Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
amy.shih | 2985 | 58.55% | 12 | 57.14% |
Vadim V. Vlasov | 1412 | 27.70% | 1 | 4.76% |
Guenter Roeck | 686 | 13.46% | 5 | 23.81% |
Jakob Albert | 7 | 0.14% | 1 | 4.76% |
Javier Martinez Canillas | 7 | 0.14% | 1 | 4.76% |
Thomas Gleixner | 1 | 0.02% | 1 | 4.76% |
Total | 5098 | 21 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * nct7904.c - driver for Nuvoton NCT7904D. * * Copyright (c) 2015 Kontron * Author: Vadim V. Vlasov <vvlasov@dev.rtsoft.ru> * * Copyright (c) 2019 Advantech * Author: Amy.Shih <amy.shih@advantech.com.tw> * * Supports the following chips: * * Chip #vin #fan #pwm #temp #dts chip ID * nct7904d 20 12 4 5 8 0xc5 */ #include <linux/module.h> #include <linux/device.h> #include <linux/init.h> #include <linux/i2c.h> #include <linux/mutex.h> #include <linux/hwmon.h> #define VENDOR_ID_REG 0x7A /* Any bank */ #define NUVOTON_ID 0x50 #define CHIP_ID_REG 0x7B /* Any bank */ #define NCT7904_ID 0xC5 #define DEVICE_ID_REG 0x7C /* Any bank */ #define BANK_SEL_REG 0xFF #define BANK_0 0x00 #define BANK_1 0x01 #define BANK_2 0x02 #define BANK_3 0x03 #define BANK_4 0x04 #define BANK_MAX 0x04 #define FANIN_MAX 12 /* Counted from 1 */ #define VSEN_MAX 21 /* VSEN1..14, 3VDD, VBAT, V3VSB, LTD (not a voltage), VSEN17..19 */ #define FANCTL_MAX 4 /* Counted from 1 */ #define TCPU_MAX 8 /* Counted from 1 */ #define TEMP_MAX 4 /* Counted from 1 */ #define SMI_STS_MAX 10 /* Counted from 1 */ #define VT_ADC_CTRL0_REG 0x20 /* Bank 0 */ #define VT_ADC_CTRL1_REG 0x21 /* Bank 0 */ #define VT_ADC_CTRL2_REG 0x22 /* Bank 0 */ #define FANIN_CTRL0_REG 0x24 #define FANIN_CTRL1_REG 0x25 #define DTS_T_CTRL0_REG 0x26 #define DTS_T_CTRL1_REG 0x27 #define VT_ADC_MD_REG 0x2E #define VSEN1_HV_LL_REG 0x02 /* Bank 1; 2 regs (HV/LV) per sensor */ #define VSEN1_LV_LL_REG 0x03 /* Bank 1; 2 regs (HV/LV) per sensor */ #define VSEN1_HV_HL_REG 0x00 /* Bank 1; 2 regs (HV/LV) per sensor */ #define VSEN1_LV_HL_REG 0x01 /* Bank 1; 2 regs (HV/LV) per sensor */ #define SMI_STS1_REG 0xC1 /* Bank 0; SMI Status Register */ #define SMI_STS3_REG 0xC3 /* Bank 0; SMI Status Register */ #define SMI_STS5_REG 0xC5 /* Bank 0; SMI Status Register */ #define SMI_STS7_REG 0xC7 /* Bank 0; SMI Status Register */ #define SMI_STS8_REG 0xC8 /* Bank 0; SMI Status Register */ #define VSEN1_HV_REG 0x40 /* Bank 0; 2 regs (HV/LV) per sensor */ #define TEMP_CH1_HV_REG 0x42 /* Bank 0; same as VSEN2_HV */ #define LTD_HV_REG 0x62 /* Bank 0; 2 regs in VSEN range */ #define LTD_HV_HL_REG 0x44 /* Bank 1; 1 reg for LTD */ #define LTD_LV_HL_REG 0x45 /* Bank 1; 1 reg for LTD */ #define LTD_HV_LL_REG 0x46 /* Bank 1; 1 reg for LTD */ #define LTD_LV_LL_REG 0x47 /* Bank 1; 1 reg for LTD */ #define TEMP_CH1_CH_REG 0x05 /* Bank 1; 1 reg for LTD */ #define TEMP_CH1_W_REG 0x06 /* Bank 1; 1 reg for LTD */ #define TEMP_CH1_WH_REG 0x07 /* Bank 1; 1 reg for LTD */ #define TEMP_CH1_C_REG 0x04 /* Bank 1; 1 reg per sensor */ #define DTS_T_CPU1_C_REG 0x90 /* Bank 1; 1 