensors_valid; char limits_valid; unsigned long sensors_last_updated; /* In jiffies */ unsigned long limits_last_updated; /* In jiffies */ u8 temp[ADT7462_TEMP_COUNT]; /* bits 6-7 are quarter pieces of temp */ u8 temp_frac[ADT7462_TEMP_COUNT]; u8 temp_min[ADT7462_TEMP_COUNT]; u8 temp_max[ADT7462_TEMP_COUNT]; u16 fan[ADT7462_FAN_COUNT]; u8 fan_enabled; u8 fan_min[ADT7462_FAN_COUNT]; u8 cfg2; u8 pwm[ADT7462_PWM_COUNT]; u8 pin_cfg[ADT7462_PIN_CFG_REG_COUNT]; u8 voltages[ADT7462_VOLT_COUNT]; u8 volt_max[ADT7462_VOLT_COUNT]; u8 volt_min[ADT7462_VOLT_COUNT]; u8 pwm_min[ADT7462_PWM_COUNT]; u8 pwm_tmin[ADT7462_PWM_COUNT]; u8 pwm_trange[ADT7462_PWM_COUNT]; u8 pwm_max; /* only one per chip */ u8 pwm_cfg[ADT7462_PWM_COUNT]; u8 alarms[ADT7462_ALARM_REG_COUNT]; }; /* * 16-bit registers on the ADT7462 are low-byte first. The data sheet says * that the low byte must be read before the high byte. */ static inline int adt7462_read_word_data(struct i2c_client *client, u8 reg) { u16 foo; foo = i2c_smbus_read_byte_data(client, reg); foo |= ((u16)i2c_smbus_read_byte_data(client, reg + 1) << 8); return foo; } /* For some reason these registers are not contiguous. */ static int ADT7462_REG_FAN(int fan) { if (fan < 4) return ADT7462_REG_FAN_BASE_ADDR + (2 * fan); return ADT7462_REG_FAN2_BASE_ADDR + (2 * (fan - 4)); } /* Voltage registers are scattered everywhere */ static int ADT7462_REG_VOLT_MAX(struct adt7462_data *data, int which) { switch (which) { case 0: if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT)) return 0x7C; break; case 1: return 0x69; case 2: if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT)) return 0x7F; break; case 3: if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT)) return 0x7E; break; case 4: if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT)) return 0x4B; break; case 5: if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT)) return 0x49; break; case 6: if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT)) return 0x68; break; case 7: if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT)) return 0x7D; break; case 8: if (!(data->pin_cfg[2] & ADT7462_PIN26_VOLT_INPUT)) return 0x6C; break; case 9: if (!(data->pin_cfg[2] & ADT7462_PIN25_VOLT_INPUT)) return 0x6B; break; case 10: return 0x6A; case 11: if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT == ADT7462_PIN28_VOLT && !(data->pin_cfg[0] & ADT7462_VID_INPUT)) return 0x50; break; case 12: if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT == ADT7462_PIN28_VOLT && !(data->pin_cfg[0] & ADT7462_VID_INPUT)) return 0x4C; break; } return 0; } static int ADT7462_REG_VOLT_MIN(struct adt7462_data *data, int which) { switch (which) { case 0: if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT)) return 0x6D; break; case 1: return 0x72; case 2: if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT)) return 0x6F; break; case 3: if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT)) return 0x71; break; case 4: if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT)) return 0x47; break; case 5: if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT)) return 0x45; break; case 6: if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT)) return 0x70; break; case 7: if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT)) return 0x6E; break; case 8: if (!(data->pin_cfg[2] & ADT7462_PIN26_VOLT_INPUT)) return 0x75; break; case 9: if (!(data->pin_cfg[2] & ADT7462_PIN25_VOLT_INPUT)) return 0x74; break; case 10: return 0x73; case 11: if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT == ADT7462_PIN28_VOLT && !(data->pin_cfg[0] & ADT7462_VID_INPUT)) return 0x76; break; case 12: if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT == ADT7462_PIN28_VOLT && !(data->pin_cfg[0] & ADT7462_VID_INPUT)) return 0x77; break; } return 0; } static int ADT7462_REG_VOLT(struct adt7462_data *data, int which) { switch (which) { case 0: if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT)) return 0xA3; break; case 1: return 0x90; case 2: if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT)) return 0xA9; break; case 3: if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT)) return 0xA7; break; case 4: if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT)) return 0x8F; break; case 5: if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT)) return 0x8B; break; case 6: if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT)) return 0x96; break; case 7: if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT)) return 0xA5; break; case 8: if (!(data->pin_cfg[2] & ADT7462_PIN26_VOLT_INPUT)) return 0x93; break; case 9: if (!(data->pin_cfg[2] & ADT7462_PIN25_VOLT_INPUT)) return 0x92; break; case 10: return 0x91; case 11: if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT == ADT7462_PIN28_VOLT && !(data->pin_cfg[0] & ADT7462_VID_INPUT)) return 0x94; break; case 12: if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT == ADT7462_PIN28_VOLT && !