Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rhyland Klein | 905 | 25.19% | 1 | 2.04% |
Roberta Dobrescu | 847 | 23.57% | 3 | 6.12% |
Laurentiu Palcu | 581 | 16.17% | 3 | 6.12% |
Bryan Freed | 465 | 12.94% | 4 | 8.16% |
Anson Huang | 218 | 6.07% | 1 | 2.04% |
Laxman Dewangan | 207 | 5.76% | 2 | 4.08% |
Brian Masney | 92 | 2.56% | 9 | 18.37% |
Jonathan Cameron | 56 | 1.56% | 7 | 14.29% |
Grant Grundler | 54 | 1.50% | 1 | 2.04% |
Peter Meerwald-Stadler | 51 | 1.42% | 5 | 10.20% |
Alison Schofield | 39 | 1.09% | 1 | 2.04% |
Olof Johansson | 27 | 0.75% | 1 | 2.04% |
Sachin Kamat | 20 | 0.56% | 2 | 4.08% |
Jingoo Han | 9 | 0.25% | 1 | 2.04% |
Matthias Kaehlcke | 5 | 0.14% | 1 | 2.04% |
Derek Basehore | 5 | 0.14% | 1 | 2.04% |
Vaishali Thakkar | 4 | 0.11% | 1 | 2.04% |
Lars-Peter Clausen | 4 | 0.11% | 2 | 4.08% |
Thomas Gleixner | 2 | 0.06% | 1 | 2.04% |
Wei Yongjun | 1 | 0.03% | 1 | 2.04% |
Cristina Moraru | 1 | 0.03% | 1 | 2.04% |
Total | 3593 | 49 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * A iio driver for the light sensor ISL 29018/29023/29035. * * IIO driver for monitoring ambient light intensity in luxi, proximity * sensing and infrared sensing. * * Copyright (c) 2010, NVIDIA Corporation. */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/delay.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/acpi.h> #define ISL29018_CONV_TIME_MS 100 #define ISL29018_REG_ADD_COMMAND1 0x00 #define ISL29018_CMD1_OPMODE_SHIFT 5 #define ISL29018_CMD1_OPMODE_MASK (7 << ISL29018_CMD1_OPMODE_SHIFT) #define ISL29018_CMD1_OPMODE_POWER_DOWN 0 #define ISL29018_CMD1_OPMODE_ALS_ONCE 1 #define ISL29018_CMD1_OPMODE_IR_ONCE 2 #define ISL29018_CMD1_OPMODE_PROX_ONCE 3 #define ISL29018_REG_ADD_COMMAND2 0x01 #define ISL29018_CMD2_RESOLUTION_SHIFT 2 #define ISL29018_CMD2_RESOLUTION_MASK (0x3 << ISL29018_CMD2_RESOLUTION_SHIFT) #define ISL29018_CMD2_RANGE_SHIFT 0 #define ISL29018_CMD2_RANGE_MASK (0x3 << ISL29018_CMD2_RANGE_SHIFT) #define ISL29018_CMD2_SCHEME_SHIFT 7 #define ISL29018_CMD2_SCHEME_MASK (0x1 << ISL29018_CMD2_SCHEME_SHIFT) #define ISL29018_REG_ADD_DATA_LSB 0x02 #define ISL29018_REG_ADD_DATA_MSB 0x03 #define ISL29018_REG_TEST 0x08 #define ISL29018_TEST_SHIFT 0 #define ISL29018_TEST_MASK (0xFF << ISL29018_TEST_SHIFT) #define ISL29035_REG_DEVICE_ID 0x0F #define ISL29035_DEVICE_ID_SHIFT 0x03 #define ISL29035_DEVICE_ID_MASK (0x7 << ISL29035_DEVICE_ID_SHIFT) #define ISL29035_DEVICE_ID 0x5 #define ISL29035_BOUT_SHIFT 0x07 #define ISL29035_BOUT_MASK (0x01 << ISL29035_BOUT_SHIFT) enum isl29018_int_time { ISL29018_INT_TIME_16, ISL29018_INT_TIME_12, ISL29018_INT_TIME_8, ISL29018_INT_TIME_4, }; static const unsigned int isl29018_int_utimes[3][4] = { {90000, 5630, 351, 21}, {90000, 5600, 352, 22}, {105000, 6500, 410, 25}, }; static const struct isl29018_scale { unsigned int scale; unsigned int uscale; } isl29018_scales[4][4] = { { {0, 15258}, {0, 61035}, {0, 244140}, {0, 976562} }, { {0, 244140}, {0, 976562}, {3, 906250}, {15, 625000} }, { {3, 906250}, {15, 625000}, {62, 500000}, {250, 0} }, { {62, 500000}, {250, 0}, {1000, 0}, {4000, 0} } }; struct isl29018_chip { struct regmap *regmap; struct mutex lock; int type; unsigned int calibscale; unsigned int ucalibscale; unsigned int int_time; struct isl29018_scale scale; int prox_scheme; bool suspended; struct regulator *vcc_reg; }; static int isl29018_set_integration_time(struct isl29018_chip *chip, unsigned int utime) { unsigned int i; int ret; unsigned int int_time, new_int_time; for (i = 0; i < ARRAY_SIZE(isl29018_int_utimes[chip->type]); ++i) { if (utime == isl29018_int_utimes[chip->type][i]) { new_int_time = i; break; } } if (i >= ARRAY_SIZE(isl29018_int_utimes[chip->type])) return -EINVAL; ret = regmap_update_bits(chip->regmap, ISL29018_REG_ADD_COMMAND2, ISL29018_CMD2_RESOLUTION_MASK, i << ISL29018_CMD2_RESOLUTION_SHIFT); if (ret < 0) return ret; /* Keep the same range when integration time changes */ int_time = chip->int_time; for (i = 0; i < ARRAY_SIZE(isl29018_scales[int_time]); ++i) { if (chip->scale.scale == isl29018_scales[int_time][i].scale && chip->scale.uscale == isl29018_scales[int_time][i].uscale) { chip->scale = isl29018_scales[new_int_time][i]; break; } } chip->int_time = new_int_time; return 0; } static int isl29018_set_scale(struct isl29018_chip *chip, int scale, int uscale) { unsigned int i; int ret; struct isl29018_scale new_scale; for (i = 0; i < ARRAY_SIZE(isl29018_scales[chip->int_time]); ++i) { if (scale == isl29018_scales[chip->int_time][i].scale && uscale == isl29018_scales[chip->int_time][i].uscale) { new_scale = isl29018_scales[chip->int_time][i]; break; } } if (i >= ARRAY_SIZE(isl29018_scales[chip->int_time])) return -EINVAL; ret = regmap_update_bits(chip->regmap, ISL29018_REG_ADD_COMMAND2, ISL29018_CMD2_RANGE_MASK, i << ISL29018_CMD2_RANGE_SHIFT); if (ret < 0) return ret; chip->scale = new_scale; return 0; } static int isl29018_read_sensor_input(struct isl29018_chip *chip, int mode) { int status; unsigned int lsb; unsigned int msb; struct device *dev = regmap_get_device(chip->regmap); /* Set mode */ status = regmap_write(chip->regmap, ISL29018_REG_ADD_COMMAND1, mode << ISL29018_CMD1_OPMODE_SHIFT); if (status) { dev_err(dev, "Error in setting operating mode err %d\n", status); return status; } msleep(ISL29018_CONV_TIME_MS); status = regmap_read(chip->regmap, ISL29018_REG_ADD_DATA_LSB, &lsb); if (status < 0) { dev_err(dev, "Error in reading LSB DATA with err %d\n", status); return status; } status = regmap_read(chip->regmap, ISL29018_REG_ADD_DATA_MSB, &msb); if (status < 0) { dev_err(dev, "Error in reading MSB DATA with error %d\n", status); return status; } dev_vdbg(dev, "MSB 0x%x and LSB 0x%x\n", msb, lsb); return (msb << 8) | lsb; } static int isl29018_read_lux(struct isl29018_chip *chip, int *lux) { int lux_data; unsigned int data_x_range; lux_data = isl29018_read_sensor_input(chip, ISL29018_CMD1_OPMODE_ALS_ONCE); if (lux_data < 0) return lux_data; data_x_range = lux_data * chip->scale.scale + lux_data * chip->scale.uscale / 1000000; *lux = data_x_range * chip->calibscale + data_x_range * chip->ucalibscale / 1000000; return 0; } static int isl29018_read_ir(struct isl29018_chip *chip, int *ir) { int ir_data; ir_data = isl29018_read_sensor_input(chip, ISL29018_CMD1_OPMODE_IR_ONCE); if (ir_data < 0) return ir_data; *ir = ir_data; return 0; } static int isl29018_read_proximity_ir(struct isl29018_chip *chip, int scheme, int *near_ir) { int status; int prox_data = -1; int ir_data = -1; struct device *dev = regmap_get_device(chip->regmap); /* Do proximity sensing with required scheme */ status = regmap_update_bits(chip->regmap, ISL29018_REG_ADD_COMMAND2, ISL29018_CMD2_SCHEME_MASK, scheme << ISL29018_CMD2_SCHEME_SHIFT); if (status) { dev_err(dev, "Error in setting operating mode\n"); return status; } prox_data = isl29018_read_sensor_input(chip, ISL29018_CMD1_OPMODE_PROX_ONCE); if (prox_data < 0) return prox_data; if (scheme == 1) { *near_ir = prox_data; return 0; } ir_data = isl29018_read_sensor_input(chip, ISL29018_CMD1_OPMODE_IR_ONCE); if (ir_data < 0) return ir_data; if (prox_data >= ir_data) *near_ir = prox_data - ir_data; else *near_ir = 0; return 0; } static ssize_t in_illuminance_scale_available_show (struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct isl29018_chip *chip = iio_priv(indio_dev); unsigned int i; int len = 0; mutex_lock(&chip->lock); for (i = 0; i < ARRAY_SIZE(isl29018_scales[chip->int_time]); ++i) len += sprintf(buf + len, "%d.