Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Philipp Zabel | 12542 | 96.39% | 90 | 81.82% |
Michael Tretter | 175 | 1.34% | 4 | 3.64% |
Lucas Stach | 171 | 1.31% | 6 | 5.45% |
Junghak Sung | 58 | 0.45% | 3 | 2.73% |
Zahari Doychev | 32 | 0.25% | 1 | 0.91% |
Arvind Yadav | 16 | 0.12% | 1 | 0.91% |
Ezequiel García | 9 | 0.07% | 1 | 0.91% |
Fabio Estevam | 3 | 0.02% | 1 | 0.91% |
Luis R. Rodriguez | 2 | 0.02% | 1 | 0.91% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.91% |
Markus Pargmann | 2 | 0.02% | 1 | 0.91% |
Total | 13012 | 110 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Coda multi-standard codec IP - BIT processor functions * * Copyright (C) 2012 Vista Silicon S.L. * Javier Martin, <javier.martin@vista-silicon.com> * Xavier Duret * Copyright (C) 2012-2014 Philipp Zabel, Pengutronix */ #include <linux/clk.h> #include <linux/irqreturn.h> #include <linux/kernel.h> #include <linux/log2.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <linux/slab.h> #include <linux/videodev2.h> #include <media/v4l2-common.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-fh.h> #include <media/v4l2-mem2mem.h> #include <media/videobuf2-v4l2.h> #include <media/videobuf2-dma-contig.h> #include <media/videobuf2-vmalloc.h> #include "coda.h" #include "imx-vdoa.h" #define CREATE_TRACE_POINTS #include "trace.h" #define CODA_PARA_BUF_SIZE (10 * 1024) #define CODA7_PS_BUF_SIZE 0x28000 #define CODA9_PS_SAVE_SIZE (512 * 1024) #define CODA_DEFAULT_GAMMA 4096 #define CODA9_DEFAULT_GAMMA 24576 /* 0.75 * 32768 */ static void coda_free_bitstream_buffer(struct coda_ctx *ctx); static inline int coda_is_initialized(struct coda_dev *dev) { return coda_read(dev, CODA_REG_BIT_CUR_PC) != 0; } static inline unsigned long coda_isbusy(struct coda_dev *dev) { return coda_read(dev, CODA_REG_BIT_BUSY); } static int coda_wait_timeout(struct coda_dev *dev) { unsigned long timeout = jiffies + msecs_to_jiffies(1000); while (coda_isbusy(dev)) { if (time_after(jiffies, timeout)) return -ETIMEDOUT; } return 0; } static void coda_command_async(struct coda_ctx *ctx, int cmd) { struct coda_dev *dev = ctx->dev; if (dev->devtype->product == CODA_HX4 || dev->devtype->product == CODA_7541 || dev->devtype->product == CODA_960) { /* Restore context related registers to CODA */ coda_write(dev, ctx->bit_stream_param, CODA_REG_BIT_BIT_STREAM_PARAM); coda_write(dev, ctx->frm_dis_flg, CODA_REG_BIT_FRM_DIS_FLG(ctx->reg_idx)); coda_write(dev, ctx->frame_mem_ctrl, CODA_REG_BIT_FRAME_MEM_CTRL); coda_write(dev, ctx->workbuf.paddr, CODA_REG_BIT_WORK_BUF_ADDR); } if (dev->devtype->product == CODA_960) { coda_write(dev, 1, CODA9_GDI_WPROT_ERR_CLR); coda_write(dev, 0, CODA9_GDI_WPROT_RGN_EN); } coda_write(dev, CODA_REG_BIT_BUSY_FLAG, CODA_REG_BIT_BUSY); coda_write(dev, ctx->idx, CODA_REG_BIT_RUN_INDEX); coda_write(dev, ctx->params.codec_mode, CODA_REG_BIT_RUN_COD_STD); coda_write(dev, ctx->params.codec_mode_aux, CODA7_REG_BIT_RUN_AUX_STD); trace_coda_bit_run(ctx, cmd); coda_write(dev, cmd, CODA_REG_BIT_RUN_COMMAND); } static int coda_command_sync(struct coda_ctx *ctx, int cmd) { struct coda_dev *dev = ctx->dev; int ret; lockdep_assert_held(&dev->coda_mutex); coda_command_async(ctx, cmd); ret = coda_wait_timeout(dev); trace_coda_bit_done(ctx); return ret; } int coda_hw_reset(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; unsigned long timeout; unsigned int idx; int ret; lockdep_assert_held(&dev->coda_mutex); if (!dev->rstc) return -ENOENT; idx = coda_read(dev, CODA_REG_BIT_RUN_INDEX); if (dev->devtype->product == CODA_960) { timeout = jiffies + msecs_to_jiffies(100); coda_write(dev, 0x11, CODA9_GDI_BUS_CTRL); while (coda_read(dev, CODA9_GDI_BUS_STATUS) != 0x77) { if (time_after(jiffies, timeout)) return -ETIME; cpu_relax(); } } ret = reset_control_reset(dev->rstc); if (ret < 0) return ret; if (dev->devtype->product == CODA_960) coda_write(dev, 0x00, CODA9_GDI_BUS_CTRL); coda_write(dev, CODA_REG_BIT_BUSY_FLAG, CODA_REG_BIT_BUSY); coda_write(dev, CODA_REG_RUN_ENABLE, CODA_REG_BIT_CODE_RUN); ret = coda_wait_timeout(dev); coda_write(dev, idx, CODA_REG_BIT_RUN_INDEX); return ret; } static void coda_kfifo_sync_from_device(struct coda_ctx *ctx) { struct __kfifo *kfifo = &ctx->bitstream_fifo.kfifo; struct coda_dev *dev = ctx->dev; u32 rd_ptr; rd_ptr = coda_read(dev, CODA_REG_BIT_RD_PTR(ctx->reg_idx)); kfifo->out = (kfifo->in & ~kfifo->mask) | (rd_ptr - ctx->bitstream.paddr); if (kfifo->out > kfifo->in) kfifo->out -= kfifo->mask + 1; } static void coda_kfifo_sync_to_device_full(struct coda_ctx *ctx) { struct __kfifo *kfifo = &ctx->bitstream_fifo.kfifo; struct coda_dev *dev = ctx->dev; u32 rd_ptr, wr_ptr; rd_ptr = ctx->bitstream.paddr + (kfifo->out & kfifo->mask); coda_write(dev, rd_ptr, CODA_REG_BIT_RD_PTR(ctx->reg_idx)); wr_ptr = ctx->bitstream.paddr + (kfifo->in & kfifo->mask); coda_write(dev, wr_ptr, CODA_REG_BIT_WR_PTR(ctx->reg_idx)); } static void coda_kfifo_sync_to_device_write(struct coda_ctx *ctx) { struct __kfifo *kfifo = &ctx->bitstream_fifo.kfifo; struct coda_dev *dev = ctx->dev; u32 wr_ptr; wr_ptr = ctx->bitstream.paddr + (kfifo->in & kfifo->mask); coda_write(dev, wr_ptr, CODA_REG_BIT_WR_PTR(ctx->reg_idx)); } static int coda_h264_bitstream_pad(struct coda_ctx *ctx, u32 size) { unsigned char *buf; u32 n; if (size < 6) size = 6; buf = kmalloc(size, GFP_KERNEL); if (!buf) return -ENOMEM; coda_h264_filler_nal(size, buf); n = kfifo_in(&ctx->bitstream_fifo, buf, size); kfree(buf); return (n < size) ? -ENOSPC : 0; } int coda_bitstream_flush(struct coda_ctx *ctx) { int ret; if (ctx->inst_type != CODA_INST_DECODER || !ctx->use_bit) return 0; ret = coda_command_sync(ctx, CODA_COMMAND_DEC_BUF_FLUSH); if (ret < 0) { v4l2_err(&ctx->dev->v4l2_dev, "failed to flush bitstream\n"); return ret; } kfifo_init(&ctx->bitstream_fifo, ctx->bitstream.vaddr, ctx->bitstream.size); coda_kfifo_sync_to_device_full(ctx); return 0; } static int coda_bitstream_queue(struct coda_ctx *ctx, const u8 *buf, u32 size) { u32 n = kfifo_in(&ctx->bitstream_fifo, buf, size); return (n < size) ? -ENOSPC : 0; } static u32 coda_buffer_parse_headers(struct coda_ctx *ctx, struct vb2_v4l2_buffer *src_buf, u32 payload) { u8 *vaddr = vb2_plane_vaddr(&src_buf->vb2_buf, 0); u32 size = 0; switch (ctx->codec->src_fourcc) { case V4L2_PIX_FMT_MPEG2: size = coda_mpeg2_parse_headers(ctx, vaddr, payload); break; case V4L2_PIX_FMT_MPEG4: size = coda_mpeg4_parse_headers(ctx, vaddr, payload); break; default: break; } return size; } static bool coda_bitstream_try_queue(struct coda_ctx *ctx, struct vb2_v4l2_buffer *src_buf) { unsigned long payload = vb2_get_plane_payload(&src_buf->vb2_buf, 0); u8 *vaddr = vb2_plane_vaddr(&src_buf->vb2_buf, 0); int ret; int i; if (coda_get_bitstream_payload(ctx) + payload + 512 >= ctx->bitstream.size) return false; if (!vaddr) { v4l2_err(&ctx->dev->v4l2_dev, "trying to queue empty buffer\n"); return true; } if (ctx->qsequence == 0 && payload < 512) { /* * Add padding after the first buffer, if it is too small to be * fetched by the CODA, by repeating the headers. Without * repeated headers, or the first frame already queued, decoder * sequence initialization fails with error code 0x2000 on i.MX6 * or error code 0x1 on i.MX51. */ u32 header_size = coda_buffer_parse_headers(ctx, src_buf, payload); if (header_size) { coda_dbg(1, ctx, "pad with %u-byte header\n", header_size); for (i = payload; i < 512; i += header_size) { ret = coda_bitstream_queue(ctx, vaddr, header_size); if (ret < 0) { v4l2_err(&ctx->dev->v4l2_dev, "bitstream buffer overflow\n"); return false; } if (ctx->dev->devtype->product == CODA_960) break; } } else { coda_dbg(1, ctx, "could not parse header, sequence initialization might fail\n"); } } /* Add padding before the first buffer, if it is too small */ if (ctx->qsequence == 0 && payload < 512 && ctx->codec->src_fourcc == V4L2_PIX_FMT_H264) coda_h264_bitstream_pad(ctx, 512 - payload); ret = coda_bitstream_queue(ctx, vaddr, payload); if (ret < 0) { v4l2_err(&ctx->dev->v4l2_dev, "bitstream buffer overflow\n"); return false; } src_buf->sequence = ctx->qsequence++; /* Sync read pointer to device */ if (ctx == v4l2_m2m_get_curr_priv(ctx->dev->m2m_dev)) coda_kfifo_sync_to_device_write(ctx); /* Set the stream-end flag after the last buffer is queued */ if (src_buf->flags & V4L2_BUF_FLAG_LAST) coda_bit_stream_end_flag(ctx); ctx->hold = false; return true; } void coda_fill_bitstream(struct coda_ctx *ctx, struct list_head *buffer_list) { struct vb2_v4l2_buffer *src_buf; struct coda_buffer_meta *meta; u32 start; if (ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG) return; while (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) > 0) { /* * Only queue two JPEGs into the bitstream buffer to keep * latency low. We need at least one complete buffer and the * header of another buffer (for prescan) in the bitstream. */ if (ctx->codec->src_fourcc == V4L2_PIX_FMT_JPEG && ctx->num_metas > 1) break; if (ctx->num_internal_frames && ctx->num_metas >= ctx->num_internal_frames) { meta = list_first_entry(&ctx->buffer_meta_list, struct coda_buffer_meta, list); /* * If we managed to fill in at least a full reorder * window of buffers (num_internal_frames is a * conservative estimate for this) and the bitstream * prefetcher has at least 2 256 bytes periods beyond * the first buffer to fetch, we can safely stop queuing * in order to limit the decoder drain latency. */ if (coda_bitstream_can_fetch_past(ctx, meta->end)) break; } src_buf = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx); /* Drop frames that do not start/end with a SOI/EOI markers */ if (ctx->codec->src_fourcc == V4L2_PIX_FMT_JPEG && !coda_jpeg_check_buffer(ctx, &src_buf->vb2_buf)) { v4l2_err(&ctx->dev->v4l2_dev, "dropping invalid JPEG frame %d\n", ctx->qsequence); src_buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); if (buffer_list) { struct v4l2_m2m_buffer *m2m_buf; m2m_buf = container_of(src_buf, struct v4l2_m2m_buffer, vb); list_add_tail(&m2m_buf->list, buffer_list); } else { v4l2_m2m_buf_done(src_buf, VB2_BUF_STATE_ERROR); } continue; } /* Dump empty buffers */ if (!vb2_get_plane_payload(&src_buf->vb2_buf, 0)) { src_buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); v4l2_m2m_buf_done(src_buf, VB2_BUF_STATE_DONE); continue; } /* Buffer start position */ start = ctx->bitstream_fifo.kfifo.in; if (coda_bitstream_try_queue(ctx, src_buf)) { /* * Source buffer is queued in the bitstream ringbuffer; * queue the timestamp and mark source buffer as done */ src_buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); meta = kmalloc(sizeof(*meta), GFP_KERNEL); if (meta) { meta->sequence = src_buf->sequence; meta->timecode = src_buf->timecode; meta->timestamp = src_buf->vb2_buf.timestamp; meta->start = start; meta->end = ctx->bitstream_fifo.kfifo.in; meta->last = src_buf->flags & V4L2_BUF_FLAG_LAST; if (meta->last) coda_dbg(1, ctx, "marking last meta"); spin_lock(&ctx->buffer_meta_lock); list_add_tail(&meta->list, &ctx->buffer_meta_list); ctx->num_metas++; spin_unlock(&ctx->buffer_meta_lock); trace_coda_bit_queue(ctx, src_buf, meta); } if (buffer_list) { struct v4l2_m2m_buffer *m2m_buf; m2m_buf = container_of(src_buf, struct v4l2_m2m_buffer, vb); list_add_tail(&m2m_buf->list, buffer_list); } else { v4l2_m2m_buf_done(src_buf, VB2_BUF_STATE_DONE); } } else { break; } } } void coda_bit_stream_end_flag(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; ctx->bit_stream_param |= CODA_BIT_STREAM_END_FLAG; /* If this context is currently running, update the hardware flag */ if ((dev->devtype->product == CODA_960) && coda_isbusy(dev) && (ctx->idx == coda_read(dev, CODA_REG_BIT_RUN_INDEX))) { coda_write(dev, ctx->bit_stream_param, CODA_REG_BIT_BIT_STREAM_PARAM); } } static void coda_parabuf_write(struct coda_ctx *ctx, int index, u32 value) { struct coda_dev *dev = ctx->dev; u32 *p = ctx->parabuf.vaddr; if (dev->devtype->product == CODA_DX6) p[index] = value; else p[index ^ 1] = value; } static inline int coda_alloc_context_buf(struct coda_ctx *ctx, struct coda_aux_buf *buf, size_t size, const char *name) { return coda_alloc_aux_buf(ctx->dev, buf, size, name, ctx->debugfs_entry); } static void coda_free_framebuffers(struct coda_ctx *ctx) { int i; for (i = 0; i < CODA_MAX_FRAMEBUFFERS; i++) coda_free_aux_buf(ctx->dev, &ctx->internal_frames[i].buf); } static int coda_alloc_framebuffers(struct coda_ctx *ctx, struct coda_q_data *q_data, u32 fourcc) { struct coda_dev *dev = ctx->dev; unsigned int ysize, ycbcr_size; int ret; int i; if (ctx->codec->src_fourcc == V4L2_PIX_FMT_H264 || ctx->codec->dst_fourcc == V4L2_PIX_FMT_H264 || ctx->codec->src_fourcc == V4L2_PIX_FMT_MPEG4 || ctx->codec->dst_fourcc == V4L2_PIX_FMT_MPEG4) ysize = round_up(q_data->rect.width, 16) * round_up(q_data->rect.height, 16); else ysize = round_up(q_data->rect.width, 8) * q_data->rect.height; if (ctx->tiled_map_type == GDI_TILED_FRAME_MB_RASTER_MAP) ycbcr_size = round_up(ysize, 4096) + ysize / 2; else ycbcr_size = ysize + ysize / 2; /* Allocate frame buffers */ for (i = 0; i < ctx->num_internal_frames; i++) { size_t size = ycbcr_size; char *name; /* Add space for mvcol buffers */ if (dev->devtype->product != CODA_DX6 && (ctx->codec->src_fourcc == V4L2_PIX_FMT_H264 || (ctx->codec->src_fourcc == V4L2_PIX_FMT_MPEG4 && i == 0))) size += ysize / 4; name = kasprintf(GFP_KERNEL, "fb%d", i); if (!name) { coda_free_framebuffers(ctx); return -ENOMEM; } ret = coda_alloc_context_buf(ctx, &ctx->internal_frames[i].buf, size, name); kfree(name); if (ret < 0) { coda_free_framebuffers(ctx); return ret; } } /* Register frame buffers in the parameter buffer */ for (i = 0; i < ctx->num_internal_frames; i++) { u32 y, cb, cr, mvcol; /* Start addresses of Y, Cb, Cr planes */ y = ctx->internal_frames[i].buf.paddr; cb = y + ysize; cr = y + ysize + ysize/4; mvcol = y + ysize + ysize/4 + ysize/4; if (ctx->tiled_map_type == GDI_TILED_FRAME_MB_RASTER_MAP) { cb = round_up(cb, 4096); mvcol = cb + ysize/2; cr = 0; /* Packed 20-bit MSB of base addresses */ /* YYYYYCCC, CCyyyyyc, cccc.... */ y = (y & 0xfffff000) | cb >> 20; cb = (cb & 0x000ff000) << 12; } coda_parabuf_write(ctx, i * 3 + 0, y); coda_parabuf_write(ctx, i * 3 + 1, cb); coda_parabuf_write(ctx, i * 3 + 2, cr); if (dev->devtype->product == CODA_DX6) continue; /* mvcol buffer for h.264 and mpeg4 */ if (ctx->codec->src_fourcc == V4L2_PIX_FMT_H264) coda_parabuf_write(ctx, 96 + i, mvcol); if (ctx->codec->src_fourcc == V4L2_PIX_FMT_MPEG4 && i == 0) coda_parabuf_write(ctx, 97, mvcol); } return 0; } static void coda_free_context_buffers(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; coda_free_aux_buf(dev, &ctx->slicebuf); coda_free_aux_buf(dev, &ctx->psbuf); if (dev->devtype->product != CODA_DX6) coda_free_aux_buf(dev, &ctx->workbuf); coda_free_aux_buf(dev, &ctx->parabuf); } static int coda_alloc_context_buffers(struct coda_ctx *ctx, struct coda_q_data *q_data) { struct coda_dev *dev = ctx->dev; size_t size; int ret; if (!ctx->parabuf.vaddr) { ret = coda_alloc_context_buf(ctx, &ctx->parabuf, CODA_PARA_BUF_SIZE, "parabuf"); if (ret < 0) return ret; } if (dev->devtype->product == CODA_DX6) return 0; if (!ctx->slicebuf.vaddr && q_data->fourcc == V4L2_PIX_FMT_H264) { /* worst case slice size */ size = (DIV_ROUND_UP(q_data->rect.width, 16) * DIV_ROUND_UP(q_data->rect.height, 16)) * 3200 / 8 + 512; ret = coda_alloc_context_buf(ctx, &ctx->slicebuf, size, "slicebuf"); if (ret < 0) goto err; } if (!ctx->psbuf.vaddr && (dev->devtype->product == CODA_HX4 || dev->devtype->product == CODA_7541)) { ret = coda_alloc_context_buf(ctx, &ctx->psbuf, CODA7_PS_BUF_SIZE, "psbuf"); if (ret < 0) goto err; } if (!ctx->workbuf.vaddr) { size = dev->devtype->workbuf_size; if (dev->devtype->product == CODA_960 && q_data->fourcc == V4L2_PIX_FMT_H264) size += CODA9_PS_SAVE_SIZE; ret = coda_alloc_context_buf(ctx, &ctx->workbuf, size, "workbuf"); if (ret < 0) goto err; } return 0; err: coda_free_context_buffers(ctx); return ret; } static int coda_encode_header(struct coda_ctx *ctx, struct vb2_v4l2_buffer *buf, int header_code, u8 *header, int *size) { struct vb2_buffer *vb = &buf->vb2_buf; struct coda_dev *dev = ctx->dev; struct coda_q_data *q_data_src; struct v4l2_rect *r; size_t bufsize; int ret; int i; if (dev->devtype->product == CODA_960) memset(vb2_plane_vaddr(vb, 0), 0, 64); coda_write(dev, vb2_dma_contig_plane_dma_addr(vb, 0), CODA_CMD_ENC_HEADER_BB_START); bufsize = vb2_plane_size(vb, 0); if (dev->devtype->product == CODA_960) bufsize /= 1024; coda_write(dev, bufsize, CODA_CMD_ENC_HEADER_BB_SIZE); if (dev->devtype->product == CODA_960 && ctx->codec->dst_fourcc == V4L2_PIX_FMT_H264 && header_code == CODA_HEADER_H264_SPS) { q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); r = &q_data_src->rect; if (r->width % 16 || r->height % 16) { u32 crop_right = round_up(r->width, 16) - r->width; u32 crop_bottom = round_up(r->height, 16) - r->height; coda_write(dev, crop_right, CODA9_CMD_ENC_HEADER_FRAME_CROP_H); coda_write(dev, crop_bottom, CODA9_CMD_ENC_HEADER_FRAME_CROP_V); header_code |= CODA9_HEADER_FRAME_CROP; } } coda_write(dev, header_code, CODA_CMD_ENC_HEADER_CODE); ret = coda_command_sync(ctx, CODA_COMMAND_ENCODE_HEADER); if (ret < 0) { v4l2_err(&dev->v4l2_dev, "CODA_COMMAND_ENCODE_HEADER timeout\n"); return ret; } if (dev->devtype->product == CODA_960) { for (i = 63; i > 0; i--) if (((char *)vb2_plane_vaddr(vb, 0))[i] != 0) break; *size = i + 1; } else { *size = coda_read(dev, CODA_REG_BIT_WR_PTR(ctx->reg_idx)) - coda_read(dev, CODA_CMD_ENC_HEADER_BB_START); } memcpy(header, vb2_plane_vaddr(vb, 0), *size); return 0; } static u32 coda_slice_mode(struct coda_ctx *ctx) { int size, unit; switch (ctx->params.slice_mode) { case V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_SINGLE: default: return 0; case V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_MB: size = ctx->params.slice_max_mb; unit = 