Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Philipp Zabel | 13362 | 81.77% | 192 | 79.34% |
Javier Martin | 1963 | 12.01% | 1 | 0.41% |
Michael Tretter | 665 | 4.07% | 4 | 1.65% |
Fabio Estevam | 64 | 0.39% | 7 | 2.89% |
Ezequiel García | 55 | 0.34% | 2 | 0.83% |
Ulf Hansson | 42 | 0.26% | 1 | 0.41% |
Lucas Stach | 38 | 0.23% | 5 | 2.07% |
Marco Felsch | 25 | 0.15% | 2 | 0.83% |
Hans Verkuil | 24 | 0.15% | 5 | 2.07% |
Peter Seiderer | 22 | 0.13% | 2 | 0.83% |
Junghak Sung | 20 | 0.12% | 2 | 0.83% |
Baruch Siach | 8 | 0.05% | 1 | 0.41% |
Alexander Shiyan | 8 | 0.05% | 2 | 0.83% |
Kamil Debski | 7 | 0.04% | 1 | 0.41% |
Michael Olbrich | 6 | 0.04% | 1 | 0.41% |
Mauro Carvalho Chehab | 6 | 0.04% | 3 | 1.24% |
Dan Carpenter | 5 | 0.03% | 1 | 0.41% |
Nicolin Chen | 5 | 0.03% | 1 | 0.41% |
Jan Lübbe | 4 | 0.02% | 1 | 0.41% |
Vladimir Zapolskiy | 4 | 0.02% | 3 | 1.24% |
Rafael J. Wysocki | 2 | 0.01% | 1 | 0.41% |
Thomas Gleixner | 2 | 0.01% | 1 | 0.41% |
Emil Goode | 1 | 0.01% | 1 | 0.41% |
Arvind Yadav | 1 | 0.01% | 1 | 0.41% |
Richard Zhao | 1 | 0.01% | 1 | 0.41% |
Total | 16340 | 242 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Coda multi-standard codec IP * * Copyright (C) 2012 Vista Silicon S.L. * Javier Martin, <javier.martin@vista-silicon.com> * Xavier Duret */ #include <linux/clk.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/firmware.h> #include <linux/gcd.h> #include <linux/genalloc.h> #include <linux/idr.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/kfifo.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include <linux/videodev2.h> #include <linux/of.h> #include <linux/platform_data/media/coda.h> #include <linux/reset.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-device.h> #include <media/v4l2-event.h> #include <media/v4l2-ioctl.h> #include <media/v4l2-mem2mem.h> #include <media/videobuf2-v4l2.h> #include <media/videobuf2-dma-contig.h> #include <media/videobuf2-vmalloc.h> #include "coda.h" #include "imx-vdoa.h" #define CODA_NAME "coda" #define CODADX6_MAX_INSTANCES 4 #define CODA_MAX_FORMATS 4 #define CODA_ISRAM_SIZE (2048 * 2) #define MIN_W 48 #define MIN_H 16 #define S_ALIGN 1 /* multiple of 2 */ #define W_ALIGN 1 /* multiple of 2 */ #define H_ALIGN 1 /* multiple of 2 */ #define fh_to_ctx(__fh) container_of(__fh, struct coda_ctx, fh) int coda_debug; module_param(coda_debug, int, 0644); MODULE_PARM_DESC(coda_debug, "Debug level (0-2)"); static int disable_tiling; module_param(disable_tiling, int, 0644); MODULE_PARM_DESC(disable_tiling, "Disable tiled frame buffers"); static int disable_vdoa; module_param(disable_vdoa, int, 0644); MODULE_PARM_DESC(disable_vdoa, "Disable Video Data Order Adapter tiled to raster-scan conversion"); static int enable_bwb = 0; module_param(enable_bwb, int, 0644); MODULE_PARM_DESC(enable_bwb, "Enable BWB unit for decoding, may crash on certain streams"); void coda_write(struct coda_dev *dev, u32 data, u32 reg) { v4l2_dbg(3, coda_debug, &dev->v4l2_dev, "%s: data=0x%x, reg=0x%x\n", __func__, data, reg); writel(data, dev->regs_base + reg); } unsigned int coda_read(struct coda_dev *dev, u32 reg) { u32 data; data = readl(dev->regs_base + reg); v4l2_dbg(3, coda_debug, &dev->v4l2_dev, "%s: data=0x%x, reg=0x%x\n", __func__, data, reg); return data; } void coda_write_base(struct coda_ctx *ctx, struct coda_q_data *q_data, struct vb2_v4l2_buffer *buf, unsigned int reg_y) { u32 base_y = vb2_dma_contig_plane_dma_addr(&buf->vb2_buf, 0); u32 base_cb, base_cr; switch (q_data->fourcc) { case V4L2_PIX_FMT_YUYV: /* Fallthrough: IN -H264-> CODA -NV12 MB-> VDOA -YUYV-> OUT */ case V4L2_PIX_FMT_NV12: case V4L2_PIX_FMT_YUV420: default: base_cb = base_y + q_data->bytesperline * q_data->height; base_cr = base_cb + q_data->bytesperline * q_data->height / 4; break; case V4L2_PIX_FMT_YVU420: /* Switch Cb and Cr for YVU420 format */ base_cr = base_y + q_data->bytesperline * q_data->height; base_cb = base_cr + q_data->bytesperline * q_data->height / 4; break; case V4L2_PIX_FMT_YUV422P: base_cb = base_y + q_data->bytesperline * q_data->height; base_cr = base_cb + q_data->bytesperline * q_data->height / 2; } coda_write(ctx->dev, base_y, reg_y); coda_write(ctx->dev, base_cb, reg_y + 4); coda_write(ctx->dev, base_cr, reg_y + 8); } #define CODA_CODEC(mode, src_fourcc, dst_fourcc, max_w, max_h) \ { mode, src_fourcc, dst_fourcc, max_w, max_h } /* * Arrays of codecs supported by each given version of Coda: * i.MX27 -> codadx6 * i.MX51 -> codahx4 * i.MX53 -> coda7 * i.MX6 -> coda960 * Use V4L2_PIX_FMT_YUV420 as placeholder for all supported YUV 4:2:0 variants */ static const struct coda_codec codadx6_codecs[] = { CODA_CODEC(CODADX6_MODE_ENCODE_H264, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_H264, 720, 576), CODA_CODEC(CODADX6_MODE_ENCODE_MP4, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_MPEG4, 720, 576), }; static const struct coda_codec codahx4_codecs[] = { CODA_CODEC(CODA7_MODE_ENCODE_H264, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_H264, 720, 576), CODA_CODEC(CODA7_MODE_DECODE_H264, V4L2_PIX_FMT_H264, V4L2_PIX_FMT_YUV420, 1920, 1088), CODA_CODEC(CODA7_MODE_DECODE_MP2, V4L2_PIX_FMT_MPEG2, V4L2_PIX_FMT_YUV420, 1920, 1088), CODA_CODEC(CODA7_MODE_DECODE_MP4, V4L2_PIX_FMT_MPEG4, V4L2_PIX_FMT_YUV420, 1280, 720), }; static const struct coda_codec coda7_codecs[] = { CODA_CODEC(CODA7_MODE_ENCODE_H264, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_H264, 1280, 720), CODA_CODEC(CODA7_MODE_ENCODE_MP4, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_MPEG4, 1280, 720), CODA_CODEC(CODA7_MODE_ENCODE_MJPG, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_JPEG, 8192, 8192), CODA_CODEC(CODA7_MODE_DECODE_H264, V4L2_PIX_FMT_H264, V4L2_PIX_FMT_YUV420, 1920, 1088), CODA_CODEC(CODA7_MODE_DECODE_MP2, V4L2_PIX_FMT_MPEG2, V4L2_PIX_FMT_YUV420, 1920, 1088), CODA_CODEC(CODA7_MODE_DECODE_MP4, V4L2_PIX_FMT_MPEG4, V4L2_PIX_FMT_YUV420, 1920, 1088), CODA_CODEC(CODA7_MODE_DECODE_MJPG, V4L2_PIX_FMT_JPEG, V4L2_PIX_FMT_YUV420, 8192, 8192), }; static const struct coda_codec coda9_codecs[] = { CODA_CODEC(CODA9_MODE_ENCODE_H264, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_H264, 1920, 1088), CODA_CODEC(CODA9_MODE_ENCODE_MP4, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_MPEG4, 1920, 1088), CODA_CODEC(CODA9_MODE_ENCODE_MJPG, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_JPEG, 8192, 8192), CODA_CODEC(CODA9_MODE_DECODE_H264, V4L2_PIX_FMT_H264, V4L2_PIX_FMT_YUV420, 1920, 1088), CODA_CODEC(CODA9_MODE_DECODE_MP2, V4L2_PIX_FMT_MPEG2, V4L2_PIX_FMT_YUV420, 1920, 1088), CODA_CODEC(CODA9_MODE_DECODE_MP4, V4L2_PIX_FMT_MPEG4, V4L2_PIX_FMT_YUV420, 1920, 1088), }; struct coda_video_device { const char *name; enum coda_inst_type type; const struct coda_context_ops *ops; bool direct; u32 src_formats[CODA_MAX_FORMATS]; u32 dst_formats[CODA_MAX_FORMATS]; }; static const struct coda_video_device coda_bit_encoder = { .name = "coda-encoder", .type = CODA_INST_ENCODER, .ops = &coda_bit_encode_ops, .src_formats = { V4L2_PIX_FMT_NV12, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_YVU420, }, .dst_formats = { V4L2_PIX_FMT_H264, V4L2_PIX_FMT_MPEG4, }, }; static const struct coda_video_device coda_bit_jpeg_encoder = { .name = "coda-jpeg-encoder", .type = CODA_INST_ENCODER, .ops = &coda_bit_encode_ops, .src_formats = { V4L2_PIX_FMT_NV12, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_YVU420, V4L2_PIX_FMT_YUV422P, }, .dst_formats = { V4L2_PIX_FMT_JPEG, }, }; static const struct coda_video_device coda_bit_decoder = { .name = "coda-decoder", .type = CODA_INST_DECODER, .ops = &coda_bit_decode_ops, .src_formats = { V4L2_PIX_FMT_H264, V4L2_PIX_FMT_MPEG2, V4L2_PIX_FMT_MPEG4, }, .dst_formats = { V4L2_PIX_FMT_NV12, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_YVU420, /* * If V4L2_PIX_FMT_YUYV should be default, * set_default_params() must be adjusted. */ V4L2_PIX_FMT_YUYV, }, }; static const struct coda_video_device coda_bit_jpeg_decoder = { .name = "coda-jpeg-decoder", .type = CODA_INST_DECODER, .ops = &coda_bit_decode_ops, .src_formats = { V4L2_PIX_FMT_JPEG, }, .dst_formats = { V4L2_PIX_FMT_NV12, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_YVU420, V4L2_PIX_FMT_YUV422P, }, }; static const struct coda_video_device coda9_jpeg_encoder = { .name = "coda-jpeg-encoder", .type = CODA_INST_ENCODER, .ops = &coda9_jpeg_encode_ops, .direct = true, .src_formats = { V4L2_PIX_FMT_NV12, V4L2_PIX_FMT_YUV420, V4L2_PIX_FMT_YVU420, V4L2_PIX_FMT_YUV422P, }, .dst_formats = { V4L2_PIX_FMT_JPEG, }, }; static const struct coda_video_device *codadx6_video_devices[] = { &coda_bit_encoder, }; static const struct coda_video_device *codahx4_video_devices[] = { &coda_bit_encoder, &coda_bit_decoder, }; static const struct coda_video_device *coda7_video_devices[] = { &coda_bit_jpeg_encoder, &coda_bit_jpeg_decoder, &coda_bit_encoder, &coda_bit_decoder, }; static const struct coda_video_device *coda9_video_devices[] = { &coda9_jpeg_encoder, &coda_bit_encoder, &coda_bit_decoder, }; /* * Normalize all supported YUV 4:2:0 formats to the value used in the codec * tables. */ static u32 coda_format_normalize_yuv(u32 fourcc) { switch (fourcc) { case V4L2_PIX_FMT_NV12: case V4L2_PIX_FMT_YUV420: case V4L2_PIX_FMT_YVU420: case V4L2_PIX_FMT_YUV422P: case V4L2_PIX_FMT_YUYV: return V4L2_PIX_FMT_YUV420; default: return fourcc; } } static const struct coda_codec *coda_find_codec(struct coda_dev *dev, int src_fourcc, int dst_fourcc) { const struct coda_codec *codecs = dev->devtype->codecs; int num_codecs = dev->devtype->num_codecs; int k; src_fourcc = coda_format_normalize_yuv(src_fourcc); dst_fourcc = coda_format_normalize_yuv(dst_fourcc); if (src_fourcc == dst_fourcc) return NULL; for (k = 0; k < num_codecs; k++) { if (codecs[k].src_fourcc == src_fourcc && codecs[k].dst_fourcc == dst_fourcc) break; } if (k == num_codecs) return NULL; return &codecs[k]; } static void coda_get_max_dimensions(struct coda_dev *dev, const struct coda_codec *codec, int *max_w, int *max_h) { const struct coda_codec *codecs = dev->devtype->codecs; int num_codecs = dev->devtype->num_codecs; unsigned int w, h; int k; if (codec) { w = codec->max_w; h = codec->max_h; } else { for (k = 0, w = 0, h = 0; k < num_codecs; k++) { w = max(w, codecs[k].max_w); h = max(h, codecs[k].max_h); } } if (max_w) *max_w = w; if (max_h) *max_h = h; } static const struct coda_video_device *to_coda_video_device(struct video_device *vdev) { struct coda_dev *dev = video_get_drvdata(vdev); unsigned int i = vdev - dev->vfd; if (i >= dev->devtype->num_vdevs) return NULL; return dev->devtype->vdevs[i]; } const char *coda_product_name(int product) { static char buf[9]; switch (product) { case CODA_DX6: return "CodaDx6"; case CODA_HX4: return "CodaHx4"; case CODA_7541: return "CODA7541"; case CODA_960: return "CODA960"; default: snprintf(buf, sizeof(buf), "(0x%04x)", product); return buf; } } static struct vdoa_data *coda_get_vdoa_data(void) { struct device_node *vdoa_node; struct platform_device *vdoa_pdev; struct vdoa_data *vdoa_data = NULL; vdoa_node = of_find_compatible_node(NULL, NULL, "fsl,imx6q-vdoa"); if (!vdoa_node) return NULL; vdoa_pdev = of_find_device_by_node(vdoa_node); if (!vdoa_pdev) goto out; vdoa_data = platform_get_drvdata(vdoa_pdev); if (!vdoa_data) vdoa_data = ERR_PTR(-EPROBE_DEFER); out: of_node_put(vdoa_node); return vdoa_data; } /* * V4L2 ioctl() operations. */ static int coda_querycap(struct file *file, void *priv, struct v4l2_capability *cap) { struct coda_ctx *ctx = fh_to_ctx(priv); strscpy(cap->driver, CODA_NAME, sizeof(cap->driver)); strscpy(cap->card, coda_product_name(ctx->dev->devtype->product), sizeof(cap->card)); strscpy(cap->bus_info, "platform:" CODA_NAME, sizeof(cap->bus_info)); return 0; } static int coda_enum_fmt(struct file *file, void *priv, struct v4l2_fmtdesc *f) { struct video_device *vdev = video_devdata(file); const struct coda_video_device *cvd = to_coda_video_device(vdev); struct coda_ctx *ctx = fh_to_ctx(priv); const u32 *formats; if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) formats = cvd->src_formats; else if (f->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) formats = cvd->dst_formats; else return -EINVAL; if (f->index >= CODA_MAX_FORMATS || formats[f->index] == 0) return -EINVAL; /* Skip YUYV if the vdoa is not available */ if (!ctx->vdoa && f->type == V4L2_BUF_TYPE_VIDEO_CAPTURE && formats[f->index] == V4L2_PIX_FMT_YUYV) return -EINVAL; f->pixelformat = formats[f->index]; return 0; } static int coda_g_fmt(struct file *file, void *priv, struct v4l2_format *f) { struct coda_q_data *q_data; struct coda_ctx *ctx = fh_to_ctx(priv); q_data = get_q_data(ctx, f->type); if (!q_data) return -EINVAL; f->fmt.pix.field = V4L2_FIELD_NONE; f->fmt.pix.pixelformat = q_data->fourcc; f->fmt.pix.width = q_data->width; f->fmt.pix.height = q_data->height; f->fmt.pix.bytesperline = q_data->bytesperline; f->fmt.pix.sizeimage = q_data->sizeimage; f->fmt.pix.colorspace = ctx->colorspace; f->fmt.pix.xfer_func = ctx->xfer_func; f->fmt.pix.ycbcr_enc = ctx->ycbcr_enc; f->fmt.pix.quantization = ctx->quantization; return 0; } static int coda_try_pixelformat(struct coda_ctx *ctx, struct v4l2_format *f) { struct coda_q_data *q_data; const u32 *formats; int i; if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) formats = ctx->cvd->src_formats; else if (f->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) formats = ctx->cvd->dst_formats; else return -EINVAL; for (i = 0; i < CODA_MAX_FORMATS; i++) { /* Skip YUYV if the vdoa is not available */ if (!ctx->vdoa && f->type == V4L2_BUF_TYPE_VIDEO_CAPTURE && formats[i] == V4L2_PIX_FMT_YUYV) continue; if (formats[i] == f->fmt.pix.pixelformat) { f->fmt.pix.pixelformat = formats[i]; return 0; } } /* Fall back to currently set pixelformat */ q_data = get_q_data(ctx, f->type); f->fmt.pix.pixelformat = q_data->fourcc; return 0; } static int coda_try_fmt_vdoa(struct coda_ctx *ctx, struct v4l2_format *f, bool *use_vdoa) { int err; if (f->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) return -EINVAL; if (!use_vdoa) return -EINVAL; if (!ctx->vdoa) { *use_vdoa = false; return 0; } err = vdoa_context_configure(NULL, round_up(f->fmt.pix.width, 16), f->fmt.pix.height, f->fmt.pix.pixelformat); if (err) { *use_vdoa = false; return 0; } *use_vdoa = true; return 0; } static unsigned int coda_estimate_sizeimage(struct coda_ctx *ctx, u32 sizeimage, u32 width, u32 height) { /* * This is a rough estimate for sensible compressed buffer * sizes (between 1 and 16 bits per pixel). This could be * improved by better format specific worst case estimates. */ return round_up(clamp(sizeimage, width * height / 8, width * height * 2), PAGE_SIZE); } static int coda_try_fmt(struct coda_ctx *ctx, const struct coda_codec *codec, struct v4l2_format *f) { struct coda_dev *dev = ctx->dev; unsigned int max_w, max_h; enum v4l2_field field; field = f->fmt.pix.field; if (field == V4L2_FIELD_ANY) field = V4L2_FIELD_NONE; else if (V4L2_FIELD_NONE != field) return -EINVAL; /* V4L2 specification suggests the driver corrects the format struct * if any of the dimensions is unsupported */ f->fmt.pix.field = field; coda_get_max_dimensions(dev, codec, &max_w, &max_h); v4l_bound_align_image(&f->fmt.pix.width, MIN_W, max_w, W_ALIGN, &f->fmt.pix.height, MIN_H, max_h, H_ALIGN, S_ALIGN); switch (f->fmt.pix.pixelformat) { case V4L2_PIX_FMT_NV12: case V4L2_PIX_FMT_YUV420: case V4L2_PIX_FMT_YVU420: /* * Frame stride must be at least multiple of 8, * but multiple of 16 for h.264 or JPEG 4:2:x */ f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 16); f->fmt.pix.sizeimage = f->fmt.pix.bytesperline * f->fmt.pix.height * 3 / 2; break; case V4L2_PIX_FMT_YUYV: f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 16) * 2; f->fmt.pix.sizeimage = f->fmt.pix.bytesperline * f->fmt.pix.height; break; case V4L2_PIX_FMT_YUV422P: f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 16); f->fmt.pix.sizeimage = f->fmt.pix.bytesperline * f->fmt.pix.height * 2; break; case V4L2_PIX_FMT_JPEG: case V4L2_PIX_FMT_H264: case V4L2_PIX_FMT_MPEG4: case V4L2_PIX_FMT_MPEG2: f->fmt.pix.bytesperline = 0; f->fmt.pix.sizeimage = coda_estimate_sizeimage(ctx, f->fmt.pix.sizeimage, f->fmt.pix.width, f->fmt.pix.height); break; default: BUG(); } return 0; } static int coda_try_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct coda_ctx *ctx = fh_to_ctx(priv); const struct coda_q_data *q_data_src; const struct coda_codec *codec; struct vb2_queue *src_vq; int ret; bool use_vdoa; ret = coda_try_pixelformat(ctx, f); if (ret < 0) return ret; q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); /* * If the source format is already fixed, only allow the same output * resolution */ src_vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); if (vb2_is_streaming(src_vq)) { f->fmt.pix.width = q_data_src->width; f->fmt.pix.height = q_data_src->height; } f->fmt.pix.colorspace = ctx->colorspace; f->fmt.pix.xfer_func = ctx->xfer_func; f->fmt.pix.ycbcr_enc = ctx->ycbcr_enc; f->fmt.pix.quantization = ctx->quantization; q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); codec = coda_find_codec(ctx->dev, q_data_src->fourcc, f->fmt.pix.pixelformat); if (!codec) return -EINVAL; ret = coda_try_fmt(ctx, codec, f); if (ret < 0) return ret; /* The h.264 decoder only returns complete 16x16 macroblocks */ if (codec && codec->src_fourcc == V4L2_PIX_FMT_H264) { f->fmt.pix.height = round_up(f->fmt.pix.height, 16); f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 16); f->fmt.pix.sizeimage = f->fmt.pix.bytesperline * f->fmt.pix.height * 3 / 2; ret = coda_try_fmt_vdoa(ctx, f, &use_vdoa); if (ret < 0) return ret; if (f->fmt.pix.pixelformat == V4L2_PIX_FMT_YUYV) { if (!use_vdoa) return -EINVAL; f->fmt.pix.bytesperline = round_up(f->fmt.pix.width, 16) * 2; f->fmt.pix.sizeimage = f->fmt.pix.bytesperline * f->fmt.pix.height; } } return 0; } static void coda_set_default_colorspace(struct v4l2_pix_format *fmt) { enum v4l2_colorspace colorspace; if (fmt->pixelformat == V4L2_PIX_FMT_JPEG) colorspace = V4L2_COLORSPACE_JPEG; else if (fmt->width <= 720 && fmt->height <= 576) colorspace = V4L2_COLORSPACE_SMPTE170M; else colorspace = V4L2_COLORSPACE_REC709; fmt->colorspace = colorspace; fmt->xfer_func = V4L2_XFER_FUNC_DEFAULT; fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT; fmt->quantization = V4L2_QUANTIZATION_DEFAULT; } static int coda_try_fmt_vid_out(struct file *file, void *priv, struct v4l2_format *f) { struct coda_ctx *ctx = fh_to_ctx(priv); struct coda_dev *dev = ctx->dev; const struct coda_q_data *q_data_dst; const struct coda_codec *codec; int ret; ret = coda_try_pixelformat(ctx, f); if (ret < 0) return ret; if (f->fmt.pix.colorspace == V4L2_COLORSPACE_DEFAULT) coda_set_default_colorspace(&f->fmt.pix); q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); codec = coda_find_codec(dev, f->fmt.pix.pixelformat, q_data_dst->fourcc); return coda_try_fmt(ctx, codec, f); } static int coda_s_fmt(struct coda_ctx *ctx, struct v4l2_format *f, struct v4l2_rect *r) { struct coda_q_data *q_data; struct vb2_queue *vq; vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type); if (!vq) return -EINVAL; q_data = get_q_data(ctx, f->type); if (!q_data) return -EINVAL; if (vb2_is_busy(vq)) { v4l2_err(&ctx->dev->v4l2_dev, "%s: %s queue busy: %d\n", __func__, v4l2_type_names[f->type], vq->num_buffers); return -EBUSY; } q_data->fourcc = f->fmt.pix.pixelformat; q_data->width = f->fmt.pix.width; q_data->height = f->fmt.pix.height; q_data->bytesperline = f->fmt.pix.bytesperline; q_data->sizeimage = f->fmt.pix.sizeimage; if (r) { q_data->rect = *r; } else { q_data->rect.left = 0; q_data->rect.top = 0; q_data->rect.width = f->fmt.pix.width; q_data->rect.height = f->fmt.pix.height; } switch (f->fmt.pix.pixelformat) { case V4L2_PIX_FMT_YUYV: ctx->tiled_map_type = GDI_TILED_FRAME_MB_RASTER_MAP; break; case V4L2_PIX_FMT_NV12: if (!disable_tiling && ctx->use_bit && ctx->dev->devtype->product == CODA_960) { ctx->tiled_map_type = GDI_TILED_FRAME_MB_RASTER_MAP; break; } /* else fall through */ case V4L2_PIX_FMT_YUV420: case V4L2_PIX_FMT_YVU420: ctx->tiled_map_type = GDI_LINEAR_FRAME_MAP; break; default: break; } if (ctx->tiled_map_type == GDI_TILED_FRAME_MB_RASTER_MAP && !coda_try_fmt_vdoa(ctx, f, &ctx->use_vdoa) && ctx->use_vdoa) vdoa_context_configure(ctx->vdoa, round_up(f->fmt.pix.width, 16), f->fmt.pix.height, f->fmt.pix.pixelformat); else ctx->use_vdoa = false; coda_dbg(1, ctx, "Setting %s format, wxh: %dx%d, fmt: %4.4s %c\n", v4l2_type_names[f->type], q_data->width, q_data->height, (char *)&q_data->fourcc, (ctx->tiled_map_type == GDI_LINEAR_FRAME_MAP) ? 