Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Guenter Roeck | 2065 | 100.00% | 3 | 100.00% |
Total | 2065 | 3 |
// SPDX-License-Identifier: GPL-2.0 /* * Hwmon client for disk and solid state drives with temperature sensors * Copyright (C) 2019 Zodiac Inflight Innovations * * With input from: * Hwmon client for S.M.A.R.T. hard disk drives with temperature sensors. * (C) 2018 Linus Walleij * * hwmon: Driver for SCSI/ATA temperature sensors * by Constantin Baranov <const@mimas.ru>, submitted September 2009 * * This drive supports reporting the temperatire of SATA drives. It can be * easily extended to report the temperature of SCSI drives. * * The primary means to read drive temperatures and temperature limits * for ATA drives is the SCT Command Transport feature set as specified in * ATA8-ACS. * It can be used to read the current drive temperature, temperature limits, * and historic minimum and maximum temperatures. The SCT Command Transport * feature set is documented in "AT Attachment 8 - ATA/ATAPI Command Set * (ATA8-ACS)". * * If the SCT Command Transport feature set is not available, drive temperatures * may be readable through SMART attributes. Since SMART attributes are not well * defined, this method is only used as fallback mechanism. * * There are three SMART attributes which may report drive temperatures. * Those are defined as follows (from * http://www.cropel.com/library/smart-attribute-list.aspx). * * 190 Temperature Temperature, monitored by a sensor somewhere inside * the drive. Raw value typicaly holds the actual * temperature (hexadecimal) in its rightmost two digits. * * 194 Temperature Temperature, monitored by a sensor somewhere inside * the drive. Raw value typicaly holds the actual * temperature (hexadecimal) in its rightmost two digits. * * 231 Temperature Temperature, monitored by a sensor somewhere inside * the drive. Raw value typicaly holds the actual * temperature (hexadecimal) in its rightmost two digits. * * Wikipedia defines attributes a bit differently. * * 190 Temperature Value is equal to (100-temp. °C), allowing manufacturer * Difference or to set a minimum threshold which corresponds to a * Airflow maximum temperature. This also follows the convention of * Temperature 100 being a best-case value and lower values being * undesirable. However, some older drives may instead * report raw Temperature (identical to 0xC2) or * Temperature minus 50 here. * 194 Temperature or Indicates the device temperature, if the appropriate * Temperature sensor is fitted. Lowest byte of the raw value contains * Celsius the exact temperature value (Celsius degrees). * 231 Life Left Indicates the approximate SSD life left, in terms of * (SSDs) or program/erase cycles or available reserved blocks. * Temperature A normalized value of 100 represents a new drive, with * a threshold value at 10 indicating a need for * replacement. A value of 0 may mean that the drive is * operating in read-only mode to allow data recovery. * Previously (pre-2010) occasionally used for Drive * Temperature (more typically reported at 0xC2). * * Common denominator is that the first raw byte reports the temperature * in degrees C on almost all drives. Some drives may report a fractional * temperature in the second raw byte. * * Known exceptions (from libatasmart): * - SAMSUNG SV0412H and SAMSUNG SV1204H) report the temperature in 10th * degrees C in the first two raw bytes. * - A few Maxtor drives report an unknown or bad value in attribute 194. * - Certain Apple SSD drives report an unknown value in attribute 190. * Only certain firmware versions are affected. * * Those exceptions affect older ATA drives and are currently ignored. * Also, the second raw byte (possibly reporting the fractional temperature) * is currently ignored. * * Many drives also report temperature