(data->pin_cfg[0] & ADT7462_VID_INPUT)) return 0x95; break; } return 0; } /* Provide labels for sysfs */ static const char *voltage_label(struct adt7462_data *data, int which) { switch (which) { case 0: if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT)) return "+12V1"; break; case 1: switch (MASK_AND_SHIFT(data->pin_cfg[1], ADT7462_PIN23)) { case 0: return "Vccp1"; case 1: return "+2.5V"; case 2: return "+1.8V"; case 3: return "+1.5V"; } /* fall through */ case 2: if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT)) return "+12V3"; break; case 3: if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT)) return "+5V"; break; case 4: if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT)) { if (data->pin_cfg[1] & ADT7462_PIN19_INPUT) return "+0.9V"; return "+1.25V"; } break; case 5: if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT)) { if (data->pin_cfg[1] & ADT7462_PIN19_INPUT) return "+1.8V"; return "+2.5V"; } break; case 6: if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT)) return "+3.3V"; break; case 7: if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT)) return "+12V2"; break; case 8: switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN26)) { case 0: return "Vbatt"; case 1: return "FSB_Vtt"; } break; case 9: switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN25)) { case 0: return "+3.3V"; case 1: return "+1.2V1"; } break; case 10: switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN24)) { case 0: return "Vccp2"; case 1: return "+2.5V"; case 2: return "+1.8V"; case 3: return "+1.5"; } /* fall through */ case 11: if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT == ADT7462_PIN28_VOLT && !(data->pin_cfg[0] & ADT7462_VID_INPUT)) return "+1.5V ICH"; break; case 12: if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT == ADT7462_PIN28_VOLT && !(data->pin_cfg[0] & ADT7462_VID_INPUT)) return "+1.5V 3GPIO"; break; } return "N/A"; } /* Multipliers are actually in uV, not mV. */ static int voltage_multiplier(struct adt7462_data *data, int which) { switch (which) { case 0: if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT)) return 62500; break; case 1: switch (MASK_AND_SHIFT(data->pin_cfg[1], ADT7462_PIN23)) { case 0: if (data->pin_cfg[0] & ADT7462_VID_INPUT) return 12500; return 6250; case 1: return 13000; case 2: return 9400; case 3: return 7800; } /* fall through */ case 2: if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT)) return 62500; break; case 3: if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT)) return 26000; break; case 4: if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT)) { if (data->pin_cfg[1] & ADT7462_PIN19_INPUT) return 4690; return 6500; } break; case 5: if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT)) { if (data->pin_cfg[1] & ADT7462_PIN15_INPUT) return 9400; return 13000; } break; case 6: if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT)) return 17200; break; case 7: if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT)) return 62500; break; case 8: switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN26)) { case 0: return 15600; case 1: return 6250; } break; case 9: switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN25)) { case 0: return 17200; case 1: return 6250; } break; case 10: switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN24)) { case 0: return 6250; case 1: return 13000; case 2: return 9400; case 3: return 7800; } /* fall through */ case 11: case 12: if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT == ADT7462_PIN28_VOLT && !(data->pin_cfg[0] & ADT7462_VID_INPUT)) return 7800; } return 0; } static int temp_enabled(struct adt7462_data *data, int which) { switch (which) { case 0: case 2: return 1; case 1: if (data->pin_cfg[0] & ADT7462_DIODE1_INPUT) return 1; break; case 3: if (data->pin_cfg[0] & ADT7462_DIODE3_INPUT) return 1; break; } return 0; } static const char *temp_label(struct adt7462_data *data, int which) { switch (which) { case 0: return "local"; case 1: if (data->pin_cfg[0] & ADT7462_DIODE1_INPUT) return "remote1"; break; case 2: return "remote2"; case 3: if (data->pin_cfg[0] & ADT7462_DIODE3_INPUT) return "remote3"; break; } return "N/A"; } /* Map Trange register values to mC */ #define NUM_TRANGE_VALUES 16 static const int trange_values[NUM_TRANGE_VALUES] = { 2000, 2500, 3300, 4000, 5000, 6700, 8000, 10000, 13300, 16000, 20000, 26700, 32000, 40000, 53300, 80000 }; static int find_trange_value(int trange) { int i; for (i = 0; i < NUM_TRANGE_VALUES; i++) if (trange_values[i] == trange) return i; return -EINVAL; } static struct adt7462_data *adt7462_update_device(struct device *dev) { struct adt7462_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long local_jiffies = jiffies; int i; mutex_lock(&data->lock); if (time_before(local_jiffies, data->sensors_last_updated + SENSOR_REFRESH_INTERVAL) && data->sensors_valid) goto no_sensor_update; for (i = 0; i < ADT7462_TEMP_COUNT; i++) { /* * Reading the fractional register locks the integral * register until both have been read. */ data->temp_frac[i] = i2c_smbus_read_byte_data(client, ADT7462_TEMP_REG(i)); data->temp[i] = i2c_smbus_read_byte_data(client, ADT7462_TEMP_REG(i) + 