Contributors: 11
Author Tokens Token Proportion Commits Commit Proportion
Darrick J. Wong 9226 93.53% 2 10.00%
Guenter Roeck 399 4.05% 6 30.00%
Axel Lin 204 2.07% 3 15.00%
Frans Meulenbroeks 14 0.14% 1 5.00%
Jean Delvare 7 0.07% 1 5.00%
Gustavo A. R. Silva 4 0.04% 1 5.00%
Dan Carpenter 3 0.03% 2 10.00%
Tejun Heo 3 0.03% 1 5.00%
Thomas Gleixner 2 0.02% 1 5.00%
Roger Blofeld 1 0.01% 1 5.00%
Ray Copeland 1 0.01% 1 5.00%
Total 9864 20


// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * A hwmon driver for the Analog Devices ADT7462
 * Copyright (C) 2008 IBM
 *
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 */

#include <linux/module.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/log2.h>
#include <linux/slab.h>

/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x58, 0x5C, I2C_CLIENT_END };

/* ADT7462 registers */
#define ADT7462_REG_DEVICE			0x3D
#define ADT7462_REG_VENDOR			0x3E
#define ADT7462_REG_REVISION			0x3F

#define ADT7462_REG_MIN_TEMP_BASE_ADDR		0x44
#define ADT7462_REG_MIN_TEMP_MAX_ADDR		0x47
#define ADT7462_REG_MAX_TEMP_BASE_ADDR		0x48
#define ADT7462_REG_MAX_TEMP_MAX_ADDR		0x4B
#define ADT7462_REG_TEMP_BASE_ADDR		0x88
#define ADT7462_REG_TEMP_MAX_ADDR		0x8F

#define ADT7462_REG_FAN_BASE_ADDR		0x98
#define ADT7462_REG_FAN_MAX_ADDR		0x9F
#define ADT7462_REG_FAN2_BASE_ADDR		0xA2
#define ADT7462_REG_FAN2_MAX_ADDR		0xA9
#define ADT7462_REG_FAN_ENABLE			0x07
#define ADT7462_REG_FAN_MIN_BASE_ADDR		0x78
#define ADT7462_REG_FAN_MIN_MAX_ADDR		0x7F

#define ADT7462_REG_CFG2			0x02
#define		ADT7462_FSPD_MASK		0x20

#define ADT7462_REG_PWM_BASE_ADDR		0xAA
#define ADT7462_REG_PWM_MAX_ADDR		0xAD
#define	ADT7462_REG_PWM_MIN_BASE_ADDR		0x28
#define ADT7462_REG_PWM_MIN_MAX_ADDR		0x2B
#define ADT7462_REG_PWM_MAX			0x2C
#define ADT7462_REG_PWM_TEMP_MIN_BASE_ADDR	0x5C
#define ADT7462_REG_PWM_TEMP_MIN_MAX_ADDR	0x5F
#define ADT7462_REG_PWM_TEMP_RANGE_BASE_ADDR	0x60
#define ADT7462_REG_PWM_TEMP_RANGE_MAX_ADDR	0x63
#define	ADT7462_PWM_HYST_MASK			0x0F
#define	ADT7462_PWM_RANGE_MASK			0xF0
#define		ADT7462_PWM_RANGE_SHIFT		4
#define ADT7462_REG_PWM_CFG_BASE_ADDR		0x21
#define ADT7462_REG_PWM_CFG_MAX_ADDR		0x24
#define		ADT7462_PWM_CHANNEL_MASK	0xE0
#define		ADT7462_PWM_CHANNEL_SHIFT	5

#define ADT7462_REG_PIN_CFG_BASE_ADDR		0x10
#define ADT7462_REG_PIN_CFG_MAX_ADDR		0x13
#define		ADT7462_PIN7_INPUT		0x01	/* cfg0 */
#define		ADT7462_DIODE3_INPUT		0x20
#define		ADT7462_DIODE1_INPUT		0x40
#define		ADT7462_VID_INPUT		0x80
#define		ADT7462_PIN22_INPUT		0x04	/* cfg1 */
#define		ADT7462_PIN21_INPUT		0x08
#define		ADT7462_PIN19_INPUT		0x10
#define		ADT7462_PIN15_INPUT		0x20
#define		ADT7462_PIN13_INPUT		0x40
#define		ADT7462_PIN8_INPUT		0x80
#define		ADT7462_PIN23_MASK		0x03
#define		ADT7462_PIN23_SHIFT		0
#define		ADT7462_PIN26_MASK		0x0C	/* cfg2 */
#define		ADT7462_PIN26_SHIFT		2
#define		ADT7462_PIN25_MASK		0x30
#define		ADT7462_PIN25_SHIFT		4
#define		ADT7462_PIN24_MASK		0xC0
#define		ADT7462_PIN24_SHIFT		6
#define		ADT7462_PIN26_VOLT_INPUT	0x08
#define		ADT7462_PIN25_VOLT_INPUT	0x20
#define		ADT7462_PIN28_SHIFT		4	/* cfg3 */
#define		ADT7462_PIN28_VOLT		0x5

#define ADT7462_REG_ALARM1			0xB8
#define	ADT7462_LT_ALARM			0x02
#define		ADT7462_R1T_ALARM		0x04
#define		ADT7462_R2T_ALARM		0x08
#define		ADT7462_R3T_ALARM		0x10
#define ADT7462_REG_ALARM2			0xBB
#define		ADT7462_V0_ALARM		0x01
#define		ADT7462_V1_ALARM		0x02
#define		ADT7462_V2_ALARM		0x04
#define		ADT7462_V3_ALARM		0x08
#define		ADT7462_V4_ALARM		0x10
#define		ADT7462_V5_ALARM		0x20
#define		ADT7462_V6_ALARM		0x40
#define		ADT7462_V7_ALARM		0x80
#define ADT7462_REG_ALARM3			0xBC
#define		ADT7462_V8_ALARM		0x08
#define		ADT7462_V9_ALARM		0x10
#define		ADT7462_V10_ALARM		0x20
#define		ADT7462_V11_ALARM		0x40
#define		ADT7462_V12_ALARM		0x80
#define ADT7462_REG_ALARM4			0xBD
#define		ADT7462_F0_ALARM		0x01
#define		ADT7462_F1_ALARM		0x02
#define		ADT7462_F2_ALARM		0x04
#define		ADT7462_F3_ALARM		0x08
#define		ADT7462_F4_ALARM		0x10
#define		ADT7462_F5_ALARM		0x20
#define		ADT7462_F6_ALARM		0x40
#define		ADT7462_F7_ALARM		0x80
#define ADT7462_ALARM1				0x0000
#define ADT7462_ALARM2				0x0100
#define ADT7462_ALARM3				0x0200
#define ADT7462_ALARM4				0x0300
#define ADT7462_ALARM_REG_SHIFT			8
#define ADT7462_ALARM_FLAG_MASK			0x0F

#define ADT7462_TEMP_COUNT		4
#define ADT7462_TEMP_REG(x)		(ADT7462_REG_TEMP_BASE_ADDR + ((x) * 2))
#define ADT7462_TEMP_MIN_REG(x)		(ADT7462_REG_MIN_TEMP_BASE_ADDR + (x))
#define ADT7462_TEMP_MAX_REG(x)		(ADT7462_REG_MAX_TEMP_BASE_ADDR + (x))
#define TEMP_FRAC_OFFSET		6

#define ADT7462_FAN_COUNT		8
#define ADT7462_REG_FAN_MIN(x)		(ADT7462_REG_FAN_MIN_BASE_ADDR + (x))

#define ADT7462_PWM_COUNT		4
#define ADT7462_REG_PWM(x)		(ADT7462_REG_PWM_BASE_ADDR + (x))
#define ADT7462_REG_PWM_MIN(x)		(ADT7462_REG_PWM_MIN_BASE_ADDR + (x))
#define ADT7462_REG_PWM_TMIN(x)		\
	(ADT7462_REG_PWM_TEMP_MIN_BASE_ADDR + (x))
#define ADT7462_REG_PWM_TRANGE(x)	\
	(ADT7462_REG_PWM_TEMP_RANGE_BASE_ADDR + (x))

