Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anders Berg | 2164 | 53.58% | 1 | 6.25% |
Krzysztof Adamski | 1556 | 38.52% | 6 | 37.50% |
Alexander Sverdlin | 197 | 4.88% | 1 | 6.25% |
Tobias Jordan | 39 | 0.97% | 1 | 6.25% |
Alexey Khoroshilov | 35 | 0.87% | 1 | 6.25% |
Wolfram Sang | 26 | 0.64% | 1 | 6.25% |
Peter Rosin | 15 | 0.37% | 1 | 6.25% |
Nicholas Mc Guire | 2 | 0.05% | 1 | 6.25% |
Andy Shevchenko | 2 | 0.05% | 1 | 6.25% |
Thomas Gleixner | 2 | 0.05% | 1 | 6.25% |
Julia Lawall | 1 | 0.02% | 1 | 6.25% |
Total | 4039 | 16 |
// SPDX-License-Identifier: GPL-2.0-only /* * This driver implements I2C master functionality using the LSI API2C * controller. * * NOTE: The controller has a limitation in that it can only do transfers of * maximum 255 bytes at a time. If a larger transfer is attempted, error code * (-EINVAL) is returned. */ #include <linux/clk.h> #include <linux/clkdev.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/platform_device.h> #define SCL_WAIT_TIMEOUT_NS 25000000 #define I2C_XFER_TIMEOUT (msecs_to_jiffies(250)) #define I2C_STOP_TIMEOUT (msecs_to_jiffies(100)) #define FIFO_SIZE 8 #define SEQ_LEN 2 #define GLOBAL_CONTROL 0x00 #define GLOBAL_MST_EN BIT(0) #define GLOBAL_SLV_EN BIT(1) #define GLOBAL_IBML_EN BIT(2) #define INTERRUPT_STATUS 0x04 #define INTERRUPT_ENABLE 0x08 #define INT_SLV BIT(1) #define INT_MST BIT(0) #define WAIT_TIMER_CONTROL 0x0c #define WT_EN BIT(15) #define WT_VALUE(_x) ((_x) & 0x7fff) #define IBML_TIMEOUT 0x10 #define IBML_LOW_MEXT 0x14 #define IBML_LOW_SEXT 0x18 #define TIMER_CLOCK_DIV 0x1c #define I2C_BUS_MONITOR 0x20 #define BM_SDAC BIT(3) #define BM_SCLC BIT(2) #define BM_SDAS BIT(1) #define BM_SCLS BIT(0) #define SOFT_RESET 0x24 #define MST_COMMAND 0x28 #define CMD_BUSY (1<<3) #define CMD_MANUAL (0x00 | CMD_BUSY) #define CMD_AUTO (0x01 | CMD_BUSY) #define CMD_SEQUENCE (0x02 | CMD_BUSY) #define MST_RX_XFER 0x2c #define MST_TX_XFER 0x30 #define MST_ADDR_1 0x34 #define MST_ADDR_2 0x38 #define MST_DATA 0x3c #define MST_TX_FIFO 0x40 #define MST_RX_FIFO 0x44 #define MST_INT_ENABLE 0x48 #define MST_INT_STATUS 0x4c #define MST_STATUS_RFL (1 << 13) /* RX FIFO serivce */ #define MST_STATUS_TFL (1 << 12) /* TX FIFO service */ #define MST_STATUS_SNS (1 << 11) /* Manual mode done */ #define MST_STATUS_SS (1 << 10) /* Automatic mode done */ #define MST_STATUS_SCC (1 << 9) /* Stop complete */ #define MST_STATUS_IP (1 << 8) /* Invalid parameter */ #define MST_STATUS_TSS (1 << 7) /* Timeout */ #define MST_STATUS_AL (1 << 6) /* Arbitration lost */ #define MST_STATUS_ND (1 << 5) /* NAK on data phase */ #define MST_STATUS_NA (1 << 4) /* NAK on address phase */ #define MST_STATUS_NAK (MST_STATUS_NA | \ MST_STATUS_ND) #define MST_STATUS_ERR (MST_STATUS_NAK | \ MST_STATUS_AL | \ MST_STATUS_IP) #define MST_TX_BYTES_XFRD 0x50 #define MST_RX_BYTES_XFRD 