1); } for (i = 0; i < ADT7462_FAN_COUNT; i++) data->fan[i] = adt7462_read_word_data(client, ADT7462_REG_FAN(i)); data->fan_enabled = i2c_smbus_read_byte_data(client, ADT7462_REG_FAN_ENABLE); for (i = 0; i < ADT7462_PWM_COUNT; i++) data->pwm[i] = i2c_smbus_read_byte_data(client, ADT7462_REG_PWM(i)); for (i = 0; i < ADT7462_PIN_CFG_REG_COUNT; i++) data->pin_cfg[i] = i2c_smbus_read_byte_data(client, ADT7462_REG_PIN_CFG(i)); for (i = 0; i < ADT7462_VOLT_COUNT; i++) { int reg = ADT7462_REG_VOLT(data, i); if (!reg) data->voltages[i] = 0; else data->voltages[i] = i2c_smbus_read_byte_data(client, reg); } data->alarms[0] = i2c_smbus_read_byte_data(client, ADT7462_REG_ALARM1); data->alarms[1] = i2c_smbus_read_byte_data(client, ADT7462_REG_ALARM2); data->alarms[2] = i2c_smbus_read_byte_data(client, ADT7462_REG_ALARM3); data->alarms[3] = i2c_smbus_read_byte_data(client, ADT7462_REG_ALARM4); data->sensors_last_updated = local_jiffies; data->sensors_valid = 1; no_sensor_update: if (time_before(local_jiffies, data->limits_last_updated + LIMIT_REFRESH_INTERVAL) && data->limits_valid) goto out; for (i = 0; i < ADT7462_TEMP_COUNT; i++) { data->temp_min[i] = i2c_smbus_read_byte_data(client, ADT7462_TEMP_MIN_REG(i)); data->temp_max[i] = i2c_smbus_read_byte_data(client, ADT7462_TEMP_MAX_REG(i)); } for (i = 0; i < ADT7462_FAN_COUNT; i++) data->fan_min[i] = i2c_smbus_read_byte_data(client, ADT7462_REG_FAN_MIN(i)); for (i = 0; i < ADT7462_VOLT_COUNT; i++) { int reg = ADT7462_REG_VOLT_MAX(data, i); data->volt_max[i] = (reg ? i2c_smbus_read_byte_data(client, reg) : 0); reg = ADT7462_REG_VOLT_MIN(data, i); data->volt_min[i] = (reg ? i2c_smbus_read_byte_data(client, reg) : 0); } for (i = 0; i < ADT7462_PWM_COUNT; i++) { data->pwm_min[i] = i2c_smbus_read_byte_data(client, ADT7462_REG_PWM_MIN(i)); data->pwm_tmin[i] = i2c_smbus_read_byte_data(client, ADT7462_REG_PWM_TMIN(i)); data->pwm_trange[i] = i2c_smbus_read_byte_data(client, ADT7462_REG_PWM_TRANGE(i)); data->pwm_cfg[i] = i2c_smbus_read_byte_data(client, ADT7462_REG_PWM_CFG(i)); } data->pwm_max = i2c_smbus_read_byte_data(client, ADT7462_REG_PWM_MAX); data->cfg2 = i2c_smbus_read_byte_data(client, ADT7462_REG_CFG2); data->limits_last_updated = local_jiffies; data->limits_valid = 1; out: mutex_unlock(&data->lock); return data; } static ssize_t temp_min_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); if (!temp_enabled(data, attr->index)) return sprintf(buf, "0\n"); return sprintf(buf, "%d\n", 1000 * (data->temp_min[attr->index] - 64)); } static ssize_t temp_min_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long temp; if (kstrtol(buf, 10, &temp) || !temp_enabled(data, attr->index)) return -EINVAL; temp = clamp_val(temp, -64000, 191000); temp = DIV_ROUND_CLOSEST(temp, 1000) + 64; mutex_lock(&data->lock); data->temp_min[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7462_TEMP_MIN_REG(attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t temp_max_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); if (!temp_enabled(data, attr->index)) return sprintf(buf, "0\n"); return sprintf(buf, "%d\n", 1000 * (data->temp_max[attr->index] - 64)); } static ssize_t temp_max_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long temp; if (kstrtol(buf, 10, &temp) || !temp_enabled(data, attr->index)) return -EINVAL; temp = clamp_val(temp, -64000, 191000); temp = DIV_ROUND_CLOSEST(temp, 1000) + 64; mutex_lock(&data->lock); data->temp_max[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7462_TEMP_MAX_REG(attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t temp_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); u8 frac = data->temp_frac[attr->index] >> TEMP_FRAC_OFFSET; if (!temp_enabled(data, attr->index)) return sprintf(buf, "0\n"); return sprintf(buf, "%d\n", 1000 * (data->temp[attr->index] - 64) + 250 * frac); } static ssize_t temp_label_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); return sprintf(buf, "%s\n", temp_label(data, attr->index)); } static ssize_t volt_max_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); int x = voltage_multiplier(data, attr->index); x *= data->volt_max[attr->index]; x /= 1000; /* convert from uV to mV */ return sprintf(buf, "%d\n", x); } static ssize_t volt_max_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int x = voltage_multiplier(data, attr->index); long temp; if (kstrtol(buf, 10, &temp) || !x) return -EINVAL; temp = clamp_val(temp, 0, 255 * x / 1000); temp *= 1000; /* convert mV to uV */ temp = DIV_ROUND_CLOSEST(temp, x); mutex_lock(&data->lock); data->volt_max[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7462_REG_VOLT_MAX(data, attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t volt_min_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); int x = voltage_multiplier(data, attr->index); x *= data->volt_min[attr->index]; x /= 1000; /* convert from uV to mV */ return sprintf(buf, "%d\n", x); } static ssize_t volt_min_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int x = voltage_multiplier(data, attr->index); long