reg per sensor */ #define DTS_T_CPU1_CH_REG 0x91 /* Bank 1; 1 reg per sensor */ #define DTS_T_CPU1_W_REG 0x92 /* Bank 1; 1 reg per sensor */ #define DTS_T_CPU1_WH_REG 0x93 /* Bank 1; 1 reg per sensor */ #define FANIN1_HV_REG 0x80 /* Bank 0; 2 regs (HV/LV) per sensor */ #define FANIN1_HV_HL_REG 0x60 /* Bank 1; 2 regs (HV/LV) per sensor */ #define FANIN1_LV_HL_REG 0x61 /* Bank 1; 2 regs (HV/LV) per sensor */ #define T_CPU1_HV_REG 0xA0 /* Bank 0; 2 regs (HV/LV) per sensor */ #define PRTS_REG 0x03 /* Bank 2 */ #define PFE_REG 0x00 /* Bank 2; PECI Function Enable */ #define TSI_CTRL_REG 0x50 /* Bank 2; TSI Control Register */ #define FANCTL1_FMR_REG 0x00 /* Bank 3; 1 reg per channel */ #define FANCTL1_OUT_REG 0x10 /* Bank 3; 1 reg per channel */ #define VOLT_MONITOR_MODE 0x0 #define THERMAL_DIODE_MODE 0x1 #define THERMISTOR_MODE 0x3 #define ENABLE_TSI BIT(1) static const unsigned short normal_i2c[] = { 0x2d, 0x2e, I2C_CLIENT_END }; struct nct7904_data { struct i2c_client *client; struct mutex bank_lock; int bank_sel; u32 fanin_mask; u32 vsen_mask; u32 tcpu_mask; u8 fan_mode[FANCTL_MAX]; u8 enable_dts; u8 has_dts; u8 temp_mode; /* 0: TR mode, 1: TD mode */ u8 fan_alarm[2]; u8 vsen_alarm[3]; }; /* Access functions */ static int nct7904_bank_lock(struct nct7904_data *data, unsigned int bank) { int ret; mutex_lock(&data->bank_lock); if (data->bank_sel == bank) return 0; ret = i2c_smbus_write_byte_data(data->client, BANK_SEL_REG, bank); if (ret == 0) data->bank_sel = bank; else data->bank_sel = -1; return ret; } static inline void nct7904_bank_release(struct nct7904_data *data) { mutex_unlock(&data->bank_lock); } /* Read 1-byte register. Returns unsigned reg or -ERRNO on error. */ static int nct7904_read_reg(struct nct7904_data *data, unsigned int bank, unsigned int reg) { struct i2c_client *client = data->client; int ret; ret = nct7904_bank_lock(data, bank); if (ret == 0) ret = i2c_smbus_read_byte_data(client, reg); nct7904_bank_release(data); return ret; } /* * Read 2-byte register. Returns register in big-endian format or * -ERRNO on error. */ static int nct7904_read_reg16(struct nct7904_data *data, unsigned int bank, unsigned int reg) { struct i2c_client *client = data->client; int ret, hi; ret = nct7904_bank_lock(data, bank); if (ret == 0) { ret = i2c_smbus_read_byte_data(client, reg); if (ret >= 0) { hi = ret; ret = i2c_smbus_read_byte_data(client, reg + 1); if (ret >= 0) ret |= hi << 8; } } nct7904_bank_release(data); return ret; } /* Write 1-byte register. Returns 0 or -ERRNO on error. */ static int nct7904_write_reg(struct nct7904_data *data, unsigned int bank, unsigned int reg, u8 val) { struct i2c_client *client = data->client; int ret; ret = nct7904_bank_lock(data, bank); if (ret == 0) ret = i2c_smbus_write_byte_data(client, reg, val); nct7904_bank_release(data); return ret; } static int nct7904_read_fan(struct device *dev, u32 attr, int channel, long *val) { struct nct7904_data *data = dev_get_drvdata(dev); unsigned int cnt, rpm; int