#define ADT7462_PIN_CFG_REG_COUNT	4
#define ADT7462_REG_PIN_CFG(x)		(ADT7462_REG_PIN_CFG_BASE_ADDR + (x))
#define ADT7462_REG_PWM_CFG(x)		(ADT7462_REG_PWM_CFG_BASE_ADDR + (x))

#define ADT7462_ALARM_REG_COUNT		4

/*
 * The chip can measure 13 different voltage sources:
 *
 * 1. +12V1 (pin 7)
 * 2. Vccp1/+2.5V/+1.8V/+1.5V (pin 23)
 * 3. +12V3 (pin 22)
 * 4. +5V (pin 21)
 * 5. +1.25V/+0.9V (pin 19)
 * 6. +2.5V/+1.8V (pin 15)
 * 7. +3.3v (pin 13)
 * 8. +12V2 (pin 8)
 * 9. Vbatt/FSB_Vtt (pin 26)
 * A. +3.3V/+1.2V1 (pin 25)
 * B. Vccp2/+2.5V/+1.8V/+1.5V (pin 24)
 * C. +1.5V ICH (only if BOTH pin 28/29 are set to +1.5V)
 * D. +1.5V 3GPIO (only if BOTH pin 28/29 are set to +1.5V)
 *
 * Each of these 13 has a factor to convert raw to voltage.  Even better,
 * the pins can be connected to other sensors (tach/gpio/hot/etc), which
 * makes the bookkeeping tricky.
 *
 * Some, but not all, of these voltages have low/high limits.
 */
#define ADT7462_VOLT_COUNT	13

#define ADT7462_VENDOR		0x41
#define ADT7462_DEVICE		0x62
/* datasheet only mentions a revision 4 */
#define ADT7462_REVISION	0x04

/* How often do we reread sensors values? (In jiffies) */
#define SENSOR_REFRESH_INTERVAL	(2 * HZ)

/* How often do we reread sensor limit values? (In jiffies) */
#define LIMIT_REFRESH_INTERVAL	(60 * HZ)

/* datasheet says to divide this number by the fan reading to get fan rpm */
#define FAN_PERIOD_TO_RPM(x)	((90000 * 60) / (x))
#define FAN_RPM_TO_PERIOD	FAN_PERIOD_TO_RPM
#define FAN_PERIOD_INVALID	65535
#define FAN_DATA_VALID(x)	((x) && (x) != FAN_PERIOD_INVALID)

#define MASK_AND_SHIFT(value, prefix)	\
	(((value) & prefix##_MASK) >> prefix##_SHIFT)

struct adt7462_data {
	struct i2c_client	*client;
	struct mutex		lock;
	char			sensors_valid;
	char			limits_valid;
	unsigned long		sensors_last_updated;	/* In jiffies */
	unsigned long		limits_last_updated;	/* In jiffies */

	u8			temp[ADT7462_TEMP_COUNT];
				/* bits 6-7 are quarter pieces of temp */
	u8			temp_frac[ADT7462_TEMP_COUNT];
	u8			temp_min[ADT7462_TEMP_COUNT];
	u8			temp_max[ADT7462_TEMP_COUNT];
	u16			fan[ADT7462_FAN_COUNT];
	u8			fan_enabled;
	u8			fan_min[ADT7462_FAN_COUNT];
	u8			cfg2;
	u8			pwm[ADT7462_PWM_COUNT];
	u8			pin_cfg[ADT7462_PIN_CFG_REG_COUNT];
	u8			voltages[ADT7462_VOLT_COUNT];
	u8			volt_max[ADT7462_VOLT_COUNT];
	u8			volt_min[ADT7462_VOLT_COUNT];
	u8			pwm_min[ADT7462_PWM_COUNT];
	u8			pwm_tmin[ADT7462_PWM_COUNT];
	u8			pwm_trange[ADT7462_PWM_COUNT];
	u8			pwm_max;	/* only one per chip */
	u8			pwm_cfg[ADT7462_PWM_COUNT];
	u8			alarms[ADT7462_ALARM_REG_COUNT];
};

/*
 * 16-bit registers on the ADT7462 are low-byte first.  The data sheet says
 * that the low byte must be read before the high byte.
 */
static inline int adt7462_read_word_data(struct i2c_client *client, u8 reg)
{
	u16 foo;
	foo = i2c_smbus_read_byte_data(client, reg);
	foo |= ((u16)i2c_smbus_read_byte_data(client, reg + 1) << 8);
	return foo;
}

/* For some reason these registers are not contiguous. */
static int ADT7462_REG_FAN(int fan)
{
	if (fan < 4)
		return ADT7462_REG_FAN_BASE_ADDR + (2 * fan);
	return ADT7462_REG_FAN2_BASE_ADDR + (2 * (fan - 4));
}

/* Voltage registers are scattered everywhere */
static int ADT7462_REG_VOLT_MAX(struct adt7462_data *data, int which)
{
	switch (which) {
	case 0:
		if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT))
			return 0x7C;
		break;
	case 1:
		return 0x69;
	case 2:
		if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT))
			return 0x7F;
		break;
	case 3:
		if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT))
			return 0x7E;
		break;
	case 4:
		if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT))
			return 0x4B;
		break;
	case 5:
		if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT))
			return 0x49;
		break;
	case 6:
		if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT))
			return 0x68;
		break;
	case 7:
		if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT))
			return 0x7D;
		break;
	case 8:
		if (!(data->pin_cfg[2] & ADT7462_PIN26_VOLT_INPUT))
			return 0x6C;
		break;
	case 9:
		if (!(data->pin_cfg[2] & ADT7462_PIN25_VOLT_INPUT))
			return 0x6B;
		break;
	case 10:
		return 0x6A;
	case 11:
		if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
					ADT7462_PIN28_VOLT &&
		    !(data->pin_cfg[0] & ADT7462_VID_INPUT))
			return 0x50;
		break;
	case 12:
		if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
					ADT7462_PIN28_VOLT &&
		    !(data->pin_cfg[0] & ADT7462_VID_INPUT))
			return 0x4C;
		break;
	}
	return 0;
}

static int ADT7462_REG_VOLT_MIN(struct adt7462_data *data, int which)
{
	switch (which) {
	case 0:
		if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT))
			return 0x6D;
		break;
	case 1:
		return 0x72;
	case 2:
		if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT))
			return 0x6F;
		break;
	case 3:
		if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT))
			return 0x71;
		break;
	case 4:
		if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT))
			return 0x47;
		break;
	case 5:
		if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT))
			return 0x45;
		break;
	case 6:
		if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT))
			return 0x70;
		break;
	case 7:
		if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT))
			return 0x6E;
		break;
	case 8:
		if (!(data->pin_cfg[2] & ADT7462_PIN26_VOLT_INPUT))
			return 0x75;
		break;
	case 9:
		if (!(data->pin_cfg[2] & ADT7462_PIN25_VOLT_INPUT))
			return 0x74;
		break;
	case 10:
		return 0x73;
	case 11:
		if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
					ADT7462_PIN28_VOLT &&
		    !(data->pin_cfg[0] & ADT7462_VID_INPUT))
			return 0x76;
		break;
	case 12:
		if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
					ADT7462_PIN28_VOLT &&
		    !(data->pin_cfg[0] & ADT7462_VID_INPUT))
			return 0x77;
		break;
	}
	return 0;
}

static int ADT7462_REG_VOLT(struct adt7462_data *data, int which)
{
	switch (which) {
	case 0:
		if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT))
			return 0xA3;
		break;
	case 1:
		return 0x90;
	case 2:
		if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT))
			return 0xA9;
		break;
	case 3:
		if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT))
			return 0xA7;
		break;
	case 4:
		if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT))
			return 0x8F;
		break;
	case 5:
		if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT))
			return 0x8B;
		break;
	case 6:
		if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT))
			return 0x96;
		break;
	case 7:
		if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT))
			return 0xA5;
		break;
	case 8:
		if (!(data->pin_cfg[2] & ADT7462_PIN26_VOLT_INPUT))
			return 0x93;
		break;
	case 9:
		if (!(data->pin_cfg[2] & ADT7462_PIN25_VOLT_INPUT))
			return 0x92;
		break;
	case 10:
		return 0x91;
	case 11:
		if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
					ADT7462_PIN28_VOLT &&
		    !(data->pin_cfg[0] & ADT7462_VID_INPUT))
			return 0x94;
		break;
	case 12:
		if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
					ADT7462_PIN28_VOLT &&
		    !(data->pin_cfg[0] & ADT7462_VID_INPUT))
			return 0x95;
		break;
	}
	return 0;
}