'L' : 'T'); return 0; } static int coda_s_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct coda_ctx *ctx = fh_to_ctx(priv); struct coda_q_data *q_data_src; const struct coda_codec *codec; struct v4l2_rect r; int ret; ret = coda_try_fmt_vid_cap(file, priv, f); if (ret) return ret; q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); r.left = 0; r.top = 0; r.width = q_data_src->width; r.height = q_data_src->height; ret = coda_s_fmt(ctx, f, &r); if (ret) return ret; if (ctx->inst_type != CODA_INST_ENCODER) return 0; /* Setting the coded format determines the selected codec */ codec = coda_find_codec(ctx->dev, q_data_src->fourcc, f->fmt.pix.pixelformat); if (!codec) { v4l2_err(&ctx->dev->v4l2_dev, "failed to determine codec\n"); return -EINVAL; } ctx->codec = codec; ctx->colorspace = f->fmt.pix.colorspace; ctx->xfer_func = f->fmt.pix.xfer_func; ctx->ycbcr_enc = f->fmt.pix.ycbcr_enc; ctx->quantization = f->fmt.pix.quantization; return 0; } static int coda_s_fmt_vid_out(struct file *file, void *priv, struct v4l2_format *f) { struct coda_ctx *ctx = fh_to_ctx(priv); const struct coda_codec *codec; struct v4l2_format f_cap; struct vb2_queue *dst_vq; int ret; ret = coda_try_fmt_vid_out(file, priv, f); if (ret) return ret; ret = coda_s_fmt(ctx, f, NULL); if (ret) return ret; ctx->colorspace = f->fmt.pix.colorspace; ctx->xfer_func = f->fmt.pix.xfer_func; ctx->ycbcr_enc = f->fmt.pix.ycbcr_enc; ctx->quantization = f->fmt.pix.quantization; if (ctx->inst_type != CODA_INST_DECODER) return 0; /* Setting the coded format determines the selected codec */ codec = coda_find_codec(ctx->dev, f->fmt.pix.pixelformat, V4L2_PIX_FMT_YUV420); if (!codec) { v4l2_err(&ctx->dev->v4l2_dev, "failed to determine codec\n"); return -EINVAL; } ctx->codec = codec; dst_vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); if (!dst_vq) return -EINVAL; /* * Setting the capture queue format is not possible while the capture * queue is still busy. This is not an error, but the user will have to * make sure themselves that the capture format is set correctly before * starting the output queue again. */ if (vb2_is_busy(dst_vq)) return 0; memset(&f_cap, 0, sizeof(f_cap)); f_cap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; coda_g_fmt(file, priv, &f_cap); f_cap.fmt.pix.width = f->fmt.pix.width; f_cap.fmt.pix.height = f->fmt.pix.height; return coda_s_fmt_vid_cap(file, priv, &f_cap); } static int coda_reqbufs(struct file *file, void *priv, struct v4l2_requestbuffers *rb) { struct coda_ctx *ctx = fh_to_ctx(priv); int ret; ret = v4l2_m2m_reqbufs(file, ctx->fh.m2m_ctx, rb); if (ret) return ret; /* * Allow to allocate instance specific per-context buffers, such as * bitstream ringbuffer, slice buffer, work buffer, etc. if needed. */ if (rb->type == V4L2_BUF_TYPE_VIDEO_OUTPUT && ctx->ops->reqbufs) return ctx->ops->reqbufs(ctx, rb); return 0; } static int coda_qbuf(struct file *file, void *priv, struct v4l2_buffer *buf) { struct coda_ctx *ctx = fh_to_ctx(priv); if (ctx->inst_type == CODA_INST_DECODER && buf->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) buf->flags &= ~V4L2_BUF_FLAG_LAST; return v4l2_m2m_qbuf(file, ctx->fh.m2m_ctx, buf); } static int coda_dqbuf(struct file *file, void *priv, struct v4l2_buffer *buf) { struct coda_ctx *ctx = fh_to_ctx(priv); int ret; ret = v4l2_m2m_dqbuf(file, ctx->fh.m2m_ctx, buf); if (ctx->inst_type == CODA_INST_DECODER && buf->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) buf->flags &= ~V4L2_BUF_FLAG_LAST; return ret; } void coda_m2m_buf_done(struct coda_ctx *ctx, struct vb2_v4l2_buffer *buf, enum vb2_buffer_state state) { const struct v4l2_event eos_event = { .type = V4L2_EVENT_EOS }; if (buf->flags & V4L2_BUF_FLAG_LAST) v4l2_event_queue_fh(&ctx->fh, &eos_event); v4l2_m2m_buf_done(buf, state); } static int coda_g_selection(struct file *file, void *fh, struct v4l2_selection *s) { struct coda_ctx *ctx = fh_to_ctx(fh); struct coda_q_data *q_data; struct v4l2_rect r, *rsel; q_data = get_q_data(ctx, s->type); if (!q_data) return -EINVAL; r.left = 0; r.top = 0; r.width = q_data->width; r.height = q_data->height; rsel = &q_data->rect; switch (s->target) { case V4L2_SEL_TGT_CROP_DEFAULT: case V4L2_SEL_TGT_CROP_BOUNDS: rsel = &r; /* fallthrough */ case V4L2_SEL_TGT_CROP: if (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT || ctx->inst_type == CODA_INST_DECODER) return -EINVAL; break; case V4L2_SEL_TGT_COMPOSE_BOUNDS: case V4L2_SEL_TGT_COMPOSE_PADDED: rsel = &r; /* fallthrough */ case V4L2_SEL_TGT_COMPOSE: case V4L2_SEL_TGT_COMPOSE_DEFAULT: if (s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE || ctx->inst_type == CODA_INST_ENCODER) return -EINVAL; break; default: return -EINVAL; } s->r = *rsel; return 0; } static int coda_s_selection(struct file *file, void *fh, struct v4l2_selection *s) { struct coda_ctx *ctx = fh_to_ctx(fh); struct coda_q_data *q_data; switch (s->target) { case V4L2_SEL_TGT_CROP: if (ctx->inst_type == CODA_INST_ENCODER && s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) { q_data = get_q_data(ctx, s->type); if (!q_data) return -EINVAL; s->r.left = 0; s->r.top = 0; s->r.width = clamp(s->r.width, 2U, q_data->width); s->r.height = clamp(s->r.height, 2U, q_data->height); if (s->flags & V4L2_SEL_FLAG_LE) { s->r.width = round_up(s->r.width, 2); s->r.height = round_up(s->r.height, 2); } else { s->r.width = round_down(s->r.width, 2); s->r.height = round_down(s->r.height, 2); } q_data->rect = s->r; coda_dbg(1, ctx, "Setting crop rectangle: %dx%d\n", s->r.width, s->r.height); return 0; } /* else fall through */ case V4L2_SEL_TGT_NATIVE_SIZE: case V4L2_SEL_TGT_COMPOSE: return coda_g_selection(file, fh, s); default: /* v4l2-compliance expects this to fail for read-only targets */ return -EINVAL; } } static int coda_try_encoder_cmd(struct file *file, void *fh, struct v4l2_encoder_cmd *ec) { struct coda_ctx *ctx = fh_to_ctx(fh); if (ctx->inst_type != CODA_INST_ENCODER) return -ENOTTY; return v4l2_m2m_ioctl_try_encoder_cmd(file, fh, ec); } static void coda_wake_up_capture_queue(struct coda_ctx *ctx) { struct vb2_queue *dst_vq; coda_dbg(1, ctx, "waking up capture queue\n"); dst_vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); dst_vq->last_buffer_dequeued = true; wake_up(&dst_vq->done_wq); } static int coda_encoder_cmd(struct file *file, void *fh, struct v4l2_encoder_cmd *ec) { struct coda_ctx *ctx = fh_to_ctx(fh); struct vb2_v4l2_buffer *buf; int ret; ret = coda_try_encoder_cmd(file, fh, ec); if (ret < 0) return ret; mutex_lock(&ctx->wakeup_mutex); buf = v4l2_m2m_last_src_buf(ctx->fh.m2m_ctx); if (buf) { /* * If the last output buffer is still on the queue, make sure * that decoder finish_run will see the last flag and report it * to userspace. */ buf->flags |= V4L2_BUF_FLAG_LAST; } else { /* Set the stream-end flag on this context */ ctx->bit_stream_param |= CODA_BIT_STREAM_END_FLAG; /* * If the last output buffer has already been taken from the * queue, wake up the capture queue and signal end of stream * via the -EPIPE mechanism. */ coda_wake_up_capture_queue(ctx); } mutex_unlock(&ctx->wakeup_mutex); return 0; } static int coda_try_decoder_cmd(struct file *file, void *fh, struct v4l2_decoder_cmd *dc) { struct coda_ctx *ctx = fh_to_ctx(fh); if (ctx->inst_type != CODA_INST_DECODER) return -ENOTTY; return v4l2_m2m_ioctl_try_decoder_cmd(file, fh, dc); } static int coda_decoder_cmd(struct file *file, void *fh, struct v4l2_decoder_cmd *dc) { struct coda_ctx *ctx = fh_to_ctx(fh); struct coda_dev *dev = ctx->dev; struct vb2_v4l2_buffer *buf; struct vb2_queue *dst_vq; bool stream_end; bool wakeup; int ret; ret = coda_try_decoder_cmd(file, fh, dc); if (ret < 0) return ret; switch (dc->cmd) { case V4L2_DEC_CMD_START: mutex_lock(&dev->coda_mutex); mutex_lock(&ctx->bitstream_mutex); coda_bitstream_flush(ctx); dst_vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); vb2_clear_last_buffer_dequeued(dst_vq); ctx->bit_stream_param &= ~CODA_BIT_STREAM_END_FLAG; coda_fill_bitstream(ctx, NULL); mutex_unlock(&ctx->bitstream_mutex); mutex_unlock(&dev->coda_mutex); break; case V4L2_DEC_CMD_STOP: stream_end = false; wakeup = false; buf = v4l2_m2m_last_src_buf(ctx->fh.m2m_ctx); if (buf) { coda_dbg(1, ctx, "marking last pending buffer\n"); /* Mark last buffer */ buf->flags |= V4L2_BUF_FLAG_LAST; if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) == 0) { coda_dbg(1, ctx, "all remaining buffers queued\n"); stream_end = true; } } else { coda_dbg(1, ctx, "marking last meta\n"); /* Mark last meta */ spin_lock(&ctx->buffer_meta_lock); if (!list_empty(&ctx->buffer_meta_list)) { struct coda_buffer_meta *meta; meta = list_last_entry(&ctx->buffer_meta_list, struct coda_buffer_meta, list); meta->last = true; stream_end = true; } else { wakeup = true; } spin_unlock(&ctx->buffer_meta_lock); } if (stream_end) { coda_dbg(1, ctx, "all remaining buffers queued\n"); /* Set the stream-end flag on this context */ coda_bit_stream_end_flag(ctx); ctx->hold = false; v4l2_m2m_try_schedule(ctx->fh.m2m_ctx); } if (wakeup) { /* If there is no buffer in flight, wake up */ coda_wake_up_capture_queue(ctx); } break; default: return -EINVAL; } return 0; } static int coda_enum_framesizes(struct file *file, void *fh, struct v4l2_frmsizeenum *fsize) { struct coda_ctx *ctx = fh_to_ctx(fh); struct coda_q_data *q_data_dst; const struct coda_codec *codec; if (ctx->inst_type != CODA_INST_ENCODER) return -ENOTTY; if (fsize->index) return -EINVAL; if (coda_format_normalize_yuv(fsize->pixel_format) == V4L2_PIX_FMT_YUV420) { q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); codec = coda_find_codec(ctx->dev, fsize->pixel_format, q_data_dst->fourcc); } else { codec = coda_find_codec(ctx->dev, V4L2_PIX_FMT_YUV420, fsize->pixel_format); } if (!codec) return -EINVAL; fsize->type = V4L2_FRMSIZE_TYPE_CONTINUOUS; fsize->stepwise.min_width = MIN_W; fsize->stepwise.max_width = codec->max_w; fsize->stepwise.step_width = 1; fsize->stepwise.min_height = MIN_H; fsize->stepwise.max_height = codec->max_h; fsize->stepwise.step_height = 1; return 0; } static int coda_enum_frameintervals(struct file *file, void *fh, struct v4l2_frmivalenum *f) { struct coda_ctx *ctx = fh_to_ctx(fh); int i; if (f->index) return -EINVAL; /* Disallow YUYV if the vdoa is not available */ if (!ctx->vdoa && f->pixel_format == V4L2_PIX_FMT_YUYV) return -EINVAL; for (i = 0; i < CODA_MAX_FORMATS; i++) { if (f->pixel_format == ctx->cvd->src_formats[i] || f->pixel_format == ctx->cvd->dst_formats[i]) break; } if (i == CODA_MAX_FORMATS) return -EINVAL; f->type = V4L2_FRMIVAL_TYPE_CONTINUOUS; f->stepwise.min.numerator = 