0x54 #define SLV_ADDR_DEC_CTL 0x58 #define SLV_ADDR_DEC_GCE BIT(0) /* ACK to General Call Address from own master (loopback) */ #define SLV_ADDR_DEC_OGCE BIT(1) /* ACK to General Call Address from external masters */ #define SLV_ADDR_DEC_SA1E BIT(2) /* ACK to addr_1 enabled */ #define SLV_ADDR_DEC_SA1M BIT(3) /* 10-bit addressing for addr_1 enabled */ #define SLV_ADDR_DEC_SA2E BIT(4) /* ACK to addr_2 enabled */ #define SLV_ADDR_DEC_SA2M BIT(5) /* 10-bit addressing for addr_2 enabled */ #define SLV_ADDR_1 0x5c #define SLV_ADDR_2 0x60 #define SLV_RX_CTL 0x64 #define SLV_RX_ACSA1 BIT(0) /* Generate ACK for writes to addr_1 */ #define SLV_RX_ACSA2 BIT(1) /* Generate ACK for writes to addr_2 */ #define SLV_RX_ACGCA BIT(2) /* ACK data phase transfers to General Call Address */ #define SLV_DATA 0x68 #define SLV_RX_FIFO 0x6c #define SLV_FIFO_DV1 BIT(0) /* Data Valid for addr_1 */ #define SLV_FIFO_DV2 BIT(1) /* Data Valid for addr_2 */ #define SLV_FIFO_AS BIT(2) /* (N)ACK Sent */ #define SLV_FIFO_TNAK BIT(3) /* Timeout NACK */ #define SLV_FIFO_STRC BIT(4) /* First byte after start condition received */ #define SLV_FIFO_RSC BIT(5) /* Repeated Start Condition */ #define SLV_FIFO_STPC BIT(6) /* Stop Condition */ #define SLV_FIFO_DV (SLV_FIFO_DV1 | SLV_FIFO_DV2) #define SLV_INT_ENABLE 0x70 #define SLV_INT_STATUS 0x74 #define SLV_STATUS_RFH BIT(0) /* FIFO service */ #define SLV_STATUS_WTC BIT(1) /* Write transfer complete */ #define SLV_STATUS_SRS1 BIT(2) /* Slave read from addr 1 */ #define SLV_STATUS_SRRS1 BIT(3) /* Repeated start from addr 1 */ #define SLV_STATUS_SRND1 BIT(4) /* Read request not following start condition */ #define SLV_STATUS_SRC1 BIT(5) /* Read canceled */ #define SLV_STATUS_SRAT1 BIT(6) /* Slave Read timed out */ #define SLV_STATUS_SRDRE1 BIT(7) /* Data written after timed out */ #define SLV_READ_DUMMY 0x78 #define SCL_HIGH_PERIOD 0x80 #define SCL_LOW_PERIOD 0x84 #define SPIKE_FLTR_LEN 0x88 #define SDA_SETUP_TIME 0x8c #define SDA_HOLD_TIME 0x90 /** * axxia_i2c_dev - I2C device context * @base: pointer to register struct * @msg: pointer to current message * @msg_r: pointer to current read message (sequence transfer) * @msg_xfrd: number of bytes transferred in tx_fifo * @msg_xfrd_r: number of bytes transferred in rx_fifo * @msg_err: error code for completed message * @msg_complete: xfer completion object * @dev: device reference * @adapter: core i2c abstraction * @i2c_clk: clock reference for i2c input clock * @bus_clk_rate: current i2c bus clock rate * @last: a flag indicating is this is last message in transfer */ struct axxia_i2c_dev { void __iomem *base; struct i2c_msg *msg; struct i2c_msg *msg_r; size_t msg_xfrd; size_t msg_xfrd_r; int msg_err; struct completion msg_complete; struct device *dev; struct i2c_adapter adapter; struct clk *i2c_clk; u32 bus_clk_rate; bool