%06d ", isl29018_scales[chip->int_time][i].scale, isl29018_scales[chip->int_time][i].uscale); mutex_unlock(&chip->lock); buf[len - 1] = '\n'; return len; } static ssize_t in_illuminance_integration_time_available_show (struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct isl29018_chip *chip = iio_priv(indio_dev); unsigned int i; int len = 0; for (i = 0; i < ARRAY_SIZE(isl29018_int_utimes[chip->type]); ++i) len += sprintf(buf + len, "0.%06d ", isl29018_int_utimes[chip->type][i]); buf[len - 1] = '\n'; return len; } /* * From ISL29018 Data Sheet (FN6619.4, Oct 8, 2012) regarding the * infrared suppression: * * Proximity Sensing Scheme: Bit 7. This bit programs the function * of the proximity detection. Logic 0 of this bit, Scheme 0, makes * full n (4, 8, 12, 16) bits (unsigned) proximity detection. The range * of Scheme 0 proximity count is from 0 to 2^n. Logic 1 of this bit, * Scheme 1, makes n-1 (3, 7, 11, 15) bits (2's complementary) * proximity_less_ambient detection. The range of Scheme 1 * proximity count is from -2^(n-1) to 2^(n-1) . The sign bit is extended * for resolutions less than 16. While Scheme 0 has wider dynamic * range, Scheme 1 proximity detection is less affected by the * ambient IR noise variation. * * 0 Sensing IR from LED and ambient * 1 Sensing IR from LED with ambient IR rejection */ static ssize_t proximity_on_chip_ambient_infrared_suppression_show (struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct isl29018_chip *chip = iio_priv(indio_dev); /* * Return the "proximity scheme" i.e. if the chip does on chip * infrared suppression (1 means perform on chip suppression) */ return sprintf(buf, "%d\n", chip->prox_scheme); } static ssize_t proximity_on_chip_ambient_infrared_suppression_store (struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct isl29018_chip *chip = iio_priv(indio_dev); int val; if (kstrtoint(buf, 10, &val)) return -EINVAL; if (!(val == 0 || val == 1)) return -EINVAL; /* * Get the "proximity scheme" i.e. if the chip does on chip * infrared suppression (1 means perform on chip suppression) */ mutex_lock(&chip->lock); chip->prox_scheme = val; mutex_unlock(&chip->lock); return count; } static int isl29018_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct isl29018_chip *chip = iio_priv(indio_dev); int ret = -EINVAL; mutex_lock(&chip->lock); if (chip->suspended) { ret = -EBUSY; goto write_done; } switch (mask) { case IIO_CHAN_INFO_CALIBSCALE: if (chan->type == IIO_LIGHT) { chip->calibscale = val; chip->ucalibscale = val2; ret = 0; } break; case IIO_CHAN_INFO_INT_TIME: if (chan->type == IIO_LIGHT && !val) ret = isl29018_set_integration_time(chip, val2); break; case IIO_CHAN_INFO_SCALE: if (chan->type == IIO_LIGHT) ret = isl29018_set_scale(chip, val, val2); break; default: break; } write_done: mutex_unlock(&chip->lock); return ret; } static int isl29018_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret = -EINVAL; struct isl29018_chip *chip = iio_priv(indio_dev); mutex_lock(&chip->lock); if (chip->suspended) { ret = -EBUSY; goto read_done; } switch (mask) { case IIO_CHAN_INFO_RAW: case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_LIGHT: ret = isl29018_read_lux(chip, val); break; case IIO_INTENSITY: ret = isl29018_read_ir(chip, val); break; case IIO_PROXIMITY: ret = isl29018_read_proximity_ir(chip, chip->prox_scheme, val); break; default: break; } if (!ret) ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_INT_TIME: if (chan->type == IIO_LIGHT) { *val = 0; *val2 = isl29018_int_utimes[chip->type][chip->int_time]; ret = IIO_VAL_INT_PLUS_MICRO; } break; case IIO_CHAN_INFO_SCALE: if (chan->type == IIO_LIGHT) { *val = chip->scale.scale; *val2 = chip->scale.uscale; ret = IIO_VAL_INT_PLUS_MICRO; } break; case IIO_CHAN_INFO_CALIBSCALE: if (chan->type == IIO_LIGHT) { *val = chip->calibscale; *val2 = chip->ucalibscale; ret = IIO_VAL_INT_PLUS_MICRO; } break; default: break; } read_done: mutex_unlock(&chip->lock); return ret; } #define ISL29018_LIGHT_CHANNEL { \ .type = IIO_LIGHT, \ .indexed = 1, \ .channel = 0, \ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | \ BIT(IIO_CHAN_INFO_CALIBSCALE) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_INT_TIME), \ } #define ISL29018_IR_CHANNEL { \ .type = IIO_INTENSITY, \ .modified = 1, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .channel2 = IIO_MOD_LIGHT_IR, \ } #define ISL29018_PROXIMITY_CHANNEL { \ .type = IIO_PROXIMITY, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ } static const struct iio_chan_spec isl29018_channels[] = { ISL29018_LIGHT_CHANNEL, ISL29018_IR_CHANNEL, ISL29018_PROXIMITY_CHANNEL, }; static const struct iio_chan_spec isl29023_channels[] = { ISL29018_LIGHT_CHANNEL, ISL29018_IR_CHANNEL, }; static IIO_DEVICE_ATTR_RO(in_illuminance_integration_time_available, 0); static IIO_DEVICE_ATTR_RO(in_illuminance_scale_available, 0); static IIO_DEVICE_ATTR_RW(proximity_on_chip_ambient_infrared_suppression, 0); #define ISL29018_DEV_ATTR(name) (&iio_dev_attr_##name.dev_attr.attr) static struct attribute *isl29018_attributes[] = { ISL29018_DEV_ATTR(in_illuminance_scale_available), ISL29018_DEV_ATTR(in_illuminance_integration_time_available), ISL29018_DEV_ATTR(proximity_on_chip_ambient_infrared_suppression), NULL }; static struct attribute *isl29023_attributes[] = { ISL29018_DEV_ATTR(in_illuminance_scale_available), ISL29018_DEV_ATTR(in_illuminance_integration_time_available), NULL }; static const struct attribute_group isl29018_group = { .attrs = isl29018_attributes, }; static const struct attribute_group isl29023_group = { .attrs = isl29023_attributes, }; enum { isl29018, isl29023, isl29035, }; static int isl29018_chip_init(struct isl29018_chip *chip) { int status; struct device *dev = regmap_get_device(chip->regmap); if (chip->type == isl29035) { unsigned int id; status = regmap_read(chip->regmap, ISL29035_REG_DEVICE_ID, &id); if (status < 0) { dev_err(dev, "Error reading ID register with error %d\n", status); return status; } id = (id & ISL29035_DEVICE_ID_MASK) >> ISL29035_DEVICE_ID_SHIFT; if (id != ISL29035_DEVICE_ID) return -ENODEV; /* Clear brownout bit */ status = regmap_update_bits(chip->regmap, ISL29035_REG_DEVICE_ID, ISL29035_BOUT_MASK, 0); if (status < 0) return status; } /* * Code added per Intersil Application Note 1534: * When VDD sinks to approximately 1.8V or below, some of * the part's registers may change their state. When VDD * recovers to 2.25V (or greater), the part may thus be in an * unknown mode of operation. The user can return the part to * a known mode of operation either by (a) setting VDD = 0V for * 1 second or more and then powering back up with a slew rate * of 0.5V/ms or greater, or (b) via I2C disable all ALS/PROX * conversions, clear the test registers, and then rewrite all * registers to the desired values. * ... * For ISL29011, ISL29018, ISL29021, ISL29023 * 1. Write 0x00 to register 0x08 (TEST) * 2. Write 0x00 to register 0x00 (CMD1) * 3. Rewrite all registers to the desired values * * ISL29018 Data Sheet (FN6619.1, Feb 11, 2010) essentially says * the same thing EXCEPT the data sheet asks for a 1ms delay after * writing the CMD1 register. */ status = regmap_write(chip->regmap, ISL29018_REG_TEST, 0x0); if (status < 0) { dev_err(dev, "Failed to clear isl29018 TEST reg.