ret; switch (attr) { case hwmon_fan_input: ret = nct7904_read_reg16(data, BANK_0, FANIN1_HV_REG + channel * 2); if (ret < 0) return ret; cnt = ((ret & 0xff00) >> 3) | (ret & 0x1f); if (cnt == 0x1fff) rpm = 0; else rpm = 1350000 / cnt; *val = rpm; return 0; case hwmon_fan_min: ret = nct7904_read_reg16(data, BANK_1, FANIN1_HV_HL_REG + channel * 2); if (ret < 0) return ret; cnt = ((ret & 0xff00) >> 3) | (ret & 0x1f); if (cnt == 0x1fff) rpm = 0; else rpm = 1350000 / cnt; *val = rpm; return 0; case hwmon_fan_alarm: ret = nct7904_read_reg(data, BANK_0, SMI_STS5_REG + (channel >> 3)); if (ret < 0) return ret; if (!data->fan_alarm[channel >> 3]) data->fan_alarm[channel >> 3] = ret & 0xff; else /* If there is new alarm showing up */ data->fan_alarm[channel >> 3] |= (ret & 0xff); *val = (data->fan_alarm[channel >> 3] >> (channel & 0x07)) & 1; /* Needs to clean the alarm if alarm existing */ if (*val) data->fan_alarm[channel >> 3] ^= 1 << (channel & 0x07); return 0; default: return -EOPNOTSUPP; } } static umode_t nct7904_fan_is_visible(const void *_data, u32 attr, int channel) { const struct nct7904_data *data = _data; switch (attr) { case hwmon_fan_input: case hwmon_fan_alarm: if (data->fanin_mask & (1 << channel)) return 0444; break; case hwmon_fan_min: if (data->fanin_mask & (1 << channel)) return 0644; break; default: break; } return 0; } static u8 nct7904_chan_to_index[] = { 0, /* Not used */ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 16 }; static int nct7904_read_in(struct device *dev, u32 attr, int channel, long *val) { struct nct7904_data *data = dev_get_drvdata(dev); int ret, volt, index; index = nct7904_chan_to_index[channel]; switch (attr) { case hwmon_in_input: ret = nct7904_read_reg16(data, BANK_0, VSEN1_HV_REG + index * 2); if (ret < 0) return ret; volt = ((ret & 0xff00) >> 5) | (ret & 0x7); if (index < 14) volt *= 2; /* 0.002V scale */ else volt *= 6; /* 0.006V scale */ *val = volt; return 0; case hwmon_in_min: ret = nct7904_read_reg16(data, BANK_1, VSEN1_HV_LL_REG + index * 4); if (ret < 0) return ret; volt = ((ret & 0xff00) >> 5) | (ret & 0x7); if (index < 14) volt *= 2; /* 0.002V scale */ else volt *= 6; /* 0.006V scale */ *val = volt; return 0; case hwmon_in_max: ret = nct7904_read_reg16(data, BANK_1, VSEN1_HV_HL_REG + index * 4); if (ret < 0) return ret; volt = ((ret & 0xff00) >> 5) | (ret & 0x7); if (index < 14) volt *= 2; /* 0.002V scale */ else volt *= 6; /* 0.006V scale */ *val = volt; return 0; case hwmon_in_alarm: ret = nct7904_read_reg(data, BANK_0, SMI_STS1_REG + (index >> 3)); if (ret < 0) return ret; if (!data->vsen_alarm[index >> 3]) data->vsen_alarm[index >> 3] = ret & 0xff; else /* If there is new alarm showing up */ data->vsen_alarm[index >> 3] |= (ret & 0xff); *val = (data->vsen_alarm[index >> 3] >> (index & 0x07)) & 1; /* Needs to clean the alarm if alarm existing */ if (*val) data->vsen_alarm[index >> 3] ^= 1 << (index & 0x07); return 0; default: return -EOPNOTSUPP; } } static umode_t nct7904_in_is_visible(const