1; f->stepwise.min.denominator = 65535; f->stepwise.max.numerator = 65536; f->stepwise.max.denominator = 1; f->stepwise.step.numerator = 1; f->stepwise.step.denominator = 1; return 0; } static int coda_g_parm(struct file *file, void *fh, struct v4l2_streamparm *a) { struct coda_ctx *ctx = fh_to_ctx(fh); struct v4l2_fract *tpf; if (a->type != V4L2_BUF_TYPE_VIDEO_OUTPUT) return -EINVAL; a->parm.output.capability = V4L2_CAP_TIMEPERFRAME; tpf = &a->parm.output.timeperframe; tpf->denominator = ctx->params.framerate & CODA_FRATE_RES_MASK; tpf->numerator = 1 + (ctx->params.framerate >> CODA_FRATE_DIV_OFFSET); return 0; } /* * Approximate timeperframe v4l2_fract with values that can be written * into the 16-bit CODA_FRATE_DIV and CODA_FRATE_RES fields. */ static void coda_approximate_timeperframe(struct v4l2_fract *timeperframe) { struct v4l2_fract s = *timeperframe; struct v4l2_fract f0; struct v4l2_fract f1 = { 1, 0 }; struct v4l2_fract f2 = { 0, 1 }; unsigned int i, div, s_denominator; /* Lower bound is 1/65535 */ if (s.numerator == 0 || s.denominator / s.numerator > 65535) { timeperframe->numerator = 1; timeperframe->denominator = 65535; return; } /* Upper bound is 65536/1 */ if (s.denominator == 0 || s.numerator / s.denominator > 65536) { timeperframe->numerator = 65536; timeperframe->denominator = 1; return; } /* Reduce fraction to lowest terms */ div = gcd(s.numerator, s.denominator); if (div > 1) { s.numerator /= div; s.denominator /= div; } if (s.numerator <= 65536 && s.denominator < 65536) { *timeperframe = s; return; } /* Find successive convergents from continued fraction expansion */ while (f2.numerator <= 65536 && f2.denominator < 65536) { f0 = f1; f1 = f2; /* Stop when f2 exactly equals timeperframe */ if (s.numerator == 0) break; i = s.denominator / s.numerator; f2.numerator = f0.numerator + i * f1.numerator; f2.denominator = f0.denominator + i * f2.denominator; s_denominator = s.numerator; s.numerator = s.denominator % s.numerator; s.denominator = s_denominator; } *timeperframe = f1; } static uint32_t coda_timeperframe_to_frate(struct v4l2_fract *timeperframe) { return ((timeperframe->numerator - 1) << CODA_FRATE_DIV_OFFSET) | timeperframe->denominator; } static int coda_s_parm(struct file *file, void *fh, struct v4l2_streamparm *a) { struct coda_ctx *ctx = fh_to_ctx(fh); struct v4l2_fract *tpf; if (a->type != V4L2_BUF_TYPE_VIDEO_OUTPUT) return -EINVAL; a->parm.output.capability = V4L2_CAP_TIMEPERFRAME; tpf = &a->parm.output.timeperframe; coda_approximate_timeperframe(tpf); ctx->params.framerate = coda_timeperframe_to_frate(tpf); ctx->params.framerate_changed = true; return 0; } static int coda_subscribe_event(struct v4l2_fh *fh, const struct v4l2_event_subscription *sub) { struct coda_ctx *ctx = fh_to_ctx(fh); switch (sub->type) { case V4L2_EVENT_EOS: return v4l2_event_subscribe(fh, sub, 0, NULL); case V4L2_EVENT_SOURCE_CHANGE: if (ctx->inst_type == CODA_INST_DECODER) return v4l2_event_subscribe(fh, sub, 0, NULL); else return -EINVAL; default: return v4l2_ctrl_subscribe_event(fh, sub); } } static const struct v4l2_ioctl_ops coda_ioctl_ops = { .vidioc_querycap = coda_querycap, .vidioc_enum_fmt_vid_cap = coda_enum_fmt, .vidioc_g_fmt_vid_cap = coda_g_fmt, .vidioc_try_fmt_vid_cap = coda_try_fmt_vid_cap, .vidioc_s_fmt_vid_cap = coda_s_fmt_vid_cap, .vidioc_enum_fmt_vid_out = coda_enum_fmt, .vidioc_g_fmt_vid_out = coda_g_fmt, .vidioc_try_fmt_vid_out = coda_try_fmt_vid_out, .vidioc_s_fmt_vid_out = coda_s_fmt_vid_out, .vidioc_reqbufs = coda_reqbufs, .vidioc_querybuf = v4l2_m2m_ioctl_querybuf, .vidioc_qbuf = coda_qbuf, .vidioc_expbuf = v4l2_m2m_ioctl_expbuf, .vidioc_dqbuf = coda_dqbuf, .vidioc_create_bufs = v4l2_m2m_ioctl_create_bufs, .vidioc_prepare_buf = v4l2_m2m_ioctl_prepare_buf, .vidioc_streamon = v4l2_m2m_ioctl_streamon, .vidioc_streamoff = v4l2_m2m_ioctl_streamoff, .vidioc_g_selection = coda_g_selection, .vidioc_s_selection = coda_s_selection, .vidioc_try_encoder_cmd = coda_try_encoder_cmd, .vidioc_encoder_cmd = coda_encoder_cmd, .vidioc_try_decoder_cmd = coda_try_decoder_cmd, .vidioc_decoder_cmd = coda_decoder_cmd, .vidioc_g_parm = coda_g_parm, .vidioc_s_parm = coda_s_parm, .vidioc_enum_framesizes = coda_enum_framesizes, .vidioc_enum_frameintervals = coda_enum_frameintervals, .vidioc_subscribe_event = coda_subscribe_event, .vidioc_unsubscribe_event = v4l2_event_unsubscribe, }; /* * Mem-to-mem operations. */ static void coda_device_run(void *m2m_priv) { struct coda_ctx *ctx = m2m_priv; struct coda_dev *dev = ctx->dev; queue_work(dev->workqueue, &ctx->pic_run_work); } static void coda_pic_run_work(struct work_struct *work) { struct coda_ctx *ctx = container_of(work, struct coda_ctx, pic_run_work); struct coda_dev *dev = ctx->dev; int ret; mutex_lock(&ctx->buffer_mutex); mutex_lock(&dev->coda_mutex); ret = ctx->ops->prepare_run(ctx); if (ret < 0 && ctx->inst_type == CODA_INST_DECODER) { mutex_unlock(&dev->coda_mutex); mutex_unlock(&ctx->buffer_mutex); /* job_finish scheduled by prepare_decode */ return; } if (!wait_for_completion_timeout(&ctx->completion, msecs_to_jiffies(1000))) { dev_err(dev->dev, "CODA PIC_RUN timeout\n"); ctx->hold = true; coda_hw_reset(ctx); if (ctx->ops->run_timeout) ctx->ops->run_timeout(ctx); } else { ctx->ops->finish_run(ctx); } if ((ctx->aborting || (!ctx->streamon_cap && !ctx->streamon_out)) && ctx->ops->seq_end_work) queue_work(dev->workqueue, &ctx->seq_end_work); mutex_unlock(&dev->coda_mutex); mutex_unlock(&ctx->buffer_mutex); v4l2_m2m_job_finish(ctx->dev->m2m_dev, ctx->fh.m2m_ctx); } static int coda_job_ready(void *m2m_priv) { struct coda_ctx *ctx = m2m_priv; int src_bufs = v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx); /* * For both 'P' and 'key' frame cases 1 picture * and 1 frame are needed. In the decoder case, * the compressed frame can be in the bitstream. */ if (!src_bufs && ctx->inst_type != CODA_INST_DECODER) { coda_dbg(1, ctx, "not ready: not enough vid-out buffers.\n"); return 0; } if (!v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx)) { coda_dbg(1, ctx, "not ready: not enough vid-cap buffers.\n"); return 0; } if (ctx->inst_type == CODA_INST_DECODER && ctx->use_bit) { bool stream_end = ctx->bit_stream_param & CODA_BIT_STREAM_END_FLAG; int num_metas = ctx->num_metas; struct coda_buffer_meta *meta; unsigned int count; count = hweight32(ctx->frm_dis_flg); if (ctx->use_vdoa && count >= (ctx->num_internal_frames - 1)) { coda_dbg(1, ctx, "not ready: all internal buffers in use: %d/%d (0x%x)", count, ctx->num_internal_frames, ctx->frm_dis_flg); return 0; } if (ctx->hold && !src_bufs) { coda_dbg(1, ctx, "not ready: on hold for more buffers.\n"); return 0; } if (!stream_end && (num_metas + src_bufs) < 2) { coda_dbg(1, ctx, "not ready: need 2 buffers available (queue:%d + bitstream:%d)\n", num_metas, src_bufs); return 0; } meta = list_first_entry(&ctx->buffer_meta_list, struct coda_buffer_meta, list); if (!coda_bitstream_can_fetch_past(ctx, meta->end) && !stream_end) { coda_dbg(1, ctx, "not ready: not enough bitstream data to read past %u (%u)\n", meta->end, ctx->bitstream_fifo.kfifo.in); return 0; } } if (ctx->aborting) { coda_dbg(1, ctx, "not ready: aborting\n"); return 0; } coda_dbg(2, ctx, "job ready\n"); return 1; } static void coda_job_abort(void *priv) { struct coda_ctx *ctx = priv; ctx->aborting = 1; coda_dbg(1, ctx, "job abort\n"); } static const struct v4l2_m2m_ops coda_m2m_ops = { .device_run = coda_device_run, .job_ready = coda_job_ready, .job_abort = coda_job_abort, }; static void set_default_params(struct coda_ctx *ctx) { unsigned int max_w, max_h, usize, csize; ctx->codec = coda_find_codec(ctx->dev, ctx->cvd->src_formats[0], ctx->cvd->dst_formats[0]); max_w = min(ctx->codec->max_w, 1920U); max_h = min(ctx->codec->max_h, 1088U); usize = max_w * max_h * 3 / 2; csize = coda_estimate_sizeimage(ctx, usize, max_w, max_h); ctx->params.codec_mode = ctx->codec->mode; if (ctx->cvd->src_formats[0] == V4L2_PIX_FMT_JPEG) ctx->colorspace = V4L2_COLORSPACE_JPEG; else ctx->colorspace = V4L2_COLORSPACE_REC709; ctx->xfer_func = V4L2_XFER_FUNC_DEFAULT; ctx->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT; ctx->quantization = V4L2_QUANTIZATION_DEFAULT; ctx->params.framerate = 30; /* Default formats for output and input queues */ ctx->q_data[V4L2_M2M_SRC].fourcc = ctx->cvd->src_formats[0]; ctx->q_data[V4L2_M2M_DST].fourcc = ctx->cvd->dst_formats[0]; ctx->q_data[V4L2_M2M_SRC].width = max_w; ctx->q_data[V4L2_M2M_SRC].height = max_h; ctx->q_data[V4L2_M2M_DST].width = max_w; ctx->q_data[V4L2_M2M_DST].height = max_h; if (ctx->codec->src_fourcc == V4L2_PIX_FMT_YUV420) { ctx->q_data[V4L2_M2M_SRC].bytesperline = max_w; ctx->q_data[V4L2_M2M_SRC].sizeimage = usize; ctx->q_data[V4L2_M2M_DST].bytesperline = 0; ctx->q_data[V4L2_M2M_DST].sizeimage = csize; } else { ctx->q_data[V4L2_M2M_SRC].bytesperline = 0; ctx->q_data[V4L2_M2M_SRC].sizeimage = csize; ctx->q_data[V4L2_M2M_DST].bytesperline = max_w; ctx->q_data[V4L2_M2M_DST].sizeimage = usize; } ctx->q_data[V4L2_M2M_SRC].rect.width = max_w; ctx->q_data[V4L2_M2M_SRC].rect.height = max_h; ctx->q_data[V4L2_M2M_DST].rect.width = max_w; ctx->q_data[V4L2_M2M_DST].rect.height = max_h; /* * Since the RBC2AXI logic only supports a single chroma plane, * macroblock tiling only works for to NV12 pixel format. */ ctx->tiled_map_type = GDI_LINEAR_FRAME_MAP; } /* * Queue operations */ static int coda_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], struct device *alloc_devs[]) { struct coda_ctx *ctx = vb2_get_drv_priv(vq); struct coda_q_data *q_data; unsigned int size; q_data = get_q_data(ctx, vq->type); size = q_data->sizeimage; if (*nplanes) return sizes[0] < size ? -EINVAL : 0; *nplanes = 1; sizes[0] = size; coda_dbg(1, ctx, "get %d buffer(s) of size %d each.