temp; if (kstrtol(buf, 10, &temp) || !x) return -EINVAL; temp = clamp_val(temp, 0, 255 * x / 1000); temp *= 1000; /* convert mV to uV */ temp = DIV_ROUND_CLOSEST(temp, x); mutex_lock(&data->lock); data->volt_min[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7462_REG_VOLT_MIN(data, attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t voltage_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); int x = voltage_multiplier(data, attr->index); x *= data->voltages[attr->index]; x /= 1000; /* convert from uV to mV */ return sprintf(buf, "%d\n", x); } static ssize_t voltage_label_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); return sprintf(buf, "%s\n", voltage_label(data, attr->index)); } static ssize_t alarm_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); int reg = attr->index >> ADT7462_ALARM_REG_SHIFT; int mask = attr->index & ADT7462_ALARM_FLAG_MASK; if (data->alarms[reg] & mask) return sprintf(buf, "1\n"); else return sprintf(buf, "0\n"); } static int fan_enabled(struct adt7462_data *data, int fan) { return data->fan_enabled & (1 << fan); } static ssize_t fan_min_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); u16 temp; /* Only the MSB of the min fan period is stored... */ temp = data->fan_min[attr->index]; temp <<= 8; if (!fan_enabled(data, attr->index) || !FAN_DATA_VALID(temp)) return sprintf(buf, "0\n"); return sprintf(buf, "%d\n", FAN_PERIOD_TO_RPM(temp)); } static ssize_t fan_min_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long temp; if (kstrtol(buf, 10, &temp) || !temp || !fan_enabled(data, attr->index)) return -EINVAL; temp = FAN_RPM_TO_PERIOD(temp); temp >>= 8; temp = clamp_val(temp, 1, 255); mutex_lock(&data->lock); data->fan_min[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7462_REG_FAN_MIN(attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t fan_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); if (!fan_enabled(data, attr->index) || !FAN_DATA_VALID(data->fan[attr->index])) return sprintf(buf, "0\n"); return sprintf(buf, "%d\n", FAN_PERIOD_TO_RPM(data->fan[attr->index])); } static ssize_t force_pwm_max_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct adt7462_data *data = adt7462_update_device(dev); return sprintf(buf, "%d\n", (data->cfg2 & ADT7462_FSPD_MASK ? 1 : 0)); } static ssize_t force_pwm_max_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct adt7462_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long temp; u8 reg; if (kstrtol(buf, 10, &temp)) return -EINVAL; mutex_lock(&data->lock); reg = i2c_smbus_read_byte_data(client, ADT7462_REG_CFG2); if (temp) reg |= ADT7462_FSPD_MASK; else reg &= ~ADT7462_FSPD_MASK; data->cfg2 = reg; i2c_smbus_write_byte_data(client, ADT7462_REG_CFG2, reg); mutex_unlock(&data->lock); return count; } static ssize_t pwm_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); return sprintf(buf, "%d\n", data->pwm[attr->index]); } static ssize_t pwm_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long temp; if (kstrtol(buf, 10, &temp)) return -EINVAL; temp = clamp_val(temp, 0, 255); mutex_lock(&data->lock); data->pwm[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7462_REG_PWM(attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t pwm_max_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct adt7462_data *data = adt7462_update_device(dev); return sprintf(buf, "%d\n", data->pwm_max); } static ssize_t pwm_max_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct adt7462_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long temp; if (kstrtol(buf, 10, &temp)) return -EINVAL; temp = clamp_val(temp, 0, 255); mutex_lock(&data->lock); data->pwm_max = temp; i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_MAX, temp); mutex_unlock(&data->lock); return count; } static ssize_t pwm_min_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); return sprintf(buf, "%d\n", data->pwm_min[attr->index]); } static ssize_t pwm_min_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long temp; if (kstrtol(buf, 10, &temp)) return -EINVAL; temp = clamp_val(temp, 0, 255); mutex_lock(&data->lock); data->pwm_min[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_MIN(attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t pwm_hyst_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); return sprintf(buf, "%d\n", 1000 * (data->pwm_trange[attr->index] & ADT7462_PWM_HYST_MASK)); } static ssize_t pwm_hyst_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long temp; if (kstrtol(buf, 10, &temp)) return -EINVAL; temp = clamp_val(temp, 0, 15000); temp = DIV_ROUND_CLOSEST(temp, 1000); /* package things up */ temp &= ADT7462_PWM_HYST_MASK; temp |= data->pwm_trange[attr->index] & ADT7462_PWM_RANGE_MASK; mutex_lock(&data->lock); data->pwm_trange[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_TRANGE(attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t pwm_tmax_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); /* tmax = tmin + trange */ int trange = trange_values[data->pwm_trange[attr->index] >> ADT7462_PWM_RANGE_SHIFT]; int