last; struct i2c_client *slave; int irq; }; static void i2c_int_disable(struct axxia_i2c_dev *idev, u32 mask) { u32 int_en; int_en = readl(idev->base + MST_INT_ENABLE); writel(int_en & ~mask, idev->base + MST_INT_ENABLE); } static void i2c_int_enable(struct axxia_i2c_dev *idev, u32 mask) { u32 int_en; int_en = readl(idev->base + MST_INT_ENABLE); writel(int_en | mask, idev->base + MST_INT_ENABLE); } /** * ns_to_clk - Convert time (ns) to clock cycles for the given clock frequency. */ static u32 ns_to_clk(u64 ns, u32 clk_mhz) { return div_u64(ns * clk_mhz, 1000); } static int axxia_i2c_init(struct axxia_i2c_dev *idev) { u32 divisor = clk_get_rate(idev->i2c_clk) / idev->bus_clk_rate; u32 clk_mhz = clk_get_rate(idev->i2c_clk) / 1000000; u32 t_setup; u32 t_high, t_low; u32 tmo_clk; u32 prescale; unsigned long timeout; dev_dbg(idev->dev, "rate=%uHz per_clk=%uMHz -> ratio=1:%u\n", idev->bus_clk_rate, clk_mhz, divisor); /* Reset controller */ writel(0x01, idev->base + SOFT_RESET); timeout = jiffies + msecs_to_jiffies(100); while (readl(idev->base + SOFT_RESET) & 1) { if (time_after(jiffies, timeout)) { dev_warn(idev->dev, "Soft reset failed\n"); break; } } /* Enable Master Mode */ writel(0x1, idev->base + GLOBAL_CONTROL); if (idev->bus_clk_rate <= I2C_MAX_STANDARD_MODE_FREQ) { /* Standard mode SCL 50/50, tSU:DAT = 250 ns */ t_high = divisor * 1 / 2; t_low = divisor * 1 / 2; t_setup = ns_to_clk(250, clk_mhz); } else { /* Fast mode SCL 33/66, tSU:DAT = 100 ns */ t_high = divisor * 1 / 3; t_low = divisor * 2 / 3; t_setup = ns_to_clk(100, clk_mhz); } /* SCL High Time */ writel(t_high, idev->base + SCL_HIGH_PERIOD); /* SCL Low Time */ writel(t_low, idev->base + SCL_LOW_PERIOD); /* SDA Setup Time */ writel(t_setup, idev->base + SDA_SETUP_TIME); /* SDA Hold Time, 300ns */ writel(ns_to_clk(300, clk_mhz), idev->base + SDA_HOLD_TIME); /* Filter <50ns spikes */ writel(ns_to_clk(50, clk_mhz), idev->base + SPIKE_FLTR_LEN); /* Configure Time-Out Registers */ tmo_clk = ns_to_clk(SCL_WAIT_TIMEOUT_NS, clk_mhz); /* Find prescaler value that makes tmo_clk fit in 15-bits counter. */ for (prescale = 0; prescale < 15; ++prescale) { if (tmo_clk <= 0x7fff) break; tmo_clk >>= 1; } if (tmo_clk > 0x7fff) tmo_clk = 0x7fff; /* Prescale divider (log2) */ writel(prescale, idev->base + TIMER_CLOCK_DIV); /* Timeout in divided clocks */ writel(WT_EN | WT_VALUE(tmo_clk), idev->base + WAIT_TIMER_CONTROL); /* Mask all master interrupt bits */ i2c_int_disable(idev, ~0); /* Interrupt enable */ writel(0x01, idev->base + INTERRUPT_ENABLE); return 0; } static int i2c_m_rd(const struct i2c_msg *msg) { return (msg->flags & I2C_M_RD) != 0; } static int i2c_m_ten(const struct i2c_msg *msg) { return (msg->flags & I2C_M_TEN) != 0; } static int i2c_m_recv_len(const struct i2c_msg *msg) { return (msg->flags & I2C_M_RECV_LEN) != 