Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jean Delvare | 581 | 45.14% | 14 | 46.67% |
Rudolf Marek | 508 | 39.47% | 6 | 20.00% |
Guenter Roeck | 158 | 12.28% | 4 | 13.33% |
Frank Myhr | 20 | 1.55% | 2 | 6.67% |
Joe Perches | 13 | 1.01% | 1 | 3.33% |
Mike Travis | 4 | 0.31% | 1 | 3.33% |
Thomas Gleixner | 2 | 0.16% | 1 | 3.33% |
jia zhang | 1 | 0.08% | 1 | 3.33% |
Total | 1287 | 30 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * hwmon-vid.c - VID/VRM/VRD voltage conversions * * Copyright (c) 2004 Rudolf Marek <r.marek@assembler.cz> * * Partly imported from i2c-vid.h of the lm_sensors project * Copyright (c) 2002 Mark D. Studebaker <mdsxyz123@yahoo.com> * With assistance from Trent Piepho <xyzzy@speakeasy.org> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/kernel.h> #include <linux/hwmon-vid.h> /* * Common code for decoding VID pins. * * References: * * For VRM 8.4 to 9.1, "VRM x.y DC-DC Converter Design Guidelines", * available at http://developer.intel.com/. * * For VRD 10.0 and up, "VRD x.y Design Guide", * available at http://developer.intel.com/. * * AMD Athlon 64 and AMD Opteron Processors, AMD Publication 26094, * http://support.amd.com/us/Processor_TechDocs/26094.PDF * Table 74. VID Code Voltages * This corresponds to an arbitrary VRM code of 24 in the functions below. * These CPU models (K8 revision <= E) have 5 VID pins. See also: * Revision Guide for AMD Athlon 64 and AMD Opteron Processors, AMD Publication 25759, * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25759.pdf * * AMD NPT Family 0Fh Processors, AMD Publication 32559, * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/32559.pdf * Table 71. VID Code Voltages * This corresponds to an arbitrary VRM code of 25 in the functions below. * These CPU models (K8 revision >= F) have 6 VID pins. See also: * Revision Guide for AMD NPT Family 0Fh Processors, AMD Publication 33610, * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf * * The 17 specification is in fact Intel Mobile Voltage Positioning - * (IMVP-II). You can find more information in the datasheet of Max1718 * http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2452 * * The 13 specification corresponds to the Intel Pentium M series. There * doesn't seem to be any named specification for these. The conversion * tables are detailed directly in the various Pentium M datasheets: * http://www.intel.com/design/intarch/pentiumm/docs_pentiumm.htm * * The 14 specification corresponds to Intel Core series. There * doesn't seem to be any named specification for these. The conversion * tables are detailed directly in the various Pentium Core datasheets: * http://www.intel.com/design/mobile/datashts/309221.htm * * The 110 (VRM 11) specification corresponds to Intel Conroe based series. * http://www.intel.com/design/processor/applnots/313214.htm */ /* * vrm is the VRM/VRD document version multiplied by 10. * val is the 4-bit or more VID code. * Returned value is in mV to avoid floating point in the kernel. * Some VID have some bits in uV scale, this is rounded to mV. */ int vid_from_reg(int val, u8 vrm) { int vid; switch (vrm) { case 100: /* VRD 10.0 */ /* compute in uV, round to