limits in additional SMART data raw * bytes. The format of those is not well defined and varies widely. * The driver does not currently attempt to report those limits. * * According to data in smartmontools, attribute 231 is rarely used to report * drive temperatures. At the same time, several drives report SSD life left * in attribute 231, but do not support temperature sensors. For this reason, * attribute 231 is currently ignored. * * Following above definitions, temperatures are reported as follows. * If SCT Command Transport is supported, it is used to read the * temperature and, if available, temperature limits. * - Otherwise, if SMART attribute 194 is supported, it is used to read * the temperature. * - Otherwise, if SMART attribute 190 is supported, it is used to read * the temperature. */ #include <linux/ata.h> #include <linux/bits.h> #include <linux/device.h> #include <linux/hwmon.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/module.h> #include <linux/mutex.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <scsi/scsi_driver.h> #include <scsi/scsi_proto.h> struct drivetemp_data { struct list_head list; /* list of instantiated devices */ struct mutex lock; /* protect data buffer accesses */ struct scsi_device *sdev; /* SCSI device */ struct device *dev; /* instantiating device */ struct device *hwdev; /* hardware monitoring device */ u8 smartdata[ATA_SECT_SIZE]; /* local buffer */ int (*get_temp)(struct drivetemp_data *st, u32 attr, long *val); bool have_temp_lowest; /* lowest temp in SCT status */ bool have_temp_highest; /* highest temp in SCT status */ bool have_temp_min; /* have min temp */ bool have_temp_max; /* have max temp */ bool have_temp_lcrit; /* have lower critical limit */ bool have_temp_crit; /* have critical limit */ int temp_min; /* min temp */ int temp_max; /* max temp */ int temp_lcrit; /* lower critical limit */ int temp_crit; /* critical limit */ }; static LIST_HEAD(drivetemp_devlist); #define ATA_MAX_SMART_ATTRS 30 #define SMART_TEMP_PROP_190 190 #define SMART_TEMP_PROP_194 194 #define SCT_STATUS_REQ_ADDR 0xe0 #define SCT_STATUS_VERSION_LOW 0 /* log byte offsets */ #define SCT_STATUS_VERSION_HIGH 1 #define SCT_STATUS_TEMP 200 #define SCT_STATUS_TEMP_LOWEST 201 #define SCT_STATUS_TEMP_HIGHEST 202 #define SCT_READ_LOG_ADDR 0xe1 #define SMART_READ_LOG 0xd5 #define SMART_WRITE_LOG 0xd6 #define INVALID_TEMP 0x80 #define temp_is_valid(temp) ((temp) != INVALID_TEMP) #define temp_from_sct(temp) (((s8)(temp)) * 1000) static inline bool ata_id_smart_supported(u16 *id) { return id[ATA_ID_COMMAND_SET_1] & BIT(0); } static inline bool ata_id_smart_enabled(u16 *id) { return id[ATA_ID_CFS_ENABLE_1] & BIT(0); } static int drivetemp_scsi_command(struct drivetemp_data *st, u8 ata_command, u8 feature, u8 lba_low, u8 lba_mid, u8 lba_high) { u8 scsi_cmd[MAX_COMMAND_SIZE]; int data_dir; memset(scsi_cmd, 0, sizeof(scsi_cmd)); scsi_cmd[0] = ATA_16; if (ata_command == ATA_CMD_SMART && feature == SMART_WRITE_LOG) { scsi_cmd[1] = (5 << 1); /* PIO Data-out */ /* * No off.line or cc, write to dev, block count in sector count * field. */ scsi_cmd[2] = 0x06; data_dir = DMA_TO_DEVICE; } else { scsi_cmd[1] = (4 << 1); /* PIO Data-in */ /* * No off.line or cc, read from dev, block count in sector count * field. */ scsi_cmd[2] = 0x0e; data_dir = DMA_FROM_DEVICE; } scsi_cmd[4] = feature; scsi_cmd[6] = 1; /* 1 sector */ scsi_cmd[8] = lba_low; scsi_cmd[10] = lba_mid; scsi_cmd[12] = lba_high; scsi_cmd[14] = ata_command; return scsi_execute_req(st->sdev, scsi_cmd, data_dir, st->smartdata, ATA_SECT_SIZE, NULL, HZ, 5, NULL); } static int drivetemp_ata_command(struct drivetemp_data *st, u8 feature, u8 select) { return drivetemp_scsi_command(st, ATA_CMD_SMART, feature, select, ATA_SMART_LBAM_PASS, ATA_SMART_LBAH_PASS); } static int drivetemp_get_smarttemp(struct