/* Provide labels for sysfs */
static const char *voltage_label(struct adt7462_data *data, int which)
{
	switch (which) {
	case 0:
		if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT))
			return "+12V1";
		break;
	case 1:
		switch (MASK_AND_SHIFT(data->pin_cfg[1], ADT7462_PIN23)) {
		case 0:
			return "Vccp1";
		case 1:
			return "+2.5V";
		case 2:
			return "+1.8V";
		case 3:
			return "+1.5V";
		}
		/* fall through */
	case 2:
		if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT))
			return "+12V3";
		break;
	case 3:
		if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT))
			return "+5V";
		break;
	case 4:
		if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT)) {
			if (data->pin_cfg[1] & ADT7462_PIN19_INPUT)
				return "+0.9V";
			return "+1.25V";
		}
		break;
	case 5:
		if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT)) {
			if (data->pin_cfg[1] & ADT7462_PIN19_INPUT)
				return "+1.8V";
			return "+2.5V";
		}
		break;
	case 6:
		if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT))
			return "+3.3V";
		break;
	case 7:
		if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT))
			return "+12V2";
		break;
	case 8:
		switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN26)) {
		case 0:
			return "Vbatt";
		case 1:
			return "FSB_Vtt";
		}
		break;
	case 9:
		switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN25)) {
		case 0:
			return "+3.3V";
		case 1:
			return "+1.2V1";
		}
		break;
	case 10:
		switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN24)) {
		case 0:
			return "Vccp2";
		case 1:
			return "+2.5V";
		case 2:
			return "+1.8V";
		case 3:
			return "+1.5";
		}
		/* fall through */
	case 11:
		if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
					ADT7462_PIN28_VOLT &&
		    !(data->pin_cfg[0] & ADT7462_VID_INPUT))
			return "+1.5V ICH";
		break;
	case 12:
		if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
					ADT7462_PIN28_VOLT &&
		    !(data->pin_cfg[0] & ADT7462_VID_INPUT))
			return "+1.5V 3GPIO";
		break;
	}
	return "N/A";
}

/* Multipliers are actually in uV, not mV. */
static int voltage_multiplier(struct adt7462_data *data, int which)
{
	switch (which) {
	case 0:
		if (!(data->pin_cfg[0] & ADT7462_PIN7_INPUT))
			return 62500;
		break;
	case 1:
		switch (MASK_AND_SHIFT(data->pin_cfg[1], ADT7462_PIN23)) {
		case 0:
			if (data->pin_cfg[0] & ADT7462_VID_INPUT)
				return 12500;
			return 6250;
		case 1:
			return 13000;
		case 2:
			return 9400;
		case 3:
			return 7800;
		}
		/* fall through */
	case 2:
		if (!(data->pin_cfg[1] & ADT7462_PIN22_INPUT))
			return 62500;
		break;
	case 3:
		if (!(data->pin_cfg[1] & ADT7462_PIN21_INPUT))
			return 26000;
		break;
	case 4:
		if (!(data->pin_cfg[0] & ADT7462_DIODE3_INPUT)) {
			if (data->pin_cfg[1] & ADT7462_PIN19_INPUT)
				return 4690;
			return 6500;
		}
		break;
	case 5:
		if (!(data->pin_cfg[0] & ADT7462_DIODE1_INPUT)) {
			if (data->pin_cfg[1] & ADT7462_PIN15_INPUT)
				return 9400;
			return 13000;
		}
		break;
	case 6:
		if (!(data->pin_cfg[1] & ADT7462_PIN13_INPUT))
			return 17200;
		break;
	case 7:
		if (!(data->pin_cfg[1] & ADT7462_PIN8_INPUT))
			return 62500;
		break;
	case 8:
		switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN26)) {
		case 0:
			return 15600;
		case 1:
			return 6250;
		}
		break;
	case 9:
		switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN25)) {
		case 0:
			return 17200;
		case 1:
			return 6250;
		}
		break;
	case 10:
		switch (MASK_AND_SHIFT(data->pin_cfg[2], ADT7462_PIN24)) {
		case 0:
			return 6250;
		case 1:
			return 13000;
		case 2:
			return 9400;
		case 3:
			return 7800;
		}
		/* fall through */
	case 11:
	case 12:
		if (data->pin_cfg[3] >> ADT7462_PIN28_SHIFT ==
					ADT7462_PIN28_VOLT &&
		    !(data->pin_cfg[0] & ADT7462_VID_INPUT))
			return 7800;
	}
	return 0;
}

static int temp_enabled(struct adt7462_data *data, int which)
{
	switch (which) {
	case 0:
	case 2:
		return 1;
	case 1:
		if (data->pin_cfg[0] & ADT7462_DIODE1_INPUT)
			return 1;
		break;
	case 3:
		if (data->pin_cfg[0] & ADT7462_DIODE3_INPUT)
			return 1;
		break;
	}
	return 0;
}

static const char *temp_label(struct adt7462_data *data, int which)
{
	switch (which) {
	case 0:
		return "local";
	case 1:
		if (data->pin_cfg[0] & ADT7462_DIODE1_INPUT)
			return "remote1";
		break;
	case 2:
		return "remote2";
	case 3:
		if (data->pin_cfg[0] & ADT7462_DIODE3_INPUT)
			return "remote3";
		break;
	}
	return "N/A";
}

/* Map Trange register values to mC */
#define NUM_TRANGE_VALUES	16
static const int trange_values[NUM_TRANGE_VALUES] = {
	2000,
	2500,
	3300,
	4000,
	5000,
	6700,
	8000,
	10000,
	13300,
	16000,
	20000,
	26700,
	32000,
	40000,
	53300,
	80000
};

static int find_trange_value(int trange)
{
	int i;

	for (i = 0; i < NUM_TRANGE_VALUES; i++)
		if (trange_values[i] == trange)
			return i;

	return -EINVAL;
}

static struct adt7462_data *adt7462_update_device(struct device *dev)
{
	struct adt7462_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	unsigned long local_jiffies = jiffies;
	int i;

	mutex_lock(&data->lock);
	if (time_before(local_jiffies, data->sensors_last_updated +
		SENSOR_REFRESH_INTERVAL)
		&& data->sensors_valid)
		goto no_sensor_update;

	for (i = 0; i < ADT7462_TEMP_COUNT; i++) {
		/*
		 * Reading the fractional register locks the integral
		 * register until both have been read.
		 */
		data->temp_frac[i] = i2c_smbus_read_byte_data(client,
						ADT7462_TEMP_REG(i));
		data->temp[i] = i2c_smbus_read_byte_data(client,
						ADT7462_TEMP_REG(i) + 1);
	}

	for (i = 0; i < ADT7462_FAN_COUNT; i++)
		data->fan[i] = adt7462_read_word_data(client,
						ADT7462_REG_FAN(i));

	data->fan_enabled = i2c_smbus_read_byte_data(client,
					ADT7462_REG_FAN_ENABLE);

	for (i = 0; i < ADT7462_PWM_COUNT; i++)
		data->pwm[i] = i2c_smbus_read_byte_data(client,
						ADT7462_REG_PWM(i));

	for (i = 0; i < ADT7462_PIN_CFG_REG_COUNT; i++)
		data->pin_cfg[i] = i2c_smbus_read_byte_data(client,
				ADT7462_REG_PIN_CFG(i));

	for (i = 0; i < ADT7462_VOLT_COUNT; i++) {
		int reg = ADT7462_REG_VOLT(data, i);
		if (!reg)
			data->voltages[i] = 0;
		else
			data->voltages[i] = i2c_smbus_read_byte_data(client,
								     reg);
	}