0; } /** * axxia_i2c_empty_rx_fifo - Fetch data from RX FIFO and update SMBus block * transfer length if this is the first byte of such a transfer. */ static int axxia_i2c_empty_rx_fifo(struct axxia_i2c_dev *idev) { struct i2c_msg *msg = idev->msg_r; size_t rx_fifo_avail = readl(idev->base + MST_RX_FIFO); int bytes_to_transfer = min(rx_fifo_avail, msg->len - idev->msg_xfrd_r); while (bytes_to_transfer-- > 0) { int c = readl(idev->base + MST_DATA); if (idev->msg_xfrd_r == 0 && i2c_m_recv_len(msg)) { /* * Check length byte for SMBus block read */ if (c <= 0 || c > I2C_SMBUS_BLOCK_MAX) { idev->msg_err = -EPROTO; i2c_int_disable(idev, ~MST_STATUS_TSS); complete(&idev->msg_complete); break; } msg->len = 1 + c; writel(msg->len, idev->base + MST_RX_XFER); } msg->buf[idev->msg_xfrd_r++] = c; } return 0; } /** * axxia_i2c_fill_tx_fifo - Fill TX FIFO from current message buffer. * @return: Number of bytes left to transfer. */ static int axxia_i2c_fill_tx_fifo(struct axxia_i2c_dev *idev) { struct i2c_msg *msg = idev->msg; size_t tx_fifo_avail = FIFO_SIZE - readl(idev->base + MST_TX_FIFO); int bytes_to_transfer = min(tx_fifo_avail, msg->len - idev->msg_xfrd); int ret = msg->len - idev->msg_xfrd - bytes_to_transfer; while (bytes_to_transfer-- > 0) writel(msg->buf[idev->msg_xfrd++], idev->base + MST_DATA); return ret; } static void axxia_i2c_slv_fifo_event(struct axxia_i2c_dev *idev) { u32 fifo_status = readl(idev->base + SLV_RX_FIFO); u8 val; dev_dbg(idev->dev, "slave irq fifo_status=0x%x\n", fifo_status); if (fifo_status & SLV_FIFO_DV1) { if (fifo_status & SLV_FIFO_STRC) i2c_slave_event(idev->slave, I2C_SLAVE_WRITE_REQUESTED, &val); val = readl(idev->base + SLV_DATA); i2c_slave_event(idev->slave, I2C_SLAVE_WRITE_RECEIVED, &val); } if (fifo_status & SLV_FIFO_STPC) { readl(idev->base + SLV_DATA); /* dummy read */ i2c_slave_event(idev->slave, I2C_SLAVE_STOP, &val); } if (fifo_status & SLV_FIFO_RSC) readl(idev->base + SLV_DATA); /* dummy read */ } static irqreturn_t axxia_i2c_slv_isr(struct axxia_i2c_dev *idev) { u32 status = readl(idev->base + SLV_INT_STATUS); u8 val; dev_dbg(idev->dev, "slave irq status=0x%x\n", status); if (status & SLV_STATUS_RFH) axxia_i2c_slv_fifo_event(idev); if (status & SLV_STATUS_SRS1) { i2c_slave_event(idev->slave, I2C_SLAVE_READ_REQUESTED, &val); writel(val, idev->base + SLV_DATA); } if (status & SLV_STATUS_SRND1) { i2c_slave_event(idev->slave, I2C_SLAVE_READ_PROCESSED, &val); writel(val, idev->base + SLV_DATA); } if (status & SLV_STATUS_SRC1) i2c_slave_event(idev->slave, I2C_SLAVE_STOP, &val); writel(INT_SLV, idev->base + INTERRUPT_STATUS); return IRQ_HANDLED; } static irqreturn_t axxia_i2c_isr(int irq, void *_dev) { struct axxia_i2c_dev *idev = _dev; irqreturn_t ret = IRQ_NONE; u32 status; status = readl(idev->base + INTERRUPT_STATUS); if (status & INT_SLV) ret = axxia_i2c_slv_isr(idev); if (!