tmin = (data->pwm_tmin[attr->index] - 64) * 1000; return sprintf(buf, "%d\n", tmin + trange); } static ssize_t pwm_tmax_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { int temp; struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int tmin, trange_value; long trange; if (kstrtol(buf, 10, &trange)) return -EINVAL; /* trange = tmax - tmin */ tmin = (data->pwm_tmin[attr->index] - 64) * 1000; trange_value = find_trange_value(trange - tmin); if (trange_value < 0) return trange_value; temp = trange_value << ADT7462_PWM_RANGE_SHIFT; temp |= data->pwm_trange[attr->index] & ADT7462_PWM_HYST_MASK; mutex_lock(&data->lock); data->pwm_trange[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_TRANGE(attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t pwm_tmin_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); return sprintf(buf, "%d\n", 1000 * (data->pwm_tmin[attr->index] - 64)); } static ssize_t pwm_tmin_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long temp; if (kstrtol(buf, 10, &temp)) return -EINVAL; temp = clamp_val(temp, -64000, 191000); temp = DIV_ROUND_CLOSEST(temp, 1000) + 64; mutex_lock(&data->lock); data->pwm_tmin[attr->index] = temp; i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_TMIN(attr->index), temp); mutex_unlock(&data->lock); return count; } static ssize_t pwm_auto_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); int cfg = data->pwm_cfg[attr->index] >> ADT7462_PWM_CHANNEL_SHIFT; switch (cfg) { case 4: /* off */ return sprintf(buf, "0\n"); case 7: /* manual */ return sprintf(buf, "1\n"); default: /* automatic */ return sprintf(buf, "2\n"); } } static void set_pwm_channel(struct i2c_client *client, struct adt7462_data *data, int which, int value) { int temp = data->pwm_cfg[which] & ~ADT7462_PWM_CHANNEL_MASK; temp |= value << ADT7462_PWM_CHANNEL_SHIFT; mutex_lock(&data->lock); data->pwm_cfg[which] = temp; i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_CFG(which), temp); mutex_unlock(&data->lock); } static ssize_t pwm_auto_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long temp; if (kstrtol(buf, 10, &temp)) return -EINVAL; switch (temp) { case 0: /* off */ set_pwm_channel(client, data, attr->index, 4); return count; case 1: /* manual */ set_pwm_channel(client, data, attr->index, 7); return count; default: return -EINVAL; } } static ssize_t pwm_auto_temp_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = adt7462_update_device(dev); int channel = data->pwm_cfg[attr->index] >> ADT7462_PWM_CHANNEL_SHIFT; switch (channel) { case 0: /* temp[1234] only */ case 1: case 2: case 3: return sprintf(buf, "%d\n", (1 << channel)); case 5: /* temp1 & temp4 */ return sprintf(buf, "9\n"); case 6: return sprintf(buf, "15\n"); default: return sprintf(buf, "0\n"); } } static int cvt_auto_temp(int input) { if (input == 0xF) return 6; if (input == 0x9) return 5; if (input < 1 || !is_power_of_2(input)) return -EINVAL; return ilog2(input); } static ssize_t pwm_auto_temp_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct adt7462_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long temp; if (kstrtol(buf, 10, &temp)) return -EINVAL; temp = cvt_auto_temp(temp); if (temp < 0) return temp; set_pwm_channel(client, data, attr->index, temp); return count; } static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0); static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1); static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2); static SENSOR_DEVICE_ATTR_RW(temp4_max, temp_max, 3); static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0); static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1); static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2); static SENSOR_DEVICE_ATTR_RW(temp4_min, temp_min, 3); static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0); static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1); static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2); static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 3); static SENSOR_DEVICE_ATTR_RO(temp1_label, temp_label, 0); static SENSOR_DEVICE_ATTR_RO(temp2_label, temp_label, 1); static SENSOR_DEVICE_ATTR_RO(temp3_label, temp_label, 2); static SENSOR_DEVICE_ATTR_RO(temp4_label, temp_label, 3); static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, ADT7462_ALARM1 | ADT7462_LT_ALARM); static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, ADT7462_ALARM1 | ADT7462_R1T_ALARM); static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, ADT7462_ALARM1 | ADT7462_R2T_ALARM); static SENSOR_DEVICE_ATTR_RO(temp4_alarm, alarm, ADT7462_ALARM1 | ADT7462_R3T_ALARM); static SENSOR_DEVICE_ATTR_RW(in1_max, volt_max, 0); static SENSOR_DEVICE_ATTR_RW(in2_max, volt_max, 1); static SENSOR_DEVICE_ATTR_RW(in3_max, volt_max, 2); static SENSOR_DEVICE_ATTR_RW(in4_max, volt_max, 3); static SENSOR_DEVICE_ATTR_RW(in5_max, volt_max, 4); static SENSOR_DEVICE_ATTR_RW(in6_max, volt_max, 5); static SENSOR_DEVICE_ATTR_RW(in7_max, volt_max, 6); static SENSOR_DEVICE_ATTR_RW(in8_max, volt_max, 7); static