drivetemp_data *st, u32 attr, long *temp) { u8 *buf = st->smartdata; bool have_temp = false; u8 temp_raw; u8 csum; int err; int i; err = drivetemp_ata_command(st, ATA_SMART_READ_VALUES, 0); if (err) return err; /* Checksum the read value table */ csum = 0; for (i = 0; i < ATA_SECT_SIZE; i++) csum += buf[i]; if (csum) { dev_dbg(&st->sdev->sdev_gendev, "checksum error reading SMART values\n"); return -EIO; } for (i = 0; i < ATA_MAX_SMART_ATTRS; i++) { u8 *attr = buf + i * 12; int id = attr[2]; if (!id) continue; if (id == SMART_TEMP_PROP_190) { temp_raw = attr[7]; have_temp = true; } if (id == SMART_TEMP_PROP_194) { temp_raw = attr[7]; have_temp = true; break; } } if (have_temp) { *temp = temp_raw * 1000; return 0; } return -ENXIO; } static int drivetemp_get_scttemp(struct drivetemp_data *st, u32 attr, long *val) { u8 *buf = st->smartdata; int err; err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_STATUS_REQ_ADDR); if (err) return err; switch (attr) { case hwmon_temp_input: if (!temp_is_valid(buf[SCT_STATUS_TEMP])) return -ENODATA; *val = temp_from_sct(buf[SCT_STATUS_TEMP]); break; case hwmon_temp_lowest: if (!temp_is_valid(buf[SCT_STATUS_TEMP_LOWEST])) return -ENODATA; *val = temp_from_sct(buf[SCT_STATUS_TEMP_LOWEST]); break; case hwmon_temp_highest: if (!temp_is_valid(buf[SCT_STATUS_TEMP_HIGHEST])) return -ENODATA; *val = temp_from_sct(buf[SCT_STATUS_TEMP_HIGHEST]); break; default: err = -EINVAL; break; } return err; } static int drivetemp_identify_sata(struct drivetemp_data *st) { struct scsi_device *sdev = st->sdev; u8 *buf = st->smartdata; struct scsi_vpd *vpd; bool is_ata, is_sata; bool have_sct_data_table; bool have_sct_temp; bool have_smart; bool have_sct; u16 *ata_id; u16 version; long temp; int err; /* SCSI-ATA Translation present? */ rcu_read_lock(); vpd = rcu_dereference(sdev->vpd_pg89); /* * Verify that ATA IDENTIFY DEVICE data is included in ATA Information * VPD and that the drive implements the SATA protocol. */ if (!vpd || vpd->len < 572 || vpd->data[56] != ATA_CMD_ID_ATA || vpd->data[36] != 0x34) { rcu_read_unlock(); return -ENODEV; } ata_id = (u16 *)&vpd->data[60]; is_ata = ata_id_is_ata(ata_id); is_sata = ata_id_is_sata(ata_id); have_sct = ata_id_sct_supported(ata_id); have_sct_data_table = ata_id_sct_data_tables(ata_id); have_smart = ata_id_smart_supported(ata_id) && ata_id_smart_enabled(ata_id); rcu_read_unlock(); /* bail out if this is not a SATA device */ if (!is_ata || !is_sata) return -ENODEV; if (!have_sct) goto skip_sct; err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_STATUS_REQ_ADDR); if (err) goto skip_sct; version = (buf[SCT_STATUS_VERSION_HIGH] << 8) | buf[SCT_STATUS_VERSION_LOW]; if (version != 2 && version != 3) goto skip_sct; have_sct_temp = temp_is_valid(buf[SCT_STATUS_TEMP]); if (!have_sct_temp) goto skip_sct; st->have_temp_lowest = temp_is_valid(buf[SCT_STATUS_TEMP_LOWEST]); st->have_temp_highest = temp_is_valid(buf[SCT_STATUS_TEMP_HIGHEST]); if (!have_sct_data_table) goto skip_sct_data; /* Request and read temperature history table */ memset(buf, '\0', sizeof(st->smartdata)); buf[0] = 5; /* data table command */ buf[2] = 1; /* read table */ buf[4] = 2; /* temperature history table */ err = drivetemp_ata_command(st, SMART_WRITE_LOG, SCT_STATUS_REQ_ADDR); if (err) goto skip_sct_data; err = drivetemp_ata_command(st, SMART_READ_LOG, SCT_READ_LOG_ADDR); if (err) goto skip_sct_data; /* * Temperature limits per AT Attachment 8 - * ATA/ATAPI Command Set (ATA8-ACS) */ st->have_temp_max = temp_is_valid(buf[6]); st->have_temp_crit = temp_is_valid(buf[7]); st->have_temp_min = temp_is_valid(buf[8]); st->have_temp_lcrit = temp_is_valid(buf[9]); st->temp_max = temp_from_sct(buf[6]); st->temp_crit = temp_from_sct(buf[7]); st->temp_min = temp_from_sct(buf[8]); st->temp_lcrit = temp_from_sct(buf[9]); skip_sct_data: if (have_sct_temp) { st->get_temp = drivetemp_get_scttemp; return 0; } skip_sct: if (!have_smart) return -ENODEV; st->get_temp = drivetemp_get_smarttemp; return drivetemp_get_smarttemp(st, hwmon_temp_input, &temp); } static int drivetemp_identify(struct drivetemp_data *st) { struct scsi_device *sdev = st->sdev; /* Bail out immediately if there is no inquiry data */ if (!sdev->inquiry || sdev->inquiry_len < 16) return -ENODEV; /* Disk device? */ if (sdev->type != TYPE_DISK && sdev->type != TYPE_ZBC) return -ENODEV; return drivetemp_identify_sata(st); } static int drivetemp_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct drivetemp_data *st = dev_get_drvdata(dev); int err = 0; if (type != hwmon_temp) return -EINVAL; switch (attr) { case hwmon_temp_input: case hwmon_temp_lowest: case hwmon_temp_highest: mutex_lock(&st->lock); err = st->get_temp(st, attr, val); mutex_unlock(&st->lock); break; case hwmon_temp_lcrit: *val = st->temp_lcrit; break; case hwmon_temp_min: *val = st->temp_min; break; case hwmon_temp_max: *val = st->temp_max; break; case hwmon_temp_crit: *val = st->temp_crit; break; default: err = -EINVAL; break; } return err; } static umode_t drivetemp_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { const struct drivetemp_data *st = data; switch (type) { case hwmon_temp: switch (attr) { case hwmon_temp_input: return 0444; case hwmon_temp_lowest: if (st->have_temp_lowest) return 0444; break; case hwmon_temp_highest: if (st->have_temp_highest) return 0444; break; case hwmon_temp_min: if (st->have_temp_min) return 0444; break; case hwmon_temp_max: if (st->have_temp_max) return 0444; break; case hwmon_temp_lcrit: if (st->have_temp_lcrit) return 0444; break; case hwmon_temp_crit: if (st->have_temp_crit) return 0444; break; default: break; } break; default: break; } return 0; } static const struct hwmon_channel_info *drivetemp_info[] = { HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ), HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_LOWEST | HWMON_T_HIGHEST | HWMON_T_MIN | HWMON_T_MAX | HWMON_T_LCRIT | HWMON_T_CRIT), NULL }; static const struct hwmon_ops drivetemp_ops = { .is_visible = drivetemp_is_visible, .read = drivetemp_read, }; static const struct hwmon_chip_info drivetemp_chip_info = { .ops = &drivetemp_ops, .info = drivetemp_info, }; /* * The device argument points to sdev->sdev_dev. Its parent is * sdev->sdev_gendev, which we can use to get the scsi_device pointer. */ static int drivetemp_add(struct device *dev, struct class_interface *intf) { struct scsi_device *sdev = to_scsi_device(dev->parent); struct drivetemp_data *st; int err; st = kzalloc(sizeof(*st), GFP_KERNEL); if (!st) return -ENOMEM; st->sdev = sdev; st->dev = dev; mutex_init(&st->lock); if (drivetemp_identify(st)) { err = -ENODEV; goto abort; } st->hwdev = hwmon_device_register_with_info(dev->parent, "drivetemp", st, &drivetemp_chip_info, NULL); if (IS_ERR(st->hwdev)) { err = PTR_ERR(st->hwdev); goto abort; } list_add(&st->list, &drivetemp_devlist); return 0; abort: kfree(st); return err; } static void drivetemp_remove(struct device *dev, struct class_interface *intf) { struct drivetemp_data *st, *tmp; list_for_each_entry_safe(st, tmp, &drivetemp_devlist, list) { if (st->dev == dev) { list_del(&st->list); hwmon_device_unregister(st->hwdev); kfree(st); break; } } } static struct class_interface drivetemp_interface = { .add_dev = drivetemp_add, .remove_dev = drivetemp_remove, }; static int __init drivetemp_init(void) { return scsi_register_interface(&drivetemp_interface); } static void __exit drivetemp_exit(void) { scsi_unregister_interface(&drivetemp_interface); } module_init(drivetemp_init); module_exit(drivetemp_exit); MODULE_AUTHOR("Guenter Roeck <linus@roeck-us.net>"); MODULE_DESCRIPTION("Hard drive temperature monitor"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1