(%d)\n", status); return status; } /* * See Intersil AN1534 comments above. * "Operating Mode" (COMMAND1) register is reprogrammed when * data is read from the device. */ status = regmap_write(chip->regmap, ISL29018_REG_ADD_COMMAND1, 0); if (status < 0) { dev_err(dev, "Failed to clear isl29018 CMD1 reg.(%d)\n", status); return status; } usleep_range(1000, 2000); /* per data sheet, page 10 */ /* Set defaults */ status = isl29018_set_scale(chip, chip->scale.scale, chip->scale.uscale); if (status < 0) { dev_err(dev, "Init of isl29018 fails\n"); return status; } status = isl29018_set_integration_time(chip, isl29018_int_utimes[chip->type][chip->int_time]); if (status < 0) dev_err(dev, "Init of isl29018 fails\n"); return status; } static const struct iio_info isl29018_info = { .attrs = &isl29018_group, .read_raw = isl29018_read_raw, .write_raw = isl29018_write_raw, }; static const struct iio_info isl29023_info = { .attrs = &isl29023_group, .read_raw = isl29018_read_raw, .write_raw = isl29018_write_raw, }; static bool isl29018_is_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case ISL29018_REG_ADD_DATA_LSB: case ISL29018_REG_ADD_DATA_MSB: case ISL29018_REG_ADD_COMMAND1: case ISL29018_REG_TEST: case ISL29035_REG_DEVICE_ID: return true; default: return false; } } static const struct regmap_config isl29018_regmap_config = { .reg_bits = 8, .val_bits = 8, .volatile_reg = isl29018_is_volatile_reg, .max_register = ISL29018_REG_TEST, .num_reg_defaults_raw = ISL29018_REG_TEST + 1, .cache_type = REGCACHE_RBTREE, }; static const struct regmap_config isl29035_regmap_config = { .reg_bits = 8, .val_bits = 8, .volatile_reg = isl29018_is_volatile_reg, .max_register = ISL29035_REG_DEVICE_ID, .num_reg_defaults_raw = ISL29035_REG_DEVICE_ID + 1, .cache_type = REGCACHE_RBTREE, }; struct isl29018_chip_info { const struct iio_chan_spec *channels; int num_channels; const struct iio_info *indio_info; const struct regmap_config *regmap_cfg; }; static const struct isl29018_chip_info isl29018_chip_info_tbl[] = { [isl29018] = { .channels = isl29018_channels, .num_channels = ARRAY_SIZE(isl29018_channels), .indio_info = &isl29018_info, .regmap_cfg = &isl29018_regmap_config, }, [isl29023] = { .channels = isl29023_channels, .num_channels = ARRAY_SIZE(isl29023_channels), .indio_info = &isl29023_info, .regmap_cfg = &isl29018_regmap_config, }, [isl29035] = { .channels = isl29023_channels, .num_channels = ARRAY_SIZE(isl29023_channels), .indio_info = &isl29023_info, .regmap_cfg = &isl29035_regmap_config, }, }; static const char *isl29018_match_acpi_device(struct device *dev, int *data) { const struct acpi_device_id *id; id = acpi_match_device(dev->driver->acpi_match_table, dev); if (!id) return NULL; *data = (int)id->driver_data; return dev_name(dev); } static void isl29018_disable_regulator_action(void *_data) { struct isl29018_chip *chip = _data; int err; err = regulator_disable(chip->vcc_reg); if (err) pr_err("failed to disable isl29018's VCC regulator!