Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Hennerich | 941 | 29.03% | 6 | 10.34% |
Stefan Popa | 748 | 23.07% | 9 | 15.52% |
Beniamin Bia | 651 | 20.08% | 8 | 13.79% |
Lars-Peter Clausen | 353 | 10.89% | 11 | 18.97% |
Jonathan Cameron | 241 | 7.43% | 9 | 15.52% |
Eva Rachel Retuya | 172 | 5.31% | 4 | 6.90% |
Alexandru Ardelean | 81 | 2.50% | 2 | 3.45% |
Arushi Singhal | 16 | 0.49% | 1 | 1.72% |
Sachin Kamat | 14 | 0.43% | 1 | 1.72% |
Michal Marek | 8 | 0.25% | 1 | 1.72% |
Alison Schofield | 8 | 0.25% | 2 | 3.45% |
Aida Mynzhasova | 3 | 0.09% | 1 | 1.72% |
Janusz Krzysztofik | 3 | 0.09% | 1 | 1.72% |
Paul Gortmaker | 2 | 0.06% | 1 | 1.72% |
Fengguang Wu | 1 | 0.03% | 1 | 1.72% |
Total | 3242 | 58 |
// SPDX-License-Identifier: GPL-2.0 /* * AD7606 SPI ADC driver * * Copyright 2011 Analog Devices Inc. */ #include <linux/delay.h> #include <linux/device.h> #include <linux/err.h> #include <linux/gpio/consumer.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/regulator/consumer.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/sysfs.h> #include <linux/util_macros.h> #include <linux/iio/iio.h> #include <linux/iio/buffer.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/trigger_consumer.h> #include "ad7606.h" /* * Scales are computed as 5000/32768 and 10000/32768 respectively, * so that when applied to the raw values they provide mV values */ static const unsigned int ad7606_scale_avail[2] = { 152588, 305176 }; static const unsigned int ad7616_sw_scale_avail[3] = { 76293, 152588, 305176 }; static const unsigned int ad7606_oversampling_avail[7] = { 1, 2, 4, 8, 16, 32, 64, }; static const unsigned int ad7616_oversampling_avail[8] = { 1, 2, 4, 8, 16, 32, 64, 128, }; static int ad7606_reset(struct ad7606_state *st) { if (st->gpio_reset) { gpiod_set_value(st->gpio_reset, 1); ndelay(100); /* t_reset >= 100ns */ gpiod_set_value(st->gpio_reset, 0); return 0; } return -ENODEV; } static int ad7606_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct ad7606_state *st = iio_priv(indio_dev); int ret; mutex_lock(&st->lock); if (readval) { ret = st->bops->reg_read(st, reg); if (ret < 0) goto err_unlock; *readval = ret; ret = 0; } else { ret = st->bops->reg_write(st, reg, writeval); } err_unlock: mutex_unlock(&st->lock); return ret; } static int ad7606_read_samples(struct ad7606_state *st) { unsigned int num = st->chip_info->num_channels - 1; u16 *data = st->data; int ret; /* * The frstdata signal is set to high while and after reading the sample * of the first channel and low for all other channels. This can be used * to check that the incoming data is correctly aligned. During normal * operation the data should never become unaligned, but some glitch or * electrostatic discharge might cause an extra read or clock cycle. * Monitoring the frstdata signal allows to recover from such failure * situations. */ if (st->gpio_frstdata) { ret = st->bops->read_block(st->dev, 1, data); if (ret) return ret; if (!gpiod_get_value(st->gpio_frstdata)) { ad7606_reset(st); return -EIO; } data++; num--; } return st->bops->read_block(st->dev, num, data); } static irqreturn_t ad7606_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct ad7606_state *st = iio_priv(indio_dev); int ret; mutex_lock(&st->lock); ret = ad7606_read_samples(st); if (ret == 0) iio_push_to_buffers_with_timestamp(indio_dev, st->data, iio_get_time_ns(indio_dev)); iio_trigger_notify_done(indio_dev->trig); /* The rising edge of