1; break; case V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_BYTES: size = ctx->params.slice_max_bits; unit = 0; break; } return ((size & CODA_SLICING_SIZE_MASK) << CODA_SLICING_SIZE_OFFSET) | ((unit & CODA_SLICING_UNIT_MASK) << CODA_SLICING_UNIT_OFFSET) | ((1 & CODA_SLICING_MODE_MASK) << CODA_SLICING_MODE_OFFSET); } static int coda_enc_param_change(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; u32 change_enable = 0; u32 success; int ret; if (ctx->params.gop_size_changed) { change_enable |= CODA_PARAM_CHANGE_RC_GOP; coda_write(dev, ctx->params.gop_size, CODA_CMD_ENC_PARAM_RC_GOP); ctx->gopcounter = ctx->params.gop_size - 1; ctx->params.gop_size_changed = false; } if (ctx->params.h264_intra_qp_changed) { coda_dbg(1, ctx, "parameter change: intra Qp %u\n", ctx->params.h264_intra_qp); if (ctx->params.bitrate) { change_enable |= CODA_PARAM_CHANGE_RC_INTRA_QP; coda_write(dev, ctx->params.h264_intra_qp, CODA_CMD_ENC_PARAM_RC_INTRA_QP); } ctx->params.h264_intra_qp_changed = false; } if (ctx->params.bitrate_changed) { coda_dbg(1, ctx, "parameter change: bitrate %u kbit/s\n", ctx->params.bitrate); change_enable |= CODA_PARAM_CHANGE_RC_BITRATE; coda_write(dev, ctx->params.bitrate, CODA_CMD_ENC_PARAM_RC_BITRATE); ctx->params.bitrate_changed = false; } if (ctx->params.framerate_changed) { coda_dbg(1, ctx, "parameter change: frame rate %u/%u Hz\n", ctx->params.framerate & 0xffff, (ctx->params.framerate >> 16) + 1); change_enable |= CODA_PARAM_CHANGE_RC_FRAME_RATE; coda_write(dev, ctx->params.framerate, CODA_CMD_ENC_PARAM_RC_FRAME_RATE); ctx->params.framerate_changed = false; } if (ctx->params.intra_refresh_changed) { coda_dbg(1, ctx, "parameter change: intra refresh MBs %u\n", ctx->params.intra_refresh); change_enable |= CODA_PARAM_CHANGE_INTRA_MB_NUM; coda_write(dev, ctx->params.intra_refresh, CODA_CMD_ENC_PARAM_INTRA_MB_NUM); ctx->params.intra_refresh_changed = false; } if (ctx->params.slice_mode_changed) { change_enable |= CODA_PARAM_CHANGE_SLICE_MODE; coda_write(dev, coda_slice_mode(ctx), CODA_CMD_ENC_PARAM_SLICE_MODE); ctx->params.slice_mode_changed = false; } if (!change_enable) return 0; coda_write(dev, change_enable, CODA_CMD_ENC_PARAM_CHANGE_ENABLE); ret = coda_command_sync(ctx, CODA_COMMAND_RC_CHANGE_PARAMETER); if (ret < 0) return ret; success = coda_read(dev, CODA_RET_ENC_PARAM_CHANGE_SUCCESS); if (success != 1) coda_dbg(1, ctx, "parameter change failed: %u\n", success); return 0; } static phys_addr_t coda_iram_alloc(struct coda_iram_info *iram, size_t size) { phys_addr_t ret; size = round_up(size, 1024); if (size > iram->remaining) return 0; iram->remaining -= size; ret = iram->next_paddr; iram->next_paddr += size; return ret; } static void coda_setup_iram(struct coda_ctx *ctx) { struct coda_iram_info *iram_info = &ctx->iram_info; struct coda_dev *dev = ctx->dev; int w64, w128; int mb_width; int dbk_bits; int bit_bits; int ip_bits; int me_bits; memset(iram_info, 0, sizeof(*iram_info)); iram_info->next_paddr = dev->iram.paddr; iram_info->remaining = dev->iram.size; if (!dev->iram.vaddr) return; switch (dev->devtype->product) { case CODA_HX4: dbk_bits = CODA7_USE_HOST_DBK_ENABLE; bit_bits = CODA7_USE_HOST_BIT_ENABLE; ip_bits = CODA7_USE_HOST_IP_ENABLE; me_bits = CODA7_USE_HOST_ME_ENABLE; break; case CODA_7541: dbk_bits = CODA7_USE_HOST_DBK_ENABLE | CODA7_USE_DBK_ENABLE; bit_bits = CODA7_USE_HOST_BIT_ENABLE | CODA7_USE_BIT_ENABLE; ip_bits = CODA7_USE_HOST_IP_ENABLE | CODA7_USE_IP_ENABLE; me_bits = CODA7_USE_HOST_ME_ENABLE | CODA7_USE_ME_ENABLE; break; case CODA_960: dbk_bits = CODA9_USE_HOST_DBK_ENABLE | CODA9_USE_DBK_ENABLE; bit_bits = CODA9_USE_HOST_BIT_ENABLE | CODA7_USE_BIT_ENABLE; ip_bits = CODA9_USE_HOST_IP_ENABLE | CODA7_USE_IP_ENABLE; me_bits = 0; break; default: /* CODA_DX6 */ return; } if (ctx->inst_type == CODA_INST_ENCODER) { struct coda_q_data *q_data_src; q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); mb_width = DIV_ROUND_UP(q_data_src->rect.width, 16); w128 = mb_width * 128; w64 = mb_width * 64; /* Prioritize in case IRAM is too small for everything */ if (dev->devtype->product == CODA_HX4 || dev->devtype->product == CODA_7541) { iram_info->search_ram_size = round_up(mb_width * 16 * 36 + 2048, 1024); iram_info->search_ram_paddr = coda_iram_alloc(iram_info, iram_info->search_ram_size); if (!iram_info->search_ram_paddr) { pr_err("IRAM is smaller than the search ram size\n"); goto out; } iram_info->axi_sram_use |= me_bits; } /* Only H.264BP and H.263P3 are considered */ iram_info->buf_dbk_y_use = coda_iram_alloc(iram_info, w64); iram_info->buf_dbk_c_use = coda_iram_alloc(iram_info, w64); if (!iram_info->buf_dbk_c_use) goto out; iram_info->axi_sram_use |= dbk_bits; iram_info->buf_bit_use = coda_iram_alloc(iram_info, w128); if (!iram_info->buf_bit_use) goto out; iram_info->axi_sram_use |= bit_bits; iram_info->buf_ip_ac_dc_use = coda_iram_alloc(iram_info, w128); if (!iram_info->buf_ip_ac_dc_use) goto out; iram_info->axi_sram_use |= ip_bits; /* OVL and BTP disabled for encoder */ } else if (ctx->inst_type == CODA_INST_DECODER) { struct coda_q_data *q_data_dst; q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); mb_width = DIV_ROUND_UP(q_data_dst->width, 16); w128 = mb_width * 128; iram_info->buf_dbk_y_use = coda_iram_alloc(iram_info, w128); iram_info->buf_dbk_c_use = coda_iram_alloc(iram_info, w128); if (!iram_info->buf_dbk_c_use) goto out; iram_info->axi_sram_use |= dbk_bits; iram_info->buf_bit_use = coda_iram_alloc(iram_info, w128); if (!iram_info->buf_bit_use) goto out; iram_info->axi_sram_use |= bit_bits; iram_info->buf_ip_ac_dc_use = coda_iram_alloc(iram_info, w128); if (!iram_info->buf_ip_ac_dc_use) goto out; iram_info->axi_sram_use |= ip_bits; /* OVL and BTP unused as there is no VC1 support yet */ } out: if (!(iram_info->axi_sram_use & CODA7_USE_HOST_IP_ENABLE)) coda_dbg(1, ctx, "IRAM smaller than needed\n"); if (dev->devtype->product == CODA_HX4 || dev->devtype->product == CODA_7541) { /* TODO - Enabling these causes picture errors on CODA7541 */ if (ctx->inst_type == CODA_INST_DECODER) { /* fw 1.4.50 */ iram_info->axi_sram_use &= ~(CODA7_USE_HOST_IP_ENABLE | CODA7_USE_IP_ENABLE); } else { /* fw 13.4.29 */ iram_info->axi_sram_use &= ~(CODA7_USE_HOST_IP_ENABLE | CODA7_USE_HOST_DBK_ENABLE | CODA7_USE_IP_ENABLE | CODA7_USE_DBK_ENABLE); } } } static u32 coda_supported_firmwares[] = { CODA_FIRMWARE_VERNUM(CODA_DX6, 2, 2, 5), CODA_FIRMWARE_VERNUM(CODA_HX4, 1, 4, 50), CODA_FIRMWARE_VERNUM(CODA_7541, 1, 4, 50), CODA_FIRMWARE_VERNUM(CODA_960, 2, 1, 5), CODA_FIRMWARE_VERNUM(CODA_960, 2, 1, 9), CODA_FIRMWARE_VERNUM(CODA_960, 2, 3, 10), CODA_FIRMWARE_VERNUM(CODA_960, 3, 1, 1), }; static bool coda_firmware_supported(u32 vernum) { int i; for (i = 0; i < ARRAY_SIZE(coda_supported_firmwares); i++) if (vernum == coda_supported_firmwares[i]) return true; return false; } int coda_check_firmware(struct coda_dev *dev) { u16 product, major, minor, release; u32 data; int ret; ret = clk_prepare_enable(dev->clk_per); if (ret) goto err_clk_per; ret = clk_prepare_enable(dev->clk_ahb); if (ret) goto err_clk_ahb; coda_write(dev, 0, CODA_CMD_FIRMWARE_VERNUM); coda_write(dev, CODA_REG_BIT_BUSY_FLAG, CODA_REG_BIT_BUSY); coda_write(dev, 0, CODA_REG_BIT_RUN_INDEX); coda_write(dev, 0, CODA_REG_BIT_RUN_COD_STD); coda_write(dev, CODA_COMMAND_FIRMWARE_GET, CODA_REG_BIT_RUN_COMMAND); if (coda_wait_timeout(dev)) { v4l2_err(&dev->v4l2_dev, "firmware get command error\n"); ret = -EIO; goto err_run_cmd; } if (dev->devtype->product == CODA_960) { data = coda_read(dev, CODA9_CMD_FIRMWARE_CODE_REV); v4l2_info(&dev->v4l2_dev, "Firmware code revision: %d\n", data); } /* Check we are compatible with the loaded firmware */ data = coda_read(dev, CODA_CMD_FIRMWARE_VERNUM); product = CODA_FIRMWARE_PRODUCT(data); major = CODA_FIRMWARE_MAJOR(data); minor = CODA_FIRMWARE_MINOR(data); release = CODA_FIRMWARE_RELEASE(data); clk_disable_unprepare(dev->clk_per); clk_disable_unprepare(dev->clk_ahb); if (product != dev->devtype->product) { v4l2_err(&dev->v4l2_dev, "Wrong firmware. Hw: %s, Fw: %s, Version: %u.%u.%u\n", coda_product_name(dev->devtype->product), coda_product_name(product), major, minor, release); return -EINVAL; } v4l2_info(&dev->v4l2_dev, "Initialized %s.\n", coda_product_name(product)); if (coda_firmware_supported(data)) { v4l2_info(&dev->v4l2_dev, "Firmware version: %u.%u.%u\n", major, minor, release); } else { v4l2_warn(&dev->v4l2_dev, "Unsupported firmware version: %u.%u.