SENSOR_DEVICE_ATTR_RW(in9_max, volt_max, 8); static SENSOR_DEVICE_ATTR_RW(in10_max, volt_max, 9); static SENSOR_DEVICE_ATTR_RW(in11_max, volt_max, 10); static SENSOR_DEVICE_ATTR_RW(in12_max, volt_max, 11); static SENSOR_DEVICE_ATTR_RW(in13_max, volt_max, 12); static SENSOR_DEVICE_ATTR_RW(in1_min, volt_min, 0); static SENSOR_DEVICE_ATTR_RW(in2_min, volt_min, 1); static SENSOR_DEVICE_ATTR_RW(in3_min, volt_min, 2); static SENSOR_DEVICE_ATTR_RW(in4_min, volt_min, 3); static SENSOR_DEVICE_ATTR_RW(in5_min, volt_min, 4); static SENSOR_DEVICE_ATTR_RW(in6_min, volt_min, 5); static SENSOR_DEVICE_ATTR_RW(in7_min, volt_min, 6); static SENSOR_DEVICE_ATTR_RW(in8_min, volt_min, 7); static SENSOR_DEVICE_ATTR_RW(in9_min, volt_min, 8); static SENSOR_DEVICE_ATTR_RW(in10_min, volt_min, 9); static SENSOR_DEVICE_ATTR_RW(in11_min, volt_min, 10); static SENSOR_DEVICE_ATTR_RW(in12_min, volt_min, 11); static SENSOR_DEVICE_ATTR_RW(in13_min, volt_min, 12); static SENSOR_DEVICE_ATTR_RO(in1_input, voltage, 0); static SENSOR_DEVICE_ATTR_RO(in2_input, voltage, 1); static SENSOR_DEVICE_ATTR_RO(in3_input, voltage, 2); static SENSOR_DEVICE_ATTR_RO(in4_input, voltage, 3); static SENSOR_DEVICE_ATTR_RO(in5_input, voltage, 4); static SENSOR_DEVICE_ATTR_RO(in6_input, voltage, 5); static SENSOR_DEVICE_ATTR_RO(in7_input, voltage, 6); static SENSOR_DEVICE_ATTR_RO(in8_input, voltage, 7); static SENSOR_DEVICE_ATTR_RO(in9_input, voltage, 8); static SENSOR_DEVICE_ATTR_RO(in10_input, voltage, 9); static SENSOR_DEVICE_ATTR_RO(in11_input, voltage, 10); static SENSOR_DEVICE_ATTR_RO(in12_input, voltage, 11); static SENSOR_DEVICE_ATTR_RO(in13_input, voltage, 12); static SENSOR_DEVICE_ATTR_RO(in1_label, voltage_label, 0); static SENSOR_DEVICE_ATTR_RO(in2_label, voltage_label, 1); static SENSOR_DEVICE_ATTR_RO(in3_label, voltage_label, 2); static SENSOR_DEVICE_ATTR_RO(in4_label, voltage_label, 3); static SENSOR_DEVICE_ATTR_RO(in5_label, voltage_label, 4); static SENSOR_DEVICE_ATTR_RO(in6_label, voltage_label, 5); static SENSOR_DEVICE_ATTR_RO(in7_label, voltage_label, 6); static SENSOR_DEVICE_ATTR_RO(in8_label, voltage_label, 7); static SENSOR_DEVICE_ATTR_RO(in9_label, voltage_label, 8); static SENSOR_DEVICE_ATTR_RO(in10_label, voltage_label, 9); static SENSOR_DEVICE_ATTR_RO(in11_label, voltage_label, 10); static SENSOR_DEVICE_ATTR_RO(in12_label, voltage_label, 11); static SENSOR_DEVICE_ATTR_RO(in13_label, voltage_label, 12); static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, ADT7462_ALARM2 | ADT7462_V0_ALARM); static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, ADT7462_ALARM2 | ADT7462_V7_ALARM); static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, ADT7462_ALARM2 | ADT7462_V2_ALARM); static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, ADT7462_ALARM2 | ADT7462_V6_ALARM); static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, ADT7462_ALARM2 | ADT7462_V5_ALARM); static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, ADT7462_ALARM2 | ADT7462_V4_ALARM); static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, ADT7462_ALARM2 | ADT7462_V3_ALARM); static SENSOR_DEVICE_ATTR_RO(in8_alarm, alarm, ADT7462_ALARM2 | ADT7462_V1_ALARM); static SENSOR_DEVICE_ATTR_RO(in9_alarm, alarm, ADT7462_ALARM3 | ADT7462_V10_ALARM); static SENSOR_DEVICE_ATTR_RO(in10_alarm, alarm, ADT7462_ALARM3 | ADT7462_V9_ALARM); static SENSOR_DEVICE_ATTR_RO(in11_alarm, alarm, ADT7462_ALARM3 | ADT7462_V8_ALARM); static SENSOR_DEVICE_ATTR_RO(in12_alarm, alarm, ADT7462_ALARM3 | ADT7462_V11_ALARM); static SENSOR_DEVICE_ATTR_RO(in13_alarm, alarm, ADT7462_ALARM3 | ADT7462_V12_ALARM); static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0); static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1); static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2); static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3); static SENSOR_DEVICE_ATTR_RW(fan5_min, fan_min, 4); static SENSOR_DEVICE_ATTR_RW(fan6_min, fan_min, 5); static SENSOR_DEVICE_ATTR_RW(fan7_min, fan_min, 6); static SENSOR_DEVICE_ATTR_RW(fan8_min, fan_min, 7); static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0); static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1); static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2); static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3); static SENSOR_DEVICE_ATTR_RO(fan5_input, fan, 4); static SENSOR_DEVICE_ATTR_RO(fan6_input, fan, 5); static SENSOR_DEVICE_ATTR_RO(fan7_input, fan, 6); static SENSOR_DEVICE_ATTR_RO(fan8_input, fan, 7); static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, ADT7462_ALARM4 | ADT7462_F0_ALARM); static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, ADT7462_ALARM4 | ADT7462_F1_ALARM); static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, ADT7462_ALARM4 | ADT7462_F2_ALARM); static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, ADT7462_ALARM4 | ADT7462_F3_ALARM); static SENSOR_DEVICE_ATTR_RO(fan5_alarm, alarm, ADT7462_ALARM4 | ADT7462_F4_ALARM); static SENSOR_DEVICE_ATTR_RO(fan6_alarm, alarm, ADT7462_ALARM4 | ADT7462_F5_ALARM); static