void *_data, u32 attr, int channel) { const struct nct7904_data *data = _data; int index = nct7904_chan_to_index[channel]; switch (attr) { case hwmon_in_input: case hwmon_in_alarm: if (channel > 0 && (data->vsen_mask & BIT(index))) return 0444; break; case hwmon_in_min: case hwmon_in_max: if (channel > 0 && (data->vsen_mask & BIT(index))) return 0644; break; default: break; } return 0; } static int nct7904_read_temp(struct device *dev, u32 attr, int channel, long *val) { struct nct7904_data *data = dev_get_drvdata(dev); int ret, temp; unsigned int reg1, reg2, reg3; s8 temps; switch (attr) { case hwmon_temp_input: if (channel == 4) ret = nct7904_read_reg16(data, BANK_0, LTD_HV_REG); else if (channel < 5) ret = nct7904_read_reg16(data, BANK_0, TEMP_CH1_HV_REG + channel * 4); else ret = nct7904_read_reg16(data, BANK_0, T_CPU1_HV_REG + (channel - 5) * 2); if (ret < 0) return ret; temp = ((ret & 0xff00) >> 5) | (ret & 0x7); *val = sign_extend32(temp, 10) * 125; return 0; case hwmon_temp_alarm: if (channel == 4) { ret = nct7904_read_reg(data, BANK_0, SMI_STS3_REG); if (ret < 0) return ret; *val = (ret >> 1) & 1; } else if (channel < 4) { ret = nct7904_read_reg(data, BANK_0, SMI_STS1_REG); if (ret < 0) return ret; *val = (ret >> (((channel * 2) + 1) & 0x07)) & 1; } else { if ((channel - 5) < 4) { ret = nct7904_read_reg(data, BANK_0, SMI_STS7_REG + ((channel - 5) >> 3)); if (ret < 0) return ret; *val = (ret >> ((channel - 5) & 0x07)) & 1; } else { ret = nct7904_read_reg(data, BANK_0, SMI_STS8_REG + ((channel - 5) >> 3)); if (ret < 0) return ret; *val = (ret >> (((channel - 5) & 0x07) - 4)) & 1; } } return 0; case hwmon_temp_type: if (channel < 5) { if ((data->tcpu_mask >> channel) & 0x01) { if ((data->temp_mode >> channel) & 0x01) *val = 3; /* TD */ else *val = 4; /* TR */ } else { *val = 0; } } else { if ((data->has_dts >> (channel - 5)) & 0x01) { if (data->enable_dts & ENABLE_TSI) *val = 5; /* TSI */ else *val = 6; /* PECI */ } else { *val = 0; } } return 0; case hwmon_temp_max: reg1 = LTD_HV_LL_REG; reg2 = TEMP_CH1_W_REG; reg3 = DTS_T_CPU1_W_REG; break; case hwmon_temp_max_hyst: reg1 = LTD_LV_LL_REG; reg2 = TEMP_CH1_WH_REG; reg3 = DTS_T_CPU1_WH_REG; break; case hwmon_temp_crit: reg1 = LTD_HV_HL_REG; reg2 = TEMP_CH1_C_REG; reg3 = DTS_T_CPU1_C_REG; break; case hwmon_temp_crit_hyst: reg1 = LTD_LV_HL_REG; reg2 = TEMP_CH1_CH_REG; reg3 = DTS_T_CPU1_CH_REG; break; default: return -EOPNOTSUPP; } if (channel == 4) ret = nct7904_read_reg(data, BANK_1, reg1); else if (channel < 5) ret = nct7904_read_reg(data, BANK_1, reg2 + channel * 8); else ret = nct7904_read_reg(data, BANK_1, reg3 + (channel - 5) * 4); if (ret < 0) return ret; temps = ret; *val = temps * 1000; return 0; } static umode_t nct7904_temp_is_visible(const void *_data, u32 attr, int channel) { const struct nct7904_data *data = _data; switch (attr) { case hwmon_temp_input: case hwmon_temp_alarm: case hwmon_temp_type: if (channel < 5) { if (data->tcpu_mask & BIT(channel)) return 