mV */ val &= 0x3f; if ((val & 0x1f) == 0x1f) return 0; if ((val & 0x1f) <= 0x09 || val == 0x0a) vid = 1087500 - (val & 0x1f) * 25000; else vid = 1862500 - (val & 0x1f) * 25000; if (val & 0x20) vid -= 12500; return (vid + 500) / 1000; case 110: /* Intel Conroe */ /* compute in uV, round to mV */ val &= 0xff; if (val < 0x02 || val > 0xb2) return 0; return (1600000 - (val - 2) * 6250 + 500) / 1000; case 24: /* Athlon64 & Opteron */ val &= 0x1f; if (val == 0x1f) return 0; /* fall through */ case 25: /* AMD NPT 0Fh */ val &= 0x3f; return (val < 32) ? 1550 - 25 * val : 775 - (25 * (val - 31)) / 2; case 26: /* AMD family 10h to 15h, serial VID */ val &= 0x7f; if (val >= 0x7c) return 0; return DIV_ROUND_CLOSEST(15500 - 125 * val, 10); case 91: /* VRM 9.1 */ case 90: /* VRM 9.0 */ val &= 0x1f; return val == 0x1f ? 0 : 1850 - val * 25; case 85: /* VRM 8.5 */ val &= 0x1f; return (val & 0x10 ? 25 : 0) + ((val & 0x0f) > 0x04 ? 2050 : 1250) - ((val & 0x0f) * 50); case 84: /* VRM 8.4 */ val &= 0x0f; /* fall through */ case 82: /* VRM 8.2 */ val &= 0x1f; return val == 0x1f ? 0 : val & 0x10 ? 5100 - (val) * 100 : 2050 - (val) * 50; case 17: /* Intel IMVP-II */ val &= 0x1f; return val & 0x10 ? 975 - (val & 0xF) * 25 : 1750 - val * 50; case 13: case 131: val &= 0x3f; /* Exception for Eden ULV 500 MHz */ if (vrm == 131 && val == 0x3f) val++; return 1708 - val * 16; case 14: /* Intel Core */ /* compute in uV, round to mV */ val &= 0x7f; return val > 0x77 ? 0 : (1500000 - (val * 12500) + 500) / 1000; default: /* report 0 for unknown */ if (vrm) pr_warn("Requested unsupported VRM version (%u)\n", (unsigned int)vrm); return 0; } } EXPORT_SYMBOL(vid_from_reg); /* * After this point is the code to automatically determine which * VRM/VRD specification should be used depending on the CPU. */ struct vrm_model { u8 vendor; u8 family; u8 model_from; u8 model_to; u8 stepping_to; u8 vrm_type; }; #define ANY 0xFF #ifdef CONFIG_X86 /* * The stepping_to parameter is highest acceptable stepping for current line. * The model match must be exact for 4-bit values. For model values 0x10 * and above (extended model), all models below the parameter will match. */ static struct vrm_model vrm_models[] = { {X86_VENDOR_AMD, 0x6, 0x0, ANY, ANY, 90}, /* Athlon Duron etc */ {X86_VENDOR_AMD, 0xF, 0x0, 0x3F, ANY, 24}, /* Athlon 64, Opteron */ /* * In theory, all NPT family 0Fh processors have 6 VID pins and should * thus use vrm 25, however in practice not all mainboards route the * 6th VID pin because it is never needed. So we use the 5 VID pin * variant (vrm 24) for the models which exist today. */ {X86_VENDOR_AMD, 0xF, 0x40, 0x7F, ANY, 24}, /* NPT family 0Fh */ {X86_VENDOR_AMD, 0xF, 0x80, ANY, ANY, 25}, /* future fam. 0Fh */ {X86_VENDOR_AMD, 0x10, 0x0, ANY, ANY, 25}, /* NPT family 10h */ {X86_VENDOR_AMD, 0x11, 0x0, ANY, ANY, 26}, /* family 11h */ {X86_VENDOR_AMD, 0x12, 0x0, ANY, ANY, 26}, /* family 12h */ {X86_VENDOR_AMD, 0x14, 0x0, ANY, ANY, 26}, /* family 14h */ {X86_VENDOR_AMD, 0x15, 0x0, ANY, ANY, 26}, /* family 15h */ {X86_VENDOR_INTEL, 0x6, 0x0, 0x6, ANY, 82}, /* Pentium Pro, * Pentium II, Xeon, * Mobile Pentium, * Celeron */ {X86_VENDOR_INTEL, 0x6, 0x7, 0x7, ANY, 