Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Eli Cohen | 2564 | 19.78% | 8 | 6.02% |
Jason Gunthorpe | 1897 | 14.63% | 21 | 15.79% |
Max Gurtovoy | 1718 | 13.25% | 3 | 2.26% |
Artemy Kovalyov | 1054 | 8.13% | 10 | 7.52% |
Sagi Grimberg | 1002 | 7.73% | 7 | 5.26% |
Saeed Mahameed | 709 | 5.47% | 6 | 4.51% |
Israel Rukshin | 644 | 4.97% | 1 | 0.75% |
Noa Osherovich | 633 | 4.88% | 2 | 1.50% |
Haggai Eran | 465 | 3.59% | 7 | 5.26% |
Matan Barak | 440 | 3.39% | 2 | 1.50% |
Ariel Levkovich | 419 | 3.23% | 4 | 3.01% |
Ilya Lesokhin | 217 | 1.67% | 5 | 3.76% |
Leon Romanovsky | 201 | 1.55% | 11 | 8.27% |
Binoy Jayan | 153 | 1.18% | 1 | 0.75% |
Parav Pandit | 144 | 1.11% | 1 | 0.75% |
Michael Guralnik | 140 | 1.08% | 2 | 1.50% |
Moni Shoua | 92 | 0.71% | 5 | 3.76% |
Christoph Hellwig | 78 | 0.60% | 3 | 2.26% |
Majd Dibbiny | 61 | 0.47% | 3 | 2.26% |
Daniel Jurgens | 49 | 0.38% | 1 | 0.75% |
Moshe Lazer | 43 | 0.33% | 2 | 1.50% |
Yishai Hadas | 36 | 0.28% | 4 | 3.01% |
Bart Van Assche | 35 | 0.27% | 4 | 3.01% |
Arnd Bergmann | 33 | 0.25% | 2 | 1.50% |
Mark Bloch | 25 | 0.19% | 3 | 2.26% |
Jann Horn | 20 | 0.15% | 1 | 0.75% |
Maor Gottlieb | 19 | 0.15% | 2 | 1.50% |
Guy Levi | 17 | 0.13% | 1 | 0.75% |
Kees Cook | 14 | 0.11% | 1 | 0.75% |
Valentine Fatiev | 9 | 0.07% | 1 | 0.75% |
Greg Kroah-Hartman | 7 | 0.05% | 1 | 0.75% |
Shachar Raindel | 5 | 0.04% | 1 | 0.75% |
shamir rabinovitch | 5 | 0.04% | 1 | 0.75% |
Gal Pressman | 4 | 0.03% | 1 | 0.75% |
Jack Morgenstein | 4 | 0.03% | 1 | 0.75% |
Bhaktipriya Shridhar | 3 | 0.02% | 1 | 0.75% |
Arvind Yadav | 2 | 0.02% | 1 | 0.75% |
Doug Ledford | 2 | 0.02% | 1 | 0.75% |
Al Viro | 2 | 0.02% | 1 | 0.75% |
Total | 12965 | 133 |
/* * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/kref.h> #include <linux/random.h> #include <linux/debugfs.h> #include <linux/export.h> #include <linux/delay.h> #include <rdma/ib_umem.h> #include <rdma/ib_umem_odp.h> #include <rdma/ib_verbs.h> #include "mlx5_ib.h" enum { MAX_PENDING_REG_MR = 8, }; #define MLX5_UMR_ALIGN 2048 static void create_mkey_callback(int status, struct mlx5_async_work *context); static void assign_mkey_variant(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey, u32 *in) { u8 key = atomic_inc_return(&dev->mkey_var); void *mkc; mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, mkey_7_0, key); mkey->key = key; } static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey, u32 *in, int inlen) { assign_mkey_variant(dev, mkey, in); return mlx5_core_create_mkey(dev->mdev, mkey, in, inlen); } static int mlx5_ib_create_mkey_cb(struct mlx5_ib_dev *dev, struct mlx5_core_mkey *mkey, struct mlx5_async_ctx *async_ctx, u32 *in, int inlen, u32 *out, int outlen, struct mlx5_async_work *context) { MLX5_SET(create_mkey_in, in, opcode, MLX5_CMD_OP_CREATE_MKEY); assign_mkey_variant(dev, mkey, in); return mlx5_cmd_exec_cb(async_ctx, in, inlen, out, outlen, create_mkey_callback, context); } static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); static int mr_cache_max_order(struct mlx5_ib_dev *dev); static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent); static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev) { return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled); } static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) { WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))); return mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); } static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length) { return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >= length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1)); } static void create_mkey_callback(int status, struct mlx5_async_work *context) { struct mlx5_ib_mr *mr = container_of(context, struct mlx5_ib_mr, cb_work); struct mlx5_ib_dev *dev = mr->dev; struct mlx5_cache_ent *ent = mr->cache_ent; unsigned long flags; if (status) { mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status); kfree(mr); spin_lock_irqsave(&ent->lock, flags); ent->pending--; WRITE_ONCE(dev->fill_delay, 1); spin_unlock_irqrestore(&ent->lock, flags); mod_timer(&dev->delay_timer, jiffies + HZ); return; } mr->mmkey.type = MLX5_MKEY_MR; mr->mmkey.key |= mlx5_idx_to_mkey( MLX5_GET(create_mkey_out, mr->out, mkey_index)); WRITE_ONCE(dev->cache.last_add, jiffies); spin_lock_irqsave(&ent->lock, flags); list_add_tail(&mr->list, &ent->head); ent->available_mrs++; ent->total_mrs++; /* If we are doing fill_to_high_water then keep going. */ queue_adjust_cache_locked(ent); ent->pending--; spin_unlock_irqrestore(&ent->lock, flags); } static struct mlx5_ib_mr *alloc_cache_mr(struct mlx5_cache_ent *ent, void *mkc) { struct mlx5_ib_mr *mr; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return NULL; mr->order = ent->order; mr->cache_ent = ent; mr->dev = ent->dev; MLX5_SET(mkc, mkc, free, 1); MLX5_SET(mkc, mkc, umr_en, 1); MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3); MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7); MLX5_SET(mkc, mkc, qpn, 0xffffff); MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt); MLX5_SET(mkc, mkc, log_page_size, ent->page); return mr; } /* Asynchronously schedule new MRs to be populated in the cache. */ static int add_keys(struct mlx5_cache_ent *ent, unsigned int num) { size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); struct mlx5_ib_mr *mr; void *mkc; u32 *in; int err = 0; int i; in = kzalloc(inlen, GFP_KERNEL); if (!in) return -ENOMEM; mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); for (i = 0; i < num; i++) { mr = alloc_cache_mr(ent, mkc); if (!mr) { err = -ENOMEM; break; } spin_lock_irq(&ent->lock); if (ent->pending >= MAX_PENDING_REG_MR) { err = -EAGAIN; spin_unlock_irq(&ent->lock); kfree(mr); break; } ent->pending++; spin_unlock_irq(&ent->lock); err = mlx5_ib_create_mkey_cb(ent->dev, &mr->mmkey, &ent->dev->async_ctx, in, inlen, mr->out, sizeof(mr->out), &mr->cb_work); if (err) { spin_lock_irq(&ent->lock); ent->pending--; spin_unlock_irq(&ent->lock); mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err); kfree(mr); break; } } kfree(in); return err; } /* Synchronously create a MR in the cache */ static struct mlx5_ib_mr *create_cache_mr(struct mlx5_cache_ent *ent) { size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); struct mlx5_ib_mr *mr; void *mkc; u32 *in; int err; in = kzalloc(inlen, GFP_KERNEL); if (!in) return ERR_PTR(-ENOMEM); mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); mr = alloc_cache_mr(ent, mkc); if (!mr) { err = -ENOMEM; goto free_in; } err = mlx5_core_create_mkey(ent->dev->mdev, &mr->mmkey, in, inlen); if (err) goto free_mr; mr->mmkey.type = MLX5_MKEY_MR; WRITE_ONCE(ent->dev->cache.last_add, jiffies); spin_lock_irq(&ent->lock); ent->total_mrs++; spin_unlock_irq(&ent->lock); kfree(in); return mr; free_mr: kfree(mr); free_in: kfree(in); return ERR_PTR(err); } static void remove_cache_mr_locked(struct mlx5_cache_ent *ent) { struct mlx5_ib_mr *mr; lockdep_assert_held(&ent->lock); if (list_empty(&ent->head)) return; mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); list_del(&mr->list); ent->available_mrs--; ent->total_mrs--; spin_unlock_irq(&ent->lock); mlx5_core_destroy_mkey(ent->dev->mdev, &mr->mmkey); kfree(mr); spin_lock_irq(&ent->lock); } static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target, bool limit_fill) { int err; lockdep_assert_held(&ent->lock); while (true) { if (limit_fill) target = ent->limit * 2; if (target == ent->available_mrs + ent->pending) return 0; if (target > ent->available_mrs + ent->pending) { u32 todo = target - (ent->available_mrs + ent->pending); spin_unlock_irq(&ent->lock); err = add_keys(ent, todo); if (err == -EAGAIN) usleep_range(3000, 5000); spin_lock_irq(&ent->lock); if (err) { if (err != -EAGAIN) return err; } else return 0; } else { remove_cache_mr_locked(ent); } } } static ssize_t size_write(struct file *filp, const char __user *buf, size_t count, loff_t *pos) { struct mlx5_cache_ent *ent = filp->private_data; u32 target; int err; err = kstrtou32_from_user(buf, count, 0, &target); if (err) return err; /* * Target is the new value of total_mrs the user requests, however we * cannot free MRs that are in use. Compute the target value for * available_mrs. */ spin_lock_irq(&ent->lock); if (target < ent->total_mrs - ent->available_mrs) { err = -EINVAL; goto err_unlock; } target = target - (ent->total_mrs - ent->available_mrs); if (target < ent->limit || target > ent->limit*2) { err = -EINVAL; goto err_unlock; } err = resize_available_mrs(ent, target, false); if (err) goto err_unlock; spin_unlock_irq(&ent->lock); return count; err_unlock: spin_unlock_irq(&ent->lock); return err; } static ssize_t size_read(struct file *filp, char __user *buf, size_t count, loff_t *pos) { struct mlx5_cache_ent *ent = filp->private_data; char lbuf[20]; int err; err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->total_mrs); if (err < 0) return err; return simple_read_from_buffer(buf, count, pos, lbuf, err); } static const struct file_operations size_fops = { .owner = THIS_MODULE, .open = simple_open, .write = size_write, .read = size_read, }; static ssize_t limit_write(struct file *filp, const char __user *buf, size_t count, loff_t *pos) { struct mlx5_cache_ent *ent = filp->private_data; u32 var; int err; err = kstrtou32_from_user(buf, count, 0, &var); if (err) return err; /* * Upon set we immediately fill the cache to high water mark implied by * the limit. */ spin_lock_irq(&ent->lock); ent->limit = var; err = resize_available_mrs(ent, 0, true); spin_unlock_irq(&ent->lock); if (err) return err; return count; } static ssize_t limit_read(struct file *filp, char __user *buf, size_t count, loff_t *pos) { struct mlx5_cache_ent *ent = filp->private_data; char lbuf[20]; int err; err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit); if (err < 0) return err; return simple_read_from_buffer(buf, count, pos, lbuf, err); } static const struct file_operations limit_fops = { .owner = THIS_MODULE, .open = simple_open, .write = limit_write, .read = limit_read, }; static bool someone_adding(struct mlx5_mr_cache *cache) { unsigned int i; for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { struct mlx5_cache_ent *ent = &cache->ent[i]; bool ret; spin_lock_irq(&ent->lock); ret = ent->available_mrs < ent->limit; spin_unlock_irq(&ent->lock); if (ret) return true; } return false; } /* * Check if the bucket is outside the high/low water mark and schedule an async * update. The cache refill has hysteresis, once the low water mark is hit it is * refilled up to the high mark. */ static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent) { lockdep_assert_held(&ent->lock); if (ent->disabled || READ_ONCE(ent->dev->fill_delay)) return; if (ent->available_mrs < ent->limit) { ent->fill_to_high_water = true; queue_work(ent->dev->cache.wq, &ent->work); } else if (ent->fill_to_high_water && ent->available_mrs + ent->pending < 2 * ent->limit) { /* * Once we start populating due to hitting a low water mark * continue until we pass the high water mark. */ queue_work(ent->dev->cache.wq, &ent->work); } else if (ent->available_mrs == 2 * ent->limit) { ent->fill_to_high_water = false; } else if (ent->available_mrs > 2 * ent->limit) { /* Queue deletion of excess entries */ ent->fill_to_high_water = false; if (ent->pending) queue_delayed_work(ent->dev->cache.wq, &ent->dwork, msecs_to_jiffies(1000)); else queue_work(ent->dev->cache.wq, &ent->work); } } static void __cache_work_func(struct mlx5_cache_ent *ent) { struct mlx5_ib_dev *dev = ent->dev; struct mlx5_mr_cache *cache = &dev->cache; int err; spin_lock_irq(&ent->lock); if (ent->disabled) goto out; if (ent->fill_to_high_water && ent->available_mrs + ent->pending < 2 * ent->limit && !READ_ONCE(dev->fill_delay)) { spin_unlock_irq(&ent->lock); err = add_keys(ent, 1); spin_lock_irq(&ent->lock); if (ent->disabled) goto out; if (err) { /* * EAGAIN only happens if pending is positive, so we * will be rescheduled from reg_mr_callback(). The only * failure path here is ENOMEM. */ if (err != -EAGAIN) { mlx5_ib_warn( dev, "command failed order %d, err %d\n", ent->order, err); queue_delayed_work(cache->wq, &ent->dwork, msecs_to_jiffies(1000)); } } } else if (ent->available_mrs > 2 * ent->limit) { bool need_delay; /* * The remove_cache_mr() logic is performed as garbage * collection task. Such task is intended to be run when no * other active processes are running. * * The need_resched() will return TRUE if there are user tasks * to be activated in near future. * * In such case, we don't execute remove_cache_mr() and postpone * the garbage collection work to try to run in next cycle, in * order to free CPU resources to other tasks. */ spin_unlock_irq(&ent->lock); need_delay = need_resched() || someone_adding(cache) || time_after(jiffies, READ_ONCE(cache->last_add) + 300 * HZ); spin_lock_irq(&ent->lock); if (ent->disabled) goto out; if (need_delay) queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ); remove_cache_mr_locked(ent); queue_adjust_cache_locked(ent); } out: spin_unlock_irq(&ent->lock); } static void delayed_cache_work_func(struct work_struct *work) { struct mlx5_cache_ent *ent; ent = container_of(work, struct mlx5_cache_ent, dwork.work); __cache_work_func(ent); } static void cache_work_func(struct work_struct *work) { struct mlx5_cache_ent *ent; ent = container_of(work, struct mlx5_cache_ent, work); __cache_work_func(ent); } /* Allocate a special entry from the cache */ struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, unsigned int entry) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent; struct mlx5_ib_mr *mr; if (WARN_ON(entry <= MR_CACHE_LAST_STD_ENTRY || entry >= ARRAY_SIZE(cache->ent))) return ERR_PTR(-EINVAL); ent = &cache->ent[entry]; spin_lock_irq(&ent->lock); if (list_empty(&ent->head)) { spin_unlock_irq(&ent->lock); mr = create_cache_mr(ent); if (IS_ERR(mr)) return mr; } else { mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); list_del(&mr->list); ent->available_mrs--; queue_adjust_cache_locked(ent); spin_unlock_irq(&ent->lock); } return mr; } /* Return a MR already available in the cache */ static struct mlx5_ib_mr *get_cache_mr(struct mlx5_cache_ent *req_ent) { struct mlx5_ib_dev *dev = req_ent->dev; struct mlx5_ib_mr *mr = NULL; struct mlx5_cache_ent *ent = req_ent; /* Try larger MR pools from the cache to satisfy the allocation */ for (; ent != &dev->cache.ent[MR_CACHE_LAST_STD_ENTRY + 1]; ent++) { mlx5_ib_dbg(dev, "order %u, cache index %zu\n", ent->order, ent - dev->cache.ent); spin_lock_irq(&ent->lock); if (!list_empty(&ent->head)) { mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); list_del(&mr->list); ent->available_mrs--; queue_adjust_cache_locked(ent); spin_unlock_irq(&ent->lock); break; } queue_adjust_cache_locked(ent); spin_unlock_irq(&ent->lock); } if (!mr) req_ent->miss++; return mr; } static void detach_mr_from_cache(struct mlx5_ib_mr *mr) { struct mlx5_cache_ent *ent = mr->cache_ent; mr->cache_ent = NULL; spin_lock_irq(&ent->lock); ent->total_mrs--; spin_unlock_irq(&ent->lock); } void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) { struct mlx5_cache_ent *ent = mr->cache_ent; if (!ent) return; if (mlx5_mr_cache_invalidate(mr)) { detach_mr_from_cache(mr); destroy_mkey(dev, mr); return; } spin_lock_irq(&ent->lock); list_add_tail(&mr->list, &ent->head); ent->available_mrs++; queue_adjust_cache_locked(ent); spin_unlock_irq(&ent->lock); } static void clean_keys(struct mlx5_ib_dev *dev, int c) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent = &cache->ent[c]; struct mlx5_ib_mr *tmp_mr; struct mlx5_ib_mr *mr; LIST_HEAD(del_list); cancel_delayed_work(&ent->dwork); while (1) { spin_lock_irq(&ent->lock); if (list_empty(&ent->head)) { spin_unlock_irq(&ent->lock); break; } mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); list_move(&mr->list, &del_list); ent->available_mrs--; ent->total_mrs--; spin_unlock_irq(&ent->lock); mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); } list_for_each_entry_safe(mr, tmp_mr, &del_list, list) { list_del(&mr->list); kfree(mr); } } static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev) { if (!mlx5_debugfs_root || dev->is_rep) return; debugfs_remove_recursive(dev->cache.root); dev->cache.root = NULL; } static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent; struct dentry *dir; int i; if (!mlx5_debugfs_root || dev->is_rep) return; cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root); for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { ent = &cache->ent[i]; sprintf(ent->name, "%d", ent->order); dir = debugfs_create_dir(ent->name, cache->root); debugfs_create_file("size", 0600, dir, ent, &size_fops); debugfs_create_file("limit", 0600, dir, ent, &limit_fops); debugfs_create_u32("cur", 0400, dir, &ent->available_mrs); debugfs_create_u32("miss", 0600, dir, &ent->miss); } } static void delay_time_func(struct timer_list *t) { struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer); WRITE_ONCE(dev->fill_delay, 0); } int mlx5_mr_cache_init(struct mlx5_ib_dev *dev) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent; int i; mutex_init(&dev->slow_path_mutex); cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM); if (!cache->wq) { mlx5_ib_warn(dev, "failed to create work queue\n"); return -ENOMEM; } mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx); timer_setup(&dev->delay_timer, delay_time_func, 0); for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { ent = &cache->ent[i]; INIT_LIST_HEAD(&ent->head); spin_lock_init(&ent->lock); ent->order = i + 2; ent->dev = dev; ent->limit = 0; INIT_WORK(&ent->work, cache_work_func); INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func); if (i > MR_CACHE_LAST_STD_ENTRY) { mlx5_odp_init_mr_cache_entry(ent); continue; } if (ent->order > mr_cache_max_order(dev)) continue; ent->page = PAGE_SHIFT; ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) / MLX5_IB_UMR_OCTOWORD; ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) && !dev->is_rep && mlx5_core_is_pf(dev->mdev)) ent->limit = dev->mdev->profile->mr_cache[i].limit; else ent->limit = 0; spin_lock_irq(&ent->lock); queue_adjust_cache_locked(ent); spin_unlock_irq(&ent->lock); } mlx5_mr_cache_debugfs_init(dev); return 0; } int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev) { unsigned int i; if (!dev->cache.wq) return 0; for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { struct mlx5_cache_ent *ent = &dev->cache.ent[i]; spin_lock_irq(&ent->lock); ent->disabled = true; spin_unlock_irq(&ent->lock); cancel_work_sync(&ent->work); cancel_delayed_work_sync(&ent->dwork); } mlx5_mr_cache_debugfs_cleanup(dev); mlx5_cmd_cleanup_async_ctx(&dev->async_ctx); for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) clean_keys(dev, i); destroy_workqueue(dev->cache.wq); del_timer_sync(&dev->delay_timer); return 0; } static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr, struct ib_pd *pd) { struct mlx5_ib_dev *dev = to_mdev(pd->device); MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); MLX5_SET(mkc, mkc, lr, 1); if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write)) MLX5_SET(mkc, mkc, relaxed_ordering_write, !!(acc & IB_ACCESS_RELAXED_ORDERING)); if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read)) MLX5_SET(mkc, mkc, relaxed_ordering_read, !!(acc & IB_ACCESS_RELAXED_ORDERING)); MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); MLX5_SET(mkc, mkc, qpn, 0xffffff); MLX5_SET64(mkc, mkc, start_addr, start_addr); } struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); struct mlx5_ib_mr *mr; void *mkc; u32 *in; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_free; } mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA); MLX5_SET(mkc, mkc, length64, 1); set_mkc_access_pd_addr_fields(mkc, acc, 0, pd); err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); if (err) goto err_in; kfree(in); mr->mmkey.type = MLX5_MKEY_MR; mr->ibmr.lkey = mr->mmkey.key; mr->ibmr.rkey = mr->mmkey.key; mr->umem = NULL; return &mr->ibmr; err_in: kfree(in); err_free: kfree(mr); return ERR_PTR(err); } static int get_octo_len(u64 addr, u64 len, int page_shift) { u64 page_size = 1ULL << page_shift; u64 offset; int npages; offset = addr & (page_size - 1); npages = ALIGN(len + offset, page_size) >> page_shift; return (npages + 1) / 2; } static int mr_cache_max_order(struct mlx5_ib_dev *dev) { if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) return MR_CACHE_LAST_STD_ENTRY + 2; return MLX5_MAX_UMR_SHIFT; } static int mr_umem_get(struct mlx5_ib_dev *dev, u64 start, u64 length, int access_flags, struct ib_umem **umem, int *npages, int *page_shift, int *ncont, int *order) { struct ib_umem *u; *umem = NULL; if (access_flags & IB_ACCESS_ON_DEMAND) { struct ib_umem_odp *odp; odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags, &mlx5_mn_ops); if (IS_ERR(odp)) { mlx5_ib_dbg(dev, "umem get failed (%ld)\n", PTR_ERR(odp)); return PTR_ERR(odp); } u = &odp->umem; *page_shift = odp->page_shift; *ncont = ib_umem_odp_num_pages(odp); *npages = *ncont << (*page_shift - PAGE_SHIFT); if (order) *order = ilog2(roundup_pow_of_two(*ncont)); } else { u = ib_umem_get(&dev->ib_dev, start, length, access_flags); if (IS_ERR(u)) { mlx5_ib_dbg(dev, "umem get failed (%ld)\n", PTR_ERR(u)); return PTR_ERR(u); } mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages, page_shift, ncont, order); } if (!