0444; } else { if (data->has_dts & BIT(channel - 5)) return 0444; } break; case hwmon_temp_max: case hwmon_temp_max_hyst: case hwmon_temp_crit: case hwmon_temp_crit_hyst: if (channel < 5) { if (data->tcpu_mask & BIT(channel)) return 0644; } else { if (data->has_dts & BIT(channel - 5)) return 0644; } break; default: break; } return 0; } static int nct7904_read_pwm(struct device *dev, u32 attr, int channel, long *val) { struct nct7904_data *data = dev_get_drvdata(dev); int ret; switch (attr) { case hwmon_pwm_input: ret = nct7904_read_reg(data, BANK_3, FANCTL1_OUT_REG + channel); if (ret < 0) return ret; *val = ret; return 0; case hwmon_pwm_enable: ret = nct7904_read_reg(data, BANK_3, FANCTL1_FMR_REG + channel); if (ret < 0) return ret; *val = ret ? 2 : 1; return 0; default: return -EOPNOTSUPP; } } static int nct7904_write_temp(struct device *dev, u32 attr, int channel, long val) { struct nct7904_data *data = dev_get_drvdata(dev); int ret; unsigned int reg1, reg2, reg3; val = clamp_val(val / 1000, -128, 127); switch (attr) { case hwmon_temp_max: reg1 = LTD_HV_LL_REG; reg2 = TEMP_CH1_W_REG; reg3 = DTS_T_CPU1_W_REG; break; case hwmon_temp_max_hyst: reg1 = LTD_LV_LL_REG; reg2 = TEMP_CH1_WH_REG; reg3 = DTS_T_CPU1_WH_REG; break; case hwmon_temp_crit: reg1 = LTD_HV_HL_REG; reg2 = TEMP_CH1_C_REG; reg3 = DTS_T_CPU1_C_REG; break; case hwmon_temp_crit_hyst: reg1 = LTD_LV_HL_REG; reg2 = TEMP_CH1_CH_REG; reg3 = DTS_T_CPU1_CH_REG; break; default: return -EOPNOTSUPP; } if (channel == 4) ret = nct7904_write_reg(data, BANK_1, reg1, val); else if (channel < 5) ret = nct7904_write_reg(data, BANK_1, reg2 + channel * 8, val); else ret = nct7904_write_reg(data, BANK_1, reg3 + (channel - 5) * 4, val); return ret; } static int nct7904_write_fan(struct device *dev, u32 attr, int channel, long val) { struct nct7904_data *data = dev_get_drvdata(dev); int ret; u8 tmp; switch (attr) { case hwmon_fan_min: if (val <= 0) return -EINVAL; val = clamp_val(DIV_ROUND_CLOSEST(1350000, val), 1, 0x1fff); tmp = (val >> 5) & 0xff; ret = nct7904_write_reg(data, BANK_1, FANIN1_HV_HL_REG + channel * 2, tmp); if (ret < 0) return ret; tmp = val & 0x1f; ret = nct7904_write_reg(data, BANK_1, FANIN1_LV_HL_REG + channel * 2, tmp); return ret; default: return -EOPNOTSUPP; } } static int nct7904_write_in(struct device *dev, u32 attr, int channel, long val) { struct nct7904_data *data = dev_get_drvdata(dev); int ret, index, tmp; index = nct7904_chan_to_index[channel]; if (index < 14) val = val / 2; /* 0.002V scale */ else val = val / 6; /* 0.006V scale */ val = clamp_val(val, 0, 0x7ff); switch (attr) { case hwmon_in_min: tmp = nct7904_read_reg(data, BANK_1, VSEN1_LV_LL_REG + index * 4); if (tmp < 0) return tmp; tmp &= ~0x7; tmp |= val & 0x7; ret = nct7904_write_reg(data, BANK_1, VSEN1_LV_LL_REG + index * 4, tmp); if (ret < 0) return ret; tmp = nct7904_read_reg(data, BANK_1, VSEN1_HV_LL_REG + index * 4); if (tmp < 0) return tmp; tmp = (val >> 3) & 0xff; ret = nct7904_write_reg(data, BANK_1, VSEN1_HV_LL_REG + index * 4, tmp); return ret; case hwmon_in_max: tmp = nct7904_read_reg(data, BANK_1, VSEN1_LV_HL_REG + index * 4); if (tmp < 0) return tmp; tmp &= ~0x7; tmp |= val & 0x7; ret = nct7904_write_reg(data, BANK_1, VSEN1_LV_HL_REG + index * 4, tmp); if (ret < 0) return ret; tmp = nct7904_read_reg(data, BANK_1, VSEN1_HV_HL_REG + index * 4); if (tmp < 0) return tmp; tmp = (val >> 3) & 0xff; ret = nct7904_write_reg(data, BANK_1, VSEN1_HV_HL_REG + index * 4, tmp); return ret; default: return -EOPNOTSUPP; } } static int nct7904_write_pwm(struct device *dev, u32 attr, int channel, long val) { struct nct7904_data *data = dev_get_drvdata(dev); int ret; switch (attr) { case hwmon_pwm_input: if (val < 0 || val > 255) return -EINVAL; ret = nct7904_write_reg(data, BANK_3, FANCTL1_OUT_REG + channel, val); return ret; case hwmon_pwm_enable: if (val < 1 || val > 2 || (val == 2 && !data->fan_mode[channel])) return -EINVAL; ret = nct7904_write_reg(data, BANK_3, FANCTL1_FMR_REG + channel, val == 2 ? data->fan_mode[channel] : 0); return ret; default: return -EOPNOTSUPP; } } static umode_t nct7904_pwm_is_visible(const void *_data, u32 attr, int channel) { switch (attr) { case hwmon_pwm_input: case hwmon_pwm_enable: return 0644; default: return 0; } } static int nct7904_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { switch (type) { case hwmon_in: return nct7904_read_in(dev, attr, channel, val); case hwmon_fan: return nct7904_read_fan(dev, attr, channel, val); case hwmon_pwm: return nct7904_read_pwm(dev, attr, channel, val); case hwmon_temp: return nct7904_read_temp(dev, attr, channel, val); default: return -EOPNOTSUPP; } } static int nct7904_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { switch (type) { case hwmon_in: return nct7904_write_in(dev, attr, channel, val); case hwmon_fan: return nct7904_write_fan(dev, attr, channel, val); case hwmon_pwm: return nct7904_write_pwm(dev, attr, channel, val); case hwmon_temp: return nct7904_write_temp(dev, attr, channel, val); default: return -EOPNOTSUPP; } } static umode_t nct7904_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { switch (type) { case hwmon_in: return nct7904_in_is_visible(data, attr, channel); case hwmon_fan: return nct7904_fan_is_visible(data, attr, channel); case hwmon_pwm: return nct7904_pwm_is_visible(data, attr, channel); case hwmon_temp: return nct7904_temp_is_visible(data, attr, channel); default: return 0; } } /* Return 0 if detection is successful, -ENODEV otherwise */ static int nct7904_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_READ_BYTE | I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) return -ENODEV; /* Determine the chip type. */ if (i2c_smbus_read_byte_data(client, VENDOR_ID_REG) != NUVOTON_ID || i2c_smbus_read_byte_data(client, CHIP_ID_REG) != NCT7904_ID || (i2c_smbus_read_byte_data(client, DEVICE_ID_REG) & 0xf0) != 0x50 || (i2c_smbus_read_byte_data(client, BANK_SEL_REG) & 0xf8) != 0x00) return -ENODEV; strlcpy(info->type, "nct7904", I2C_NAME_SIZE); return 