	data->alarms[0] = i2c_smbus_read_byte_data(client, ADT7462_REG_ALARM1);
	data->alarms[1] = i2c_smbus_read_byte_data(client, ADT7462_REG_ALARM2);
	data->alarms[2] = i2c_smbus_read_byte_data(client, ADT7462_REG_ALARM3);
	data->alarms[3] = i2c_smbus_read_byte_data(client, ADT7462_REG_ALARM4);

	data->sensors_last_updated = local_jiffies;
	data->sensors_valid = 1;

no_sensor_update:
	if (time_before(local_jiffies, data->limits_last_updated +
		LIMIT_REFRESH_INTERVAL)
		&& data->limits_valid)
		goto out;

	for (i = 0; i < ADT7462_TEMP_COUNT; i++) {
		data->temp_min[i] = i2c_smbus_read_byte_data(client,
						ADT7462_TEMP_MIN_REG(i));
		data->temp_max[i] = i2c_smbus_read_byte_data(client,
						ADT7462_TEMP_MAX_REG(i));
	}

	for (i = 0; i < ADT7462_FAN_COUNT; i++)
		data->fan_min[i] = i2c_smbus_read_byte_data(client,
						ADT7462_REG_FAN_MIN(i));

	for (i = 0; i < ADT7462_VOLT_COUNT; i++) {
		int reg = ADT7462_REG_VOLT_MAX(data, i);
		data->volt_max[i] =
			(reg ? i2c_smbus_read_byte_data(client, reg) : 0);

		reg = ADT7462_REG_VOLT_MIN(data, i);
		data->volt_min[i] =
			(reg ? i2c_smbus_read_byte_data(client, reg) : 0);
	}

	for (i = 0; i < ADT7462_PWM_COUNT; i++) {
		data->pwm_min[i] = i2c_smbus_read_byte_data(client,
						ADT7462_REG_PWM_MIN(i));
		data->pwm_tmin[i] = i2c_smbus_read_byte_data(client,
						ADT7462_REG_PWM_TMIN(i));
		data->pwm_trange[i] = i2c_smbus_read_byte_data(client,
						ADT7462_REG_PWM_TRANGE(i));
		data->pwm_cfg[i] = i2c_smbus_read_byte_data(client,
						ADT7462_REG_PWM_CFG(i));
	}

	data->pwm_max = i2c_smbus_read_byte_data(client, ADT7462_REG_PWM_MAX);

	data->cfg2 = i2c_smbus_read_byte_data(client, ADT7462_REG_CFG2);

	data->limits_last_updated = local_jiffies;
	data->limits_valid = 1;

out:
	mutex_unlock(&data->lock);
	return data;
}

static ssize_t temp_min_show(struct device *dev,
			     struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);

	if (!temp_enabled(data, attr->index))
		return sprintf(buf, "0\n");

	return sprintf(buf, "%d\n", 1000 * (data->temp_min[attr->index] - 64));
}

static ssize_t temp_min_store(struct device *dev,
			      struct device_attribute *devattr,
			      const char *buf, size_t count)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	long temp;

	if (kstrtol(buf, 10, &temp) || !temp_enabled(data, attr->index))
		return -EINVAL;

	temp = clamp_val(temp, -64000, 191000);
	temp = DIV_ROUND_CLOSEST(temp, 1000) + 64;

	mutex_lock(&data->lock);
	data->temp_min[attr->index] = temp;
	i2c_smbus_write_byte_data(client, ADT7462_TEMP_MIN_REG(attr->index),
				  temp);
	mutex_unlock(&data->lock);

	return count;
}

static ssize_t temp_max_show(struct device *dev,
			     struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);

	if (!temp_enabled(data, attr->index))
		return sprintf(buf, "0\n");

	return sprintf(buf, "%d\n", 1000 * (data->temp_max[attr->index] - 64));
}

static ssize_t temp_max_store(struct device *dev,
			      struct device_attribute *devattr,
			      const char *buf, size_t count)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	long temp;

	if (kstrtol(buf, 10, &temp) || !temp_enabled(data, attr->index))
		return -EINVAL;

	temp = clamp_val(temp, -64000, 191000);
	temp = DIV_ROUND_CLOSEST(temp, 1000) + 64;

	mutex_lock(&data->lock);
	data->temp_max[attr->index] = temp;
	i2c_smbus_write_byte_data(client, ADT7462_TEMP_MAX_REG(attr->index),
				  temp);
	mutex_unlock(&data->lock);

	return count;
}

static ssize_t temp_show(struct device *dev, struct device_attribute *devattr,
			 char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);
	u8 frac = data->temp_frac[attr->index] >> TEMP_FRAC_OFFSET;

	if (!temp_enabled(data, attr->index))
		return sprintf(buf, "0\n");

	return sprintf(buf, "%d\n", 1000 * (data->temp[attr->index] - 64) +
				     250 * frac);
}

static ssize_t temp_label_show(struct device *dev,
			       struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);

	return sprintf(buf, "%s\n", temp_label(data, attr->index));
}

static ssize_t volt_max_show(struct device *dev,
			     struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);
	int x = voltage_multiplier(data, attr->index);

	x *= data->volt_max[attr->index];
	x /= 1000; /* convert from uV to mV */

	return sprintf(buf, "%d\n", x);
}

static ssize_t volt_max_store(struct device *dev,
			      struct device_attribute *devattr,
			      const char *buf, size_t count)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int x = voltage_multiplier(data, attr->index);
	long temp;

	if (kstrtol(buf, 10, &temp) || !x)
		return -EINVAL;

	temp = clamp_val(temp, 0, 255 * x / 1000);
	temp *= 1000; /* convert mV to uV */
	temp = DIV_ROUND_CLOSEST(temp, x);

	mutex_lock(&data->lock);
	data->volt_max[attr->index] = temp;
	i2c_smbus_write_byte_data(client,
				  ADT7462_REG_VOLT_MAX(data, attr->index),
				  temp);
	mutex_unlock(&data->lock);

	return count;
}

static ssize_t volt_min_show(struct device *dev,
			     struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);
	int x = voltage_multiplier(data, attr->index);

	x *= data->volt_min[attr->index];
	x /= 1000; /* convert from uV to mV */

	return sprintf(buf, "%d\n", x);
}

static ssize_t volt_min_store(struct device *dev,
			      struct device_attribute *devattr,
			      const char *buf, size_t count)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int x = voltage_multiplier(data, attr->index);
	long temp;

	if (kstrtol(buf, 10, &temp) || !x)
		return -EINVAL;

	temp = clamp_val(temp, 0, 255 * x / 1000);
	temp *= 1000; /* convert mV to uV */
	temp = DIV_ROUND_CLOSEST(temp, x);

	mutex_lock(&data->lock);
	data->volt_min[attr->index] = temp;
	i2c_smbus_write_byte_data(client,
				  ADT7462_REG_VOLT_MIN(data, attr->index),
				  temp);
	mutex_unlock(&data->lock);

	return count;
}

static ssize_t voltage_show(struct device *dev,
			    struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);
	int x = voltage_multiplier(data, attr->index);

	x *= data->voltages[attr->index];
	x /= 1000; /* convert from uV to mV */

	return sprintf(buf, "%d\n", x);
}

static ssize_t voltage_label_show(struct device *dev,
				  struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);

	return sprintf(buf, "%s\n", voltage_label(data, attr->index));
}

static ssize_t alarm_show(struct device *dev,
			  struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);
	int reg = attr->index >> ADT7462_ALARM_REG_SHIFT;
	int mask = attr->index & ADT7462_ALARM_FLAG_MASK;

	if (data->alarms[reg] & mask)
		return sprintf(buf, "1\n");
	else
		return sprintf(buf, "0\n");
}

static int fan_enabled(struct adt7462_data *data, int fan)
{
	return data->fan_enabled & (1 << fan);
}

static ssize_t fan_min_show(struct device *dev,
			    struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);
	u16 temp;