%u\n", major, minor, release); } return 0; err_run_cmd: clk_disable_unprepare(dev->clk_ahb); err_clk_ahb: clk_disable_unprepare(dev->clk_per); err_clk_per: return ret; } static void coda9_set_frame_cache(struct coda_ctx *ctx, u32 fourcc) { u32 cache_size, cache_config; if (ctx->tiled_map_type == GDI_LINEAR_FRAME_MAP) { /* Luma 2x0 page, 2x6 cache, chroma 2x0 page, 2x4 cache size */ cache_size = 0x20262024; cache_config = 2 << CODA9_CACHE_PAGEMERGE_OFFSET; } else { /* Luma 0x2 page, 4x4 cache, chroma 0x2 page, 4x3 cache size */ cache_size = 0x02440243; cache_config = 1 << CODA9_CACHE_PAGEMERGE_OFFSET; } coda_write(ctx->dev, cache_size, CODA9_CMD_SET_FRAME_CACHE_SIZE); if (fourcc == V4L2_PIX_FMT_NV12 || fourcc == V4L2_PIX_FMT_YUYV) { cache_config |= 32 << CODA9_CACHE_LUMA_BUFFER_SIZE_OFFSET | 16 << CODA9_CACHE_CR_BUFFER_SIZE_OFFSET | 0 << CODA9_CACHE_CB_BUFFER_SIZE_OFFSET; } else { cache_config |= 32 << CODA9_CACHE_LUMA_BUFFER_SIZE_OFFSET | 8 << CODA9_CACHE_CR_BUFFER_SIZE_OFFSET | 8 << CODA9_CACHE_CB_BUFFER_SIZE_OFFSET; } coda_write(ctx->dev, cache_config, CODA9_CMD_SET_FRAME_CACHE_CONFIG); } /* * Encoder context operations */ static int coda_encoder_reqbufs(struct coda_ctx *ctx, struct v4l2_requestbuffers *rb) { struct coda_q_data *q_data_src; int ret; if (rb->type != V4L2_BUF_TYPE_VIDEO_OUTPUT) return 0; if (rb->count) { q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); ret = coda_alloc_context_buffers(ctx, q_data_src); if (ret < 0) return ret; } else { coda_free_context_buffers(ctx); } return 0; } static int coda_start_encoding(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; struct v4l2_device *v4l2_dev = &dev->v4l2_dev; struct coda_q_data *q_data_src, *q_data_dst; u32 bitstream_buf, bitstream_size; struct vb2_v4l2_buffer *buf; int gamma, ret, value; u32 dst_fourcc; int num_fb; u32 stride; q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); dst_fourcc = q_data_dst->fourcc; buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx); bitstream_buf = vb2_dma_contig_plane_dma_addr(&buf->vb2_buf, 0); bitstream_size = q_data_dst->sizeimage; if (!coda_is_initialized(dev)) { v4l2_err(v4l2_dev, "coda is not initialized.\n"); return -EFAULT; } if (dst_fourcc == V4L2_PIX_FMT_JPEG) { if (!ctx->params.jpeg_qmat_tab[0]) ctx->params.jpeg_qmat_tab[0] = kmalloc(64, GFP_KERNEL); if (!ctx->params.jpeg_qmat_tab[1]) ctx->params.jpeg_qmat_tab[1] = kmalloc(64, GFP_KERNEL); coda_set_jpeg_compression_quality(ctx, ctx->params.jpeg_quality); } mutex_lock(&dev->coda_mutex); coda_write(dev, ctx->parabuf.paddr, CODA_REG_BIT_PARA_BUF_ADDR); coda_write(dev, bitstream_buf, CODA_REG_BIT_RD_PTR(ctx->reg_idx)); coda_write(dev, bitstream_buf, CODA_REG_BIT_WR_PTR(ctx->reg_idx)); switch (dev->devtype->product) { case CODA_DX6: coda_write(dev, CODADX6_STREAM_BUF_DYNALLOC_EN | CODADX6_STREAM_BUF_PIC_RESET, CODA_REG_BIT_STREAM_CTRL); break; case CODA_960: coda_write(dev, 0, CODA9_GDI_WPROT_RGN_EN); /* fallthrough */ case CODA_HX4: case CODA_7541: coda_write(dev, CODA7_STREAM_BUF_DYNALLOC_EN | CODA7_STREAM_BUF_PIC_RESET, CODA_REG_BIT_STREAM_CTRL); break; } ctx->frame_mem_ctrl &= ~(CODA_FRAME_CHROMA_INTERLEAVE | (0x3 << 9) | CODA9_FRAME_TILED2LINEAR); if (q_data_src->fourcc == V4L2_PIX_FMT_NV12) ctx->frame_mem_ctrl |= CODA_FRAME_CHROMA_INTERLEAVE; if (ctx->tiled_map_type == GDI_TILED_FRAME_MB_RASTER_MAP) ctx->frame_mem_ctrl |= (0x3 << 9) | CODA9_FRAME_TILED2LINEAR; coda_write(dev, ctx->frame_mem_ctrl, CODA_REG_BIT_FRAME_MEM_CTRL); if (dev->devtype->product == CODA_DX6) { /* Configure the coda */ coda_write(dev, dev->iram.paddr, CODADX6_REG_BIT_SEARCH_RAM_BASE_ADDR); } /* Could set rotation here if needed */ value = 0; switch (dev->devtype->product) { case CODA_DX6: value = (q_data_src->rect.width & CODADX6_PICWIDTH_MASK) << CODADX6_PICWIDTH_OFFSET; value |= (q_data_src->rect.height & CODADX6_PICHEIGHT_MASK) << CODA_PICHEIGHT_OFFSET; break; case CODA_HX4: case CODA_7541: if (dst_fourcc == V4L2_PIX_FMT_H264) { value = (round_up(q_data_src->rect.width, 16) & CODA7_PICWIDTH_MASK) << CODA7_PICWIDTH_OFFSET; value |= (round_up(q_data_src->rect.height, 16) & CODA7_PICHEIGHT_MASK) << CODA_PICHEIGHT_OFFSET; break; } /* fallthrough */ case CODA_960: value = (q_data_src->rect.width & CODA7_PICWIDTH_MASK) << CODA7_PICWIDTH_OFFSET; value |= (q_data_src->rect.height & CODA7_PICHEIGHT_MASK) << CODA_PICHEIGHT_OFFSET; } coda_write(dev, value, CODA_CMD_ENC_SEQ_SRC_SIZE); if (dst_fourcc == V4L2_PIX_FMT_JPEG) ctx->params.framerate = 0; coda_write(dev, ctx->params.framerate, CODA_CMD_ENC_SEQ_SRC_F_RATE); ctx->params.codec_mode = ctx->codec->mode; switch (dst_fourcc) { case V4L2_PIX_FMT_MPEG4: if (dev->devtype->product == CODA_960) coda_write(dev, CODA9_STD_MPEG4, CODA_CMD_ENC_SEQ_COD_STD); else coda_write(dev, CODA_STD_MPEG4, CODA_CMD_ENC_SEQ_COD_STD); coda_write(dev, 0, CODA_CMD_ENC_SEQ_MP4_PARA); break; case V4L2_PIX_FMT_H264: if (dev->devtype->product == CODA_960) coda_write(dev, CODA9_STD_H264, CODA_CMD_ENC_SEQ_COD_STD); else coda_write(dev, CODA_STD_H264, CODA_CMD_ENC_SEQ_COD_STD); value = ((ctx->params.h264_disable_deblocking_filter_idc & CODA_264PARAM_DISABLEDEBLK_MASK) << CODA_264PARAM_DISABLEDEBLK_OFFSET) | ((ctx->params.h264_slice_alpha_c0_offset_div2 & CODA_264PARAM_DEBLKFILTEROFFSETALPHA_MASK) << CODA_264PARAM_DEBLKFILTEROFFSETALPHA_OFFSET) | ((ctx->params.h264_slice_beta_offset_div2 & CODA_264PARAM_DEBLKFILTEROFFSETBETA_MASK) << CODA_264PARAM_DEBLKFILTEROFFSETBETA_OFFSET) | (ctx->params.h264_constrained_intra_pred_flag << CODA_264PARAM_CONSTRAINEDINTRAPREDFLAG_OFFSET) | (ctx->params.h264_chroma_qp_index_offset & CODA_264PARAM_CHROMAQPOFFSET_MASK); coda_write(dev, value, CODA_CMD_ENC_SEQ_264_PARA); break; case V4L2_PIX_FMT_JPEG: coda_write(dev, 0, CODA_CMD_ENC_SEQ_JPG_PARA); coda_write(dev, ctx->params.jpeg_restart_interval, CODA_CMD_ENC_SEQ_JPG_RST_INTERVAL); coda_write(dev, 0, CODA_CMD_ENC_SEQ_JPG_THUMB_EN); coda_write(dev, 0, CODA_CMD_ENC_SEQ_JPG_THUMB_SIZE); coda_write(dev, 0, CODA_CMD_ENC_SEQ_JPG_THUMB_OFFSET); coda_jpeg_write_tables(ctx); break; default: v4l2_err(v4l2_dev, "dst format (0x%08x) invalid.\n", dst_fourcc); ret = -EINVAL; goto out; } /* * slice mode and GOP size registers are used for thumb size/offset * in JPEG mode */ if (dst_fourcc != V4L2_PIX_FMT_JPEG) { value = coda_slice_mode(ctx); coda_write(dev, value, CODA_CMD_ENC_SEQ_SLICE_MODE); value = ctx->params.gop_size; coda_write(dev, value, CODA_CMD_ENC_SEQ_GOP_SIZE); } if (ctx->params.bitrate) { ctx->params.bitrate_changed = false; ctx->params.h264_intra_qp_changed = false; /* Rate control enabled */ value = (ctx->params.bitrate & CODA_RATECONTROL_BITRATE_MASK) << CODA_RATECONTROL_BITRATE_OFFSET; value |= 1 & CODA_RATECONTROL_ENABLE_MASK; value |= (ctx->params.vbv_delay & CODA_RATECONTROL_INITIALDELAY_MASK) << CODA_RATECONTROL_INITIALDELAY_OFFSET; if (dev->devtype->product == CODA_960) value |= BIT(31); /* disable autoskip */ } else { value = 0; } coda_write(dev, value, CODA_CMD_ENC_SEQ_RC_PARA); coda_write(dev, ctx->params.vbv_size, CODA_CMD_ENC_SEQ_RC_BUF_SIZE); coda_write(dev, ctx->params.intra_refresh, CODA_CMD_ENC_SEQ_INTRA_REFRESH); coda_write(dev, bitstream_buf, CODA_CMD_ENC_SEQ_BB_START); coda_write(dev, bitstream_size / 1024, CODA_CMD_ENC_SEQ_BB_SIZE); value = 0; if (dev->devtype->product == CODA_960) gamma = CODA9_DEFAULT_GAMMA; else gamma = CODA_DEFAULT_GAMMA; if (gamma > 0) { coda_write(dev, (gamma & CODA_GAMMA_MASK) << CODA_GAMMA_OFFSET, CODA_CMD_ENC_SEQ_RC_GAMMA); } if (ctx->params.h264_min_qp || ctx->params.h264_max_qp) { coda_write(dev, ctx->params.h264_min_qp << CODA_QPMIN_OFFSET | ctx->params.h264_max_qp << CODA_QPMAX_OFFSET, CODA_CMD_ENC_SEQ_RC_QP_MIN_MAX); } if (dev->devtype->product == CODA_960) { if (ctx->params.h264_max_qp) value |= 1 << CODA9_OPTION_RCQPMAX_OFFSET; if (CODA_DEFAULT_GAMMA > 0) value |= 1 << CODA9_OPTION_GAMMA_OFFSET; } else { if (CODA_DEFAULT_GAMMA > 0) { if (dev->devtype->product == CODA_DX6) value |= 1 << CODADX6_OPTION_GAMMA_OFFSET; else value |= 1 << CODA7_OPTION_GAMMA_OFFSET; } if (ctx->params.h264_min_qp) value |= 1 << CODA7_OPTION_RCQPMIN_OFFSET; if (ctx->params.h264_max_qp) value |= 1 << CODA7_OPTION_RCQPMAX_OFFSET; } coda_write(dev, value, CODA_CMD_ENC_SEQ_OPTION); coda_write(dev, 0, CODA_CMD_ENC_SEQ_RC_INTERVAL_MODE); coda_setup_iram(ctx); if (dst_fourcc == V4L2_PIX_FMT_H264) { switch (dev->devtype->product) { case CODA_DX6: value = FMO_SLICE_SAVE_BUF_SIZE << 7; coda_write(dev, value, CODADX6_CMD_ENC_SEQ_FMO); break; case CODA_HX4: case CODA_7541: coda_write(dev, ctx->iram_info.search_ram_paddr, CODA7_CMD_ENC_SEQ_SEARCH_BASE); coda_write(dev, ctx->iram_info.search_ram_size, CODA7_CMD_ENC_SEQ_SEARCH_SIZE); break; case CODA_960: coda_write(dev, 0, CODA9_CMD_ENC_SEQ_ME_OPTION); coda_write(dev, 0, CODA9_CMD_ENC_SEQ_INTRA_WEIGHT); } } ret = coda_command_sync(ctx, CODA_COMMAND_SEQ_INIT); if (ret < 0) { v4l2_err(v4l2_dev, "CODA_COMMAND_SEQ_INIT timeout\n"); goto out; } if (coda_read(dev, CODA_RET_ENC_SEQ_SUCCESS) == 0) { v4l2_err(v4l2_dev, "CODA_COMMAND_SEQ_INIT failed\n"); ret = -EFAULT; goto out; } ctx->initialized = 1; if (dst_fourcc != V4L2_PIX_FMT_JPEG) { if (dev->devtype->product == CODA_960) ctx->num_internal_frames = 4; else ctx->num_internal_frames = 2; ret = coda_alloc_framebuffers(ctx, q_data_src, dst_fourcc); if (ret < 0) { v4l2_err(v4l2_dev, "failed to allocate framebuffers\n"); goto out; } num_fb = 2; stride = q_data_src->bytesperline; } else { ctx->num_internal_frames = 0; num_fb = 0; stride = 0; } coda_write(dev, num_fb, CODA_CMD_SET_FRAME_BUF_NUM); coda_write(dev, stride, CODA_CMD_SET_FRAME_BUF_STRIDE); if (dev->devtype->product == CODA_HX4 || dev->devtype->product == CODA_7541) { coda_write(dev, q_data_src->bytesperline, CODA7_CMD_SET_FRAME_SOURCE_BUF_STRIDE); } if (dev->devtype->product != CODA_DX6) { coda_write(dev, ctx->iram_info.buf_bit_use, CODA7_CMD_SET_FRAME_AXI_BIT_ADDR); coda_write(dev, ctx->iram_info.buf_ip_ac_dc_use, CODA7_CMD_SET_FRAME_AXI_IPACDC_ADDR); coda_write(dev, ctx->iram_info.buf_dbk_y_use, CODA7_CMD_SET_FRAME_AXI_DBKY_ADDR); coda_write(dev, ctx->iram_info.buf_dbk_c_use, CODA7_CMD_SET_FRAME_AXI_DBKC_ADDR); coda_write(dev, ctx->iram_info.buf_ovl_use, CODA7_CMD_SET_FRAME_AXI_OVL_ADDR); if (dev->devtype->product == CODA_960) { coda_write(dev, ctx->iram_info.buf_btp_use, CODA9_CMD_SET_FRAME_AXI_BTP_ADDR); coda9_set_frame_cache(ctx, q_data_src->fourcc); /* FIXME */ coda_write(dev, ctx->internal_frames[2].buf.paddr, CODA9_CMD_SET_FRAME_SUBSAMP_A); coda_write(dev, ctx->internal_frames[3].buf.paddr, CODA9_CMD_SET_FRAME_SUBSAMP_B); } } ret = coda_command_sync(ctx, CODA_COMMAND_SET_FRAME_BUF); if (ret < 0) { v4l2_err(v4l2_dev, "CODA_COMMAND_SET_FRAME_BUF timeout\n"); goto out; } coda_dbg(1, ctx, "start encoding %dx%d %4.4s->%4.4s @ %d/%d Hz\n", q_data_src->rect.width, q_data_src->rect.height, (char *)&ctx->codec->src_fourcc, (char *)&dst_fourcc, ctx->params.framerate & 0xffff, (ctx->params.framerate >> 16) + 1); /* Save stream headers */ buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx); switch (dst_fourcc) { case V4L2_PIX_FMT_H264: /* * Get SPS in the first frame and copy it to an * intermediate buffer. */ ret = coda_encode_header(ctx, buf, CODA_HEADER_H264_SPS, &ctx->vpu_header[0][0], &ctx->vpu_header_size[0]); if (ret < 0) goto out; /* * If visible width or height are not aligned to macroblock * size, the crop_right and crop_bottom SPS fields must be set * to the difference between visible and coded size. This is * only supported by CODA960 firmware. All others do not allow * writing frame cropping parameters, so we have to manually * fix up the SPS RBSP (Sequence Parameter Set Raw Byte * Sequence Payload) ourselves. */ if (ctx->dev->devtype->product != CODA_960 && ((q_data_src->rect.width % 16) || (q_data_src->rect.height % 16))) { ret = coda_h264_sps_fixup(ctx, q_data_src->rect.width, q_data_src->rect.height, &ctx->vpu_header[0][0], &ctx->vpu_header_size[0], sizeof(ctx->vpu_header[0])); if (ret < 0) goto out; } /* * Get PPS in the first frame and copy it to an * intermediate buffer. */ ret = coda_encode_header(ctx, buf, CODA_HEADER_H264_PPS, &ctx->vpu_header[1][0], &ctx->vpu_header_size[1]); if (ret < 0) goto out; /* * Length of H.264 headers is variable and thus it might not be * aligned for the coda to append the encoded frame. In that is * the case a filler NAL must be added to header 2. */ ctx->vpu_header_size[2] = coda_h264_padding( (ctx->vpu_header_size[0] + ctx->vpu_header_size[1]), ctx->vpu_header[2]); break; case V4L2_PIX_FMT_MPEG4: /* * Get VOS in the first frame and copy it to an * intermediate buffer */ ret = coda_encode_header(ctx, buf, CODA_HEADER_MP4V_VOS, &ctx->vpu_header[0][0], &ctx->vpu_header_size[0]); if (ret < 0) goto out; ret = coda_encode_header(ctx, buf, CODA_HEADER_MP4V_VIS, &ctx->vpu_header[1][0], &ctx->vpu_header_size[1]); if (ret < 0) goto out; ret = coda_encode_header(ctx, buf, CODA_HEADER_MP4V_VOL, &ctx->vpu_header[2][0], &ctx->vpu_header_size[2]); if (ret < 0) goto out; break; default: /* No more formats need to save headers at the moment */ break; } out: mutex_unlock(&dev->coda_mutex); return ret; } static int coda_prepare_encode(struct coda_ctx *ctx) { struct coda_q_data *q_data_src, *q_data_dst; struct vb2_v4l2_buffer *src_buf, *dst_buf; struct coda_dev *dev = ctx->dev; int force_ipicture; int quant_param = 0; u32 pic_stream_buffer_addr, pic_stream_buffer_size; u32 rot_mode = 0; u32 dst_fourcc; u32 reg; int ret; ret = coda_enc_param_change(ctx); if (ret < 0) { v4l2_warn(&ctx->dev->v4l2_dev, "parameter change failed: %d\n", ret); } src_buf = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx); dst_buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx); q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); dst_fourcc = q_data_dst->fourcc; src_buf->sequence = ctx->osequence; dst_buf->sequence = ctx->osequence; ctx->osequence++; force_ipicture = ctx->params.force_ipicture; if (force_ipicture) ctx->params.force_ipicture = false; else if (ctx->params.gop_size != 0 && (src_buf->sequence % ctx->params.gop_size) == 0) force_ipicture = 1; /* * Workaround coda firmware BUG that only marks the first * frame as IDR. This is a problem for some decoders that can't * recover when a frame is lost. */ if (!force_ipicture) { src_buf->flags |= V4L2_BUF_FLAG_PFRAME; src_buf->flags &= ~V4L2_BUF_FLAG_KEYFRAME; } else { src_buf->flags |= V4L2_BUF_FLAG_KEYFRAME; src_buf->flags &= ~V4L2_BUF_FLAG_PFRAME; } if (dev->devtype->product == CODA_960) coda_set_gdi_regs(ctx); /* * Copy headers in front of the first frame and forced I frames for * H.264 only. In MPEG4 they are already copied by the CODA. */ if (src_buf->sequence == 0 || force_ipicture) { pic_stream_buffer_addr = vb2_dma_contig_plane_dma_addr(&dst_buf->vb2_buf, 0) + ctx->vpu_header_size[0] + ctx->vpu_header_size[1] + ctx->vpu_header_size[2]; pic_stream_buffer_size = q_data_dst->sizeimage - ctx->vpu_header_size[0] - ctx->vpu_header_size[1] - ctx->vpu_header_size[2]; memcpy(vb2_plane_vaddr(&dst_buf->vb2_buf, 0), &ctx->vpu_header[0][0], ctx->vpu_header_size[0]); memcpy(vb2_plane_vaddr(&dst_buf->vb2_buf, 0) + ctx->vpu_header_size[0], &ctx->vpu_header[1][0], ctx->vpu_header_size[1]); memcpy(vb2_plane_vaddr(&dst_buf->vb2_buf, 0) + ctx->vpu_header_size[0] + ctx->vpu_header_size[1], &ctx->vpu_header[2][0], ctx->vpu_header_size[2]); } else { pic_stream_buffer_addr = vb2_dma_contig_plane_dma_addr(&dst_buf->vb2_buf, 0); pic_stream_buffer_size = q_data_dst->sizeimage; } if (force_ipicture) { switch (dst_fourcc) { case V4L2_PIX_FMT_H264: quant_param = ctx->params.h264_intra_qp; break; case V4L2_PIX_FMT_MPEG4: quant_param = ctx->params.mpeg4_intra_qp; break; case V4L2_PIX_FMT_JPEG: quant_param = 30; break; default: v4l2_warn(&ctx->dev->v4l2_dev, "cannot set intra qp, fmt not supported\n"); break; } } else { switch (dst_fourcc) { case V4L2_PIX_FMT_H264: quant_param = ctx->params.h264_inter_qp; break; case V4L2_PIX_FMT_MPEG4: quant_param = ctx->params.mpeg4_inter_qp; break; default: v4l2_warn(&ctx->dev->v4l2_dev, "cannot set inter qp, fmt not supported\n"); break; } } /* submit */ if (ctx->params.rot_mode) rot_mode = CODA_ROT_MIR_ENABLE | ctx->params.rot_mode; coda_write(dev, rot_mode, CODA_CMD_ENC_PIC_ROT_MODE); coda_write(dev, quant_param, CODA_CMD_ENC_PIC_QS); if (dev->devtype->product == CODA_960) { coda_write(dev, 4/*FIXME: 0*/, CODA9_CMD_ENC_PIC_SRC_INDEX); coda_write(dev, q_data_src->bytesperline, CODA9_CMD_ENC_PIC_SRC_STRIDE); coda_write(dev, 0, CODA9_CMD_ENC_PIC_SUB_FRAME_SYNC); reg = CODA9_CMD_ENC_PIC_SRC_ADDR_Y; } else { reg = CODA_CMD_ENC_PIC_SRC_ADDR_Y; } coda_write_base(ctx, q_data_src, src_buf, reg); coda_write(dev, force_ipicture << 1 & 0x2, CODA_CMD_ENC_PIC_OPTION); coda_write(dev, pic_stream_buffer_addr, CODA_CMD_ENC_PIC_BB_START); coda_write(dev, pic_stream_buffer_size / 1024, CODA_CMD_ENC_PIC_BB_SIZE); if (!ctx->streamon_out) { /* After streamoff on the output side, set stream end flag */ ctx->bit_stream_param |= CODA_BIT_STREAM_END_FLAG; coda_write(dev, ctx->bit_stream_param, CODA_REG_BIT_BIT_STREAM_PARAM); } if (dev->devtype->product != CODA_DX6) coda_write(dev, ctx->iram_info.axi_sram_use, CODA7_REG_BIT_AXI_SRAM_USE); trace_coda_enc_pic_run(ctx, src_buf); coda_command_async(ctx, CODA_COMMAND_PIC_RUN); return 0; } static char coda_frame_type_char(u32 flags) { return (flags & V4L2_BUF_FLAG_KEYFRAME) ? 'I' : (flags & V4L2_BUF_FLAG_PFRAME) ? 'P' : (flags & V4L2_BUF_FLAG_BFRAME) ? 