*npages) { mlx5_ib_warn(dev, "avoid zero region\n"); ib_umem_release(u); return -EINVAL; } *umem = u; mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n", *npages, *ncont, *order, *page_shift); return 0; } static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc) { struct mlx5_ib_umr_context *context = container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe); context->status = wc->status; complete(&context->done); } static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context) { context->cqe.done = mlx5_ib_umr_done; context->status = -1; init_completion(&context->done); } static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev, struct mlx5_umr_wr *umrwr) { struct umr_common *umrc = &dev->umrc; const struct ib_send_wr *bad; int err; struct mlx5_ib_umr_context umr_context; mlx5_ib_init_umr_context(&umr_context); umrwr->wr.wr_cqe = &umr_context.cqe; down(&umrc->sem); err = ib_post_send(umrc->qp, &umrwr->wr, &bad); if (err) { mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err); } else { wait_for_completion(&umr_context.done); if (umr_context.status != IB_WC_SUCCESS) { mlx5_ib_warn(dev, "reg umr failed (%u)\n", umr_context.status); err = -EFAULT; } } up(&umrc->sem); return err; } static struct mlx5_cache_ent *mr_cache_ent_from_order(struct mlx5_ib_dev *dev, unsigned int order) { struct mlx5_mr_cache *cache = &dev->cache; if (order < cache->ent[0].order) return &cache->ent[0]; order = order - cache->ent[0].order; if (order > MR_CACHE_LAST_STD_ENTRY) return NULL; return &cache->ent[order]; } static struct mlx5_ib_mr * alloc_mr_from_cache(struct ib_pd *pd, struct ib_umem *umem, u64 virt_addr, u64 len, int npages, int page_shift, unsigned int order, int access_flags) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_cache_ent *ent = mr_cache_ent_from_order(dev, order); struct mlx5_ib_mr *mr; if (!ent) return ERR_PTR(-E2BIG); mr = get_cache_mr(ent); if (!mr) { mr = create_cache_mr(ent); if (IS_ERR(mr)) return mr; } mr->ibmr.pd = pd; mr->umem = umem; mr->access_flags = access_flags; mr->desc_size = sizeof(struct mlx5_mtt); mr->mmkey.iova = virt_addr; mr->mmkey.size = len; mr->mmkey.pd = to_mpd(pd)->pdn; return mr; } #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \ MLX5_UMR_MTT_ALIGNMENT) #define MLX5_SPARE_UMR_CHUNK 0x10000 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages, int page_shift, int flags) { struct mlx5_ib_dev *dev = mr->dev; struct device *ddev = dev->ib_dev.dev.parent; int size; void *xlt; dma_addr_t dma; struct mlx5_umr_wr wr; struct ib_sge sg; int err = 0; int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT) ? sizeof(struct mlx5_klm) : sizeof(struct mlx5_mtt); const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size; const int page_mask = page_align - 1; size_t pages_mapped = 0; size_t pages_to_map = 0; size_t pages_iter = 0; size_t size_to_map = 0; gfp_t gfp; bool use_emergency_page = false; if ((flags & MLX5_IB_UPD_XLT_INDIRECT) && !umr_can_use_indirect_mkey(dev)) return -EPERM; /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes, * so we need to align the offset and length accordingly */ if (idx & page_mask) { npages += idx & page_mask; idx &= ~page_mask; } gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL; gfp |= __GFP_ZERO | __GFP_NOWARN; pages_to_map = ALIGN(npages, page_align); size = desc_size * pages_to_map; size = min_t(int, size, MLX5_MAX_UMR_CHUNK); xlt = (void *)__get_free_pages(gfp, get_order(size)); if (!xlt && size > MLX5_SPARE_UMR_CHUNK) { mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n", size, get_order(size), MLX5_SPARE_UMR_CHUNK); size = MLX5_SPARE_UMR_CHUNK; xlt = (void *)__get_free_pages(gfp, get_order(size)); } if (!xlt) { mlx5_ib_warn(dev, "Using XLT emergency buffer\n"); xlt = (void *)mlx5_ib_get_xlt_emergency_page(); size = PAGE_SIZE; memset(xlt, 0, size); use_emergency_page = true; } pages_iter = size / desc_size; dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE); if (dma_mapping_error(ddev, dma)) { mlx5_ib_err(dev, "unable to map DMA during XLT update.\n"); err = -ENOMEM; goto free_xlt; } if (mr->umem->is_odp) { if (!(flags & MLX5_IB_UPD_XLT_INDIRECT)) { struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem); size_t max_pages = ib_umem_odp_num_pages(odp) - idx; pages_to_map = min_t(size_t, pages_to_map, max_pages); } } sg.addr = dma; sg.lkey = dev->umrc.pd->local_dma_lkey; memset(&wr, 0, sizeof(wr)); wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT; if (!(flags & MLX5_IB_UPD_XLT_ENABLE)) wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE; wr.wr.sg_list = &sg; wr.wr.num_sge = 1; wr.wr.opcode = MLX5_IB_WR_UMR; wr.pd = mr->ibmr.pd; wr.mkey = mr->mmkey.key; wr.length = mr->mmkey.size; wr.virt_addr = mr->mmkey.iova; wr.access_flags = mr->access_flags; wr.page_shift = page_shift; for (pages_mapped = 0; pages_mapped < pages_to_map && !err; pages_mapped += pages_iter, idx += pages_iter) { npages = min_t(int, pages_iter, pages_to_map - pages_mapped); size_to_map = npages * desc_size; dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE); if (mr->umem->is_odp) { mlx5_odp_populate_xlt(xlt, idx, npages, mr, flags); } else { __mlx5_ib_populate_pas(dev, mr->umem, page_shift, idx, npages, xlt, MLX5_IB_MTT_PRESENT); /* Clear padding after the pages * brought from the umem. */ memset(xlt + size_to_map, 0, size - size_to_map); } dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE); sg.length = ALIGN(size_to_map, MLX5_UMR_MTT_ALIGNMENT); if (pages_mapped + pages_iter >= pages_to_map) { if (flags & MLX5_IB_UPD_XLT_ENABLE) wr.wr.send_flags |= MLX5_IB_SEND_UMR_ENABLE_MR | MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS | MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; if (flags & MLX5_IB_UPD_XLT_PD || flags & MLX5_IB_UPD_XLT_ACCESS) wr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; if (flags & MLX5_IB_UPD_XLT_ADDR) wr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; } wr.offset = idx * desc_size; wr.xlt_size = sg.length; err = mlx5_ib_post_send_wait(dev, &wr); } dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE); free_xlt: if (use_emergency_page) mlx5_ib_put_xlt_emergency_page(); else free_pages((unsigned long)xlt, get_order(size)); return err; } /* * If ibmr is NULL it will be allocated by reg_create. * Else, the given ibmr will be used. */ static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd, u64 virt_addr, u64 length, struct ib_umem *umem, int npages, int page_shift, int access_flags, bool populate) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_ib_mr *mr; __be64 *pas; void *mkc; int inlen; u32 *in; int err; bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)); mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); mr->ibmr.pd = pd; mr->access_flags = access_flags; inlen = MLX5_ST_SZ_BYTES(create_mkey_in); if (populate) inlen += sizeof(*pas) * roundup(npages, 2); in = kvzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_1; } pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt); if (populate && !