	/* Only the MSB of the min fan period is stored... */
	temp = data->fan_min[attr->index];
	temp <<= 8;

	if (!fan_enabled(data, attr->index) ||
	    !FAN_DATA_VALID(temp))
		return sprintf(buf, "0\n");

	return sprintf(buf, "%d\n", FAN_PERIOD_TO_RPM(temp));
}

static ssize_t fan_min_store(struct device *dev,
			     struct device_attribute *devattr,
			     const char *buf, size_t count)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	long temp;

	if (kstrtol(buf, 10, &temp) || !temp ||
	    !fan_enabled(data, attr->index))
		return -EINVAL;

	temp = FAN_RPM_TO_PERIOD(temp);
	temp >>= 8;
	temp = clamp_val(temp, 1, 255);

	mutex_lock(&data->lock);
	data->fan_min[attr->index] = temp;
	i2c_smbus_write_byte_data(client, ADT7462_REG_FAN_MIN(attr->index),
				  temp);
	mutex_unlock(&data->lock);

	return count;
}

static ssize_t fan_show(struct device *dev, struct device_attribute *devattr,
			char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);

	if (!fan_enabled(data, attr->index) ||
	    !FAN_DATA_VALID(data->fan[attr->index]))
		return sprintf(buf, "0\n");

	return sprintf(buf, "%d\n",
		       FAN_PERIOD_TO_RPM(data->fan[attr->index]));
}

static ssize_t force_pwm_max_show(struct device *dev,
				  struct device_attribute *devattr, char *buf)
{
	struct adt7462_data *data = adt7462_update_device(dev);
	return sprintf(buf, "%d\n", (data->cfg2 & ADT7462_FSPD_MASK ? 1 : 0));
}

static ssize_t force_pwm_max_store(struct device *dev,
				   struct device_attribute *devattr,
				   const char *buf, size_t count)
{
	struct adt7462_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	long temp;
	u8 reg;

	if (kstrtol(buf, 10, &temp))
		return -EINVAL;

	mutex_lock(&data->lock);
	reg = i2c_smbus_read_byte_data(client, ADT7462_REG_CFG2);
	if (temp)
		reg |= ADT7462_FSPD_MASK;
	else
		reg &= ~ADT7462_FSPD_MASK;
	data->cfg2 = reg;
	i2c_smbus_write_byte_data(client, ADT7462_REG_CFG2, reg);
	mutex_unlock(&data->lock);

	return count;
}

static ssize_t pwm_show(struct device *dev, struct device_attribute *devattr,
			char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);
	return sprintf(buf, "%d\n", data->pwm[attr->index]);
}

static ssize_t pwm_store(struct device *dev, struct device_attribute *devattr,
			 const char *buf, size_t count)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	long temp;

	if (kstrtol(buf, 10, &temp))
		return -EINVAL;

	temp = clamp_val(temp, 0, 255);

	mutex_lock(&data->lock);
	data->pwm[attr->index] = temp;
	i2c_smbus_write_byte_data(client, ADT7462_REG_PWM(attr->index), temp);
	mutex_unlock(&data->lock);

	return count;
}

static ssize_t pwm_max_show(struct device *dev,
			    struct device_attribute *devattr, char *buf)
{
	struct adt7462_data *data = adt7462_update_device(dev);
	return sprintf(buf, "%d\n", data->pwm_max);
}

static ssize_t pwm_max_store(struct device *dev,
			     struct device_attribute *devattr,
			     const char *buf, size_t count)
{
	struct adt7462_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	long temp;

	if (kstrtol(buf, 10, &temp))
		return -EINVAL;

	temp = clamp_val(temp, 0, 255);

	mutex_lock(&data->lock);
	data->pwm_max = temp;
	i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_MAX, temp);
	mutex_unlock(&data->lock);

	return count;
}

static ssize_t pwm_min_show(struct device *dev,
			    struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);
	return sprintf(buf, "%d\n", data->pwm_min[attr->index]);
}

static ssize_t pwm_min_store(struct device *dev,
			     struct device_attribute *devattr,
			     const char *buf, size_t count)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	long temp;

	if (kstrtol(buf, 10, &temp))
		return -EINVAL;

	temp = clamp_val(temp, 0, 255);

	mutex_lock(&data->lock);
	data->pwm_min[attr->index] = temp;
	i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_MIN(attr->index),
				  temp);
	mutex_unlock(&data->lock);

	return count;
}

static ssize_t pwm_hyst_show(struct device *dev,
			     struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);
	return sprintf(buf, "%d\n", 1000 *
		      (data->pwm_trange[attr->index] & ADT7462_PWM_HYST_MASK));
}

static ssize_t pwm_hyst_store(struct device *dev,
			      struct device_attribute *devattr,
			      const char *buf, size_t count)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	long temp;

	if (kstrtol(buf, 10, &temp))
		return -EINVAL;

	temp = clamp_val(temp, 0, 15000);
	temp = DIV_ROUND_CLOSEST(temp, 1000);

	/* package things up */
	temp &= ADT7462_PWM_HYST_MASK;
	temp |= data->pwm_trange[attr->index] & ADT7462_PWM_RANGE_MASK;

	mutex_lock(&data->lock);
	data->pwm_trange[attr->index] = temp;
	i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_TRANGE(attr->index),
				  temp);
	mutex_unlock(&data->lock);

	return count;
}

static ssize_t pwm_tmax_show(struct device *dev,
			     struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);

	/* tmax = tmin + trange */
	int trange = trange_values[data->pwm_trange[attr->index] >>
				   ADT7462_PWM_RANGE_SHIFT];
	int tmin = (data->pwm_tmin[attr->index] - 64) * 1000;

	return sprintf(buf, "%d\n", tmin + trange);
}

static ssize_t pwm_tmax_store(struct device *dev,
			      struct device_attribute *devattr,
			      const char *buf, size_t count)
{
	int temp;
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	int tmin, trange_value;
	long trange;

	if (kstrtol(buf, 10, &trange))
		return -EINVAL;

	/* trange = tmax - tmin */
	tmin = (data->pwm_tmin[attr->index] - 64) * 1000;
	trange_value = find_trange_value(trange - tmin);
	if (trange_value < 0)
		return trange_value;

	temp = trange_value << ADT7462_PWM_RANGE_SHIFT;
	temp |= data->pwm_trange[attr->index] & ADT7462_PWM_HYST_MASK;

	mutex_lock(&data->lock);
	data->pwm_trange[attr->index] = temp;
	i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_TRANGE(attr->index),
				  temp);
	mutex_unlock(&data->lock);

	return count;
}

static ssize_t pwm_tmin_show(struct device *dev,
			     struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);
	return sprintf(buf, "%d\n", 1000 * (data->pwm_tmin[attr->index] - 64));
}

static ssize_t pwm_tmin_store(struct device *dev,
			      struct device_attribute *devattr,
			      const char *buf, size_t count)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	long temp;

	if (kstrtol(buf, 10, &temp))
		return -EINVAL;

	temp = clamp_val(temp, -64000, 191000);
	temp = DIV_ROUND_CLOSEST(temp, 1000) + 64;

	mutex_lock(&data->lock);
	data->pwm_tmin[attr->index] = temp;
	i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_TMIN(attr->index),
				  temp);
	mutex_unlock(&data->lock);

	return count;
}

static ssize_t pwm_auto_show(struct device *dev,
			     struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);
	int cfg = data->pwm_cfg[attr->index] >> ADT7462_PWM_CHANNEL_SHIFT;

	switch (cfg) {
	case 4: /* off */
		return sprintf(buf, "0\n");
	case 7: /* manual */
		return sprintf(buf, "1\n");
	default: /* automatic */
		return sprintf(buf, "2\n");
	}
}

static void set_pwm_channel(struct i2c_client *client,
			    struct adt7462_data *data,
			    int which,
			    int value)
{
	int temp = data->pwm_cfg[which] & ~ADT7462_PWM_CHANNEL_MASK;
	temp |= value << ADT7462_PWM_CHANNEL_SHIFT;

	mutex_lock(&data->lock);
	data->pwm_cfg[which] = temp;
	i2c_smbus_write_byte_data(client, ADT7462_REG_PWM_CFG(which), temp);
	mutex_unlock(&data->lock);
}

static ssize_t pwm_auto_store(struct device *dev,
			      struct device_attribute *devattr,
			      const char *buf, size_t count)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	long temp;

	if (kstrtol(buf, 10, &temp))
		return -EINVAL;