the CONVST signal starts a new conversion. */ gpiod_set_value(st->gpio_convst, 1); mutex_unlock(&st->lock); return IRQ_HANDLED; } static int ad7606_scan_direct(struct iio_dev *indio_dev, unsigned int ch) { struct ad7606_state *st = iio_priv(indio_dev); int ret; gpiod_set_value(st->gpio_convst, 1); ret = wait_for_completion_timeout(&st->completion, msecs_to_jiffies(1000)); if (!ret) { ret = -ETIMEDOUT; goto error_ret; } ret = ad7606_read_samples(st); if (ret == 0) ret = st->data[ch]; error_ret: gpiod_set_value(st->gpio_convst, 0); return ret; } static int ad7606_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long m) { int ret, ch = 0; struct ad7606_state *st = iio_priv(indio_dev); switch (m) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; ret = ad7606_scan_direct(indio_dev, chan->address); iio_device_release_direct_mode(indio_dev); if (ret < 0) return ret; *val = (short)ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: if (st->sw_mode_en) ch = chan->address; *val = 0; *val2 = st->scale_avail[st->range[ch]]; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: *val = st->oversampling; return IIO_VAL_INT; } return -EINVAL; } static ssize_t ad7606_show_avail(char *buf, const unsigned int *vals, unsigned int n, bool micros) { size_t len = 0; int i; for (i = 0; i < n; i++) { len += scnprintf(buf + len, PAGE_SIZE - len, micros ? "0.%06u " : "%u ", vals[i]); } buf[len - 1] = '\n'; return len; } static ssize_t in_voltage_scale_available_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct ad7606_state *st = iio_priv(indio_dev); return ad7606_show_avail(buf, st->scale_avail, st->num_scales, true); } static IIO_DEVICE_ATTR_RO(in_voltage_scale_available, 0); static int ad7606_write_scale_hw(struct iio_dev *indio_dev, int ch, int val) { struct ad7606_state *st = iio_priv(indio_dev); gpiod_set_value(st->gpio_range, val); return 0; } static int ad7606_write_os_hw(struct iio_dev *indio_dev, int val) { struct ad7606_state *st = iio_priv(indio_dev); DECLARE_BITMAP(values, 3); values[0] = val; gpiod_set_array_value(ARRAY_SIZE(values), st->gpio_os->desc, st->gpio_os->info, values); /* AD7616 requires a reset to update value */ if (st->chip_info->os_req_reset) ad7606_reset(st); return 0; } static int ad7606_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ad7606_state *st = iio_priv(indio_dev); int i, ret, ch = 0; switch (mask) { case IIO_CHAN_INFO_SCALE: mutex_lock(&st->lock); i = find_closest(val2, st->scale_avail, st->num_scales); if (st->sw_mode_en) ch = chan->address; ret = st->write_scale(indio_dev, ch, i); if (ret < 0) { mutex_unlock(&st->lock); return ret; } st->range[ch] = i; mutex_unlock(&st->lock); return 0; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: if (val2) return -EINVAL; i = find_closest(val, st->oversampling_avail, st->num_os_ratios); mutex_lock(&st->lock); ret = st->write_os(indio_dev, i); if (ret < 0) { mutex_unlock(&st->lock); return ret; } st->oversampling = st->oversampling_avail[i]; mutex_unlock(&st->lock); return 0; default: return -EINVAL; } } static ssize_t ad7606_oversampling_ratio_avail(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct ad7606_state *st = iio_priv(indio_dev); return ad7606_show_avail(buf, st->oversampling_avail, st->num_os_ratios, false); } static IIO_DEVICE_ATTR(oversampling_ratio_available, 0444, ad7606_oversampling_ratio_avail, NULL, 0); static struct attribute *ad7606_attributes_os_and_range[] = { &iio_dev_attr_in_voltage_scale_available.dev_attr.attr, &iio_dev_attr_oversampling_ratio_available.dev_attr.attr, NULL, }; static const struct attribute_group ad7606_attribute_group_os_and_range = { .attrs = ad7606_attributes_os_and_range, }; static struct attribute *ad7606_attributes_os[] = { &iio_dev_attr_oversampling_ratio_available.dev_attr.attr, NULL, }; static const struct attribute_group ad7606_attribute_group_os = { .attrs = ad7606_attributes_os, }; static struct attribute *ad7606_attributes_range[] = { &iio_dev_attr_in_voltage_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group ad7606_attribute_group_range = { .attrs = ad7606_attributes_range, }; static const struct iio_chan_spec ad7605_channels[] = { IIO_CHAN_SOFT_TIMESTAMP(4), AD7605_CHANNEL(0), AD7605_CHANNEL(1), AD7605_CHANNEL(2), AD7605_CHANNEL(3), }; static const struct iio_chan_spec ad7606_channels[] = { IIO_CHAN_SOFT_TIMESTAMP(8), AD7606_CHANNEL(0), AD7606_CHANNEL(1), AD7606_CHANNEL(2), AD7606_CHANNEL(3), AD7606_CHANNEL(4), AD7606_CHANNEL(5), AD7606_CHANNEL(6), AD7606_CHANNEL(7), }; /* * The current assumption that this driver makes for AD7616, is that it's * working in Hardware Mode with Serial, Burst and Sequencer modes activated. * To activate them, following pins must be pulled high: * -SER/PAR * -SEQEN * And following pins must be pulled low: * -WR/BURST * -DB4/SER1W */ static const struct iio_chan_spec ad7616_channels[] = { IIO_CHAN_SOFT_TIMESTAMP(16), AD7606_CHANNEL(0), AD7606_CHANNEL(1), AD7606_CHANNEL(2), AD7606_CHANNEL(3), AD7606_CHANNEL(4), AD7606_CHANNEL(5), AD7606_CHANNEL(6), AD7606_CHANNEL(7), AD7606_CHANNEL(8), AD7606_CHANNEL(9), AD7606_CHANNEL(10), AD7606_CHANNEL(11), AD7606_CHANNEL(12), AD7606_CHANNEL(13), AD7606_CHANNEL(14), AD7606_CHANNEL(15), }; static const struct ad7606_chip_info ad7606_chip_info_tbl[] = { /* More devices added in future */ [ID_AD7605_4] = { .channels = ad7605_channels, .num_channels = 5, }, [ID_AD7606_8] = { .channels = ad7606_channels, .num_channels = 9, .oversampling_avail = ad7606_oversampling_avail, .oversampling_num = ARRAY_SIZE(ad7606_oversampling_avail), }, [ID_AD7606_6] = { .channels = ad7606_channels, .num_channels = 7, .oversampling_avail = ad7606_oversampling_avail, .oversampling_num = ARRAY_SIZE(ad7606_oversampling_avail), }, [ID_AD7606_4] = { .channels = ad7606_channels, .num_channels = 5, .oversampling_avail = ad7606_oversampling_avail, .oversampling_num = ARRAY_SIZE(ad7606_oversampling_avail), }, [ID_AD7606B] = { .channels = ad7606_channels, .num_channels = 9, .oversampling_avail = ad7606_oversampling_avail, .oversampling_num = ARRAY_SIZE(ad7606_oversampling_avail), }, [ID_AD7616] = { .channels = ad7616_channels, .num_channels = 17, .oversampling_avail = ad7616_oversampling_avail, .oversampling_num = ARRAY_SIZE(ad7616_oversampling_avail), .os_req_reset = true, .init_delay_ms = 15, }, }; static int ad7606_request_gpios(struct ad7606_state *st) { struct device *dev = st->dev; st->gpio_convst = devm_gpiod_get(dev, "adi,conversion-start", GPIOD_OUT_LOW); if (IS_ERR(st->gpio_convst)) return PTR_ERR(st->gpio_convst); st->gpio_reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(st->gpio_reset)) return PTR_ERR(st->gpio_reset); st->gpio_range = devm_gpiod_get_optional(dev, "adi,range", GPIOD_OUT_LOW); if (IS_ERR(st->gpio_range)) return PTR_ERR(st->gpio_range); st->gpio_standby = devm_gpiod_get_optional(dev, "standby", GPIOD_OUT_HIGH); if (IS_ERR(st->gpio_standby)) return