SENSOR_DEVICE_ATTR_RO(fan7_alarm, alarm, ADT7462_ALARM4 | ADT7462_F6_ALARM); static SENSOR_DEVICE_ATTR_RO(fan8_alarm, alarm, ADT7462_ALARM4 | ADT7462_F7_ALARM); static SENSOR_DEVICE_ATTR_RW(force_pwm_max, force_pwm_max, 0); static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0); static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1); static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2); static SENSOR_DEVICE_ATTR_RW(pwm4, pwm, 3); static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point1_pwm, pwm_min, 0); static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point1_pwm, pwm_min, 1); static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point1_pwm, pwm_min, 2); static SENSOR_DEVICE_ATTR_RW(pwm4_auto_point1_pwm, pwm_min, 3); static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point2_pwm, pwm_max, 0); static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point2_pwm, pwm_max, 1); static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point2_pwm, pwm_max, 2); static SENSOR_DEVICE_ATTR_RW(pwm4_auto_point2_pwm, pwm_max, 3); static SENSOR_DEVICE_ATTR_RW(temp1_auto_point1_hyst, pwm_hyst, 0); static SENSOR_DEVICE_ATTR_RW(temp2_auto_point1_hyst, pwm_hyst, 1); static SENSOR_DEVICE_ATTR_RW(temp3_auto_point1_hyst, pwm_hyst, 2); static SENSOR_DEVICE_ATTR_RW(temp4_auto_point1_hyst, pwm_hyst, 3); static SENSOR_DEVICE_ATTR_RW(temp1_auto_point2_hyst, pwm_hyst, 0); static SENSOR_DEVICE_ATTR_RW(temp2_auto_point2_hyst, pwm_hyst, 1); static SENSOR_DEVICE_ATTR_RW(temp3_auto_point2_hyst, pwm_hyst, 2); static SENSOR_DEVICE_ATTR_RW(temp4_auto_point2_hyst, pwm_hyst, 3); static SENSOR_DEVICE_ATTR_RW(temp1_auto_point1_temp, pwm_tmin, 0); static SENSOR_DEVICE_ATTR_RW(temp2_auto_point1_temp, pwm_tmin, 1); static SENSOR_DEVICE_ATTR_RW(temp3_auto_point1_temp, pwm_tmin, 2); static SENSOR_DEVICE_ATTR_RW(temp4_auto_point1_temp, pwm_tmin, 3); static SENSOR_DEVICE_ATTR_RW(temp1_auto_point2_temp, pwm_tmax, 0); static SENSOR_DEVICE_ATTR_RW(temp2_auto_point2_temp, pwm_tmax, 1); static SENSOR_DEVICE_ATTR_RW(temp3_auto_point2_temp, pwm_tmax, 2); static SENSOR_DEVICE_ATTR_RW(temp4_auto_point2_temp, pwm_tmax, 3); static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_auto, 0); static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_auto, 1); static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_auto, 2); static SENSOR_DEVICE_ATTR_RW(pwm4_enable, pwm_auto, 3); static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels_temp, pwm_auto_temp, 0); static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels_temp, pwm_auto_temp, 1); static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels_temp, pwm_auto_temp, 2); static SENSOR_DEVICE_ATTR_RW(pwm4_auto_channels_temp, pwm_auto_temp, 3); static struct attribute *adt7462_attrs[] = { &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp4_max.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp3_min.dev_attr.attr, &sensor_dev_attr_temp4_min.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp4_input.dev_attr.attr, &sensor_dev_attr_temp1_label.dev_attr.attr, &sensor_dev_attr_temp2_label.dev_attr.attr, &sensor_dev_attr_temp3_label.dev_attr.attr, &sensor_dev_attr_temp4_label.dev_attr.attr, &sensor_dev_attr_temp1_alarm.dev_attr.attr, &sensor_dev_attr_temp2_alarm.dev_attr.attr, &sensor_dev_attr_temp3_alarm.dev_attr.attr, &sensor_dev_attr_temp4_alarm.dev_attr.attr, &sensor_dev_attr_in1_max.dev_attr.attr, &sensor_dev_attr_in2_max.dev_attr.attr, &sensor_dev_attr_in3_max.dev_attr.attr, &sensor_dev_attr_in4_max.dev_attr.attr, &sensor_dev_attr_in5_max.dev_attr.attr, &sensor_dev_attr_in6_max.dev_attr.attr, &sensor_dev_attr_in7_max.dev_attr.attr, &sensor_dev_attr_in8_max.dev_attr.attr, &sensor_dev_attr_in9_max.dev_attr.attr, &sensor_dev_attr_in10_max.dev_attr.attr, &sensor_dev_attr_in11_max.dev_attr.attr, &sensor_dev_attr_in12_max.dev_attr.attr, &sensor_dev_attr_in13_max.dev_attr.attr, &sensor_dev_attr_in1_min.dev_attr.attr, &sensor_dev_attr_in2_min.dev_attr.attr, &sensor_dev_attr_in3_min.dev_attr.attr, &sensor_dev_attr_in4_min.dev_attr.attr, &sensor_dev_attr_in5_min.dev_attr.attr, &sensor_dev_attr_in6_min.dev_attr.attr, &sensor_dev_attr_in7_min.dev_attr.attr, &sensor_dev_attr_in8_min.dev_attr.attr, &sensor_dev_attr_in9_min.dev_attr.attr, &sensor_dev_attr_in10_min.dev_attr.attr, &sensor_dev_attr_in11_min.dev_attr.attr, &sensor_dev_attr_in12_min.dev_attr.attr, &sensor_dev_attr_in13_min.dev_attr.attr, &sensor_dev_attr_in1_input.dev_attr.attr, &sensor_dev_attr_in2_input.dev_attr.attr, &sensor_dev_attr_in3_input.dev_attr.attr, &sensor_dev_attr_in4_input.dev_attr.attr, &sensor_dev_attr_in5_input.dev_attr.attr, &sensor_dev_attr_in6_input.dev_attr.attr, &sensor_dev_attr_in7_input.dev_attr.attr, &sensor_dev_attr_in8_input.dev_attr.attr, &sensor_dev_attr_in9_input.dev_attr.attr, &sensor_dev_attr_in10_input.dev_attr.attr, &sensor_dev_attr_in11_input.dev_attr.attr, &sensor_dev_attr_in12_input.dev_attr.attr, &sensor_dev_attr_in13_input.dev_attr.attr, &sensor_dev_attr_in1_label.dev_attr.attr, &sensor_