	switch (temp) {
	case 0: /* off */
		set_pwm_channel(client, data, attr->index, 4);
		return count;
	case 1: /* manual */
		set_pwm_channel(client, data, attr->index, 7);
		return count;
	default:
		return -EINVAL;
	}
}

static ssize_t pwm_auto_temp_show(struct device *dev,
				  struct device_attribute *devattr, char *buf)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = adt7462_update_device(dev);
	int channel = data->pwm_cfg[attr->index] >> ADT7462_PWM_CHANNEL_SHIFT;

	switch (channel) {
	case 0: /* temp[1234] only */
	case 1:
	case 2:
	case 3:
		return sprintf(buf, "%d\n", (1 << channel));
	case 5: /* temp1 & temp4  */
		return sprintf(buf, "9\n");
	case 6:
		return sprintf(buf, "15\n");
	default:
		return sprintf(buf, "0\n");
	}
}

static int cvt_auto_temp(int input)
{
	if (input == 0xF)
		return 6;
	if (input == 0x9)
		return 5;
	if (input < 1 || !is_power_of_2(input))
		return -EINVAL;
	return ilog2(input);
}

static ssize_t pwm_auto_temp_store(struct device *dev,
				   struct device_attribute *devattr,
				   const char *buf, size_t count)
{
	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
	struct adt7462_data *data = dev_get_drvdata(dev);
	struct i2c_client *client = data->client;
	long temp;

	if (kstrtol(buf, 10, &temp))
		return -EINVAL;

	temp = cvt_auto_temp(temp);
	if (temp < 0)
		return temp;

	set_pwm_channel(client, data, attr->index, temp);

	return count;
}

static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
static SENSOR_DEVICE_ATTR_RW(temp4_max, temp_max, 3);

static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
static SENSOR_DEVICE_ATTR_RW(temp4_min, temp_min, 3);

static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 3);

static SENSOR_DEVICE_ATTR_RO(temp1_label, temp_label, 0);
static SENSOR_DEVICE_ATTR_RO(temp2_label, temp_label, 1);
static SENSOR_DEVICE_ATTR_RO(temp3_label, temp_label, 2);
static SENSOR_DEVICE_ATTR_RO(temp4_label, temp_label, 3);

static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm,
			     ADT7462_ALARM1 | ADT7462_LT_ALARM);
static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm,
			     ADT7462_ALARM1 | ADT7462_R1T_ALARM);
static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm,
			     ADT7462_ALARM1 | ADT7462_R2T_ALARM);
static SENSOR_DEVICE_ATTR_RO(temp4_alarm, alarm,
			     ADT7462_ALARM1 | ADT7462_R3T_ALARM);

static SENSOR_DEVICE_ATTR_RW(in1_max, volt_max, 0);
static SENSOR_DEVICE_ATTR_RW(in2_max, volt_max, 1);
static SENSOR_DEVICE_ATTR_RW(in3_max, volt_max, 2);
static SENSOR_DEVICE_ATTR_RW(in4_max, volt_max, 3);
static SENSOR_DEVICE_ATTR_RW(in5_max, volt_max, 4);
static SENSOR_DEVICE_ATTR_RW(in6_max, volt_max, 5);
static SENSOR_DEVICE_ATTR_RW(in7_max, volt_max, 6);
static SENSOR_DEVICE_ATTR_RW(in8_max, volt_max, 7);
static SENSOR_DEVICE_ATTR_RW(in9_max, volt_max, 8);
static SENSOR_DEVICE_ATTR_RW(in10_max, volt_max, 9);
static SENSOR_DEVICE_ATTR_RW(in11_max, volt_max, 10);
static SENSOR_DEVICE_ATTR_RW(in12_max, volt_max, 11);
static SENSOR_DEVICE_ATTR_RW(in13_max, volt_max, 12);

static SENSOR_DEVICE_ATTR_RW(in1_min, volt_min, 0);
static SENSOR_DEVICE_ATTR_RW(in2_min, volt_min, 1);
static SENSOR_DEVICE_ATTR_RW(in3_min, volt_min, 2);
static SENSOR_DEVICE_ATTR_RW(in4_min, volt_min, 3);
static SENSOR_DEVICE_ATTR_RW(in5_min, volt_min, 4);
static SENSOR_DEVICE_ATTR_RW(in6_min, volt_min, 5);
static SENSOR_DEVICE_ATTR_RW(in7_min, volt_min, 6);
static SENSOR_DEVICE_ATTR_RW(in8_min, volt_min, 7);
static SENSOR_DEVICE_ATTR_RW(in9_min, volt_min, 8);
static SENSOR_DEVICE_ATTR_RW(in10_min, volt_min, 9);
static SENSOR_DEVICE_ATTR_RW(in11_min, volt_min, 10);
static SENSOR_DEVICE_ATTR_RW(in12_min, volt_min, 11);
static SENSOR_DEVICE_ATTR_RW(in13_min, volt_min, 12);

static SENSOR_DEVICE_ATTR_RO(in1_input, voltage, 0);
static SENSOR_DEVICE_ATTR_RO(in2_input, voltage, 1);
static SENSOR_DEVICE_ATTR_RO(in3_input, voltage, 2);
static SENSOR_DEVICE_ATTR_RO(in4_input, voltage, 3);
static SENSOR_DEVICE_ATTR_RO(in5_input, voltage, 4);
static SENSOR_DEVICE_ATTR_RO(in6_input, voltage, 5);
static SENSOR_DEVICE_ATTR_RO(in7_input, voltage, 6);
static SENSOR_DEVICE_ATTR_RO(in8_input, voltage, 7);
static SENSOR_DEVICE_ATTR_RO(in9_input, voltage, 8);
static SENSOR_DEVICE_ATTR_RO(in10_input, voltage, 9);
static SENSOR_DEVICE_ATTR_RO(in11_input, voltage, 10);
static SENSOR_DEVICE_ATTR_RO(in12_input, voltage, 11);
static SENSOR_DEVICE_ATTR_RO(in13_input, voltage, 12);

static SENSOR_DEVICE_ATTR_RO(in1_label, voltage_label, 0);
static SENSOR_DEVICE_ATTR_RO(in2_label, voltage_label, 1);
static SENSOR_DEVICE_ATTR_RO(in3_label, voltage_label, 2);
static SENSOR_DEVICE_ATTR_RO(in4_label, voltage_label, 3);
static SENSOR_DEVICE_ATTR_RO(in5_label, voltage_label, 4);
static SENSOR_DEVICE_ATTR_RO(in6_label, voltage_label, 5);
static SENSOR_DEVICE_ATTR_RO(in7_label, voltage_label, 6);
static SENSOR_DEVICE_ATTR_RO(in8_label, voltage_label, 7);
static SENSOR_DEVICE_ATTR_RO(in9_label, voltage_label, 8);
static SENSOR_DEVICE_ATTR_RO(in10_label, voltage_label, 9);
static SENSOR_DEVICE_ATTR_RO(in11_label, voltage_label, 10);
static SENSOR_DEVICE_ATTR_RO(in12_label, voltage_label, 11);
static SENSOR_DEVICE_ATTR_RO(in13_label, voltage_label, 12);

static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm,
			     ADT7462_ALARM2 | ADT7462_V0_ALARM);
static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm,
			     ADT7462_ALARM2 | ADT7462_V7_ALARM);
static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm,
			     ADT7462_ALARM2 | ADT7462_V2_ALARM);
static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm,
			     ADT7462_ALARM2 | ADT7462_V6_ALARM);
static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm,
			     ADT7462_ALARM2 | ADT7462_V5_ALARM);
static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm,
			     ADT7462_ALARM2 | ADT7462_V4_ALARM);
static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm,
			     ADT7462_ALARM2 | ADT7462_V3_ALARM);
static SENSOR_DEVICE_ATTR_RO(in8_alarm, alarm,
			     ADT7462_ALARM2 | ADT7462_V1_ALARM);
static SENSOR_DEVICE_ATTR_RO(in9_alarm, alarm,
			     ADT7462_ALARM3 | ADT7462_V10_ALARM);
static SENSOR_DEVICE_ATTR_RO(in10_alarm, alarm,
			     ADT7462_ALARM3 | ADT7462_V9_ALARM);
static SENSOR_DEVICE_ATTR_RO(in11_alarm, alarm,
			     ADT7462_ALARM3 | ADT7462_V8_ALARM);
static SENSOR_DEVICE_ATTR_RO(in12_alarm, alarm,
			     ADT7462_ALARM3 | ADT7462_V11_ALARM);
static SENSOR_DEVICE_ATTR_RO(in13_alarm, alarm,
			     ADT7462_ALARM3 | ADT7462_V12_ALARM);