(access_flags & IB_ACCESS_ON_DEMAND)) mlx5_ib_populate_pas(dev, umem, page_shift, pas, pg_cap ? MLX5_IB_MTT_PRESENT : 0); /* The pg_access bit allows setting the access flags * in the page list submitted with the command. */ MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap)); mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, free, !populate); MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write)) MLX5_SET(mkc, mkc, relaxed_ordering_write, !!(access_flags & IB_ACCESS_RELAXED_ORDERING)); if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read)) MLX5_SET(mkc, mkc, relaxed_ordering_read, !!(access_flags & IB_ACCESS_RELAXED_ORDERING)); MLX5_SET(mkc, mkc, a, !!(access_flags & IB_ACCESS_REMOTE_ATOMIC)); MLX5_SET(mkc, mkc, rw, !!(access_flags & IB_ACCESS_REMOTE_WRITE)); MLX5_SET(mkc, mkc, rr, !!(access_flags & IB_ACCESS_REMOTE_READ)); MLX5_SET(mkc, mkc, lw, !!(access_flags & IB_ACCESS_LOCAL_WRITE)); MLX5_SET(mkc, mkc, lr, 1); MLX5_SET(mkc, mkc, umr_en, 1); MLX5_SET64(mkc, mkc, start_addr, virt_addr); MLX5_SET64(mkc, mkc, len, length); MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); MLX5_SET(mkc, mkc, bsf_octword_size, 0); MLX5_SET(mkc, mkc, translations_octword_size, get_octo_len(virt_addr, length, page_shift)); MLX5_SET(mkc, mkc, log_page_size, page_shift); MLX5_SET(mkc, mkc, qpn, 0xffffff); if (populate) { MLX5_SET(create_mkey_in, in, translations_octword_actual_size, get_octo_len(virt_addr, length, page_shift)); } err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); if (err) { mlx5_ib_warn(dev, "create mkey failed\n"); goto err_2; } mr->mmkey.type = MLX5_MKEY_MR; mr->desc_size = sizeof(struct mlx5_mtt); mr->dev = dev; kvfree(in); mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key); return mr; err_2: kvfree(in); err_1: if (!ibmr) kfree(mr); return ERR_PTR(err); } static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, int npages, u64 length, int access_flags) { mr->npages = npages; atomic_add(npages, &dev->mdev->priv.reg_pages); mr->ibmr.lkey = mr->mmkey.key; mr->ibmr.rkey = mr->mmkey.key; mr->ibmr.length = length; mr->access_flags = access_flags; } static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr, u64 length, int acc, int mode) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); struct mlx5_ib_mr *mr; void *mkc; u32 *in; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_free; } mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3); MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7); MLX5_SET64(mkc, mkc, len, length); set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd); err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); if (err) goto err_in; kfree(in); mr->umem = NULL; set_mr_fields(dev, mr, 0, length, acc); return &mr->ibmr; err_in: kfree(in); err_free: kfree(mr); return ERR_PTR(err); } int mlx5_ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, u32 flags, struct ib_sge *sg_list, u32 num_sge, struct uverbs_attr_bundle *attrs) { if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH && advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE) return -EOPNOTSUPP; return mlx5_ib_advise_mr_prefetch(pd, advice, flags, sg_list, num_sge); } struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm, struct ib_dm_mr_attr *attr, struct uverbs_attr_bundle *attrs) { struct mlx5_ib_dm *mdm = to_mdm(dm); struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev; u64 start_addr = mdm->dev_addr + attr->offset; int mode; switch (mdm->type) { case MLX5_IB_UAPI_DM_TYPE_MEMIC: if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS) return ERR_PTR(-EINVAL); mode = MLX5_MKC_ACCESS_MODE_MEMIC; start_addr -= pci_resource_start(dev->pdev, 0); break; case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM: case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM: if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS) return ERR_PTR(-EINVAL); mode = MLX5_MKC_ACCESS_MODE_SW_ICM; break; default: return ERR_PTR(-EINVAL); } return mlx5_ib_get_dm_mr(pd, start_addr, attr->length, attr->access_flags, mode); } struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, u64 virt_addr, int access_flags, struct ib_udata *udata) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_ib_mr *mr = NULL; bool use_umr; struct ib_umem *umem; int page_shift; int npages; int ncont; int order; int err; if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) return ERR_PTR(-EOPNOTSUPP); mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n", start, virt_addr, length, access_flags); if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start && length == U64_MAX) { if (virt_addr != start) return ERR_PTR(-EINVAL); if (!(access_flags & IB_ACCESS_ON_DEMAND) || !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) return ERR_PTR(-EINVAL); mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags); if (IS_ERR(mr)) return ERR_CAST(mr); return &mr->ibmr; } err = mr_umem_get(dev, start, length, access_flags, &umem, &npages, &page_shift, &ncont, &order); if (err < 0) return ERR_PTR(err); use_umr = mlx5_ib_can_use_umr(dev, true, access_flags); if (order <= mr_cache_max_order(dev) && use_umr) { mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont, page_shift, order, access_flags); if (PTR_ERR(mr) == -EAGAIN) { mlx5_ib_dbg(dev, "cache empty for order %d\n", order); mr = NULL; } } else if (!MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) { if (access_flags & IB_ACCESS_ON_DEMAND) { err = -EINVAL; pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB\n"); goto error; } use_umr = false; } if (!mr) { mutex_lock(&dev->slow_path_mutex); mr = reg_create(NULL, pd, virt_addr, length, umem, ncont, page_shift, access_flags, !use_umr); mutex_unlock(&dev->slow_path_mutex); } if (IS_ERR(mr)) { err = PTR_ERR(mr); goto error; } mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); mr->umem = umem; set_mr_fields(dev, mr, npages, length, access_flags); if (use_umr) { int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE; if (access_flags & IB_ACCESS_ON_DEMAND) update_xlt_flags |= MLX5_IB_UPD_XLT_ZAP; err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift, update_xlt_flags); if (err) { dereg_mr(dev, mr); return ERR_PTR(err); } } if (is_odp_mr(mr)) { to_ib_umem_odp(mr->umem)->private = mr; init_waitqueue_head(&mr->q_deferred_work); atomic_set(&mr->num_deferred_work, 0); err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key), &mr->mmkey, GFP_KERNEL)); if (err) { dereg_mr(dev, mr); return ERR_PTR(err); } } return &mr->ibmr; error: ib_umem_release(umem); return ERR_PTR(err); } /** * mlx5_mr_cache_invalidate - Fence all DMA on the MR * @mr: The MR to fence * * Upon return the NIC will not be doing any DMA to the pages under the MR, * and any DMA inprogress will be completed. Failure of this function * indicates the HW has failed catastrophically. */ int mlx5_mr_cache_invalidate(struct mlx5_ib_mr *mr) { struct mlx5_umr_wr umrwr = {}; if (mr->dev->mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR) return 0; umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR | MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; umrwr.wr.opcode = MLX5_IB_WR_UMR; umrwr.pd = mr->dev->umrc.pd; umrwr.mkey = mr->mmkey.key; umrwr.ignore_free_state = 1; return mlx5_ib_post_send_wait(mr->dev, &umrwr); } static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr, int access_flags, int flags) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_umr_wr umrwr = {}; int err; umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE; umrwr.wr.opcode = MLX5_IB_WR_UMR; umrwr.mkey = mr->mmkey.key; if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) { umrwr.pd = pd; umrwr.access_flags = access_flags; umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; } err = mlx5_ib_post_send_wait(dev, &umrwr); return err; } int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start, u64 length, u64 virt_addr, int new_access_flags, struct ib_pd *new_pd, struct ib_udata *udata) { struct mlx5_ib_dev *dev = to_mdev(ib_mr->device); struct mlx5_ib_mr *mr = to_mmr(ib_mr); struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd; int access_flags = flags & IB_MR_REREG_ACCESS ? new_access_flags : mr->access_flags; int page_shift = 0; int upd_flags = 0; int npages = 0; int ncont = 0; int order = 0; u64 addr, len; int err; mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n", start, virt_addr, length, access_flags); atomic_sub(mr->npages, &dev->mdev->priv.reg_pages); if (!mr->umem) return -EINVAL; if (is_odp_mr(mr)) return -EOPNOTSUPP; if (flags & IB_MR_REREG_TRANS) { addr = virt_addr; len = length; } else { addr = mr->umem->address; len = mr->umem->length; } if (flags != IB_MR_REREG_PD) { /* * Replace umem. This needs to be done whether or not UMR is * used. */ flags |= IB_MR_REREG_TRANS; ib_umem_release(mr->umem); mr->umem = NULL; err = mr_umem_get(dev, addr, len, access_flags, &mr->umem, &npages, &page_shift, &ncont, &order); if (err) goto err; } if (!mlx5_ib_can_use_umr(dev, true, access_flags) || (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len))) { /* * UMR can't be used - MKey needs to be replaced. */ if (mr->cache_ent) detach_mr_from_cache(mr); err = destroy_mkey(dev, mr); if (err) goto err; mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont, page_shift, access_flags, true); if (IS_ERR(mr)) { err = PTR_ERR(mr); mr = to_mmr(ib_mr); goto err; } } else { /* * Send a UMR WQE */ mr->ibmr.pd = pd; mr->access_flags = access_flags; mr->mmkey.iova = addr; mr->mmkey.size = len; mr->mmkey.pd = to_mpd(pd)->pdn; if (flags & IB_MR_REREG_TRANS) { upd_flags = MLX5_IB_UPD_XLT_ADDR; if (flags & IB_MR_REREG_PD) upd_flags |= MLX5_IB_UPD_XLT_PD; if (flags & IB_MR_REREG_ACCESS) upd_flags |= MLX5_IB_UPD_XLT_ACCESS; err = mlx5_ib_update_xlt(mr, 0, npages, page_shift, upd_flags); } else { err = rereg_umr(pd, mr, access_flags, flags); } if (err) goto err; } set_mr_fields(dev, mr, npages, len, access_flags); return 0; err: ib_umem_release(mr->umem); mr->umem = NULL; clean_mr(dev, mr); return err; } static int mlx5_alloc_priv_descs(struct ib_device *device, struct mlx5_ib_mr *mr, int ndescs, int desc_size) { int size = ndescs * desc_size; int add_size; int ret; add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0); mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL); if (!mr->descs_alloc) return -ENOMEM; mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN); mr->desc_map = dma_map_single(device->dev.parent, mr->descs, size, DMA_TO_DEVICE); if (dma_mapping_error(device->dev.parent, mr->desc_map)) { ret = -ENOMEM; goto err; } return 0; err: kfree(mr->descs_alloc); return ret; } static void mlx5_free_priv_descs(struct mlx5_ib_mr *mr) { if (mr->descs) { struct ib_device *device = mr->ibmr.device; int size = mr->max_descs * mr->desc_size; dma_unmap_single(device->dev.parent, mr->desc_map, size, DMA_TO_DEVICE); kfree(mr->descs_alloc); mr->descs = NULL; } } static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) { if (mr->sig) { if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", mr->sig->psv_memory.psv_idx); if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", mr->sig->psv_wire.psv_idx); xa_erase(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key)); kfree(mr->sig); mr->sig = NULL; } if (!mr->cache_ent) { destroy_mkey(dev, mr); mlx5_free_priv_descs(mr); } } static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) { int npages = mr->npages; struct ib_umem *umem = mr->umem; /* Stop all DMA */ if (is_odp_mr(mr)) mlx5_ib_fence_odp_mr(mr); else clean_mr(dev, mr); if (mr->cache_ent) mlx5_mr_cache_free(dev, mr); else kfree(mr); ib_umem_release(umem); atomic_sub(npages, &dev->mdev->priv.reg_pages); } int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) { struct mlx5_ib_mr *mmr = to_mmr(ibmr); if (ibmr->type == IB_MR_TYPE_INTEGRITY) { dereg_mr(to_mdev(mmr->mtt_mr->ibmr.device), mmr->mtt_mr); dereg_mr(to_mdev(mmr->klm_mr->ibmr.device), mmr->klm_mr); } if (is_odp_mr(mmr) && to_ib_umem_odp(mmr->umem)->is_implicit_odp) { mlx5_ib_free_implicit_mr(mmr); return 0; } dereg_mr(to_mdev(ibmr->device), mmr); return 0; } static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs, int access_mode, int page_shift) { void *mkc; mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, free, 1); MLX5_SET(mkc, mkc, qpn, 0xffffff); MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); MLX5_SET(mkc, mkc, translations_octword_size, ndescs); MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3); MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7); MLX5_SET(mkc, mkc, umr_en, 1); MLX5_SET(mkc, mkc, log_page_size, page_shift); } static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, int ndescs, int desc_size, int page_shift, int access_mode, u32 *in, int inlen) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int err; mr->access_mode = access_mode; mr->desc_size = desc_size; mr->max_descs = ndescs; err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size); if (err) return err; mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift); err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); if (err) goto err_free_descs; mr->mmkey.type = MLX5_MKEY_MR; mr->ibmr.lkey = mr->mmkey.key; mr->ibmr.rkey = mr->mmkey.key; return 0; err_free_descs: mlx5_free_priv_descs(mr); return err; } static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd, u32 max_num_sg, u32 max_num_meta_sg, int desc_size, int access_mode) { int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4); int page_shift = 0; struct mlx5_ib_mr *mr; u32 *in; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); mr->ibmr.pd = pd; mr->ibmr.device = pd->device; in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_free; } if (access_mode == MLX5_MKC_ACCESS_MODE_MTT) page_shift = PAGE_SHIFT; err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift, access_mode, in, inlen); if (err) goto err_free_in; mr->umem = NULL; kfree(in); return mr; err_free_in: kfree(in); err_free: kfree(mr); return ERR_PTR(err); } static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, int ndescs, u32 *in, int inlen) { return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt), PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in, inlen); } static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, int