dev_attr_in2_label.dev_attr.attr, &sensor_dev_attr_in3_label.dev_attr.attr, &sensor_dev_attr_in4_label.dev_attr.attr, &sensor_dev_attr_in5_label.dev_attr.attr, &sensor_dev_attr_in6_label.dev_attr.attr, &sensor_dev_attr_in7_label.dev_attr.attr, &sensor_dev_attr_in8_label.dev_attr.attr, &sensor_dev_attr_in9_label.dev_attr.attr, &sensor_dev_attr_in10_label.dev_attr.attr, &sensor_dev_attr_in11_label.dev_attr.attr, &sensor_dev_attr_in12_label.dev_attr.attr, &sensor_dev_attr_in13_label.dev_attr.attr, &sensor_dev_attr_in1_alarm.dev_attr.attr, &sensor_dev_attr_in2_alarm.dev_attr.attr, &sensor_dev_attr_in3_alarm.dev_attr.attr, &sensor_dev_attr_in4_alarm.dev_attr.attr, &sensor_dev_attr_in5_alarm.dev_attr.attr, &sensor_dev_attr_in6_alarm.dev_attr.attr, &sensor_dev_attr_in7_alarm.dev_attr.attr, &sensor_dev_attr_in8_alarm.dev_attr.attr, &sensor_dev_attr_in9_alarm.dev_attr.attr, &sensor_dev_attr_in10_alarm.dev_attr.attr, &sensor_dev_attr_in11_alarm.dev_attr.attr, &sensor_dev_attr_in12_alarm.dev_attr.attr, &sensor_dev_attr_in13_alarm.dev_attr.attr, &sensor_dev_attr_fan1_min.dev_attr.attr, &sensor_dev_attr_fan2_min.dev_attr.attr, &sensor_dev_attr_fan3_min.dev_attr.attr, &sensor_dev_attr_fan4_min.dev_attr.attr, &sensor_dev_attr_fan5_min.dev_attr.attr, &sensor_dev_attr_fan6_min.dev_attr.attr, &sensor_dev_attr_fan7_min.dev_attr.attr, &sensor_dev_attr_fan8_min.dev_attr.attr, &sensor_dev_attr_fan1_input.dev_attr.attr, &sensor_dev_attr_fan2_input.dev_attr.attr, &sensor_dev_attr_fan3_input.dev_attr.attr, &sensor_dev_attr_fan4_input.dev_attr.attr, &sensor_dev_attr_fan5_input.dev_attr.attr, &sensor_dev_attr_fan6_input.dev_attr.attr, &sensor_dev_attr_fan7_input.dev_attr.attr, &sensor_dev_attr_fan8_input.dev_attr.attr, &sensor_dev_attr_fan1_alarm.dev_attr.attr, &sensor_dev_attr_fan2_alarm.dev_attr.attr, &sensor_dev_attr_fan3_alarm.dev_attr.attr, &sensor_dev_attr_fan4_alarm.dev_attr.attr, &sensor_dev_attr_fan5_alarm.dev_attr.attr, &sensor_dev_attr_fan6_alarm.dev_attr.attr, &sensor_dev_attr_fan7_alarm.dev_attr.attr, &sensor_dev_attr_fan8_alarm.dev_attr.attr, &sensor_dev_attr_force_pwm_max.dev_attr.attr, &sensor_dev_attr_pwm1.dev_attr.attr, &sensor_dev_attr_pwm2.dev_attr.attr, &sensor_dev_attr_pwm3.dev_attr.attr, &sensor_dev_attr_pwm4.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm4_auto_point1_pwm.dev_attr.attr, &sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_pwm4_auto_point2_pwm.dev_attr.attr, &sensor_dev_attr_temp1_auto_point1_hyst.dev_attr.attr, &sensor_dev_attr_temp2_auto_point1_hyst.dev_attr.attr, &sensor_dev_attr_temp3_auto_point1_hyst.dev_attr.attr, &sensor_dev_attr_temp4_auto_point1_hyst.dev_attr.attr, &sensor_dev_attr_temp1_auto_point2_hyst.dev_attr.attr, &sensor_dev_attr_temp2_auto_point2_hyst.dev_attr.attr, &sensor_dev_attr_temp3_auto_point2_hyst.dev_attr.attr, &sensor_dev_attr_temp4_auto_point2_hyst.dev_attr.attr, &sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_temp4_auto_point1_temp.dev_attr.attr, &sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_temp4_auto_point2_temp.dev_attr.attr, &sensor_dev_attr_pwm1_enable.dev_attr.attr, &sensor_dev_attr_pwm2_enable.dev_attr.attr, &sensor_dev_attr_pwm3_enable.dev_attr.attr, &sensor_dev_attr_pwm4_enable.dev_attr.attr, &sensor_dev_attr_pwm1_auto_channels_temp.dev_attr.attr, &sensor_dev_attr_pwm2_auto_channels_temp.dev_attr.attr, &sensor_dev_attr_pwm3_auto_channels_temp.dev_attr.attr, &sensor_dev_attr_pwm4_auto_channels_temp.dev_attr.attr, NULL }; ATTRIBUTE_GROUPS(adt7462); /* Return 0 if detection is successful, -ENODEV otherwise */ static int adt7462_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; int vendor, device, revision; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; vendor = i2c_smbus_read_byte_data(client, ADT7462_REG_VENDOR); if (vendor != ADT7462_VENDOR) return -ENODEV; device = i2c_smbus_read_byte_data(client, ADT7462_REG_DEVICE); if (device != ADT7462_DEVICE) return -ENODEV; revision = i2c_smbus_read_byte_data(client, ADT7462_REG_REVISION); if (revision != ADT7462_REVISION) return -ENODEV; strlcpy(info->type, "adt7462", I2C_NAME_SIZE); return 0; } static int adt7462_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct adt7462_data *data; struct device *hwmon_dev; data = devm_kzalloc(dev, sizeof(struct adt7462_data), GFP_KERNEL); if (!data) return -ENOMEM; data->client = client; mutex_init(&data->lock); dev_info(&client->dev, "%s chip found\n", client->name); hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, data, adt7462_groups); return PTR_ERR_OR_ZERO(hwmon_dev); } static const struct i2c_device_id adt7462_id[] = { { "adt7462", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, adt7462_id); static struct i2c_driver adt7462_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "adt7462", }, .probe = adt7462_probe, .id_table = adt7462_id, .detect = adt7462_detect, .address_list = normal_i2c, }; module_i2c_driver(adt7462_driver); MODULE_AUTHOR("Darrick J. Wong <darrick.wong@oracle.com>"); MODULE_DESCRIPTION("ADT7462 driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1