Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Bartlomiej Zolnierkiewicz | 1110 | 88.94% | 7 | 58.33% |
Sergei Shtylyov | 129 | 10.34% | 2 | 16.67% |
Grant Grundler | 5 | 0.40% | 1 | 8.33% |
Paul Gortmaker | 3 | 0.24% | 1 | 8.33% |
Thomas Gleixner | 1 | 0.08% | 1 | 8.33% |
Total | 1248 | 12 |
// SPDX-License-Identifier: GPL-2.0-only #include <linux/types.h> #include <linux/kernel.h> #include <linux/export.h> #include <linux/ide.h> #include <linux/scatterlist.h> #include <linux/dma-mapping.h> #include <linux/io.h> /** * config_drive_for_dma - attempt to activate IDE DMA * @drive: the drive to place in DMA mode * * If the drive supports at least mode 2 DMA or UDMA of any kind * then attempt to place it into DMA mode. Drives that are known to * support DMA but predate the DMA properties or that are known * to have DMA handling bugs are also set up appropriately based * on the good/bad drive lists. */ int config_drive_for_dma(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; u16 *id = drive->id; if (drive->media != ide_disk) { if (hwif->host_flags & IDE_HFLAG_NO_ATAPI_DMA) return 0; } /* * Enable DMA on any drive that has * UltraDMA (mode 0/1/2/3/4/5/6) enabled */ if ((id[ATA_ID_FIELD_VALID] & 4) && ((id[ATA_ID_UDMA_MODES] >> 8) & 0x7f)) return 1; /* * Enable DMA on any drive that has mode2 DMA * (multi or single) enabled */ if ((id[ATA_ID_MWDMA_MODES] & 0x404) == 0x404 || (id[ATA_ID_SWDMA_MODES] & 0x404) == 0x404) return 1; /* Consult the list of known "good" drives */ if (ide_dma_good_drive(drive)) return 1; return 0; } u8 ide_dma_sff_read_status(ide_hwif_t *hwif) { unsigned long addr = hwif->dma_base + ATA_DMA_STATUS; if (hwif->host_flags & IDE_HFLAG_MMIO) return readb((void __iomem *)addr); else return inb(addr); } EXPORT_SYMBOL_GPL(ide_dma_sff_read_status); static void ide_dma_sff_write_status(ide_hwif_t *hwif, u8 val) { unsigned long addr = hwif->dma_base + ATA_DMA_STATUS; if (hwif->host_flags & IDE_HFLAG_MMIO) writeb(val, (void __iomem *)addr); else outb(val, addr); } /** * ide_dma_host_set - Enable/disable DMA on a host * @drive: drive to control * * Enable/disable DMA on an IDE controller following generic * bus-mastering IDE controller behaviour. */ void ide_dma_host_set(ide_drive_t *drive, int on) { ide_hwif_t *hwif = drive->hwif; u8 unit = drive->dn & 1; u8 dma_stat = hwif->dma_ops->dma_sff_read_status(hwif); if (on) dma_stat |= (1 << (5 + unit)); else dma_stat &= ~(1 << (5 + unit)); ide_dma_sff_write_status(hwif, dma_stat); } EXPORT_SYMBOL_GPL(ide_dma_host_set); /** * ide_build_dmatable - build IDE DMA table * * ide_build_dmatable() prepares a dma request. We map the command * to get the pci bus addresses of the buffers and then build up * the PRD table that the IDE layer wants to be fed. * * Most chipsets correctly interpret a length of 0x0000 as 64KB, * but at least one (e.g. CS5530) misinterprets it as zero (!). * So we break the 64KB entry into two 32KB entries instead. * * Returns the number of built PRD entries if all went okay, * returns 0 otherwise. * * May also be invoked from trm290.c */ int ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd) { ide_hwif_t *hwif = drive->hwif; __le32 *table = (__le32 *)hwif->dmatable_cpu; unsigned int count = 0; int i; struct scatterlist *sg; u8 is_trm290 = !!(hwif->host_flags & IDE_HFLAG_TRM290); for_each_sg(hwif->sg_table, sg, cmd->sg_nents, i) { u32 cur_addr, cur_len, xcount, bcount; cur_addr = sg_dma_address(sg); cur_len = sg_dma_len(sg); /* * Fill in the dma table, without crossing any 64kB boundaries. * Most hardware requires 16-bit alignment of all blocks, * but the trm290 requires 32-bit alignment. */ while (cur_len) { if (count++ >= PRD_ENTRIES) goto use_pio_instead; bcount = 0x10000 - (cur_addr & 0xffff); if (bcount > cur_len) bcount = cur_len; *table++ = cpu_to_le32(cur_addr); xcount = bcount & 0xffff; if (is_trm290) xcount = ((xcount >> 2) - 1) << 16; else if (xcount == 0x0000) { if (count++ >= PRD_ENTRIES) goto use_pio_instead; *table++ = cpu_to_le32(0x8000); *table++ = cpu_to_le32(cur_addr + 0x8000); xcount = 0x8000; } *table++ = cpu_to_le32(xcount); cur_addr += bcount; cur_len -= bcount; } } if (count) { if (!is_trm290) *--table |= cpu_to_le32(0x80000000); return count; } use_pio_instead: printk(KERN_ERR "%s: %s\n", drive->name, count ? "DMA table too small" : "empty DMA table?"); return 0; /* revert to PIO for this request */ } EXPORT_SYMBOL_GPL(ide_build_dmatable); /** * ide_dma_setup - begin a DMA phase * @drive: target device * @cmd: command * * Build an IDE DMA PRD (IDE speak for scatter gather table) * and then set up the DMA transfer registers for a device * that follows generic IDE PCI DMA behaviour. Controllers can * override this function if they need to * * Returns 0 on success. If a PIO fallback is required then 1 * is returned. */ int ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd) { ide_hwif_t *hwif = drive->hwif; u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0; u8 rw = (cmd->tf_flags & IDE_TFLAG_WRITE) ? 