(status & INT_MST)) return ret; /* Read interrupt status bits */ status = readl(idev->base + MST_INT_STATUS); if (!idev->msg) { dev_warn(idev->dev, "unexpected interrupt\n"); goto out; } /* RX FIFO needs service? */ if (i2c_m_rd(idev->msg_r) && (status & MST_STATUS_RFL)) axxia_i2c_empty_rx_fifo(idev); /* TX FIFO needs service? */ if (!i2c_m_rd(idev->msg) && (status & MST_STATUS_TFL)) { if (axxia_i2c_fill_tx_fifo(idev) == 0) i2c_int_disable(idev, MST_STATUS_TFL); } if (unlikely(status & MST_STATUS_ERR)) { /* Transfer error */ i2c_int_disable(idev, ~0); if (status & MST_STATUS_AL) idev->msg_err = -EAGAIN; else if (status & MST_STATUS_NAK) idev->msg_err = -ENXIO; else idev->msg_err = -EIO; dev_dbg(idev->dev, "error %#x, addr=%#x rx=%u/%u tx=%u/%u\n", status, idev->msg->addr, readl(idev->base + MST_RX_BYTES_XFRD), readl(idev->base + MST_RX_XFER), readl(idev->base + MST_TX_BYTES_XFRD), readl(idev->base + MST_TX_XFER)); complete(&idev->msg_complete); } else if (status & MST_STATUS_SCC) { /* Stop completed */ i2c_int_disable(idev, ~MST_STATUS_TSS); complete(&idev->msg_complete); } else if (status & (MST_STATUS_SNS | MST_STATUS_SS)) { /* Transfer done */ int mask = idev->last ? ~0 : ~MST_STATUS_TSS; i2c_int_disable(idev, mask); if (i2c_m_rd(idev->msg_r) && idev->msg_xfrd_r < idev->msg_r->len) axxia_i2c_empty_rx_fifo(idev); complete(&idev->msg_complete); } else if (status & MST_STATUS_TSS) { /* Transfer timeout */ idev->msg_err = -ETIMEDOUT; i2c_int_disable(idev, ~MST_STATUS_TSS); complete(&idev->msg_complete); } out: /* Clear interrupt */ writel(INT_MST, idev->base + INTERRUPT_STATUS); return IRQ_HANDLED; } static void axxia_i2c_set_addr(struct axxia_i2c_dev *idev, struct i2c_msg *msg) { u32 addr_1, addr_2; if (i2c_m_ten(msg)) { /* 10-bit address * addr_1: 5'b11110 | addr[9:8] | (R/nW) * addr_2: addr[7:0] */ addr_1 = 0xF0 | ((msg->addr >> 7) & 0x06); if (i2c_m_rd(msg)) addr_1 |= 1; /* Set the R/nW bit of the address */ addr_2 = msg->addr & 0xFF; } else { /* 7-bit address * addr_1: addr[6:0] | (R/nW) * addr_2: dont care */ addr_1 = i2c_8bit_addr_from_msg(msg); addr_2 = 0; } writel(addr_1, idev->base + MST_ADDR_1); writel(addr_2, idev->base + MST_ADDR_2); } /* The NAK interrupt will be sent _before_ issuing STOP command * so the controller might still be busy processing it. No * interrupt will be sent at the end so we have to poll for it */ static int axxia_i2c_handle_seq_nak(struct axxia_i2c_dev *idev) { unsigned long timeout = jiffies + I2C_XFER_TIMEOUT; do { if ((readl(idev->base + MST_COMMAND) & CMD_BUSY) == 0) return 0; usleep_range(1, 100); } while (time_before(jiffies, timeout)); return -ETIMEDOUT; } static int axxia_i2c_xfer_seq(struct axxia_i2c_dev *idev, struct i2c_msg msgs[]) { u32 int_mask = MST_STATUS_ERR | MST_STATUS_SS | MST_STATUS_RFL; u32 rlen = i2c_m_recv_len(&msgs[1]) ? I2C_SMBUS_BLOCK_MAX : msgs[1].len; unsigned long time_left; axxia_i2c_set_addr(idev, &msgs[0]); writel(msgs[0].len, idev->base + MST_TX_XFER); writel(rlen, idev->base + MST_RX_XFER); idev->msg = &msgs[0]; idev->msg_r = &msgs[1]; idev->msg_xfrd = 0; idev->msg_xfrd_r = 0; idev->last = true; axxia_i2c_fill_tx_fifo(idev); writel(CMD_SEQUENCE, idev->base + MST_COMMAND); reinit_completion(&idev->msg_complete); i2c_int_enable(idev, int_mask); time_left = wait_for_completion_timeout(&idev->msg_complete, I2C_XFER_TIMEOUT); if (idev->msg_err == -ENXIO) { if (axxia_i2c_handle_seq_nak(idev)) axxia_i2c_init(idev); } else if (readl(idev->base + MST_COMMAND) & CMD_BUSY) { dev_warn(idev->dev, "busy after xfer\n"); } if (time_left == 0) { idev->msg_err = -ETIMEDOUT; i2c_recover_bus(&idev->adapter); axxia_i2c_init(idev); } if (unlikely(idev->msg_err) && idev->msg_err != -ENXIO) axxia_i2c_init(idev); return idev->msg_err; } static int axxia_i2c_xfer_msg(struct axxia_i2c_dev *idev, struct i2c_msg *msg, bool last) { u32 int_mask = MST_STATUS_ERR; u32 rx_xfer, tx_xfer; unsigned long time_left; unsigned int wt_value; idev->msg = msg; idev->msg_r = msg; idev->msg_xfrd = 0; idev->msg_xfrd_r = 0; idev->last = last; reinit_completion(&idev->msg_complete); axxia_i2c_set_addr(idev, msg); if (i2c_m_rd(msg)) { /* I2C read transfer */ rx_xfer = i2c_m_recv_len(msg) ? I2C_SMBUS_BLOCK_MAX : msg->len; tx_xfer = 0; } else { /* I2C write transfer */ rx_xfer = 0; tx_xfer = msg->len; } writel(rx_xfer, idev->base + MST_RX_XFER); writel(tx_xfer, idev->base + MST_TX_XFER); if (i2c_m_rd(msg)) int_mask |= MST_STATUS_RFL; else if (axxia_i2c_fill_tx_fifo(idev) != 0) int_mask |= MST_STATUS_TFL; wt_value = WT_VALUE(readl(idev->base + WAIT_TIMER_CONTROL)); /* Disable wait timer temporarly */ writel(wt_value, idev->base + WAIT_TIMER_CONTROL); /* Check if timeout error happened */ if (idev->msg_err) goto out; if (!last) { writel(CMD_MANUAL, idev->base + MST_COMMAND); int_mask |= MST_STATUS_SNS; } else { writel(CMD_AUTO, idev->base + MST_COMMAND); int_mask |= MST_STATUS_SS; } writel(WT_EN | wt_value, idev->base + WAIT_TIMER_CONTROL); i2c_int_enable(idev, int_mask); time_left = wait_for_completion_timeout(&idev->msg_complete, I2C_XFER_TIMEOUT); i2c_int_disable(idev, int_mask); if (readl(idev->base + MST_COMMAND) & CMD_BUSY) dev_warn(idev->dev, "busy after xfer\n"); if (time_left == 0) { idev->msg_err = -ETIMEDOUT; i2c_recover_bus(&idev->adapter); axxia_i2c_init(idev); } out: if (unlikely(idev->msg_err) && idev->msg_err != -ENXIO && idev->msg_err != -ETIMEDOUT) axxia_i2c_init(idev); return idev->msg_err; } /* This function checks if the msgs[] array contains messages compatible with * Sequence mode of operation. This mode assumes there will be exactly one * write of non-zero length followed by exactly one read of non-zero length, * both