0; } static const struct hwmon_channel_info *nct7904_info[] = { HWMON_CHANNEL_INFO(in, /* dummy, skipped in is_visible */ HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM, HWMON_I_INPUT | HWMON_I_MIN | HWMON_I_MAX | HWMON_I_ALARM), HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM, HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM, HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM, HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM, HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM, HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM, HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM, HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM, HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM, HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM, HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM, HWMON_F_INPUT | HWMON_F_MIN | HWMON_F_ALARM), HWMON_CHANNEL_INFO(pwm, HWMON_PWM_INPUT | HWMON_PWM_ENABLE, HWMON_PWM_INPUT | HWMON_PWM_ENABLE, HWMON_PWM_INPUT | HWMON_PWM_ENABLE, HWMON_PWM_INPUT | HWMON_PWM_ENABLE), HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT | HWMON_T_CRIT_HYST, HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT | HWMON_T_CRIT_HYST, HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT | HWMON_T_CRIT_HYST, HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT | HWMON_T_CRIT_HYST, HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT | HWMON_T_CRIT_HYST, HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT | HWMON_T_CRIT_HYST, HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT | HWMON_T_CRIT_HYST, HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT | HWMON_T_CRIT_HYST, HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT | HWMON_T_CRIT_HYST, HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT | HWMON_T_CRIT_HYST, HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT | HWMON_T_CRIT_HYST, HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT | HWMON_T_CRIT_HYST, HWMON_T_INPUT | HWMON_T_ALARM | HWMON_T_MAX | HWMON_T_MAX_HYST | HWMON_T_TYPE | HWMON_T_CRIT | HWMON_T_CRIT_HYST), NULL }; static const struct hwmon_ops nct7904_hwmon_ops = { .is_visible = nct7904_is_visible, .read = nct7904_read, .write = nct7904_write, }; static const struct hwmon_chip_info nct7904_chip_info = { .ops = &nct7904_hwmon_ops, .info = nct7904_info, }; static int nct7904_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct nct7904_data *data; struct device *hwmon_dev; struct device *dev = &client->dev; int ret, i; u32 mask; u8 val, bit; data = devm_kzalloc(dev, sizeof(struct nct7904_data), GFP_KERNEL); if (!data) return -ENOMEM; data->client = client; mutex_init(&data->bank_lock); data->bank_sel = -1; /* Setup sensor groups. */ /* FANIN attributes */ ret = nct7904_read_reg16(data, BANK_0, FANIN_CTRL0_REG); if (ret < 0) return ret; data->fanin_mask = (ret >> 8) | ((ret & 0xff) << 8); /* * VSEN attributes * * Note: voltage sensors overlap