static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
static SENSOR_DEVICE_ATTR_RW(fan5_min, fan_min, 4);
static SENSOR_DEVICE_ATTR_RW(fan6_min, fan_min, 5);
static SENSOR_DEVICE_ATTR_RW(fan7_min, fan_min, 6);
static SENSOR_DEVICE_ATTR_RW(fan8_min, fan_min, 7);

static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
static SENSOR_DEVICE_ATTR_RO(fan5_input, fan, 4);
static SENSOR_DEVICE_ATTR_RO(fan6_input, fan, 5);
static SENSOR_DEVICE_ATTR_RO(fan7_input, fan, 6);
static SENSOR_DEVICE_ATTR_RO(fan8_input, fan, 7);

static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm,
			     ADT7462_ALARM4 | ADT7462_F0_ALARM);
static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm,
			     ADT7462_ALARM4 | ADT7462_F1_ALARM);
static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm,
			     ADT7462_ALARM4 | ADT7462_F2_ALARM);
static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm,
			     ADT7462_ALARM4 | ADT7462_F3_ALARM);
static SENSOR_DEVICE_ATTR_RO(fan5_alarm, alarm,
			     ADT7462_ALARM4 | ADT7462_F4_ALARM);
static SENSOR_DEVICE_ATTR_RO(fan6_alarm, alarm,
			     ADT7462_ALARM4 | ADT7462_F5_ALARM);
static SENSOR_DEVICE_ATTR_RO(fan7_alarm, alarm,
			     ADT7462_ALARM4 | ADT7462_F6_ALARM);
static SENSOR_DEVICE_ATTR_RO(fan8_alarm, alarm,
			     ADT7462_ALARM4 | ADT7462_F7_ALARM);

static SENSOR_DEVICE_ATTR_RW(force_pwm_max, force_pwm_max, 0);

static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
static SENSOR_DEVICE_ATTR_RW(pwm4, pwm, 3);

static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point1_pwm, pwm_min, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point1_pwm, pwm_min, 1);
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point1_pwm, pwm_min, 2);
static SENSOR_DEVICE_ATTR_RW(pwm4_auto_point1_pwm, pwm_min, 3);

static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point2_pwm, pwm_max, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_point2_pwm, pwm_max, 1);
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_point2_pwm, pwm_max, 2);
static SENSOR_DEVICE_ATTR_RW(pwm4_auto_point2_pwm, pwm_max, 3);

static SENSOR_DEVICE_ATTR_RW(temp1_auto_point1_hyst, pwm_hyst, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_point1_hyst, pwm_hyst, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_point1_hyst, pwm_hyst, 2);
static SENSOR_DEVICE_ATTR_RW(temp4_auto_point1_hyst, pwm_hyst, 3);

static SENSOR_DEVICE_ATTR_RW(temp1_auto_point2_hyst, pwm_hyst, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_point2_hyst, pwm_hyst, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_point2_hyst, pwm_hyst, 2);
static SENSOR_DEVICE_ATTR_RW(temp4_auto_point2_hyst, pwm_hyst, 3);

static SENSOR_DEVICE_ATTR_RW(temp1_auto_point1_temp, pwm_tmin, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_point1_temp, pwm_tmin, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_point1_temp, pwm_tmin, 2);
static SENSOR_DEVICE_ATTR_RW(temp4_auto_point1_temp, pwm_tmin, 3);

static SENSOR_DEVICE_ATTR_RW(temp1_auto_point2_temp, pwm_tmax, 0);
static SENSOR_DEVICE_ATTR_RW(temp2_auto_point2_temp, pwm_tmax, 1);
static SENSOR_DEVICE_ATTR_RW(temp3_auto_point2_temp, pwm_tmax, 2);
static SENSOR_DEVICE_ATTR_RW(temp4_auto_point2_temp, pwm_tmax, 3);

static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_auto, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_auto, 1);
static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_auto, 2);
static SENSOR_DEVICE_ATTR_RW(pwm4_enable, pwm_auto, 3);

static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels_temp, pwm_auto_temp, 0);
static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels_temp, pwm_auto_temp, 1);
static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels_temp, pwm_auto_temp, 2);
static SENSOR_DEVICE_ATTR_RW(pwm4_auto_channels_temp, pwm_auto_temp, 3);

static struct attribute *adt7462_attrs[] = {
	&sensor_dev_attr_temp1_max.dev_attr.attr,
	&sensor_dev_attr_temp2_max.dev_attr.attr,
	&sensor_dev_attr_temp3_max.dev_attr.attr,
	&sensor_dev_attr_temp4_max.dev_attr.attr,

	&sensor_dev_attr_temp1_min.dev_attr.attr,
	&sensor_dev_attr_temp2_min.dev_attr.attr,
	&sensor_dev_attr_temp3_min.dev_attr.attr,
	&sensor_dev_attr_temp4_min.dev_attr.attr,

	&sensor_dev_attr_temp1_input.dev_attr.attr,
	&sensor_dev_attr_temp2_input.dev_attr.attr,
	&sensor_dev_attr_temp3_input.dev_attr.attr,
	&sensor_dev_attr_temp4_input.dev_attr.attr,

	&sensor_dev_attr_temp1_label.dev_attr.attr,
	&sensor_dev_attr_temp2_label.dev_attr.attr,
	&sensor_dev_attr_temp3_label.dev_attr.attr,
	&sensor_dev_attr_temp4_label.dev_attr.attr,

	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
	&sensor_dev_attr_temp4_alarm.dev_attr.attr,

	&sensor_dev_attr_in1_max.dev_attr.attr,
	&sensor_dev_attr_in2_max.dev_attr.attr,
	&sensor_dev_attr_in3_max.dev_attr.attr,
	&sensor_dev_attr_in4_max.dev_attr.attr,
	&sensor_dev_attr_in5_max.dev_attr.attr,
	&sensor_dev_attr_in6_max.dev_attr.attr,
	&sensor_dev_attr_in7_max.dev_attr.attr,
	&sensor_dev_attr_in8_max.dev_attr.attr,
	&sensor_dev_attr_in9_max.dev_attr.attr,
	&sensor_dev_attr_in10_max.dev_attr.attr,
	&sensor_dev_attr_in11_max.dev_attr.attr,
	&sensor_dev_attr_in12_max.dev_attr.attr,
	&sensor_dev_attr_in13_max.dev_attr.attr,

	&sensor_dev_attr_in1_min.dev_attr.attr,
	&sensor_dev_attr_in2_min.dev_attr.attr,
	&sensor_dev_attr_in3_min.dev_attr.attr,
	&sensor_dev_attr_in4_min.dev_attr.attr,
	&sensor_dev_attr_in5_min.dev_attr.attr,
	&sensor_dev_attr_in6_min.dev_attr.attr,
	&sensor_dev_attr_in7_min.dev_attr.attr,
	&sensor_dev_attr_in8_min.dev_attr.attr,
	&sensor_dev_attr_in9_min.dev_attr.attr,
	&sensor_dev_attr_in10_min.dev_attr.attr,
	&sensor_dev_attr_in11_min.dev_attr.attr,
	&sensor_dev_attr_in12_min.dev_attr.attr,
	&sensor_dev_attr_in13_min.dev_attr.attr,

	&sensor_dev_attr_in1_input.dev_attr.attr,
	&sensor_dev_attr_in2_input.dev_attr.attr,
	&sensor_dev_attr_in3_input.dev_attr.attr,
	&sensor_dev_attr_in4_input.dev_attr.attr,
	&sensor_dev_attr_in5_input.dev_attr.attr,
	&sensor_dev_attr_in6_input.dev_attr.attr,
	&sensor_dev_attr_in7_input.dev_attr.attr,
	&sensor_dev_attr_in8_input.dev_attr.attr,
	&sensor_dev_attr_in9_input.dev_attr.attr,
	&sensor_dev_attr_in10_input.dev_attr.attr,
	&sensor_dev_attr_in11_input.dev_attr.attr,
	&sensor_dev_attr_in12_input.dev_attr.attr,
	&sensor_dev_attr_in13_input.dev_attr.attr,