\n"); } static int isl29018_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct isl29018_chip *chip; struct iio_dev *indio_dev; int err; const char *name = NULL; int dev_id = 0; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*chip)); if (!indio_dev) return -ENOMEM; chip = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); if (id) { name = id->name; dev_id = id->driver_data; } if (ACPI_HANDLE(&client->dev)) name = isl29018_match_acpi_device(&client->dev, &dev_id); mutex_init(&chip->lock); chip->type = dev_id; chip->calibscale = 1; chip->ucalibscale = 0; chip->int_time = ISL29018_INT_TIME_16; chip->scale = isl29018_scales[chip->int_time][0]; chip->suspended = false; chip->vcc_reg = devm_regulator_get(&client->dev, "vcc"); if (IS_ERR(chip->vcc_reg)) { err = PTR_ERR(chip->vcc_reg); if (err != -EPROBE_DEFER) dev_err(&client->dev, "failed to get VCC regulator!\n"); return err; } err = regulator_enable(chip->vcc_reg); if (err) { dev_err(&client->dev, "failed to enable VCC regulator!\n"); return err; } err = devm_add_action_or_reset(&client->dev, isl29018_disable_regulator_action, chip); if (err) { dev_err(&client->dev, "failed to setup regulator cleanup action!\n"); return err; } chip->regmap = devm_regmap_init_i2c(client, isl29018_chip_info_tbl[dev_id].regmap_cfg); if (IS_ERR(chip->regmap)) { err = PTR_ERR(chip->regmap); dev_err(&client->dev, "regmap initialization fails: %d\n", err); return err; } err = isl29018_chip_init(chip); if (err) return err; indio_dev->info = isl29018_chip_info_tbl[dev_id].indio_info; indio_dev->channels = isl29018_chip_info_tbl[dev_id].channels; indio_dev->num_channels = isl29018_chip_info_tbl[dev_id].num_channels; indio_dev->name = name; indio_dev->dev.parent = &client->dev; indio_dev->modes = INDIO_DIRECT_MODE; return devm_iio_device_register(&client->dev, indio_dev); } #ifdef CONFIG_PM_SLEEP static int isl29018_suspend(struct device *dev) { struct isl29018_chip *chip = iio_priv(dev_get_drvdata(dev)); int ret; mutex_lock(&chip->lock); /* * Since this driver uses only polling commands, we are by default in * auto shutdown (ie, power-down) mode. * So we do not have much to do here. */ chip->suspended = true; ret = regulator_disable(chip->vcc_reg); if (ret) dev_err(dev, "failed to disable VCC regulator\n"); mutex_unlock(&chip->lock); return ret; } static int isl29018_resume(struct device *dev) { struct isl29018_chip *chip = iio_priv(dev_get_drvdata(dev)); int err; mutex_lock(&chip->lock); err = regulator_enable(chip->vcc_reg); if (err) { dev_err(dev, "failed to enable VCC regulator\n"); mutex_unlock(&chip->lock); return err; } err = isl29018_chip_init(chip); if (!err) chip->suspended = false; mutex_unlock(&chip->lock); return err; } static SIMPLE_DEV_PM_OPS(isl29018_pm_ops, isl29018_suspend, isl29018_resume); #define ISL29018_PM_OPS (&isl29018_pm_ops) #else #define ISL29018_PM_OPS NULL #endif #ifdef CONFIG_ACPI static const struct acpi_device_id isl29018_acpi_match[] = { {"ISL29018", isl29018}, {"ISL29023", isl29023}, {"ISL29035", isl29035}, {}, }; MODULE_DEVICE_TABLE(acpi, isl29018_acpi_match); #endif static const struct i2c_device_id isl29018_id[] = { {"isl29018", isl29018}, {"isl29023", isl29023}, {"isl29035", isl29035}, {} }; MODULE_DEVICE_TABLE(i2c, isl29018_id); static const struct of_device_id isl29018_of_match[] = { { .compatible = "isil,isl29018", }, { .compatible = "isil,isl29023", }, { .compatible = "isil,isl29035", }, { }, }; MODULE_DEVICE_TABLE(of, isl29018_of_match); static struct i2c_driver isl29018_driver = { .driver = { .name = "isl29018", .acpi_match_table = ACPI_PTR(isl29018_acpi_match), .pm = ISL29018_PM_OPS, .of_match_table = isl29018_of_match, }, .probe = isl29018_probe, .id_table = isl29018_id, }; module_i2c_driver(isl29018_driver); MODULE_DESCRIPTION("ISL29018 Ambient Light Sensor driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1