with external temperature * sensors. So, if we ever decide to support the latter * we will have to adjust 'vsen_mask' accordingly. */ mask = 0; ret = nct7904_read_reg16(data, BANK_0, VT_ADC_CTRL0_REG); if (ret >= 0) mask = (ret >> 8) | ((ret & 0xff) << 8); ret = nct7904_read_reg(data, BANK_0, VT_ADC_CTRL2_REG); if (ret >= 0) mask |= (ret << 16); data->vsen_mask = mask; /* CPU_TEMP attributes */ ret = nct7904_read_reg(data, BANK_0, VT_ADC_CTRL0_REG); if (ret < 0) return ret; if ((ret & 0x6) == 0x6) data->tcpu_mask |= 1; /* TR1 */ if ((ret & 0x18) == 0x18) data->tcpu_mask |= 2; /* TR2 */ if ((ret & 0x20) == 0x20) data->tcpu_mask |= 4; /* TR3 */ if ((ret & 0x80) == 0x80) data->tcpu_mask |= 8; /* TR4 */ /* LTD */ ret = nct7904_read_reg(data, BANK_0, VT_ADC_CTRL2_REG); if (ret < 0) return ret; if ((ret & 0x02) == 0x02) data->tcpu_mask |= 0x10; /* Multi-Function detecting for Volt and TR/TD */ ret = nct7904_read_reg(data, BANK_0, VT_ADC_MD_REG); if (ret < 0) return ret; data->temp_mode = 0; for (i = 0; i < 4; i++) { val = (ret >> (i * 2)) & 0x03; bit = (1 << i); if (val == VOLT_MONITOR_MODE) { data->tcpu_mask &= ~bit; } else if (val == THERMAL_DIODE_MODE && i < 2) { data->temp_mode |= bit; data->vsen_mask &= ~(0x06 << (i * 2)); } else if (val == THERMISTOR_MODE) { data->vsen_mask &= ~(0x02 << (i * 2)); } else { /* Reserved */ data->tcpu_mask &= ~bit; data->vsen_mask &= ~(0x06 << (i * 2)); } } /* PECI */ ret = nct7904_read_reg(data, BANK_2, PFE_REG); if (ret < 0) return ret; if (ret & 0x80) { data->enable_dts = 1; /* Enable DTS & PECI */ } else { ret = nct7904_read_reg(data, BANK_2, TSI_CTRL_REG); if (ret < 0) return ret; if (ret & 0x80) data->enable_dts = 0x3; /* Enable DTS & TSI */ } /* Check DTS enable status */ if (data->enable_dts) { ret = nct7904_read_reg(data, BANK_0, DTS_T_CTRL0_REG); if (ret < 0) return ret; data->has_dts = ret & 0xF; if (data->enable_dts & ENABLE_TSI) { ret = nct7904_read_reg(data, BANK_0, DTS_T_CTRL1_REG); if (ret < 0) return ret; data->has_dts |= (ret & 0xF) << 4; } } for (i = 0; i < FANCTL_MAX; i++) { ret = nct7904_read_reg(data, BANK_3, FANCTL1_FMR_REG + i); if (ret < 0) return ret; data->fan_mode[i] = ret; } /* Read all of SMI status register to clear alarms */ for (i = 0; i < SMI_STS_MAX; i++) { ret = nct7904_read_reg(data, BANK_0, SMI_STS1_REG + i); if (ret < 0) return ret; } hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name, data, &nct7904_chip_info, NULL); return PTR_ERR_OR_ZERO(hwmon_dev); } static const struct i2c_device_id nct7904_id[] = { {"nct7904", 0}, {} }; MODULE_DEVICE_TABLE(i2c, nct7904_id); static struct i2c_driver nct7904_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "nct7904", }, .probe = nct7904_probe, .id_table = nct7904_id, .detect = nct7904_detect, .address_list = normal_i2c, }; module_i2c_driver(nct7904_driver); MODULE_AUTHOR("Vadim V. Vlasov <vvlasov@dev.rtsoft.ru>"); MODULE_DESCRIPTION("Hwmon driver for NUVOTON NCT7904"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1