PTR_ERR(st->gpio_standby); st->gpio_frstdata = devm_gpiod_get_optional(dev, "adi,first-data", GPIOD_IN); if (IS_ERR(st->gpio_frstdata)) return PTR_ERR(st->gpio_frstdata); if (!st->chip_info->oversampling_num) return 0; st->gpio_os = devm_gpiod_get_array_optional(dev, "adi,oversampling-ratio", GPIOD_OUT_LOW); return PTR_ERR_OR_ZERO(st->gpio_os); } /* * The BUSY signal indicates when conversions are in progress, so when a rising * edge of CONVST is applied, BUSY goes logic high and transitions low at the * end of the entire conversion process. The falling edge of the BUSY signal * triggers this interrupt. */ static irqreturn_t ad7606_interrupt(int irq, void *dev_id) { struct iio_dev *indio_dev = dev_id; struct ad7606_state *st = iio_priv(indio_dev); if (iio_buffer_enabled(indio_dev)) { gpiod_set_value(st->gpio_convst, 0); iio_trigger_poll_chained(st->trig); } else { complete(&st->completion); } return IRQ_HANDLED; }; static int ad7606_validate_trigger(struct iio_dev *indio_dev, struct iio_trigger *trig) { struct ad7606_state *st = iio_priv(indio_dev); if (st->trig != trig) return -EINVAL; return 0; } static int ad7606_buffer_postenable(struct iio_dev *indio_dev) { struct ad7606_state *st = iio_priv(indio_dev); iio_triggered_buffer_postenable(indio_dev); gpiod_set_value(st->gpio_convst, 1); return 0; } static int ad7606_buffer_predisable(struct iio_dev *indio_dev) { struct ad7606_state *st = iio_priv(indio_dev); gpiod_set_value(st->gpio_convst, 0); return iio_triggered_buffer_predisable(indio_dev); } static const struct iio_buffer_setup_ops ad7606_buffer_ops = { .postenable = &ad7606_buffer_postenable, .predisable = &ad7606_buffer_predisable, }; static const struct iio_info ad7606_info_no_os_or_range = { .read_raw = &ad7606_read_raw, .validate_trigger = &ad7606_validate_trigger, }; static const struct iio_info ad7606_info_os_and_range = { .read_raw = &ad7606_read_raw, .write_raw = &ad7606_write_raw, .attrs = &ad7606_attribute_group_os_and_range, .validate_trigger = &ad7606_validate_trigger, }; static const struct iio_info ad7606_info_os_range_and_debug = { .read_raw = &ad7606_read_raw, .write_raw = &ad7606_write_raw, .debugfs_reg_access = &ad7606_reg_access, .attrs = &ad7606_attribute_group_os_and_range, .validate_trigger = &ad7606_validate_trigger, }; static const struct iio_info ad7606_info_os = { .read_raw = &ad7606_read_raw, .write_raw = &ad7606_write_raw, .attrs = &ad7606_attribute_group_os, .validate_trigger = &ad7606_validate_trigger, }; static const struct iio_info ad7606_info_range = { .read_raw = &ad7606_read_raw, .write_raw = &ad7606_write_raw, .attrs = &ad7606_attribute_group_range, .validate_trigger = &ad7606_validate_trigger, }; static const struct iio_trigger_ops ad7606_trigger_ops = { .validate_device = iio_trigger_validate_own_device, }; static void ad7606_regulator_disable(void *data) { struct ad7606_state *st = data; regulator_disable(st->reg); } int ad7606_probe(struct device *dev, int irq, void __iomem *base_address, const char *name, unsigned int id, const struct ad7606_bus_ops *bops) { struct ad7606_state *st; int ret; struct iio_dev *indio_dev; indio_dev = devm_iio_device_alloc(dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); dev_set_drvdata(dev, indio_dev); st->dev = dev; mutex_init(&st->lock); st->bops = bops; st->base_address = base_address; /* tied to logic low, analog input range is +/- 5V */ st->range[0] = 0; st->oversampling = 1; st->scale_avail = ad7606_scale_avail; st->num_scales = ARRAY_SIZE(ad7606_scale_avail); st->reg = devm_regulator_get(dev, "avcc"); if (IS_ERR(st->reg)) return PTR_ERR(st->reg); ret = regulator_enable(st->reg); if (ret) { dev_err(dev, "Failed to enable specified AVcc supply\n"); return ret; } ret = devm_add_action_or_reset(dev, ad7606_regulator_disable, st); if (ret) return ret; st->chip_info = &ad7606_chip_info_tbl[id]; if (st->chip_info->oversampling_num) { st->oversampling_avail = st->chip_info->oversampling_avail; st->num_os_ratios = st->chip_info->oversampling_num; } ret = ad7606_request_gpios(st); if (ret) return ret; indio_dev->dev.parent = dev; if (st->gpio_os) { if (st->gpio_range) indio_dev->info = &ad7606_info_os_and_range; else indio_dev->info = &ad7606_info_os; } else { if (st->gpio_range) indio_dev->info = &ad7606_info_range; else indio_dev->info = &ad7606_info_no_os_or_range; } indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->name = name; indio_dev->channels = st->chip_info->channels; indio_dev->num_channels = st->chip_info->num_channels; init_completion(&st->completion); ret = ad7606_reset(st); if (ret) dev_warn(st->dev, "failed to RESET: no RESET GPIO specified\n"); /* AD7616 requires al least 15ms to reconfigure after a reset */ if (st->chip_info->init_delay_ms) { if (msleep_interruptible(st->chip_info->init_delay_ms)) return -ERESTARTSYS; } st->write_scale = ad7606_write_scale_hw; st->write_os = ad7606_write_os_hw; if (st->bops->sw_mode_config) st->sw_mode_en = device_property_present(st->dev, "adi,sw-mode"); if (st->sw_mode_en) { /* Scale of 0.076293 is only available in sw mode */ st->scale_avail = ad7616_sw_scale_avail; st->num_scales = ARRAY_SIZE(ad7616_sw_scale_avail); /* After reset, in software mode, ±10 V is set by default */ memset32(st->range, 2, ARRAY_SIZE(st->range)); indio_dev->info = &ad7606_info_os_range_and_debug; ret = st->bops->sw_mode_config(indio_dev); if (ret < 0) return ret; } st->trig = devm_iio_trigger_alloc(dev, "%s-dev%d", indio_dev->name, indio_dev->id); if (!st->trig) return -ENOMEM; st->trig->ops = &ad7606_trigger_ops; st->trig->dev.parent = dev; iio_trigger_set_drvdata(st->trig, indio_dev); ret = devm_iio_trigger_register(dev, st->trig); if (ret) return ret; indio_dev->trig = iio_trigger_get(st->trig); ret = devm_request_threaded_irq(dev, irq, NULL, &ad7606_interrupt, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, name, indio_dev); if (ret) return ret; ret = devm_iio_triggered_buffer_setup(dev, indio_dev, &iio_pollfunc_store_time, &ad7606_trigger_handler, &ad7606_buffer_ops); if (ret) return ret; return devm_iio_device_register(dev, indio_dev); } EXPORT_SYMBOL_GPL(ad7606_probe); #ifdef CONFIG_PM_SLEEP static int ad7606_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct ad7606_state *st = iio_priv(indio_dev); if (st->gpio_standby) { gpiod_set_value(st->gpio_range, 1); gpiod_set_value(st->gpio_standby, 0); } return 0; } static int ad7606_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct ad7606_state *st = iio_priv(indio_dev); if (st->gpio_standby) { gpiod_set_value(st->gpio_range, st->range[0]); gpiod_set_value(st->gpio_standby, 1); ad7606_reset(st); } return 0; } SIMPLE_DEV_PM_OPS(ad7606_pm_ops, ad7606_suspend, ad7606_resume); EXPORT_SYMBOL_GPL(ad7606_pm_ops); #endif MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>"); MODULE_DESCRIPTION("Analog Devices AD7606 ADC"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1