\n", *nbuffers, size); return 0; } static int coda_buf_prepare(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct coda_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); struct coda_q_data *q_data; q_data = get_q_data(ctx, vb->vb2_queue->type); if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) { if (vbuf->field == V4L2_FIELD_ANY) vbuf->field = V4L2_FIELD_NONE; if (vbuf->field != V4L2_FIELD_NONE) { v4l2_warn(&ctx->dev->v4l2_dev, "%s field isn't supported\n", __func__); return -EINVAL; } } if (vb2_plane_size(vb, 0) < q_data->sizeimage) { v4l2_warn(&ctx->dev->v4l2_dev, "%s data will not fit into plane (%lu < %lu)\n", __func__, vb2_plane_size(vb, 0), (long)q_data->sizeimage); return -EINVAL; } return 0; } static void coda_update_menu_ctrl(struct v4l2_ctrl *ctrl, int value) { if (!ctrl) return; v4l2_ctrl_lock(ctrl); /* * Extend the control range if the parsed stream contains a known but * unsupported value or level. */ if (value > ctrl->maximum) { __v4l2_ctrl_modify_range(ctrl, ctrl->minimum, value, ctrl->menu_skip_mask & ~(1 << value), ctrl->default_value); } else if (value < ctrl->minimum) { __v4l2_ctrl_modify_range(ctrl, value, ctrl->maximum, ctrl->menu_skip_mask & ~(1 << value), ctrl->default_value); } __v4l2_ctrl_s_ctrl(ctrl, value); v4l2_ctrl_unlock(ctrl); } void coda_update_profile_level_ctrls(struct coda_ctx *ctx, u8 profile_idc, u8 level_idc) { const char * const *profile_names; const char * const *level_names; struct v4l2_ctrl *profile_ctrl; struct v4l2_ctrl *level_ctrl; const char *codec_name; u32 profile_cid; u32 level_cid; int profile; int level; switch (ctx->codec->src_fourcc) { case V4L2_PIX_FMT_H264: codec_name = "H264"; profile_cid = V4L2_CID_MPEG_VIDEO_H264_PROFILE; level_cid = V4L2_CID_MPEG_VIDEO_H264_LEVEL; profile_ctrl = ctx->h264_profile_ctrl; level_ctrl = ctx->h264_level_ctrl; profile = coda_h264_profile(profile_idc); level = coda_h264_level(level_idc); break; case V4L2_PIX_FMT_MPEG2: codec_name = "MPEG-2"; profile_cid = V4L2_CID_MPEG_VIDEO_MPEG2_PROFILE; level_cid = V4L2_CID_MPEG_VIDEO_MPEG2_LEVEL; profile_ctrl = ctx->mpeg2_profile_ctrl; level_ctrl = ctx->mpeg2_level_ctrl; profile = coda_mpeg2_profile(profile_idc); level = coda_mpeg2_level(level_idc); break; case V4L2_PIX_FMT_MPEG4: codec_name = "MPEG-4"; profile_cid = V4L2_CID_MPEG_VIDEO_MPEG4_PROFILE; level_cid = V4L2_CID_MPEG_VIDEO_MPEG4_LEVEL; profile_ctrl = ctx->mpeg4_profile_ctrl; level_ctrl = ctx->mpeg4_level_ctrl; profile = coda_mpeg4_profile(profile_idc); level = coda_mpeg4_level(level_idc); break; default: return; } profile_names = v4l2_ctrl_get_menu(profile_cid); level_names = v4l2_ctrl_get_menu(level_cid); if (profile < 0) { v4l2_warn(&ctx->dev->v4l2_dev, "Invalid %s profile: %u\n", codec_name, profile_idc); } else { coda_dbg(1, ctx, "Parsed %s profile: %s\n", codec_name, profile_names[profile]); coda_update_menu_ctrl(profile_ctrl, profile); } if (level < 0) { v4l2_warn(&ctx->dev->v4l2_dev, "Invalid %s level: %u\n", codec_name, level_idc); } else { coda_dbg(1, ctx, "Parsed %s level: %s\n", codec_name, level_names[level]); coda_update_menu_ctrl(level_ctrl, level); } } static void coda_queue_source_change_event(struct coda_ctx *ctx) { static const struct v4l2_event source_change_event = { .type = V4L2_EVENT_SOURCE_CHANGE, .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION, }; v4l2_event_queue_fh(&ctx->fh, &source_change_event); } static void coda_buf_queue(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct coda_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); struct vb2_queue *vq = vb->vb2_queue; struct coda_q_data *q_data; q_data = get_q_data(ctx, vb->vb2_queue->type); /* * In the decoder case, immediately try to copy the buffer into the * bitstream ringbuffer and mark it as ready to be dequeued. */ if (ctx->bitstream.size && vq->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) { /* * For backwards compatibility, queuing an empty buffer marks * the stream end */ if (vb2_get_plane_payload(vb, 0) == 0) coda_bit_stream_end_flag(ctx); if (q_data->fourcc == V4L2_PIX_FMT_H264) { /* * Unless already done, try to obtain profile_idc and * level_idc from the SPS header. This allows to decide * whether to enable reordering during sequence * initialization. */ if (!ctx->params.h264_profile_idc) { coda_sps_parse_profile(ctx, vb); coda_update_profile_level_ctrls(ctx, ctx->params.h264_profile_idc, ctx->params.h264_level_idc); } } mutex_lock(&ctx->bitstream_mutex); v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf); if (vb2_is_streaming(vb->vb2_queue)) /* This set buf->sequence = ctx->qsequence++ */ coda_fill_bitstream(ctx, NULL); mutex_unlock(&ctx->bitstream_mutex); if (!ctx->initialized) { /* * Run sequence initialization in case the queued * buffer contained headers. */ if (vb2_is_streaming(vb->vb2_queue) && ctx->ops->seq_init_work) { queue_work(ctx->dev->workqueue, &ctx->seq_init_work); flush_work(&ctx->seq_init_work); } if (ctx->initialized) coda_queue_source_change_event(ctx); } } else { if ((ctx->inst_type == CODA_INST_ENCODER || !ctx->use_bit) && vq->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) vbuf->sequence = ctx->qsequence++; v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf); } } int coda_alloc_aux_buf(struct coda_dev *dev, struct coda_aux_buf *buf, size_t size, const char *name, struct dentry *parent) { buf->vaddr = dma_alloc_coherent(dev->dev, size, &buf->paddr, GFP_KERNEL); if (!buf->vaddr) { v4l2_err(&dev->v4l2_dev, "Failed to allocate %s buffer of size %zu\n", name, size); return -ENOMEM; } buf->size = size; if (name && parent) { buf->blob.data = buf->vaddr; buf->blob.size = size; buf->dentry = debugfs_create_blob(name, 0644, parent, &buf->blob); if (!buf->dentry) dev_warn(dev->dev, "failed to create debugfs entry %s\n", name); } return 0; } void coda_free_aux_buf(struct coda_dev *dev, struct coda_aux_buf *buf) { if (buf->vaddr) { dma_free_coherent(dev->dev, buf->size, buf->vaddr, buf->paddr); buf->vaddr = NULL; buf->size = 0; debugfs_remove(buf->dentry); buf->dentry = NULL; } } static int coda_start_streaming(struct vb2_queue *q, unsigned int count) { struct coda_ctx *ctx = vb2_get_drv_priv(q); struct v4l2_device *v4l2_dev = &ctx->dev->v4l2_dev; struct coda_q_data *q_data_src, *q_data_dst; struct v4l2_m2m_buffer *m2m_buf, *tmp; struct vb2_v4l2_buffer *buf; struct list_head list; int ret = 0; if (count < 1) return -EINVAL; coda_dbg(1, ctx, "start streaming %s\n", v4l2_type_names[q->type]); INIT_LIST_HEAD(&list); q_data_src = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT); if (q->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) { if (ctx->inst_type == CODA_INST_DECODER && ctx->use_bit) { /* copy the buffers that were queued before streamon */ mutex_lock(&ctx->bitstream_mutex); coda_fill_bitstream(ctx, &list); mutex_unlock(&ctx->bitstream_mutex); if (ctx->dev->devtype->product != CODA_960 && coda_get_bitstream_payload(ctx) < 512) { v4l2_err(v4l2_dev, "start payload < 512\n"); ret = -EINVAL; goto err; } if (!ctx->initialized) { /* Run sequence initialization */ if (ctx->ops->seq_init_work) { queue_work(ctx->dev->workqueue, &ctx->seq_init_work); flush_work(&ctx->seq_init_work); } } } ctx->streamon_out = 1; } else { ctx->streamon_cap = 1; } /* Don't start the coda unless both queues are on */ if (!(ctx->streamon_out && ctx->streamon_cap)) goto out; q_data_dst = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_CAPTURE); if ((q_data_src->rect.width != q_data_dst->width && round_up(q_data_src->rect.width, 16) != q_data_dst->width) || (q_data_src->rect.height != q_data_dst->height && round_up(q_data_src->rect.height, 16) != q_data_dst->height)) { v4l2_err(v4l2_dev, "can't convert %dx%d to %dx%d\n", q_data_src->rect.width, q_data_src->rect.height, q_data_dst->width, q_data_dst->height); ret = -EINVAL; goto err; } /* Allow BIT decoder device_run with no new buffers queued */ if (ctx->inst_type == CODA_INST_DECODER && ctx->use_bit) v4l2_m2m_set_src_buffered(ctx->fh.m2m_ctx, true); ctx->gopcounter = ctx->params.gop_size - 1; if (q_data_dst->fourcc == V4L2_PIX_FMT_JPEG) ctx->params.gop_size = 1; ctx->gopcounter = ctx->params.gop_size - 1; ret = ctx->ops->start_streaming(ctx); if (ctx->inst_type == CODA_INST_DECODER) { if (ret == -EAGAIN) goto out; } if (ret < 0) goto err; out: if (q->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) { list_for_each_entry_safe(m2m_buf, tmp, &list, list) { list_del(&m2m_buf->list); v4l2_m2m_buf_done(&m2m_buf->vb, VB2_BUF_STATE_DONE); } } return 0; err: if (q->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) { list_for_each_entry_safe(m2m_buf, tmp, &list, list) { list_del(&m2m_buf->list); v4l2_m2m_buf_done(&m2m_buf->vb, VB2_BUF_STATE_QUEUED); } while ((buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx))) v4l2_m2m_buf_done(buf, VB2_BUF_STATE_QUEUED); } else { while ((buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx))) v4l2_m2m_buf_done(buf, VB2_BUF_STATE_QUEUED); } return ret; } static void coda_stop_streaming(struct vb2_queue *q) { struct coda_ctx *ctx = vb2_get_drv_priv(q); struct coda_dev *dev = ctx->dev; struct vb2_v4l2_buffer *buf; bool stop; stop = ctx->streamon_out && ctx->streamon_cap; coda_dbg(1, ctx, "stop streaming %s\n", v4l2_type_names[q->type]); if (q->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) { ctx->streamon_out = 0; coda_bit_stream_end_flag(ctx); ctx->qsequence = 0; while ((buf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx))) v4l2_m2m_buf_done(buf, VB2_BUF_STATE_ERROR); } else { ctx->streamon_cap = 0; ctx->osequence = 0; ctx->sequence_offset = 0; while ((buf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx))) v4l2_m2m_buf_done(buf, VB2_BUF_STATE_ERROR); } if (stop) { struct coda_buffer_meta *meta; if (ctx->ops->seq_end_work) { queue_work(dev->workqueue, &ctx->seq_end_work); flush_work(&ctx->seq_end_work); } spin_lock(&ctx->buffer_meta_lock); while (!list_empty(&ctx->buffer_meta_list)) { meta = list_first_entry(&ctx->buffer_meta_list, struct coda_buffer_meta, list); list_del(&meta->list); kfree(meta); } ctx->num_metas = 0; spin_unlock(&ctx->buffer_meta_lock); kfifo_init(&ctx->bitstream_fifo, ctx->bitstream.vaddr, ctx->bitstream.size); ctx->runcounter = 0; ctx->aborting = 0; ctx->hold = false; } if (!ctx->streamon_out && !ctx->streamon_cap) ctx->bit_stream_param &= ~CODA_BIT_STREAM_END_FLAG; } static const struct vb2_ops coda_qops = { .queue_setup = coda_queue_setup, .buf_prepare = coda_buf_prepare, .buf_queue = coda_buf_queue, .start_streaming = coda_start_streaming, .stop_streaming = coda_stop_streaming, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, }; static int coda_s_ctrl(struct v4l2_ctrl *ctrl) { const char * const *val_names = v4l2_ctrl_get_menu(ctrl->id); struct coda_ctx *ctx = container_of(ctrl->handler, struct coda_ctx, ctrls); if (val_names) coda_dbg(2, ctx, "s_ctrl: id = 0x%x, name = \"%s\", val = %d (\"%s\")\n", ctrl->id, ctrl->name, ctrl->val, val_names[ctrl->val]); else coda_dbg(2, ctx, "s_ctrl: id = 0x%x, name = \"%s\", val = %d\n", ctrl->id, ctrl->name, ctrl->val); switch (ctrl->id) { case V4L2_CID_HFLIP: if (ctrl->val) ctx->params.rot_mode |= CODA_MIR_HOR; else ctx->params.rot_mode &= ~CODA_MIR_HOR; break; case V4L2_CID_VFLIP: if (ctrl->val) ctx->params.rot_mode |= CODA_MIR_VER; else ctx->params.rot_mode &= ~CODA_MIR_VER; break; case V4L2_CID_MPEG_VIDEO_BITRATE: ctx->params.bitrate = ctrl->val / 1000; ctx->params.bitrate_changed = true; break; case V4L2_CID_MPEG_VIDEO_GOP_SIZE: ctx->params.gop_size = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_H264_I_FRAME_QP: ctx->params.h264_intra_qp = ctrl->val; ctx->params.h264_intra_qp_changed = true; break; case V4L2_CID_MPEG_VIDEO_H264_P_FRAME_QP: ctx->params.h264_inter_qp = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_H264_MIN_QP: ctx->params.h264_min_qp = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_H264_MAX_QP: ctx->params.h264_max_qp = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_ALPHA: ctx->params.h264_slice_alpha_c0_offset_div2 = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_BETA: ctx->params.h264_slice_beta_offset_div2 = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_MODE: ctx->params.h264_disable_deblocking_filter_idc = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_H264_CONSTRAINED_INTRA_PREDICTION: ctx->params.h264_constrained_intra_pred_flag = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_H264_CHROMA_QP_INDEX_OFFSET: ctx->params.h264_chroma_qp_index_offset = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_H264_PROFILE: /* TODO: switch between baseline and constrained baseline */ if (ctx->inst_type == CODA_INST_ENCODER) ctx->params.h264_profile_idc = 66; break; case V4L2_CID_MPEG_VIDEO_H264_LEVEL: /* nothing to do, this is set by the encoder */ break; case V4L2_CID_MPEG_VIDEO_MPEG4_I_FRAME_QP: ctx->params.mpeg4_intra_qp = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_MPEG4_P_FRAME_QP: ctx->params.mpeg4_inter_qp = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_MPEG2_PROFILE: case V4L2_CID_MPEG_VIDEO_MPEG2_LEVEL: case V4L2_CID_MPEG_VIDEO_MPEG4_PROFILE: case V4L2_CID_MPEG_VIDEO_MPEG4_LEVEL: /* nothing to do, these are fixed */ break; case V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE: ctx->params.slice_mode = ctrl->val; ctx->params.slice_mode_changed = true; break; case V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_MB: ctx->params.slice_max_mb = ctrl->val; ctx->params.slice_mode_changed = true; break; case V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_BYTES: ctx->params.slice_max_bits = ctrl->val * 8; ctx->params.slice_mode_changed = true; break; case V4L2_CID_MPEG_VIDEO_HEADER_MODE: break; case V4L2_CID_MPEG_VIDEO_CYCLIC_INTRA_REFRESH_MB: ctx->params.intra_refresh = ctrl->val; ctx->params.intra_refresh_changed = true; break; case V4L2_CID_MPEG_VIDEO_FORCE_KEY_FRAME: ctx->params.force_ipicture = true; break; case V4L2_CID_JPEG_COMPRESSION_QUALITY: coda_set_jpeg_compression_quality(ctx, ctrl->val); break; case V4L2_CID_JPEG_RESTART_INTERVAL: ctx->params.jpeg_restart_interval = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_VBV_DELAY: ctx->params.vbv_delay = ctrl->val; break; case V4L2_CID_MPEG_VIDEO_VBV_SIZE: ctx->params.vbv_size = min(ctrl->val * 8192, 0x7fffffff); break; default: coda_dbg(1, ctx, "Invalid control, id=%d, val=%d\n", ctrl->id, ctrl->val); return -EINVAL; } return 0; } static const struct v4l2_ctrl_ops coda_ctrl_ops = { .s_ctrl = coda_s_ctrl, }; static void coda_encode_ctrls(struct coda_ctx *ctx) { int max_gop_size = (ctx->dev->devtype->product == CODA_DX6) ? 60 : 99; v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_BITRATE, 0, 32767000, 1000, 0); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_GOP_SIZE, 0, max_gop_size, 1, 16); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_H264_I_FRAME_QP, 0, 51, 1, 25); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_H264_P_FRAME_QP, 0, 51, 1, 25); if (ctx->dev->devtype->product != CODA_960) { v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_H264_MIN_QP, 0, 51, 1, 12); } v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_H264_MAX_QP, 0, 51, 1, 51); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_ALPHA, -6, 6, 1, 0); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_BETA, -6, 6, 1, 0); v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_MODE, V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_DISABLED_AT_SLICE_BOUNDARY, 0x0, V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_ENABLED); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_H264_CONSTRAINED_INTRA_PREDICTION, 0, 1, 1, 0); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_H264_CHROMA_QP_INDEX_OFFSET, -12, 12, 1, 0); v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_H264_PROFILE, V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE, 0x0, V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE); if (ctx->dev->devtype->product == CODA_HX4 || ctx->dev->devtype->product == CODA_7541) { v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_H264_LEVEL, V4L2_MPEG_VIDEO_H264_LEVEL_3_1, ~((1 << V4L2_MPEG_VIDEO_H264_LEVEL_2_0) | (1 << V4L2_MPEG_VIDEO_H264_LEVEL_3_0) | (1 << V4L2_MPEG_VIDEO_H264_LEVEL_3_1)), V4L2_MPEG_VIDEO_H264_LEVEL_3_1); } if (ctx->dev->devtype->product == CODA_960) { v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_H264_LEVEL, V4L2_MPEG_VIDEO_H264_LEVEL_4_0, ~((1 << V4L2_MPEG_VIDEO_H264_LEVEL_2_0) | (1 << V4L2_MPEG_VIDEO_H264_LEVEL_3_0) | (1 << V4L2_MPEG_VIDEO_H264_LEVEL_3_1) | (1 << V4L2_MPEG_VIDEO_H264_LEVEL_3_2) | (1 << V4L2_MPEG_VIDEO_H264_LEVEL_4_0)), V4L2_MPEG_VIDEO_H264_LEVEL_4_0); } v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_MPEG4_I_FRAME_QP, 1, 31, 1, 2); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_MPEG4_P_FRAME_QP, 1, 31, 1, 2); v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_MPEG4_PROFILE, V4L2_MPEG_VIDEO_MPEG4_PROFILE_SIMPLE, 0x0, V4L2_MPEG_VIDEO_MPEG4_PROFILE_SIMPLE); if (ctx->dev->devtype->product == CODA_HX4 || ctx->dev->devtype->product == CODA_7541 || ctx->dev->devtype->product == CODA_960) { v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_MPEG4_LEVEL, V4L2_MPEG_VIDEO_MPEG4_LEVEL_5, ~(1 << V4L2_MPEG_VIDEO_MPEG4_LEVEL_5), V4L2_MPEG_VIDEO_MPEG4_LEVEL_5); } v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MODE, V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_MAX_BYTES, 0x0, V4L2_MPEG_VIDEO_MULTI_SLICE_MODE_SINGLE); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_MB, 1, 0x3fffffff, 1, 1); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_MULTI_SLICE_MAX_BYTES, 1, 0x3fffffff, 1, 500); v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_HEADER_MODE, V4L2_MPEG_VIDEO_HEADER_MODE_JOINED_WITH_1ST_FRAME, (1 << V4L2_MPEG_VIDEO_HEADER_MODE_SEPARATE), V4L2_MPEG_VIDEO_HEADER_MODE_JOINED_WITH_1ST_FRAME); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_CYCLIC_INTRA_REFRESH_MB, 0, 1920 * 1088 / 256, 1, 0); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_VBV_DELAY, 0, 0x7fff, 1, 0); /* * The maximum VBV size value is 0x7fffffff bits, * one bit less than 262144 KiB */ v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_VBV_SIZE, 0, 262144, 1, 0); } static void coda_jpeg_encode_ctrls(struct coda_ctx *ctx) { v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_JPEG_COMPRESSION_QUALITY, 5, 100, 1, 50); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_JPEG_RESTART_INTERVAL, 0, 100, 1, 0); } static void coda_decode_ctrls(struct coda_ctx *ctx) { u8 max; ctx->h264_profile_ctrl = v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_H264_PROFILE, V4L2_MPEG_VIDEO_H264_PROFILE_HIGH, ~((1 << V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE) | (1 << V4L2_MPEG_VIDEO_H264_PROFILE_MAIN) | (1 << V4L2_MPEG_VIDEO_H264_PROFILE_HIGH)), V4L2_MPEG_VIDEO_H264_PROFILE_HIGH); if (ctx->h264_profile_ctrl) ctx->h264_profile_ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; if (ctx->dev->devtype->product == CODA_HX4 || ctx->dev->devtype->product == CODA_7541) max = V4L2_MPEG_VIDEO_H264_LEVEL_4_0; else if (ctx->dev->devtype->product == CODA_960) max = V4L2_MPEG_VIDEO_H264_LEVEL_4_1; else return; ctx->h264_level_ctrl = v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_H264_LEVEL, max, 0, max); if (ctx->h264_level_ctrl) ctx->h264_level_ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; ctx->mpeg2_profile_ctrl = v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_MPEG2_PROFILE, V4L2_MPEG_VIDEO_MPEG2_PROFILE_HIGH, 0, V4L2_MPEG_VIDEO_MPEG2_PROFILE_HIGH); if (ctx->mpeg2_profile_ctrl) ctx->mpeg2_profile_ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; ctx->mpeg2_level_ctrl = v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_MPEG2_LEVEL, V4L2_MPEG_VIDEO_MPEG2_LEVEL_HIGH, 0, V4L2_MPEG_VIDEO_MPEG2_LEVEL_HIGH); if (ctx->mpeg2_level_ctrl) ctx->mpeg2_level_ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; ctx->mpeg4_profile_ctrl = v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_MPEG4_PROFILE, V4L2_MPEG_VIDEO_MPEG4_PROFILE_ADVANCED_CODING_EFFICIENCY, 0, V4L2_MPEG_VIDEO_MPEG4_PROFILE_ADVANCED_CODING_EFFICIENCY); if (ctx->mpeg4_profile_ctrl) ctx->mpeg4_profile_ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; ctx->mpeg4_level_ctrl = v4l2_ctrl_new_std_menu(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MPEG_VIDEO_MPEG4_LEVEL, V4L2_MPEG_VIDEO_MPEG4_LEVEL_5, 0, V4L2_MPEG_VIDEO_MPEG4_LEVEL_5); if (ctx->mpeg4_level_ctrl) ctx->mpeg4_level_ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; } static int coda_ctrls_setup(struct coda_ctx *ctx) { v4l2_ctrl_handler_init(&ctx->ctrls, 2); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_HFLIP, 0, 1, 1, 0); v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0); if (ctx->inst_type == CODA_INST_ENCODER) { v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MIN_BUFFERS_FOR_OUTPUT, 1, 1, 1, 1); if (ctx->cvd->dst_formats[0] == V4L2_PIX_FMT_JPEG) coda_jpeg_encode_ctrls(ctx); else coda_encode_ctrls(ctx); } else { v4l2_ctrl_new_std(&ctx->ctrls, &coda_ctrl_ops, V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 1, 1, 1); if (ctx->cvd->src_formats[0] == V4L2_PIX_FMT_H264) coda_decode_ctrls(ctx); } if (ctx->ctrls.error) { v4l2_err(&ctx->dev->v4l2_dev, "control initialization error (%d)", ctx->ctrls.error); return -EINVAL; } return v4l2_ctrl_handler_setup(&ctx->ctrls); } static int coda_queue_init(struct coda_ctx *ctx, struct vb2_queue *vq) { vq->drv_priv = ctx; vq->ops = &coda_qops; vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer); vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY; vq->lock = &ctx->dev->dev_mutex; /* One way to indicate end-of-stream for coda is to set the * bytesused == 0. However by default videobuf2 handles bytesused * equal to 0 as a special case and changes its value to the size * of the buffer. Set the allow_zero_bytesused flag, so * that videobuf2 will keep the value of bytesused intact. */ vq->allow_zero_bytesused = 1; /* * We might be fine with no buffers on some of the queues, but that * would need to be reflected in job_ready(). Currently we expect all * queues to have at least one buffer queued. */ vq->min_buffers_needed = 1; vq->dev = ctx->dev->dev; return vb2_queue_init(vq); } int coda_encoder_queue_init(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq) { int ret; src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT; src_vq->io_modes = VB2_DMABUF | VB2_MMAP; src_vq->mem_ops = &vb2_dma_contig_memops; ret = coda_queue_init(priv, src_vq); if (ret) return ret; dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; dst_vq->io_modes = VB2_DMABUF | VB2_MMAP; dst_vq->mem_ops = &vb2_dma_contig_memops; return coda_queue_init(priv, dst_vq); } int coda_decoder_queue_init(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq) { int ret; src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT; src_vq->io_modes = VB2_DMABUF | VB2_MMAP | VB2_USERPTR; src_vq->mem_ops = &vb2_vmalloc_memops; ret = coda_queue_init(priv, src_vq); if (ret) return ret; dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; dst_vq->io_modes = VB2_DMABUF | VB2_MMAP; dst_vq->dma_attrs = DMA_ATTR_NO_KERNEL_MAPPING; dst_vq->mem_ops = &vb2_dma_contig_memops; return coda_queue_init(priv, dst_vq); } /* * File operations */ static int coda_open(struct file *file) { struct video_device *vdev = video_devdata(file); struct coda_dev *dev = video_get_drvdata(vdev); struct coda_ctx *ctx; unsigned int max = ~0; char *name; int ret; int idx; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; if (dev->devtype->product == CODA_DX6) max = CODADX6_MAX_INSTANCES - 1; idx = ida_alloc_max(&dev->ida, max, GFP_KERNEL); if (idx < 0) { ret = idx; goto err_coda_max; } name = kasprintf(GFP_KERNEL, "context%d", idx); if (!name) { ret = -ENOMEM; goto err_coda_name_init; } ctx->debugfs_entry = debugfs_create_dir(name, dev->debugfs_root); kfree(name); ctx->cvd = to_coda_video_device(vdev); ctx->inst_type = ctx->cvd->type; ctx->ops = ctx->cvd->ops; ctx->use_bit = !ctx->cvd->direct; init_completion(&ctx->completion); INIT_WORK(&ctx->pic_run_work, coda_pic_run_work); if (ctx->ops->seq_init_work) INIT_WORK(&ctx->seq_init_work, ctx->ops->seq_init_work); if (ctx->ops->seq_end_work) INIT_WORK(&ctx->seq_end_work, ctx->ops->seq_end_work); v4l2_fh_init(&ctx->fh, video_devdata(file)); file->private_data = &ctx->fh; v4l2_fh_add(&ctx->fh); ctx->dev = dev; ctx->idx = idx; coda_dbg(1, ctx, "open instance (%p)\n", ctx); switch (dev->devtype->product) { case CODA_960: /* * Enabling the BWB when decoding can hang the firmware with * certain streams. The issue was tracked as ENGR00293425 by * Freescale. As a workaround, disable BWB for all decoders. * The enable_bwb module parameter allows to override this. */ if (enable_bwb || ctx->inst_type == CODA_INST_ENCODER) ctx->frame_mem_ctrl = CODA9_FRAME_ENABLE_BWB; /* fallthrough */ case CODA_HX4: case CODA_7541: ctx->reg_idx = 0; break; default: ctx->reg_idx = idx; } if (ctx->dev->vdoa && !disable_vdoa) { ctx->vdoa = vdoa_context_create(dev->vdoa); if (!ctx->vdoa) v4l2_warn(&dev->v4l2_dev, "Failed to create vdoa context: not using vdoa"); } ctx->use_vdoa = false; /* Power up and upload firmware if necessary */ ret = pm_runtime_get_sync(dev->dev); if (ret < 0) { v4l2_err(&dev->v4l2_dev, "failed to power up: %d\n", ret); goto err_pm_get; } ret = clk_prepare_enable(dev->clk_per); if (ret) goto err_clk_per; ret = clk_prepare_enable(dev->clk_ahb); if (ret) goto err_clk_ahb; set_default_params(ctx); ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, ctx->ops->queue_init); if (IS_ERR(ctx->fh.m2m_ctx)) { ret = PTR_ERR(ctx->fh.m2m_ctx); v4l2_err(&dev->v4l2_dev, "%s return error (%d)\n", __func__, ret); goto err_ctx_init; } ret = coda_ctrls_setup(ctx); if (ret) { v4l2_err(&dev->v4l2_dev, "failed to setup coda controls\n"); goto err_ctrls_setup; } ctx->fh.ctrl_handler = &ctx->ctrls; mutex_init(&ctx->bitstream_mutex); mutex_init(&ctx->buffer_mutex); mutex_init(&ctx->wakeup_mutex); INIT_LIST_HEAD(&ctx->buffer_meta_list); spin_lock_init(&ctx->buffer_meta_lock); return 0; err_ctrls_setup: v4l2_m2m_ctx_release(ctx->fh.m2m_ctx); err_ctx_init: clk_disable_unprepare(dev->clk_ahb); err_clk_ahb: clk_disable_unprepare(dev->clk_per); err_clk_per: pm_runtime_put_sync(dev->dev); err_pm_get: v4l2_fh_del(&ctx->fh); v4l2_fh_exit(&ctx->fh); err_coda_name_init: ida_free(&dev->ida, ctx->idx); err_coda_max: kfree(ctx); return ret; } static int coda_release(struct file *file) { struct coda_dev *dev = video_drvdata(file); struct coda_ctx *ctx = fh_to_ctx(file->private_data); coda_dbg(1, ctx, "release instance (%p)\n", ctx); if (ctx->inst_type == CODA_INST_DECODER && ctx->use_bit) coda_bit_stream_end_flag(ctx); /* If this instance is running, call .job_abort and wait for it to end */ v4l2_m2m_ctx_release(ctx->fh.m2m_ctx); if (ctx->vdoa) vdoa_context_destroy(ctx->vdoa); /* In case the instance was not running, we still need to call SEQ_END */ if (ctx->ops->seq_end_work) { queue_work(dev->workqueue, &ctx->seq_end_work); flush_work(&ctx->seq_end_work); } if (ctx->dev->devtype->product == CODA_DX6) coda_free_aux_buf(dev, &ctx->workbuf); v4l2_ctrl_handler_free(&ctx->ctrls); clk_disable_unprepare(dev->clk_ahb); clk_disable_unprepare(dev->clk_per); pm_runtime_put_sync(dev->dev); v4l2_fh_del(&ctx->fh); v4l2_fh_exit(&ctx->fh); ida_free(&dev->ida, ctx->idx); if (ctx->ops->release) ctx->ops->release(ctx); debugfs_remove_recursive(ctx->debugfs_entry); kfree(ctx); return 0; } static const struct v4l2_file_operations coda_fops = { .owner = THIS_MODULE, .open = coda_open, .release = coda_release, .poll = v4l2_m2m_fop_poll, .unlocked_ioctl = video_ioctl2, .mmap = v4l2_m2m_fop_mmap, }; static int coda_hw_init(struct coda_dev *dev) { u32 data; u16 *p; int i, ret; ret = clk_prepare_enable(dev->clk_per); if (ret) goto err_clk_per; ret = clk_prepare_enable(dev->clk_ahb); if (ret) goto err_clk_ahb; reset_control_reset(dev->rstc); /* * Copy the first CODA_ISRAM_SIZE in the internal SRAM. * The 16-bit chars in the code buffer are in memory access * order, re-sort them to CODA order for register download. * Data in this SRAM survives a reboot. */ p = (u16 *)dev->codebuf.vaddr; if (dev->devtype->product == CODA_DX6) { for (i = 0; i < (CODA_ISRAM_SIZE / 2); i++) { data = CODA_DOWN_ADDRESS_SET(i) | CODA_DOWN_DATA_SET(p[i ^ 1]); coda_write(dev, data, CODA_REG_BIT_CODE_DOWN); } } else { for (i = 0; i < (CODA_ISRAM_SIZE / 2); i++) { data = CODA_DOWN_ADDRESS_SET(i) | CODA_DOWN_DATA_SET(p[round_down(i, 4) + 3 - (i % 4)]); coda_write(dev, data, CODA_REG_BIT_CODE_DOWN); } } /* Clear registers */ for (i = 0; i < 64; i++) coda_write(dev, 0, CODA_REG_BIT_CODE_BUF_ADDR + i * 4); /* Tell the BIT where to find everything it needs */ if (dev->devtype->product == CODA_960 || dev->devtype->product == CODA_7541 || dev->devtype->product == CODA_HX4) { coda_write(dev, dev->tempbuf.paddr, CODA_REG_BIT_TEMP_BUF_ADDR); coda_write(dev, 0, CODA_REG_BIT_BIT_STREAM_PARAM); } else { coda_write(dev, dev->workbuf.paddr, CODA_REG_BIT_WORK_BUF_ADDR); } coda_write(dev, dev->codebuf.paddr, CODA_REG_BIT_CODE_BUF_ADDR); coda_write(dev, 0, CODA_REG_BIT_CODE_RUN); /* Set default values */ switch (dev->devtype->product) { case CODA_DX6: coda_write(dev, CODADX6_STREAM_BUF_PIC_FLUSH, CODA_REG_BIT_STREAM_CTRL); break; default: coda_write(dev, CODA7_STREAM_BUF_PIC_FLUSH, CODA_REG_BIT_STREAM_CTRL); } if (dev->devtype->product == CODA_960) coda_write(dev, CODA9_FRAME_ENABLE_BWB, CODA_REG_BIT_FRAME_MEM_CTRL); else coda_write(dev, 0, CODA_REG_BIT_FRAME_MEM_CTRL); if (dev->devtype->product != CODA_DX6) coda_write(dev, 0, CODA7_REG_BIT_AXI_SRAM_USE); coda_write(dev, CODA_INT_INTERRUPT_ENABLE, CODA_REG_BIT_INT_ENABLE); /* Reset VPU and start processor */ data = coda_read(dev, CODA_REG_BIT_CODE_RESET); data |= CODA_REG_RESET_ENABLE; coda_write(dev, data, CODA_REG_BIT_CODE_RESET); udelay(10); data &= ~CODA_REG_RESET_ENABLE; coda_write(dev, data, CODA_REG_BIT_CODE_RESET); coda_write(dev, CODA_REG_RUN_ENABLE, CODA_REG_BIT_CODE_RUN); clk_disable_unprepare(dev->clk_ahb); clk_disable_unprepare(dev->clk_per); return 0; err_clk_ahb: clk_disable_unprepare(dev->clk_per); err_clk_per: return ret; } static int coda_register_device(struct coda_dev *dev, int i) { struct video_device *vfd = &dev->vfd[i]; enum coda_inst_type type; int ret; if (i >= dev->devtype->num_vdevs) return -EINVAL; type = dev->devtype->vdevs[i]->type; strscpy(vfd->name, dev->devtype->vdevs[i]->name, sizeof(vfd->name)); vfd->fops = &coda_fops; vfd->ioctl_ops = &coda_ioctl_ops; vfd->release = video_device_release_empty, vfd->lock = &dev->dev_mutex; vfd->v4l2_dev = &dev->v4l2_dev; vfd->vfl_dir = VFL_DIR_M2M; vfd->device_caps = V4L2_CAP_VIDEO_M2M | V4L2_CAP_STREAMING; video_set_drvdata(vfd, dev); /* Not applicable, use the selection API instead */ v4l2_disable_ioctl(vfd, VIDIOC_CROPCAP); v4l2_disable_ioctl(vfd, VIDIOC_G_CROP); v4l2_disable_ioctl(vfd, VIDIOC_S_CROP); ret = video_register_device(vfd, VFL_TYPE_VIDEO, 0); if (!ret) v4l2_info(&dev->v4l2_dev, "%s registered as %s\n", type == CODA_INST_ENCODER ? "encoder" : "decoder", video_device_node_name(vfd)); return ret; } static void coda_copy_firmware(struct coda_dev *dev, const u8 * const buf, size_t size) { u32 *src = (u32 *)buf; /* Check if the firmware has a 16-byte Freescale header, skip it */ if (buf[0] == 'M' && buf[1] == 'X') src += 4; /* * Check whether the firmware is in native order or pre-reordered for * memory access. The first instruction opcode always is 0xe40e. */ if (__le16_to_cpup((__le16 *)src) == 0xe40e) { u32 *dst = dev->codebuf.vaddr; int i; /* Firmware in native order, reorder while copying */ if (dev->devtype->product == CODA_DX6) { for (i = 0; i < (size - 16) / 4; i++) dst[i] = (src[i] << 16) | (src[i] >> 16); } else { for (i = 0; i < (size - 16) / 4; i += 2) { dst[i] = (src[i + 1] << 16) | (src[i + 1] >> 