0 : ATA_DMA_WR; u8 dma_stat; /* fall back to pio! */ if (ide_build_dmatable(drive, cmd) == 0) { ide_map_sg(drive, cmd); return 1; } /* PRD table */ if (mmio) writel(hwif->dmatable_dma, (void __iomem *)(hwif->dma_base + ATA_DMA_TABLE_OFS)); else outl(hwif->dmatable_dma, hwif->dma_base + ATA_DMA_TABLE_OFS); /* specify r/w */ if (mmio) writeb(rw, (void __iomem *)(hwif->dma_base + ATA_DMA_CMD)); else outb(rw, hwif->dma_base + ATA_DMA_CMD); /* read DMA status for INTR & ERROR flags */ dma_stat = hwif->dma_ops->dma_sff_read_status(hwif); /* clear INTR & ERROR flags */ ide_dma_sff_write_status(hwif, dma_stat | ATA_DMA_ERR | ATA_DMA_INTR); return 0; } EXPORT_SYMBOL_GPL(ide_dma_setup); /** * ide_dma_sff_timer_expiry - handle a DMA timeout * @drive: Drive that timed out * * An IDE DMA transfer timed out. In the event of an error we ask * the driver to resolve the problem, if a DMA transfer is still * in progress we continue to wait (arguably we need to add a * secondary 'I don't care what the drive thinks' timeout here) * Finally if we have an interrupt we let it complete the I/O. * But only one time - we clear expiry and if it's still not * completed after WAIT_CMD, we error and retry in PIO. * This can occur if an interrupt is lost or due to hang or bugs. */ int ide_dma_sff_timer_expiry(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; u8 dma_stat = hwif->dma_ops->dma_sff_read_status(hwif); printk(KERN_WARNING "%s: %s: DMA status (0x%02x)\n", drive->name, __func__, dma_stat); if ((dma_stat & 0x18) == 0x18) /* BUSY Stupid Early Timer !! */ return WAIT_CMD; hwif->expiry = NULL; /* one free ride for now */ if (dma_stat & ATA_DMA_ERR) /* ERROR */ return -1; if (dma_stat & ATA_DMA_ACTIVE) /* DMAing */ return WAIT_CMD; if (dma_stat & ATA_DMA_INTR) /* Got an Interrupt */ return WAIT_CMD; return 0; /* Status is unknown -- reset the bus */ } EXPORT_SYMBOL_GPL(ide_dma_sff_timer_expiry); void ide_dma_start(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; u8 dma_cmd; /* Note that this is done *after* the cmd has * been issued to the drive, as per the BM-IDE spec. * The Promise Ultra33 doesn't work correctly when * we do this part before issuing the drive cmd. */ if (hwif->host_flags & IDE_HFLAG_MMIO) { dma_cmd = readb((void __iomem *)(hwif->dma_base + ATA_DMA_CMD)); writeb(dma_cmd | ATA_DMA_START, (void __iomem *)(hwif->dma_base + ATA_DMA_CMD)); } else { dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD); outb(dma_cmd | ATA_DMA_START, hwif->dma_base + ATA_DMA_CMD); } } EXPORT_SYMBOL_GPL(ide_dma_start); /* returns 1 on error, 0 otherwise */ int ide_dma_end(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; u8 dma_stat = 0, dma_cmd = 0; /* stop DMA */ if (hwif->host_flags & IDE_HFLAG_MMIO) { dma_cmd = readb((void __iomem *)(hwif->dma_base + ATA_DMA_CMD)); writeb(dma_cmd & ~ATA_DMA_START, (void __iomem *)(hwif->dma_base + ATA_DMA_CMD)); } else { dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD); outb(dma_cmd & ~ATA_DMA_START, hwif->dma_base + ATA_DMA_CMD); } /* get DMA status */ dma_stat = hwif->dma_ops->dma_sff_read_status(hwif); /* clear INTR & ERROR bits */ ide_dma_sff_write_status(hwif, dma_stat | ATA_DMA_ERR | ATA_DMA_INTR); #define CHECK_DMA_MASK (ATA_DMA_ACTIVE | ATA_DMA_ERR | ATA_DMA_INTR) /* verify good DMA status */ if ((dma_stat & CHECK_DMA_MASK) != ATA_DMA_INTR) return 0x10 | dma_stat; return 0; } EXPORT_SYMBOL_GPL(ide_dma_end); /* returns 1 if dma irq issued, 0 otherwise */ int ide_dma_test_irq(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; u8 dma_stat = hwif->dma_ops->dma_sff_read_status(hwif); return (dma_stat & ATA_DMA_INTR) ? 1 : 0; } EXPORT_SYMBOL_GPL(ide_dma_test_irq); const struct ide_dma_ops sff_dma_ops = { .dma_host_set = ide_dma_host_set, .dma_setup = ide_dma_setup, .dma_start = ide_dma_start, .dma_end = ide_dma_end, .dma_test_irq = ide_dma_test_irq, .dma_lost_irq = ide_dma_lost_irq, .dma_timer_expiry = ide_dma_sff_timer_expiry, .dma_sff_read_status = ide_dma_sff_read_status, }; EXPORT_SYMBOL_GPL(sff_dma_ops);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1