targeted at the same client device. */ static bool axxia_i2c_sequence_ok(struct i2c_msg msgs[], int num) { return num == SEQ_LEN && !i2c_m_rd(&msgs[0]) && i2c_m_rd(&msgs[1]) && msgs[0].len > 0 && msgs[0].len <= FIFO_SIZE && msgs[1].len > 0 && msgs[0].addr == msgs[1].addr; } static int axxia_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) { struct axxia_i2c_dev *idev = i2c_get_adapdata(adap); int i; int ret = 0; idev->msg_err = 0; if (axxia_i2c_sequence_ok(msgs, num)) { ret = axxia_i2c_xfer_seq(idev, msgs); return ret ? : SEQ_LEN; } i2c_int_enable(idev, MST_STATUS_TSS); for (i = 0; ret == 0 && i < num; ++i) ret = axxia_i2c_xfer_msg(idev, &msgs[i], i == (num - 1)); return ret ? : i; } static int axxia_i2c_get_scl(struct i2c_adapter *adap) { struct axxia_i2c_dev *idev = i2c_get_adapdata(adap); return !!(readl(idev->base + I2C_BUS_MONITOR) & BM_SCLS); } static void axxia_i2c_set_scl(struct i2c_adapter *adap, int val) { struct axxia_i2c_dev *idev = i2c_get_adapdata(adap); u32 tmp; /* Preserve SDA Control */ tmp = readl(idev->base + I2C_BUS_MONITOR) & BM_SDAC; if (!val) tmp |= BM_SCLC; writel(tmp, idev->base + I2C_BUS_MONITOR); } static int axxia_i2c_get_sda(struct i2c_adapter *adap) { struct axxia_i2c_dev *idev = i2c_get_adapdata(adap); return !!(readl(idev->base + I2C_BUS_MONITOR) & BM_SDAS); } static struct i2c_bus_recovery_info axxia_i2c_recovery_info = { .recover_bus = i2c_generic_scl_recovery, .get_scl = axxia_i2c_get_scl, .set_scl = axxia_i2c_set_scl, .get_sda = axxia_i2c_get_sda, }; static u32 axxia_i2c_func(struct i2c_adapter *adap) { u32 caps = (I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_BLOCK_DATA); return caps; } static int axxia_i2c_reg_slave(struct i2c_client *slave) { struct axxia_i2c_dev *idev = i2c_get_adapdata(slave->adapter); u32 slv_int_mask = SLV_STATUS_RFH; u32 dec_ctl; if (idev->slave) return -EBUSY; idev->slave = slave; /* Enable slave mode as well */ writel(GLOBAL_MST_EN | GLOBAL_SLV_EN, idev->base + GLOBAL_CONTROL); writel(INT_MST | INT_SLV, idev->base + INTERRUPT_ENABLE); /* Set slave address */ dec_ctl = SLV_ADDR_DEC_SA1E; if (slave->flags & I2C_CLIENT_TEN) dec_ctl |= SLV_ADDR_DEC_SA1M; writel(SLV_RX_ACSA1, idev->base + SLV_RX_CTL); writel(dec_ctl, idev->base + SLV_ADDR_DEC_CTL); writel(slave->addr, idev->base + SLV_ADDR_1); /* Enable interrupts */ slv_int_mask |= SLV_STATUS_SRS1 | SLV_STATUS_SRRS1 | SLV_STATUS_SRND1; slv_int_mask |= SLV_STATUS_SRC1; writel(slv_int_mask, idev->base + SLV_INT_ENABLE); return 0; } static int axxia_i2c_unreg_slave(struct i2c_client *slave) { struct axxia_i2c_dev *idev = i2c_get_adapdata(slave->adapter); /* Disable slave mode */ writel(GLOBAL_MST_EN, idev->base + GLOBAL_CONTROL); writel(INT_MST, idev->base + INTERRUPT_ENABLE); synchronize_irq(idev->irq); idev->slave = NULL; return 0; } static const struct