84}, /* Pentium III, Xeon */ {X86_VENDOR_INTEL, 0x6, 0x8, 0x8, ANY, 82}, /* Pentium III, Xeon */ {X86_VENDOR_INTEL, 0x6, 0x9, 0x9, ANY, 13}, /* Pentium M (130 nm) */ {X86_VENDOR_INTEL, 0x6, 0xA, 0xA, ANY, 82}, /* Pentium III Xeon */ {X86_VENDOR_INTEL, 0x6, 0xB, 0xB, ANY, 85}, /* Tualatin */ {X86_VENDOR_INTEL, 0x6, 0xD, 0xD, ANY, 13}, /* Pentium M (90 nm) */ {X86_VENDOR_INTEL, 0x6, 0xE, 0xE, ANY, 14}, /* Intel Core (65 nm) */ {X86_VENDOR_INTEL, 0x6, 0xF, ANY, ANY, 110}, /* Intel Conroe and * later */ {X86_VENDOR_INTEL, 0xF, 0x0, 0x0, ANY, 90}, /* P4 */ {X86_VENDOR_INTEL, 0xF, 0x1, 0x1, ANY, 90}, /* P4 Willamette */ {X86_VENDOR_INTEL, 0xF, 0x2, 0x2, ANY, 90}, /* P4 Northwood */ {X86_VENDOR_INTEL, 0xF, 0x3, ANY, ANY, 100}, /* Prescott and above * assume VRD 10 */ {X86_VENDOR_CENTAUR, 0x6, 0x7, 0x7, ANY, 85}, /* Eden ESP/Ezra */ {X86_VENDOR_CENTAUR, 0x6, 0x8, 0x8, 0x7, 85}, /* Ezra T */ {X86_VENDOR_CENTAUR, 0x6, 0x9, 0x9, 0x7, 85}, /* Nehemiah */ {X86_VENDOR_CENTAUR, 0x6, 0x9, 0x9, ANY, 17}, /* C3-M, Eden-N */ {X86_VENDOR_CENTAUR, 0x6, 0xA, 0xA, 0x7, 0}, /* No information */ {X86_VENDOR_CENTAUR, 0x6, 0xA, 0xA, ANY, 13}, /* C7-M, C7, * Eden (Esther) */ {X86_VENDOR_CENTAUR, 0x6, 0xD, 0xD, ANY, 134}, /* C7-D, C7-M, C7, * Eden (Esther) */ }; /* * Special case for VIA model D: there are two different possible * VID tables, so we have to figure out first, which one must be * used. This resolves temporary drm value 134 to 14 (Intel Core * 7-bit VID), 13 (Pentium M 6-bit VID) or 131 (Pentium M 6-bit VID * + quirk for Eden ULV 500 MHz). * Note: something similar might be needed for model A, I'm not sure. */ static u8 get_via_model_d_vrm(void) { unsigned int vid, brand, __maybe_unused dummy; static const char *brands[4] = { "C7-M", "C7", "Eden", "C7-D" }; rdmsr(0x198, dummy, vid); vid &= 0xff; rdmsr(0x1154, brand, dummy); brand = ((brand >> 4) ^ (brand >> 2)) & 0x03; if (vid > 0x3f) { pr_info("Using %d-bit VID table for VIA %s CPU\n", 7, brands[brand]); return 14; } else { pr_info("Using %d-bit VID table for VIA %s CPU\n", 6, brands[brand]); /* Enable quirk for Eden */ return brand == 2 ? 131 : 13; } } static u8 find_vrm(u8 family, u8 model, u8 stepping, u8 vendor) { int i; for (i = 0; i < ARRAY_SIZE(vrm_models); i++) { if (vendor == vrm_models[i].vendor && family == vrm_models[i].family && model >= vrm_models[i].model_from && model <= vrm_models[i].model_to && stepping <= vrm_models[i].stepping_to) return vrm_models[i].vrm_type; } return 0; } u8 vid_which_vrm(void) { struct cpuinfo_x86 *c = &cpu_data(0); u8 vrm_ret; if (c->x86 < 6) /* Any CPU with family lower than 6 */ return 0; /* doesn't have VID */ vrm_ret = find_vrm(c->x86, c->x86_model, c->x86_stepping, c->x86_vendor); if (vrm_ret == 134) vrm_ret = get_via_model_d_vrm(); if (vrm_ret == 0) pr_info("Unknown VRM version of your x86 CPU\n"); return vrm_ret; } /* and now for something completely different for the non-x86 world */ #else u8 vid_which_vrm(void) { pr_info("Unknown VRM version of your CPU\n"); return 0; } #endif EXPORT_SYMBOL(vid_which_vrm); MODULE_AUTHOR("Rudolf Marek <r.marek@assembler.cz>"); MODULE_DESCRIPTION("hwmon-vid driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1