'B' : '?'; } static void coda_finish_encode(struct coda_ctx *ctx) { struct vb2_v4l2_buffer *src_buf, *dst_buf; struct coda_dev *dev = ctx->dev; u32 wr_ptr, start_ptr; if (ctx->aborting) return; /* * Lock to make sure that an encoder stop command running in parallel * will either already have marked src_buf as last, or it will wake up * the capture queue after the buffers are returned. */ mutex_lock(&ctx->wakeup_mutex); src_buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx); dst_buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx); trace_coda_enc_pic_done(ctx, dst_buf); /* Get results from the coda */ start_ptr = coda_read(dev, CODA_CMD_ENC_PIC_BB_START); wr_ptr = coda_read(dev, CODA_REG_BIT_WR_PTR(ctx->reg_idx)); /* Calculate bytesused field */ if (dst_buf->sequence == 0 || src_buf->flags & V4L2_BUF_FLAG_KEYFRAME) { vb2_set_plane_payload(&dst_buf->vb2_buf, 0, wr_ptr - start_ptr + ctx->vpu_header_size[0] + ctx->vpu_header_size[1] + ctx->vpu_header_size[2]); } else { vb2_set_plane_payload(&dst_buf->vb2_buf, 0, wr_ptr - start_ptr); } coda_dbg(1, ctx, "frame size = %u\n", wr_ptr - start_ptr); coda_read(dev, CODA_RET_ENC_PIC_SLICE_NUM); coda_read(dev, CODA_RET_ENC_PIC_FLAG); dst_buf->flags &= ~(V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME | V4L2_BUF_FLAG_LAST); if (coda_read(dev, CODA_RET_ENC_PIC_TYPE) == 0) dst_buf->flags |= V4L2_BUF_FLAG_KEYFRAME; else dst_buf->flags |= V4L2_BUF_FLAG_PFRAME; dst_buf->flags |= src_buf->flags & V4L2_BUF_FLAG_LAST; v4l2_m2m_buf_copy_metadata(src_buf, dst_buf, false); v4l2_m2m_buf_done(src_buf, VB2_BUF_STATE_DONE); dst_buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); coda_m2m_buf_done(ctx, dst_buf, VB2_BUF_STATE_DONE); mutex_unlock(&ctx->wakeup_mutex); ctx->gopcounter--; if (ctx->gopcounter < 0) ctx->gopcounter = ctx->params.gop_size - 1; coda_dbg(1, ctx, "job finished: encoded %c frame (%d)%s\n", coda_frame_type_char(dst_buf->flags), dst_buf->sequence, (dst_buf->flags & V4L2_BUF_FLAG_LAST) ? " (last)" : ""); } static void coda_seq_end_work(struct work_struct *work) { struct coda_ctx *ctx = container_of(work, struct coda_ctx, seq_end_work); struct coda_dev *dev = ctx->dev; mutex_lock(&ctx->buffer_mutex); mutex_lock(&dev->coda_mutex); if (ctx->initialized == 0) goto out; coda_dbg(1, ctx, "%s: sent command 'SEQ_END' to coda\n", __func__); if (coda_command_sync(ctx, CODA_COMMAND_SEQ_END)) { v4l2_err(&dev->v4l2_dev, "CODA_COMMAND_SEQ_END failed\n"); } /* * FIXME: Sometimes h.264 encoding fails with 8-byte sequences missing * from the output stream after the h.264 decoder has run. Resetting the * hardware after the decoder has finished seems to help. */ if (dev->devtype->product == CODA_960) coda_hw_reset(ctx); kfifo_init(&ctx->bitstream_fifo, ctx->bitstream.vaddr, ctx->bitstream.size); coda_free_framebuffers(ctx); ctx->initialized = 0; out: mutex_unlock(&dev->coda_mutex); mutex_unlock(&ctx->buffer_mutex); } static void coda_bit_release(struct coda_ctx *ctx) { mutex_lock(&ctx->buffer_mutex); coda_free_framebuffers(ctx); coda_free_context_buffers(ctx); coda_free_bitstream_buffer(ctx); mutex_unlock(&ctx->buffer_mutex); } const struct coda_context_ops coda_bit_encode_ops = { .queue_init = coda_encoder_queue_init, .reqbufs = coda_encoder_reqbufs, .start_streaming = coda_start_encoding, .prepare_run = coda_prepare_encode, .finish_run = coda_finish_encode, .seq_end_work = coda_seq_end_work, .release = coda_bit_release, }; /* * Decoder context operations */ static int coda_alloc_bitstream_buffer(struct coda_ctx *ctx, struct coda_q_data *q_data) { if (ctx->bitstream.vaddr) return 0; ctx->bitstream.size = roundup_pow_of_two(q_data->sizeimage * 2); ctx->bitstream.vaddr = dma_alloc_wc(ctx->dev->dev, ctx->bitstream.size, &ctx->bitstream.paddr, GFP_KERNEL); if (!ctx->bitstream.vaddr) { v4l2_err(&ctx->dev->v4l2_dev, "failed to allocate bitstream ringbuffer"); return -ENOMEM; } kfifo_init(&ctx->bitstream_fifo, ctx->bitstream.vaddr, ctx->bitstream.size); return 0; } static void coda_free_bitstream_buffer(struct coda_ctx *ctx) { if (ctx->bitstream.vaddr == NULL) return; dma_free_wc(ctx->dev->dev, ctx->bitstream.size, ctx->bitstream.vaddr, ctx->bitstream.paddr); ctx->bitstream.vaddr = NULL; kfifo_init(&ctx->bitstream_fifo, NULL, 0); } static int coda_decoder_reqbufs(struct coda_ctx *ctx, struct v4l2_requestbuffers *rb) { struct coda_q_data *q_data_src; int ret; if (rb->type != V4L2_BUF_TYPE_VIDEO_OUTPUT) return 0; if (rb->count) { q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); ret = coda_alloc_context_buffers(ctx, q_data_src); if (ret < 0) return ret; ret = coda_alloc_bitstream_buffer(ctx, q_data_src); if (ret < 0) { coda_free_context_buffers(ctx); return ret; } } else { coda_free_bitstream_buffer(ctx); coda_free_context_buffers(ctx); } return 0; } static bool coda_reorder_enable(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; int profile; if (dev->devtype->product != CODA_HX4 && dev->devtype->product != CODA_7541 && dev->devtype->product != CODA_960) return false; if (ctx->codec->src_fourcc == V4L2_PIX_FMT_JPEG) return false; if (ctx->codec->src_fourcc != V4L2_PIX_FMT_H264) return true; profile = coda_h264_profile(ctx->params.h264_profile_idc); if (profile < 0) v4l2_warn(&dev->v4l2_dev, "Unknown H264 Profile: %u\n", ctx->params.h264_profile_idc); /* Baseline profile does not support reordering */ return profile > V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE; } static int __coda_decoder_seq_init(struct coda_ctx *ctx) { struct coda_q_data *q_data_src, *q_data_dst; u32 bitstream_buf, bitstream_size; struct coda_dev *dev = ctx->dev; int width, height; u32 src_fourcc, dst_fourcc; u32 val; int ret; lockdep_assert_held(&dev->coda_mutex); coda_dbg(1, ctx, "Video Data Order Adapter: %s\n", ctx->use_vdoa ? "Enabled" : "Disabled"); /* Start decoding */ q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); bitstream_buf = ctx->bitstream.paddr; bitstream_size = ctx->bitstream.size; src_fourcc = q_data_src->fourcc; dst_fourcc = q_data_dst->fourcc; /* Update coda bitstream read and write pointers from kfifo */ coda_kfifo_sync_to_device_full(ctx); ctx->frame_mem_ctrl &= ~(CODA_FRAME_CHROMA_INTERLEAVE | (0x3 << 9) | CODA9_FRAME_TILED2LINEAR); if (dst_fourcc == V4L2_PIX_FMT_NV12 || dst_fourcc == V4L2_PIX_FMT_YUYV) ctx->frame_mem_ctrl |= CODA_FRAME_CHROMA_INTERLEAVE; if (ctx->tiled_map_type == GDI_TILED_FRAME_MB_RASTER_MAP) ctx->frame_mem_ctrl |= (0x3 << 9) | ((ctx->use_vdoa) ? 0 : CODA9_FRAME_TILED2LINEAR); coda_write(dev, ctx->frame_mem_ctrl, CODA_REG_BIT_FRAME_MEM_CTRL); ctx->display_idx = -1; ctx->frm_dis_flg = 0; coda_write(dev, 0, CODA_REG_BIT_FRM_DIS_FLG(ctx->reg_idx)); coda_write(dev, bitstream_buf, CODA_CMD_DEC_SEQ_BB_START); coda_write(dev, bitstream_size / 1024, CODA_CMD_DEC_SEQ_BB_SIZE); val = 0; if (coda_reorder_enable(ctx)) val |= CODA_REORDER_ENABLE; if (ctx->codec->src_fourcc == V4L2_PIX_FMT_JPEG) val |= CODA_NO_INT_ENABLE; coda_write(dev, val, CODA_CMD_DEC_SEQ_OPTION); ctx->params.codec_mode = ctx->codec->mode; if (dev->devtype->product == CODA_960 && src_fourcc == V4L2_PIX_FMT_MPEG4) ctx->params.codec_mode_aux = CODA_MP4_AUX_MPEG4; else ctx->params.codec_mode_aux = 0; if (src_fourcc == V4L2_PIX_FMT_MPEG4) { coda_write(dev, CODA_MP4_CLASS_MPEG4, CODA_CMD_DEC_SEQ_MP4_ASP_CLASS); } if (src_fourcc == V4L2_PIX_FMT_H264) { if (dev->devtype->product == CODA_HX4 || dev->devtype->product == CODA_7541) { coda_write(dev, ctx->psbuf.paddr, CODA_CMD_DEC_SEQ_PS_BB_START); coda_write(dev, (CODA7_PS_BUF_SIZE / 1024), CODA_CMD_DEC_SEQ_PS_BB_SIZE); } if (dev->devtype->product == CODA_960) { coda_write(dev, 0, CODA_CMD_DEC_SEQ_X264_MV_EN); coda_write(dev, 512, CODA_CMD_DEC_SEQ_SPP_CHUNK_SIZE); } } if (src_fourcc == V4L2_PIX_FMT_JPEG) coda_write(dev, 0, CODA_CMD_DEC_SEQ_JPG_THUMB_EN); if (dev->devtype->product != CODA_960) coda_write(dev, 0, CODA_CMD_DEC_SEQ_SRC_SIZE); ctx->bit_stream_param = CODA_BIT_DEC_SEQ_INIT_ESCAPE; ret = coda_command_sync(ctx, CODA_COMMAND_SEQ_INIT); ctx->bit_stream_param = 0; if (ret) { v4l2_err(&dev->v4l2_dev, "CODA_COMMAND_SEQ_INIT timeout\n"); return ret; } ctx->sequence_offset = ~0U; ctx->initialized = 1; /* Update kfifo out pointer from coda bitstream read pointer */ coda_kfifo_sync_from_device(ctx); if (coda_read(dev, CODA_RET_DEC_SEQ_SUCCESS) == 0) { v4l2_err(&dev->v4l2_dev, "CODA_COMMAND_SEQ_INIT failed, error code = 0x%x\n", coda_read(dev, CODA_RET_DEC_SEQ_ERR_REASON)); return -EAGAIN; } val = coda_read(dev, CODA_RET_DEC_SEQ_SRC_SIZE); if (dev->devtype->product == CODA_DX6) { width = (val >> CODADX6_PICWIDTH_OFFSET) & CODADX6_PICWIDTH_MASK; height = val & CODADX6_PICHEIGHT_MASK; } else { width = (val >> CODA7_PICWIDTH_OFFSET) & CODA7_PICWIDTH_MASK; height = val & CODA7_PICHEIGHT_MASK; } if (width > q_data_dst->bytesperline || height > q_data_dst->height) { v4l2_err(&dev->v4l2_dev, "stream is %dx%d, not %dx%d\n", width, height, q_data_dst->bytesperline, q_data_dst->height); return -EINVAL; } width = round_up(width, 16); height = round_up(height, 16); coda_dbg(1, ctx, "start decoding: %dx%d\n", width, height); ctx->num_internal_frames = coda_read(dev, CODA_RET_DEC_SEQ_FRAME_NEED); /* * If the VDOA is used, the decoder needs one additional frame, * because the frames are freed when the next frame is decoded. * Otherwise there are visible errors in the decoded frames (green * regions in displayed frames) and a broken order of frames (earlier * frames are sporadically displayed after later frames). */ if (ctx->use_vdoa) ctx->num_internal_frames += 1; if (ctx->num_internal_frames > CODA_MAX_FRAMEBUFFERS) { v4l2_err(&dev->v4l2_dev, "not enough framebuffers to decode (%d < %d)\n", CODA_MAX_FRAMEBUFFERS, ctx->num_internal_frames); return -EINVAL; } if (src_fourcc == V4L2_PIX_FMT_H264) { u32 left_right; u32 top_bottom; left_right = coda_read(dev, CODA_RET_DEC_SEQ_CROP_LEFT_RIGHT); top_bottom = coda_read(dev, CODA_RET_DEC_SEQ_CROP_TOP_BOTTOM); q_data_dst->rect.left = (left_right >> 10) & 0x3ff; q_data_dst->rect.top = (top_bottom >> 10) & 0x3ff; q_data_dst->rect.width = width - q_data_dst->rect.left - (left_right & 0x3ff); q_data_dst->rect.height = height - q_data_dst->rect.top - (top_bottom & 0x3ff); } if (dev->devtype->product != CODA_DX6) { u8 profile, level; val = coda_read(dev, CODA7_RET_DEC_SEQ_HEADER_REPORT); profile = val & 0xff; level = (val >> 8) & 0x7f; if (profile || level) coda_update_profile_level_ctrls(ctx, profile, level); } return 0; } static void coda_dec_seq_init_work(struct work_struct *work) { struct coda_ctx *ctx = container_of(work, struct coda_ctx, seq_init_work); struct coda_dev *dev = ctx->dev; int ret; mutex_lock(&ctx->buffer_mutex); mutex_lock(&dev->coda_mutex); if (ctx->initialized == 1) goto out; ret = __coda_decoder_seq_init(ctx); if (ret < 0) goto out; ctx->initialized = 1; out: mutex_unlock(&dev->coda_mutex); mutex_unlock(&ctx->buffer_mutex); } static int __coda_start_decoding(struct coda_ctx *ctx) { struct coda_q_data *q_data_src, *q_data_dst; struct coda_dev *dev = ctx->dev; u32 src_fourcc, dst_fourcc; int ret; if (!ctx->initialized) { ret = __coda_decoder_seq_init(ctx); if (ret < 0) return ret; } q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); src_fourcc = q_data_src->fourcc; dst_fourcc = q_data_dst->fourcc; coda_write(dev, ctx->parabuf.paddr, CODA_REG_BIT_PARA_BUF_ADDR); ret = coda_alloc_framebuffers(ctx, q_data_dst, src_fourcc); if (ret < 0) { v4l2_err(&dev->v4l2_dev, "failed to allocate framebuffers\n"); return ret; } /* Tell the decoder how many frame buffers we allocated. */ coda_write(dev, ctx->num_internal_frames, CODA_CMD_SET_FRAME_BUF_NUM); coda_write(dev, round_up(q_data_dst->rect.width, 16), CODA_CMD_SET_FRAME_BUF_STRIDE); if (dev->devtype->product != CODA_DX6) { /* Set secondary AXI IRAM */ coda_setup_iram(ctx); coda_write(dev, ctx->iram_info.buf_bit_use, CODA7_CMD_SET_FRAME_AXI_BIT_ADDR); coda_write(dev, ctx->iram_info.buf_ip_ac_dc_use, CODA7_CMD_SET_FRAME_AXI_IPACDC_ADDR); coda_write(dev, ctx->iram_info.buf_dbk_y_use, CODA7_CMD_SET_FRAME_AXI_DBKY_ADDR); coda_write(dev, ctx->iram_info.buf_dbk_c_use, CODA7_CMD_SET_FRAME_AXI_DBKC_ADDR); coda_write(dev, ctx->iram_info.buf_ovl_use, CODA7_CMD_SET_FRAME_AXI_OVL_ADDR); if (dev->devtype->product == CODA_960) { coda_write(dev, ctx->iram_info.buf_btp_use, CODA9_CMD_SET_FRAME_AXI_BTP_ADDR); coda_write(dev, -1, CODA9_CMD_SET_FRAME_DELAY); coda9_set_frame_cache(ctx, dst_fourcc); } } if (src_fourcc == V4L2_PIX_FMT_H264) { coda_write(dev, ctx->slicebuf.paddr, CODA_CMD_SET_FRAME_SLICE_BB_START); coda_write(dev, ctx->slicebuf.size / 1024, CODA_CMD_SET_FRAME_SLICE_BB_SIZE); } if (dev->devtype->product == CODA_HX4 || dev->devtype->product == CODA_7541) { int max_mb_x = 1920 / 16; int max_mb_y = 1088 / 16; int max_mb_num = max_mb_x * max_mb_y; coda_write(dev, max_mb_num << 16 | max_mb_x << 8 | max_mb_y, CODA7_CMD_SET_FRAME_MAX_DEC_SIZE); } else if (dev->devtype->product == CODA_960) { int max_mb_x = 1920 / 16; int max_mb_y = 1088 / 16; int max_mb_num = max_mb_x * max_mb_y; coda_write(dev, max_mb_num << 16 | max_mb_x << 8 | max_mb_y, CODA9_CMD_SET_FRAME_MAX_DEC_SIZE); } if (coda_command_sync(ctx, CODA_COMMAND_SET_FRAME_BUF)) { v4l2_err(&ctx->dev->v4l2_dev, "CODA_COMMAND_SET_FRAME_BUF timeout\n"); return -ETIMEDOUT; } return 0; } static int coda_start_decoding(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; int ret; mutex_lock(&dev->coda_mutex); ret = __coda_start_decoding(ctx); mutex_unlock(&dev->coda_mutex); return ret; } static int coda_prepare_decode(struct coda_ctx *ctx) { struct vb2_v4l2_buffer *dst_buf; struct coda_dev *dev = ctx->dev; struct coda_q_data *q_data_dst; struct coda_buffer_meta *meta; u32 rot_mode = 0; u32 reg_addr, reg_stride; dst_buf = v4l2_m2m_next_dst_buf(ctx->fh.m2m_ctx); q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); /* Try to copy source buffer contents into the bitstream ringbuffer */ mutex_lock(&ctx->bitstream_mutex); coda_fill_bitstream(ctx, NULL); mutex_unlock(&ctx->bitstream_mutex); if (coda_get_bitstream_payload(ctx) < 512 && (!(ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG))) { coda_dbg(1, ctx, "bitstream payload: %d, skipping\n", coda_get_bitstream_payload(ctx)); v4l2_m2m_job_finish(ctx->dev->m2m_dev, ctx->fh.m2m_ctx); return -EAGAIN; } /* Run coda_start_decoding (again) if not yet initialized */ if (!ctx->initialized) { int ret = __coda_start_decoding(ctx); if (ret < 0) { v4l2_err(&dev->v4l2_dev, "failed to start decoding\n"); v4l2_m2m_job_finish(ctx->dev->m2m_dev, ctx->fh.m2m_ctx); return -EAGAIN; } else { ctx->initialized = 1; } } if (dev->devtype->product == CODA_960) coda_set_gdi_regs(ctx); if (ctx->use_vdoa && ctx->display_idx >= 0 && ctx->display_idx < ctx->num_internal_frames) { vdoa_device_run(ctx->vdoa, vb2_dma_contig_plane_dma_addr(&dst_buf->vb2_buf, 0), ctx->internal_frames[ctx->display_idx].buf.paddr); } else { if (dev->devtype->product == CODA_960) { /* * It was previously assumed that the CODA960 has an * internal list of 64 buffer entries that contains * both the registered internal frame buffers as well * as the rotator buffer output, and that the ROT_INDEX * register must be set to a value between the last * internal frame buffers' index and 64. * At least on firmware version 3.1.1 it turns out that * setting ROT_INDEX to any value >= 32 causes CODA * hangups that it can not recover from with the SRC VPU * reset. * It does appear to work however, to just set it to a * fixed value in the [ctx->num_internal_frames, 31] * range, for example CODA_MAX_FRAMEBUFFERS. */ coda_write(dev, CODA_MAX_FRAMEBUFFERS, CODA9_CMD_DEC_PIC_ROT_INDEX); reg_addr = CODA9_CMD_DEC_PIC_ROT_ADDR_Y; reg_stride = CODA9_CMD_DEC_PIC_ROT_STRIDE; } else { reg_addr = CODA_CMD_DEC_PIC_ROT_ADDR_Y; reg_stride = CODA_CMD_DEC_PIC_ROT_STRIDE; } coda_write_base(ctx, q_data_dst, dst_buf, reg_addr); coda_write(dev, q_data_dst->bytesperline, reg_stride); rot_mode = CODA_ROT_MIR_ENABLE | ctx->params.rot_mode; } coda_write(dev, rot_mode, CODA_CMD_DEC_PIC_ROT_MODE); switch (dev->devtype->product) { case CODA_DX6: /* TBD */ case CODA_HX4: case CODA_7541: coda_write(dev, CODA_PRE_SCAN_EN, CODA_CMD_DEC_PIC_OPTION); break; case CODA_960: /* 'hardcode to use interrupt disable mode'? */ coda_write(dev, (1 << 10), CODA_CMD_DEC_PIC_OPTION); break; } coda_write(dev, 0, CODA_CMD_DEC_PIC_SKIP_NUM); coda_write(dev, 0, CODA_CMD_DEC_PIC_BB_START); coda_write(dev, 0, CODA_CMD_DEC_PIC_START_BYTE); if (dev->devtype->product != CODA_DX6) coda_write(dev, ctx->iram_info.axi_sram_use, CODA7_REG_BIT_AXI_SRAM_USE); spin_lock(&ctx->buffer_meta_lock); meta = list_first_entry_or_null(&ctx->buffer_meta_list, struct coda_buffer_meta, list); if (meta && ctx->codec->src_fourcc == V4L2_PIX_FMT_JPEG) { /* If this is the last buffer in the bitstream, add padding */ if (meta->end == ctx->bitstream_fifo.kfifo.in) { static unsigned char buf[512]; unsigned int pad; /* Pad to multiple of 256 and then add 256 more */ pad = ((0 - meta->end) & 0xff) + 256; memset(buf, 0xff, sizeof(buf)); kfifo_in(&ctx->bitstream_fifo, buf, pad); } } spin_unlock(&ctx->buffer_meta_lock); coda_kfifo_sync_to_device_full(ctx); /* Clear decode success flag */ coda_write(dev, 0, CODA_RET_DEC_PIC_SUCCESS); /* Clear error return value */ coda_write(dev, 0, CODA_RET_DEC_PIC_ERR_MB); trace_coda_dec_pic_run(ctx, meta); coda_command_async(ctx, CODA_COMMAND_PIC_RUN); return 0; } static void coda_finish_decode(struct coda_ctx *ctx) { struct coda_dev *dev = ctx->dev; struct coda_q_data *q_data_src; struct coda_q_data *q_data_dst; struct vb2_v4l2_buffer *dst_buf; struct coda_buffer_meta *meta; int width, height; int decoded_idx; int display_idx; struct coda_internal_frame *decoded_frame = NULL; u32 src_fourcc; int success; u32 err_mb; int err_vdoa = 0; u32 val; if (ctx->aborting) return; /* Update kfifo out pointer from coda bitstream read pointer */ coda_kfifo_sync_from_device(ctx); /* * in stream-end mode, the read pointer can overshoot the write pointer * by up to 512 bytes */ if (ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG) { if (coda_get_bitstream_payload(ctx) >= ctx->bitstream.size - 512) kfifo_init(&ctx->bitstream_fifo, ctx->bitstream.vaddr, ctx->bitstream.size); } q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); src_fourcc = q_data_src->fourcc; val = coda_read(dev, CODA_RET_DEC_PIC_SUCCESS); if (val != 1) pr_err("DEC_PIC_SUCCESS = %d\n", val); success = val & 0x1; if (!success) v4l2_err(&dev->v4l2_dev, "decode failed\n"); if (src_fourcc == V4L2_PIX_FMT_H264) { if (val & (1 << 3)) v4l2_err(&dev->v4l2_dev, "insufficient PS buffer space (%d bytes)\n", ctx->psbuf.size); if (val & (1 << 2)) v4l2_err(&dev->v4l2_dev, "insufficient slice buffer space (%d bytes)\n", ctx->slicebuf.size); } val = coda_read(dev, CODA_RET_DEC_PIC_SIZE); width = (val >> 16) & 0xffff; height = val & 0xffff; q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); /* frame crop information */ if (src_fourcc == V4L2_PIX_FMT_H264) { u32 left_right; u32 top_bottom; left_right = coda_read(dev, CODA_RET_DEC_PIC_CROP_LEFT_RIGHT); top_bottom = coda_read(dev, CODA_RET_DEC_PIC_CROP_TOP_BOTTOM); if (left_right == 0xffffffff && top_bottom == 0xffffffff) { /* Keep current crop information */ } else { struct v4l2_rect *rect = &q_data_dst->rect; rect->left = left_right >> 16 & 0xffff; rect->top = top_bottom >> 16 & 0xffff; rect->width = width - rect->left - (left_right & 0xffff); rect->height = height - rect->top - (top_bottom & 0xffff); } } else { /* no cropping */ } err_mb = coda_read(dev, CODA_RET_DEC_PIC_ERR_MB); if (err_mb > 0) v4l2_err(&dev->v4l2_dev, "errors in %d macroblocks\n", err_mb); if (dev->devtype->product == CODA_HX4 || dev->devtype->product == CODA_7541) { val = coda_read(dev, CODA_RET_DEC_PIC_OPTION); if (val == 0) { /* not enough bitstream data */ coda_dbg(1, ctx, "prescan failed: %d\n", val); ctx->hold = true; return; } } /* Wait until the VDOA finished writing the previous display frame */ if (ctx->use_vdoa && ctx->display_idx >= 0 && ctx->display_idx < ctx->num_internal_frames) { err_vdoa = vdoa_wait_for_completion(ctx->vdoa); } ctx->frm_dis_flg = coda_read(dev, CODA_REG_BIT_FRM_DIS_FLG(ctx->reg_idx)); /* The previous display frame was copied out and can be overwritten */ if (ctx->display_idx >= 0 && ctx->display_idx < ctx->num_internal_frames) { ctx->frm_dis_flg &= ~(1 << ctx->display_idx); coda_write(dev, ctx->frm_dis_flg, CODA_REG_BIT_FRM_DIS_FLG(ctx->reg_idx)); } /* * The index of the last decoded frame, not necessarily in * display order, and the index of the next display frame. * The latter could have been decoded in a previous run. */ decoded_idx = coda_read(dev, CODA_RET_DEC_PIC_CUR_IDX); display_idx = coda_read(dev, CODA_RET_DEC_PIC_FRAME_IDX); if (decoded_idx == -1) { /* no frame was decoded, but we might have a display frame */ if (display_idx >= 0 && display_idx < ctx->num_internal_frames) ctx->sequence_offset++; else if (ctx->display_idx < 0) ctx->hold = true; } else if (decoded_idx == -2) { if (ctx->display_idx >= 0 && ctx->display_idx < ctx->num_internal_frames) ctx->sequence_offset++; /* no frame was decoded, we still return remaining buffers */ } else if (decoded_idx < 0 || decoded_idx >= ctx->num_internal_frames) { v4l2_err(&dev->v4l2_dev, "decoded frame index out of range: %d\n", decoded_idx); } else { decoded_frame = &ctx->internal_frames[decoded_idx]; val = coda_read(dev, CODA_RET_DEC_PIC_FRAME_NUM); if (ctx->sequence_offset == -1) ctx->sequence_offset = val; val -= ctx->sequence_offset; spin_lock(&ctx->buffer_meta_lock); if (!list_empty(&ctx->buffer_meta_list)) { meta = list_first_entry(&ctx->buffer_meta_list, struct coda_buffer_meta, list); list_del(&meta->list); ctx->num_metas--; spin_unlock(&ctx->buffer_meta_lock); /* * Clamp counters to 16 bits for comparison, as the HW * counter rolls over at this point for h.264. This * may be different for other formats, but using 16 bits * should be enough to detect most errors and saves us * from doing different things based on the format. */ if ((val & 0xffff) != (meta->sequence & 0xffff)) { v4l2_err(&dev->v4l2_dev, "sequence number mismatch (%d(%d) != %d)\n", val, ctx->sequence_offset, meta->sequence); } decoded_frame->meta = *meta; kfree(meta); } else { spin_unlock(&ctx->buffer_meta_lock); v4l2_err(&dev->v4l2_dev, "empty timestamp list!\n"); memset(&decoded_frame->meta, 0, sizeof(struct coda_buffer_meta)); decoded_frame->meta.sequence = val; decoded_frame->meta.last = false; ctx->sequence_offset++; } trace_coda_dec_pic_done(ctx, &decoded_frame->meta); val = coda_read(dev, CODA_RET_DEC_PIC_TYPE) & 0x7; decoded_frame->type = (val == 0) ? V4L2_BUF_FLAG_KEYFRAME : (val == 1) ? V4L2_BUF_FLAG_PFRAME : V4L2_BUF_FLAG_BFRAME; decoded_frame->error = err_mb; } if (display_idx == -1) { /* * no more frames to be decoded, but there could still * be rotator output to dequeue */ ctx->hold = true; } else if (display_idx == -3) { /* possibly prescan failure */ } else if (display_idx < 0 || display_idx >= ctx->num_internal_frames) { v4l2_err(&dev->v4l2_dev, "presentation frame index out of range: %d\n", display_idx); } /* If a frame was copied out, return it */ if (ctx->display_idx >= 0 && ctx->display_idx < ctx->num_internal_frames) { struct coda_internal_frame *ready_frame; ready_frame = &ctx->internal_frames[ctx->display_idx]; dst_buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); dst_buf->sequence = ctx->osequence++; dst_buf->field = V4L2_FIELD_NONE; dst_buf->flags &= ~(V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME | V4L2_BUF_FLAG_BFRAME); dst_buf->flags |= ready_frame->type; meta = &ready_frame->meta; if (meta->last && !coda_reorder_enable(ctx)) { /* * If this was the last decoded frame, and reordering * is disabled, this will be the last display frame. */ coda_dbg(1, ctx, "last meta, marking as last frame\n"); dst_buf->flags |= V4L2_BUF_FLAG_LAST; } else if (ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG && display_idx == -1) { /* * If there is no designated presentation frame anymore, * this frame has to be the last one. */ coda_dbg(1, ctx, "no more frames to return, marking as last frame\n"); dst_buf->flags |= V4L2_BUF_FLAG_LAST; } dst_buf->timecode = meta->timecode; dst_buf->vb2_buf.timestamp = meta->timestamp; trace_coda_dec_rot_done(ctx, dst_buf, meta); vb2_set_plane_payload(&dst_buf->vb2_buf, 0, q_data_dst->sizeimage); if (ready_frame->error || err_vdoa) coda_m2m_buf_done(ctx, dst_buf, VB2_BUF_STATE_ERROR); else coda_m2m_buf_done(ctx, dst_buf, VB2_BUF_STATE_DONE); if (decoded_frame) { coda_dbg(1, ctx, "job finished: decoded %c frame %u, returned %c frame %u (%u/%u)%s\n", coda_frame_type_char(decoded_frame->type), decoded_frame->meta.sequence, coda_frame_type_char(dst_buf->flags), ready_frame->meta.sequence, dst_buf->sequence, ctx->qsequence, (dst_buf->flags & V4L2_BUF_FLAG_LAST) ? " (last)" : ""); } else { coda_dbg(1, ctx, "job finished: no frame decoded (%d), returned %c frame %u (%u/%u)%s\n", decoded_idx, coda_frame_type_char(dst_buf->flags), ready_frame->meta.sequence, dst_buf->sequence, ctx->qsequence, (dst_buf->flags & V4L2_BUF_FLAG_LAST) ? " (last)" : ""); } } else { if (decoded_frame) { coda_dbg(1, ctx, "job finished: decoded %c frame %u, no frame returned (%d)\n", coda_frame_type_char(decoded_frame->type), decoded_frame->meta.sequence, ctx->display_idx); } else { coda_dbg(1, ctx, "job finished: no frame decoded (%d) or returned (%d)\n", decoded_idx, ctx->display_idx); } } /* The rotator will copy the current display frame next time */ ctx->display_idx = display_idx; /* * The current decode run might have brought the bitstream fill level * below the size where we can start the next decode run. As userspace * might have filled the output queue completely and might thus be * blocked, we can't rely on the next qbuf to trigger the bitstream * refill. Check if we have data to refill the bitstream now. */ mutex_lock(&ctx->bitstream_mutex); coda_fill_bitstream(ctx, NULL); mutex_unlock(&ctx->bitstream_mutex); } static void coda_decode_timeout(struct coda_ctx *ctx) { struct vb2_v4l2_buffer *dst_buf; /* * For now this only handles the case where we would deadlock with * userspace, i.e. userspace issued DEC_CMD_STOP and waits for EOS, * but after a failed decode run we would hold the context and wait for * userspace to queue more buffers. */ if (!(ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG)) return; dst_buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx); dst_buf->sequence = ctx->qsequence - 1; coda_m2m_buf_done(ctx, dst_buf, VB2_BUF_STATE_ERROR); } const struct coda_context_ops coda_bit_decode_ops = { .queue_init = coda_decoder_queue_init, .reqbufs = coda_decoder_reqbufs, .start_streaming = coda_start_decoding, .prepare_run = coda_prepare_decode, .finish_run = coda_finish_decode, .run_timeout = coda_decode_timeout, .seq_init_work = coda_dec_seq_init_work, .seq_end_work = coda_seq_end_work, .release = coda_bit_release, }; irqreturn_t coda_irq_handler(int irq, void *data) { struct coda_dev *dev = data; struct coda_ctx *ctx; /* read status register to attend the IRQ */ coda_read(dev, CODA_REG_BIT_INT_STATUS); coda_write(dev, 0, CODA_REG_BIT_INT_REASON); coda_write(dev, CODA_REG_BIT_INT_CLEAR_SET, CODA_REG_BIT_INT_CLEAR); ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev); if (ctx == NULL) { v4l2_err(&dev->v4l2_dev, "Instance released before the end of transaction\n"); return IRQ_HANDLED; } trace_coda_bit_done(ctx); if (ctx->aborting) { coda_dbg(1, ctx, "task has been aborted\n"); } if (coda_isbusy(ctx->dev)) { coda_dbg(1, ctx, "coda is still busy!!!!\n"); return IRQ_NONE; } complete(&ctx->completion); return IRQ_HANDLED; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1