i2c_algorithm axxia_i2c_algo = { .master_xfer = axxia_i2c_xfer, .functionality = axxia_i2c_func, .reg_slave = axxia_i2c_reg_slave, .unreg_slave = axxia_i2c_unreg_slave, }; static const struct i2c_adapter_quirks axxia_i2c_quirks = { .max_read_len = 255, .max_write_len = 255, }; static int axxia_i2c_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct axxia_i2c_dev *idev = NULL; struct resource *res; void __iomem *base; int ret = 0; idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL); if (!idev) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base)) return PTR_ERR(base); idev->irq = platform_get_irq(pdev, 0); if (idev->irq < 0) { dev_err(&pdev->dev, "missing interrupt resource\n"); return idev->irq; } idev->i2c_clk = devm_clk_get(&pdev->dev, "i2c"); if (IS_ERR(idev->i2c_clk)) { dev_err(&pdev->dev, "missing clock\n"); return PTR_ERR(idev->i2c_clk); } idev->base = base; idev->dev = &pdev->dev; init_completion(&idev->msg_complete); of_property_read_u32(np, "clock-frequency", &idev->bus_clk_rate); if (idev->bus_clk_rate == 0) idev->bus_clk_rate = I2C_MAX_STANDARD_MODE_FREQ; /* default clock rate */ ret = clk_prepare_enable(idev->i2c_clk); if (ret) { dev_err(&pdev->dev, "failed to enable clock\n"); return ret; } ret = axxia_i2c_init(idev); if (ret) { dev_err(&pdev->dev, "failed to initialize\n"); goto error_disable_clk; } ret = devm_request_irq(&pdev->dev, idev->irq, axxia_i2c_isr, 0, pdev->name, idev); if (ret) { dev_err(&pdev->dev, "failed to claim IRQ%d\n", idev->irq); goto error_disable_clk; } i2c_set_adapdata(&idev->adapter, idev); strlcpy(idev->adapter.name, pdev->name, sizeof(idev->adapter.name)); idev->adapter.owner = THIS_MODULE; idev->adapter.algo = &axxia_i2c_algo; idev->adapter.bus_recovery_info = &axxia_i2c_recovery_info; idev->adapter.quirks = &axxia_i2c_quirks; idev->adapter.dev.parent = &pdev->dev; idev->adapter.dev.of_node = pdev->dev.of_node; platform_set_drvdata(pdev, idev); ret = i2c_add_adapter(&idev->adapter); if (ret) goto error_disable_clk; return 0; error_disable_clk: clk_disable_unprepare(idev->i2c_clk); return ret; } static int axxia_i2c_remove(struct platform_device *pdev) { struct axxia_i2c_dev *idev = platform_get_drvdata(pdev); clk_disable_unprepare(idev->i2c_clk); i2c_del_adapter(&idev->adapter); return 0; } /* Match table for of_platform binding */ static const struct of_device_id axxia_i2c_of_match[] = { { .compatible = "lsi,api2c", }, {}, }; MODULE_DEVICE_TABLE(of, axxia_i2c_of_match); static struct platform_driver axxia_i2c_driver = { .probe = axxia_i2c_probe, .remove = axxia_i2c_remove, .driver = { .name = "axxia-i2c", .of_match_table = axxia_i2c_of_match, }, }; module_platform_driver(axxia_i2c_driver); MODULE_DESCRIPTION("Axxia I2C Bus driver"); MODULE_AUTHOR("Anders Berg <anders.berg@lsi.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1