16); dst[i + 1] = (src[i] << 16) | (src[i] >> 16); } } } else { /* Copy the already reordered firmware image */ memcpy(dev->codebuf.vaddr, src, size); } } static void coda_fw_callback(const struct firmware *fw, void *context); static int coda_firmware_request(struct coda_dev *dev) { char *fw; if (dev->firmware >= ARRAY_SIZE(dev->devtype->firmware)) return -EINVAL; fw = dev->devtype->firmware[dev->firmware]; dev_dbg(dev->dev, "requesting firmware '%s' for %s\n", fw, coda_product_name(dev->devtype->product)); return request_firmware_nowait(THIS_MODULE, true, fw, dev->dev, GFP_KERNEL, dev, coda_fw_callback); } static void coda_fw_callback(const struct firmware *fw, void *context) { struct coda_dev *dev = context; int i, ret; if (!fw) { dev->firmware++; ret = coda_firmware_request(dev); if (ret < 0) { v4l2_err(&dev->v4l2_dev, "firmware request failed\n"); goto put_pm; } return; } if (dev->firmware > 0) { /* * Since we can't suppress warnings for failed asynchronous * firmware requests, report that the fallback firmware was * found. */ dev_info(dev->dev, "Using fallback firmware %s\n", dev->devtype->firmware[dev->firmware]); } /* allocate auxiliary per-device code buffer for the BIT processor */ ret = coda_alloc_aux_buf(dev, &dev->codebuf, fw->size, "codebuf", dev->debugfs_root); if (ret < 0) goto put_pm; coda_copy_firmware(dev, fw->data, fw->size); release_firmware(fw); ret = coda_hw_init(dev); if (ret < 0) { v4l2_err(&dev->v4l2_dev, "HW initialization failed\n"); goto put_pm; } ret = coda_check_firmware(dev); if (ret < 0) goto put_pm; dev->m2m_dev = v4l2_m2m_init(&coda_m2m_ops); if (IS_ERR(dev->m2m_dev)) { v4l2_err(&dev->v4l2_dev, "Failed to init mem2mem device\n"); goto put_pm; } for (i = 0; i < dev->devtype->num_vdevs; i++) { ret = coda_register_device(dev, i); if (ret) { v4l2_err(&dev->v4l2_dev, "Failed to register %s video device: %d\n", dev->devtype->vdevs[i]->name, ret); goto rel_vfd; } } pm_runtime_put_sync(dev->dev); return; rel_vfd: while (--i >= 0) video_unregister_device(&dev->vfd[i]); v4l2_m2m_release(dev->m2m_dev); put_pm: pm_runtime_put_sync(dev->dev); } enum coda_platform { CODA_IMX27, CODA_IMX51, CODA_IMX53, CODA_IMX6Q, CODA_IMX6DL, }; static const struct coda_devtype coda_devdata[] = { [CODA_IMX27] = { .firmware = { "vpu_fw_imx27_TO2.bin", "vpu/vpu_fw_imx27_TO2.bin", "v4l-codadx6-imx27.bin" }, .product = CODA_DX6, .codecs = codadx6_codecs, .num_codecs = ARRAY_SIZE(codadx6_codecs), .vdevs = codadx6_video_devices, .num_vdevs = ARRAY_SIZE(codadx6_video_devices), .workbuf_size = 288 * 1024 + FMO_SLICE_SAVE_BUF_SIZE * 8 * 1024, .iram_size = 0xb000, }, [CODA_IMX51] = { .firmware = { "vpu_fw_imx51.bin", "vpu/vpu_fw_imx51.bin", "v4l-codahx4-imx51.bin" }, .product = CODA_HX4, .codecs = codahx4_codecs, .num_codecs = ARRAY_SIZE(codahx4_codecs), .vdevs = codahx4_video_devices, .num_vdevs = ARRAY_SIZE(codahx4_video_devices), .workbuf_size = 128 * 1024, .tempbuf_size = 304 * 1024, .iram_size = 0x14000, }, [CODA_IMX53] = { .firmware = { "vpu_fw_imx53.bin", "vpu/vpu_fw_imx53.bin", "v4l-coda7541-imx53.bin" }, .product = CODA_7541, .codecs = coda7_codecs, .num_codecs = ARRAY_SIZE(coda7_codecs), .vdevs = coda7_video_devices, .num_vdevs = ARRAY_SIZE(coda7_video_devices), .workbuf_size = 128 * 1024, .tempbuf_size = 304 * 1024, .iram_size = 0x14000, }, [CODA_IMX6Q] = { .firmware = { "vpu_fw_imx6q.bin", "vpu/vpu_fw_imx6q.bin", "v4l-coda960-imx6q.bin" }, .product = CODA_960, .codecs = coda9_codecs, .num_codecs = ARRAY_SIZE(coda9_codecs), .vdevs = coda9_video_devices, .num_vdevs = ARRAY_SIZE(coda9_video_devices), .workbuf_size = 80 * 1024, .tempbuf_size = 204 * 1024, .iram_size = 0x21000, }, [CODA_IMX6DL] = { .firmware = { "vpu_fw_imx6d.bin", "vpu/vpu_fw_imx6d.bin", "v4l-coda960-imx6dl.bin" }, .product = CODA_960, .codecs = coda9_codecs, .num_codecs = ARRAY_SIZE(coda9_codecs), .vdevs = coda9_video_devices, .num_vdevs = ARRAY_SIZE(coda9_video_devices), .workbuf_size = 80 * 1024, .tempbuf_size = 204 * 1024, .iram_size = 0x1f000, /* leave 4k for suspend code */ }, }; static const struct platform_device_id coda_platform_ids[] = { { .name = "coda-imx27", .driver_data = CODA_IMX27 }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(platform, coda_platform_ids); #ifdef CONFIG_OF static const struct of_device_id coda_dt_ids[] = { { .compatible = "fsl,imx27-vpu", .data = &coda_devdata[CODA_IMX27] }, { .compatible = "fsl,imx51-vpu", .data = &coda_devdata[CODA_IMX51] }, { .compatible = "fsl,imx53-vpu", .data = &coda_devdata[CODA_IMX53] }, { .compatible = "fsl,imx6q-vpu", .data = &coda_devdata[CODA_IMX6Q] }, { .compatible = "fsl,imx6dl-vpu", .data = &coda_devdata[CODA_IMX6DL] }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, coda_dt_ids); #endif static int coda_probe(struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(of_match_ptr(coda_dt_ids), &pdev->dev); const struct platform_device_id *pdev_id; struct coda_platform_data *pdata = pdev->dev.platform_data; struct device_node *np = pdev->dev.of_node; struct gen_pool *pool; struct coda_dev *dev; int ret, irq; dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; pdev_id = of_id ? of_id->data : platform_get_device_id(pdev); if (of_id) dev->devtype = of_id->data; else if (pdev_id) dev->devtype = &coda_devdata[pdev_id->driver_data]; else return -EINVAL; dev->dev = &pdev->dev; dev->clk_per = devm_clk_get(&pdev->dev, "per"); if (IS_ERR(dev->clk_per)) { dev_err(&pdev->dev, "Could not get per clock\n"); return PTR_ERR(dev->clk_per); } dev->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); if (IS_ERR(dev->clk_ahb)) { dev_err(&pdev->dev, "Could not get ahb clock\n"); return PTR_ERR(dev->clk_ahb); } /* Get memory for physical registers */ dev->regs_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(dev->regs_base)) return PTR_ERR(dev->regs_base); /* IRQ */ irq = platform_get_irq_byname(pdev, "bit"); if (irq < 0) irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_irq(&pdev->dev, irq, coda_irq_handler, 0, dev_name(&pdev->dev), dev); if (ret < 0) { dev_err(&pdev->dev, "failed to request irq: %d\n", ret); return ret; } /* JPEG IRQ */ if (dev->devtype->product == CODA_960) { irq = platform_get_irq_byname(pdev, "jpeg"); if (irq < 0) return irq; ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, coda9_jpeg_irq_handler, IRQF_ONESHOT, CODA_NAME " jpeg", dev); if (ret < 0) { dev_err(&pdev->dev, "failed to request jpeg irq\n"); return ret; } } dev->rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL); if (IS_ERR(dev->rstc)) { ret = PTR_ERR(dev->rstc); dev_err(&pdev->dev, "failed get reset control: %d\n", ret); return ret; } /* Get IRAM pool from device tree or platform data */ pool = of_gen_pool_get(np, "iram", 0); if (!pool && pdata) pool = gen_pool_get(pdata->iram_dev, NULL); if (!pool) { dev_err(&pdev->dev, "iram pool not available\n"); return -ENOMEM; } dev->iram_pool = pool; /* Get vdoa_data if supported by the platform */ dev->vdoa = coda_get_vdoa_data(); if (PTR_ERR(dev->vdoa) == -EPROBE_DEFER) return -EPROBE_DEFER; ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev); if (ret) return ret; mutex_init(&dev->dev_mutex); mutex_init(&dev->coda_mutex); ida_init(&dev->ida); dev->debugfs_root = debugfs_create_dir("coda", NULL); if (!dev->debugfs_root) dev_warn(&pdev->dev, "failed to create debugfs root\n"); /* allocate auxiliary per-device buffers for the BIT processor */ if (dev->devtype->product == CODA_DX6) { ret = coda_alloc_aux_buf(dev, &dev->workbuf, dev->devtype->workbuf_size, "workbuf", dev->debugfs_root); if (ret < 0) goto err_v4l2_register; } if (dev->devtype->tempbuf_size) { ret = coda_alloc_aux_buf(dev, &dev->tempbuf, dev->devtype->tempbuf_size, "tempbuf", dev->debugfs_root); if (ret < 0) goto err_v4l2_register; } dev->iram.size = dev->devtype->iram_size; dev->iram.vaddr = gen_pool_dma_alloc(dev->iram_pool, dev->iram.size, &dev->iram.paddr); if (!dev->iram.vaddr) { dev_warn(&pdev->dev, "unable to alloc iram\n"); } else { memset(dev->iram.vaddr, 0, dev->iram.size); dev->iram.blob.data = dev->iram.vaddr; dev->iram.blob.size = dev->iram.size; dev->iram.dentry = debugfs_create_blob("iram", 0644, dev->debugfs_root, &dev->iram.blob); } dev->workqueue = alloc_workqueue("coda", WQ_UNBOUND | WQ_MEM_RECLAIM, 1); if (!dev->workqueue) { dev_err(&pdev->dev, "unable to alloc workqueue\n"); ret = -ENOMEM; goto err_v4l2_register; } platform_set_drvdata(pdev, dev); /* * Start activated so we can directly call coda_hw_init in * coda_fw_callback regardless of whether CONFIG_PM is * enabled or whether the device is associated with a PM domain. */ pm_runtime_get_noresume(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); ret = coda_firmware_request(dev); if (ret) goto err_alloc_workqueue; return 0; err_alloc_workqueue: destroy_workqueue(dev->workqueue); err_v4l2_register: v4l2_device_unregister(&dev->v4l2_dev); return ret; } static int coda_remove(struct platform_device *pdev) { struct coda_dev *dev = platform_get_drvdata(pdev); int i; for (i = 0; i < ARRAY_SIZE(dev->vfd); i++) { if (video_get_drvdata(&dev->vfd[i])) video_unregister_device(&dev->vfd[i]); } if (dev->m2m_dev) v4l2_m2m_release(dev->m2m_dev); pm_runtime_disable(&pdev->dev); v4l2_device_unregister(&dev->v4l2_dev); destroy_workqueue(dev->workqueue); if (dev->iram.vaddr) gen_pool_free(dev->iram_pool, (unsigned long)dev->iram.vaddr, dev->iram.size); coda_free_aux_buf(dev, &dev->codebuf); coda_free_aux_buf(dev, &dev->tempbuf); coda_free_aux_buf(dev, &dev->workbuf); debugfs_remove_recursive(dev->debugfs_root); ida_destroy(&dev->ida); return 0; } #ifdef CONFIG_PM static int coda_runtime_resume(struct device *dev) { struct coda_dev *cdev = dev_get_drvdata(dev); int ret = 0; if (dev->pm_domain && cdev->codebuf.vaddr) { ret = coda_hw_init(cdev); if (ret) v4l2_err(&cdev->v4l2_dev, "HW initialization failed\n"); } return ret; } #endif static const struct dev_pm_ops coda_pm_ops = { SET_RUNTIME_PM_OPS(NULL, coda_runtime_resume, NULL) }; static struct platform_driver coda_driver = { .probe = coda_probe, .remove = coda_remove, .driver = { .name = CODA_NAME, .of_match_table = of_match_ptr(coda_dt_ids), .pm = &coda_pm_ops, }, .id_table = coda_platform_ids, }; module_platform_driver(coda_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Javier Martin <javier.martin@vista-silicon.com>"); MODULE_DESCRIPTION("Coda multi-standard codec V4L2 driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1