ndescs, u32 *in, int inlen) { return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm), 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); } static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, int max_num_sg, int max_num_meta_sg, u32 *in, int inlen) { struct mlx5_ib_dev *dev = to_mdev(pd->device); u32 psv_index[2]; void *mkc; int err; mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL); if (!mr->sig) return -ENOMEM; /* create mem & wire PSVs */ err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index); if (err) goto err_free_sig; mr->sig->psv_memory.psv_idx = psv_index[0]; mr->sig->psv_wire.psv_idx = psv_index[1]; mr->sig->sig_status_checked = true; mr->sig->sig_err_exists = false; /* Next UMR, Arm SIGERR */ ++mr->sig->sigerr_count; mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, sizeof(struct mlx5_klm), MLX5_MKC_ACCESS_MODE_KLMS); if (IS_ERR(mr->klm_mr)) { err = PTR_ERR(mr->klm_mr); goto err_destroy_psv; } mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, sizeof(struct mlx5_mtt), MLX5_MKC_ACCESS_MODE_MTT); if (IS_ERR(mr->mtt_mr)) { err = PTR_ERR(mr->mtt_mr); goto err_free_klm_mr; } /* Set bsf descriptors for mkey */ mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, bsf_en, 1); MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE); err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); if (err) goto err_free_mtt_mr; err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), mr->sig, GFP_KERNEL)); if (err) goto err_free_descs; return 0; err_free_descs: destroy_mkey(dev, mr); mlx5_free_priv_descs(mr); err_free_mtt_mr: dereg_mr(to_mdev(mr->mtt_mr->ibmr.device), mr->mtt_mr); mr->mtt_mr = NULL; err_free_klm_mr: dereg_mr(to_mdev(mr->klm_mr->ibmr.device), mr->klm_mr); mr->klm_mr = NULL; err_destroy_psv: if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", mr->sig->psv_memory.psv_idx); if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", mr->sig->psv_wire.psv_idx); err_free_sig: kfree(mr->sig); return err; } static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg, u32 max_num_meta_sg) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); int ndescs = ALIGN(max_num_sg, 4); struct mlx5_ib_mr *mr; u32 *in; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_free; } mr->ibmr.device = pd->device; mr->umem = NULL; switch (mr_type) { case IB_MR_TYPE_MEM_REG: err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen); break; case IB_MR_TYPE_SG_GAPS: err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen); break; case IB_MR_TYPE_INTEGRITY: err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg, max_num_meta_sg, in, inlen); break; default: mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type); err = -EINVAL; } if (err) goto err_free_in; kfree(in); return &mr->ibmr; err_free_in: kfree(in); err_free: kfree(mr); return ERR_PTR(err); } struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg, struct ib_udata *udata) { return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0); } struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd, u32 max_num_sg, u32 max_num_meta_sg) { return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg, max_num_meta_sg); } struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type, struct ib_udata *udata) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); struct mlx5_ib_mw *mw = NULL; u32 *in = NULL; void *mkc; int ndescs; int err; struct mlx5_ib_alloc_mw req = {}; struct { __u32 comp_mask; __u32 response_length; } resp = {}; err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req))); if (err) return ERR_PTR(err); if (req.comp_mask || req.reserved1 || req.reserved2) return ERR_PTR(-EOPNOTSUPP); if (udata->inlen > sizeof(req) && !ib_is_udata_cleared(udata, sizeof(req), udata->inlen - sizeof(req))) return ERR_PTR(-EOPNOTSUPP); ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4); mw = kzalloc(sizeof(*mw), GFP_KERNEL); in = kzalloc(inlen, GFP_KERNEL); if (!mw || !in) { err = -ENOMEM; goto free; } mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, free, 1); MLX5_SET(mkc, mkc, translations_octword_size, ndescs); MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); MLX5_SET(mkc, mkc, umr_en, 1); MLX5_SET(mkc, mkc, lr, 1); MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS); MLX5_SET(mkc, mkc, en_rinval, !!((type == IB_MW_TYPE_2))); MLX5_SET(mkc, mkc, qpn, 0xffffff); err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen); if (err) goto free; mw->mmkey.type = MLX5_MKEY_MW; mw->ibmw.rkey = mw->mmkey.key; mw->ndescs = ndescs; resp.response_length = min(offsetof(typeof(resp), response_length) + sizeof(resp.response_length), udata->outlen); if (resp.response_length) { err = ib_copy_to_udata(udata, &resp, resp.response_length); if (err) { mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey); goto free; } } if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(mw->mmkey.key), &mw->mmkey, GFP_KERNEL)); if (err) goto free_mkey; } kfree(in); return &mw->ibmw; free_mkey: mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey); free: kfree(mw); kfree(in); return ERR_PTR(err); } int mlx5_ib_dealloc_mw(struct ib_mw *mw) { struct mlx5_ib_dev *dev = to_mdev(mw->device); struct mlx5_ib_mw *mmw = to_mmw(mw); int err; if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)); /* * pagefault_single_data_segment() may be accessing mmw under * SRCU if the user bound an ODP MR to this MW. */ synchronize_srcu(&dev->odp_srcu); } err = mlx5_core_destroy_mkey(dev->mdev, &mmw->mmkey); if (err) return err; kfree(mmw); return 0; } int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask, struct ib_mr_status *mr_status) { struct mlx5_ib_mr *mmr = to_mmr(ibmr); int ret = 0; if (check_mask & ~IB_MR_CHECK_SIG_STATUS) { pr_err("Invalid status check mask\n"); ret = -EINVAL; goto done; } mr_status->fail_status = 0; if (check_mask & IB_MR_CHECK_SIG_STATUS) { if (!mmr->sig) { ret = -EINVAL; pr_err("signature status check requested on a non-signature enabled MR\n"); goto done; } mmr->sig->sig_status_checked = true; if (!mmr->sig->sig_err_exists) goto done; if (ibmr->lkey == mmr->sig->err_item.key) memcpy(&mr_status->sig_err, &mmr->sig->err_item, sizeof(mr_status->sig_err)); else { mr_status->sig_err.err_type = IB_SIG_BAD_GUARD; mr_status->sig_err.sig_err_offset = 0; mr_status->sig_err.key = mmr->sig->err_item.key; } mmr->sig->sig_err_exists = false; mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS; } done: return ret; } static int mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, int data_sg_nents, unsigned int *data_sg_offset, struct scatterlist *meta_sg, int meta_sg_nents, unsigned int *meta_sg_offset) { struct mlx5_ib_mr *mr = to_mmr(ibmr); unsigned int sg_offset = 0; int n = 0; mr->meta_length = 0; if (data_sg_nents == 1) { n++; mr->ndescs = 1; if (data_sg_offset) sg_offset = *data_sg_offset; mr->data_length = sg_dma_len(data_sg) - sg_offset; mr->data_iova = sg_dma_address(data_sg) + sg_offset; if (meta_sg_nents == 1) { n++; mr->meta_ndescs = 1; if (meta_sg_offset) sg_offset = *meta_sg_offset; else sg_offset = 0; mr->meta_length = sg_dma_len(meta_sg) - sg_offset; mr->pi_iova = sg_dma_address(meta_sg) + sg_offset; } ibmr->length = mr->data_length + mr->meta_length; } return n; } static int mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr, struct scatterlist *sgl, unsigned short sg_nents, unsigned int *sg_offset_p, struct scatterlist *meta_sgl, unsigned short meta_sg_nents, unsigned int *meta_sg_offset_p) { struct scatterlist *sg = sgl; struct mlx5_klm *klms = mr->descs; unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; u32 lkey = mr->ibmr.pd->local_dma_lkey; int i, j = 0; mr->ibmr.iova = sg_dma_address(sg) + sg_offset; mr->ibmr.length = 0; for_each_sg(sgl, sg, sg_nents, i) { if (unlikely(i >= mr->max_descs)) break; klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); klms[i].key = cpu_to_be32(lkey); mr->ibmr.length += sg_dma_len(sg) - sg_offset; sg_offset = 0; } if (sg_offset_p) *sg_offset_p = sg_offset; mr->ndescs = i; mr->data_length = mr->ibmr.length; if (meta_sg_nents) { sg = meta_sgl; sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0; for_each_sg(meta_sgl, sg, meta_sg_nents, j) { if (unlikely(i + j >= mr->max_descs)) break; klms[i + j].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); klms[i + j].key = cpu_to_be32(lkey); mr->ibmr.length += sg_dma_len(sg) - sg_offset; sg_offset = 0; } if (meta_sg_offset_p) *meta_sg_offset_p = sg_offset; mr->meta_ndescs = j; mr->meta_length = mr->ibmr.length - mr->data_length; } return i + j; } static int mlx5_set_page(struct ib_mr *ibmr, u64 addr) { struct mlx5_ib_mr *mr = to_mmr(ibmr); __be64 *descs; if (unlikely(mr->ndescs == mr->max_descs)) return -ENOMEM; descs = mr->descs; descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); return 0; } static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr) { struct mlx5_ib_mr *mr = to_mmr(ibmr); __be64 *descs; if (unlikely(mr->ndescs + mr->meta_ndescs == mr->max_descs)) return -ENOMEM; descs = mr->descs; descs[mr->ndescs + mr->meta_ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); return 0; } static int mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, int data_sg_nents, unsigned int *data_sg_offset, struct scatterlist *meta_sg, int meta_sg_nents, unsigned int *meta_sg_offset) { struct mlx5_ib_mr *mr = to_mmr(ibmr); struct mlx5_ib_mr *pi_mr = mr->mtt_mr; int n; pi_mr->ndescs = 0; pi_mr->meta_ndescs = 0; pi_mr->meta_length = 0; ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, pi_mr->desc_size * pi_mr->max_descs, DMA_TO_DEVICE); pi_mr->ibmr.page_size = ibmr->page_size; n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset, mlx5_set_page); if (n != data_sg_nents) return n; pi_mr->data_iova = pi_mr->ibmr.iova; pi_mr->data_length = pi_mr->ibmr.length; pi_mr->ibmr.length = pi_mr->data_length; ibmr->length = pi_mr->data_length; if (meta_sg_nents) { u64 page_mask = ~((u64)ibmr->page_size - 1); u64 iova = pi_mr->data_iova; n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents, meta_sg_offset, mlx5_set_page_pi); pi_mr->meta_length = pi_mr->ibmr.length; /* * PI address for the HW is the offset of the metadata address * relative to the first data page address. * It equals to first data page address + size of data pages + * metadata offset at the first metadata page */ pi_mr->pi_iova = (iova & page_mask) + pi_mr->ndescs * ibmr->page_size + (pi_mr->ibmr.iova & ~page_mask); /* * In order to use one MTT MR for data and metadata, we register * also the gaps between the end of the data and the start of * the metadata (the sig MR will verify that the HW will access * to right addresses). This mapping is safe because we use * internal mkey for the registration. */ pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova; pi_mr->ibmr.iova = iova; ibmr->length += pi_mr->meta_length; } ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, pi_mr->desc_size * pi_mr->max_descs, DMA_TO_DEVICE); return n; } static int mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, int data_sg_nents, unsigned int *data_sg_offset, struct scatterlist *meta_sg, int meta_sg_nents, unsigned int *meta_sg_offset) { struct mlx5_ib_mr *mr = to_mmr(ibmr); struct mlx5_ib_mr *pi_mr = mr->klm_mr; int n; pi_mr->ndescs = 0; pi_mr->meta_ndescs = 0; pi_mr->meta_length = 0; ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, pi_mr->desc_size * pi_mr->max_descs, DMA_TO_DEVICE); n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset, meta_sg, meta_sg_nents, meta_sg_offset); ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, pi_mr->desc_size * pi_mr->max_descs, DMA_TO_DEVICE); /* This is zero-based memory region */ pi_mr->data_iova = 0; pi_mr->ibmr.iova = 0; pi_mr->pi_iova = pi_mr->data_length; ibmr->length = pi_mr->ibmr.length; return n; } int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, int data_sg_nents, unsigned int *data_sg_offset, struct scatterlist *meta_sg, int meta_sg_nents, unsigned int *meta_sg_offset) { struct mlx5_ib_mr *mr = to_mmr(ibmr); struct mlx5_ib_mr *pi_mr = NULL; int n; WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY); mr->ndescs = 0; mr->data_length = 0; mr->data_iova = 0; mr->meta_ndescs = 0; mr->pi_iova = 0; /* * As a performance optimization, if possible, there is no need to * perform UMR operation to register the data/metadata buffers. * First try to map the sg lists to PA descriptors with local_dma_lkey. * Fallback to UMR only in case of a failure. */ n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents, data_sg_offset, meta_sg, meta_sg_nents, meta_sg_offset); if (n == data_sg_nents + meta_sg_nents) goto out; /* * As a performance optimization, if possible, there is no need to map * the sg lists to KLM descriptors. First try to map the sg lists to MTT * descriptors and fallback to KLM only in case of a failure. * It's more efficient for the HW to work with MTT descriptors * (especially in high load). * Use KLM (indirect access) only if it's mandatory. */ pi_mr = mr->mtt_mr; n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents, data_sg_offset, meta_sg, meta_sg_nents, meta_sg_offset); if (n == data_sg_nents + meta_sg_nents) goto out; pi_mr = mr->klm_mr; n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents, data_sg_offset, meta_sg, meta_sg_nents, meta_sg_offset); if (unlikely(n != data_sg_nents + meta_sg_nents)) return -ENOMEM; out: /* This is zero-based memory region */ ibmr->iova = 0; mr->pi_mr = pi_mr; if (pi_mr) ibmr->sig_attrs->meta_length = pi_mr->meta_length; else ibmr->sig_attrs->meta_length = mr->meta_length; return 0; } int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, unsigned int *sg_offset) { struct mlx5_ib_mr *mr = to_mmr(ibmr); int n; mr->ndescs = 0; ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map, mr->desc_size * mr->max_descs, DMA_TO_DEVICE); if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS) n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0, NULL); else n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx5_set_page); ib_dma_sync_single_for_device(ibmr->device, mr->desc_map, mr->desc_size * mr->max_descs, DMA_TO_DEVICE); return n; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1