	&sensor_dev_attr_in1_label.dev_attr.attr,
	&sensor_dev_attr_in2_label.dev_attr.attr,
	&sensor_dev_attr_in3_label.dev_attr.attr,
	&sensor_dev_attr_in4_label.dev_attr.attr,
	&sensor_dev_attr_in5_label.dev_attr.attr,
	&sensor_dev_attr_in6_label.dev_attr.attr,
	&sensor_dev_attr_in7_label.dev_attr.attr,
	&sensor_dev_attr_in8_label.dev_attr.attr,
	&sensor_dev_attr_in9_label.dev_attr.attr,
	&sensor_dev_attr_in10_label.dev_attr.attr,
	&sensor_dev_attr_in11_label.dev_attr.attr,
	&sensor_dev_attr_in12_label.dev_attr.attr,
	&sensor_dev_attr_in13_label.dev_attr.attr,

	&sensor_dev_attr_in1_alarm.dev_attr.attr,
	&sensor_dev_attr_in2_alarm.dev_attr.attr,
	&sensor_dev_attr_in3_alarm.dev_attr.attr,
	&sensor_dev_attr_in4_alarm.dev_attr.attr,
	&sensor_dev_attr_in5_alarm.dev_attr.attr,
	&sensor_dev_attr_in6_alarm.dev_attr.attr,
	&sensor_dev_attr_in7_alarm.dev_attr.attr,
	&sensor_dev_attr_in8_alarm.dev_attr.attr,
	&sensor_dev_attr_in9_alarm.dev_attr.attr,
	&sensor_dev_attr_in10_alarm.dev_attr.attr,
	&sensor_dev_attr_in11_alarm.dev_attr.attr,
	&sensor_dev_attr_in12_alarm.dev_attr.attr,
	&sensor_dev_attr_in13_alarm.dev_attr.attr,

	&sensor_dev_attr_fan1_min.dev_attr.attr,
	&sensor_dev_attr_fan2_min.dev_attr.attr,
	&sensor_dev_attr_fan3_min.dev_attr.attr,
	&sensor_dev_attr_fan4_min.dev_attr.attr,
	&sensor_dev_attr_fan5_min.dev_attr.attr,
	&sensor_dev_attr_fan6_min.dev_attr.attr,
	&sensor_dev_attr_fan7_min.dev_attr.attr,
	&sensor_dev_attr_fan8_min.dev_attr.attr,

	&sensor_dev_attr_fan1_input.dev_attr.attr,
	&sensor_dev_attr_fan2_input.dev_attr.attr,
	&sensor_dev_attr_fan3_input.dev_attr.attr,
	&sensor_dev_attr_fan4_input.dev_attr.attr,
	&sensor_dev_attr_fan5_input.dev_attr.attr,
	&sensor_dev_attr_fan6_input.dev_attr.attr,
	&sensor_dev_attr_fan7_input.dev_attr.attr,
	&sensor_dev_attr_fan8_input.dev_attr.attr,

	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
	&sensor_dev_attr_fan5_alarm.dev_attr.attr,
	&sensor_dev_attr_fan6_alarm.dev_attr.attr,
	&sensor_dev_attr_fan7_alarm.dev_attr.attr,
	&sensor_dev_attr_fan8_alarm.dev_attr.attr,

	&sensor_dev_attr_force_pwm_max.dev_attr.attr,
	&sensor_dev_attr_pwm1.dev_attr.attr,
	&sensor_dev_attr_pwm2.dev_attr.attr,
	&sensor_dev_attr_pwm3.dev_attr.attr,
	&sensor_dev_attr_pwm4.dev_attr.attr,

	&sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm2_auto_point1_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm3_auto_point1_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm4_auto_point1_pwm.dev_attr.attr,

	&sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm2_auto_point2_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm3_auto_point2_pwm.dev_attr.attr,
	&sensor_dev_attr_pwm4_auto_point2_pwm.dev_attr.attr,

	&sensor_dev_attr_temp1_auto_point1_hyst.dev_attr.attr,
	&sensor_dev_attr_temp2_auto_point1_hyst.dev_attr.attr,
	&sensor_dev_attr_temp3_auto_point1_hyst.dev_attr.attr,
	&sensor_dev_attr_temp4_auto_point1_hyst.dev_attr.attr,

	&sensor_dev_attr_temp1_auto_point2_hyst.dev_attr.attr,
	&sensor_dev_attr_temp2_auto_point2_hyst.dev_attr.attr,
	&sensor_dev_attr_temp3_auto_point2_hyst.dev_attr.attr,
	&sensor_dev_attr_temp4_auto_point2_hyst.dev_attr.attr,

	&sensor_dev_attr_temp1_auto_point1_temp.dev_attr.attr,
	&sensor_dev_attr_temp2_auto_point1_temp.dev_attr.attr,
	&sensor_dev_attr_temp3_auto_point1_temp.dev_attr.attr,
	&sensor_dev_attr_temp4_auto_point1_temp.dev_attr.attr,

	&sensor_dev_attr_temp1_auto_point2_temp.dev_attr.attr,
	&sensor_dev_attr_temp2_auto_point2_temp.dev_attr.attr,
	&sensor_dev_attr_temp3_auto_point2_temp.dev_attr.attr,
	&sensor_dev_attr_temp4_auto_point2_temp.dev_attr.attr,

	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
	&sensor_dev_attr_pwm4_enable.dev_attr.attr,

	&sensor_dev_attr_pwm1_auto_channels_temp.dev_attr.attr,
	&sensor_dev_attr_pwm2_auto_channels_temp.dev_attr.attr,
	&sensor_dev_attr_pwm3_auto_channels_temp.dev_attr.attr,
	&sensor_dev_attr_pwm4_auto_channels_temp.dev_attr.attr,
	NULL
};

ATTRIBUTE_GROUPS(adt7462);

/* Return 0 if detection is successful, -ENODEV otherwise */
static int adt7462_detect(struct i2c_client *client,
			  struct i2c_board_info *info)
{
	struct i2c_adapter *adapter = client->adapter;
	int vendor, device, revision;

	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
		return -ENODEV;

	vendor = i2c_smbus_read_byte_data(client, ADT7462_REG_VENDOR);
	if (vendor != ADT7462_VENDOR)
		return -ENODEV;

	device = i2c_smbus_read_byte_data(client, ADT7462_REG_DEVICE);
	if (device != ADT7462_DEVICE)
		return -ENODEV;

	revision = i2c_smbus_read_byte_data(client, ADT7462_REG_REVISION);
	if (revision != ADT7462_REVISION)
		return -ENODEV;

	strlcpy(info->type, "adt7462", I2C_NAME_SIZE);

	return 0;
}

static int adt7462_probe(struct i2c_client *client,
			 const struct i2c_device_id *id)
{
	struct device *dev = &client->dev;
	struct adt7462_data *data;
	struct device *hwmon_dev;

	data = devm_kzalloc(dev, sizeof(struct adt7462_data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	data->client = client;
	mutex_init(&data->lock);

	dev_info(&client->dev, "%s chip found\n", client->name);

	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
							   data,
							   adt7462_groups);
	return PTR_ERR_OR_ZERO(hwmon_dev);
}

static const struct i2c_device_id adt7462_id[] = {
	{ "adt7462", 0 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, adt7462_id);

static struct i2c_driver adt7462_driver = {
	.class		= I2C_CLASS_HWMON,
	.driver = {
		.name	= "adt7462",
	},
	.probe		= adt7462_probe,
	.id_table	= adt7462_id,
	.detect		= adt7462_detect,
	.address_list	= normal_i2c,
};

module_i2c_driver(adt7462_driver);

MODULE_AUTHOR("Darrick J. Wong <darrick.wong@oracle.com>");
MODULE_DESCRIPTION("ADT7462 driver");
MODULE_LICENSE("GPL");