Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ramesh Shanmugasundaram | 6462 | 97.88% | 1 | 8.33% |
Steve Longerbeam | 48 | 0.73% | 1 | 8.33% |
Peter Ujfalusi | 30 | 0.45% | 2 | 16.67% |
Laurent Pinchart | 26 | 0.39% | 1 | 8.33% |
Kangjie Lu | 24 | 0.36% | 1 | 8.33% |
Arnd Bergmann | 3 | 0.05% | 1 | 8.33% |
Kuninori Morimoto | 3 | 0.05% | 1 | 8.33% |
Hans Verkuil | 2 | 0.03% | 1 | 8.33% |
Mauro Carvalho Chehab | 2 | 0.03% | 1 | 8.33% |
Geert Uytterhoeven | 1 | 0.02% | 1 | 8.33% |
Wei Yongjun | 1 | 0.02% | 1 | 8.33% |
Total | 6602 | 12 |
// SPDX-License-Identifier: GPL-2.0+ /* * R-Car Gen3 Digital Radio Interface (DRIF) driver * * Copyright (C) 2017 Renesas Electronics Corporation * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ /* * The R-Car DRIF is a receive only MSIOF like controller with an * external master device driving the SCK. It receives data into a FIFO, * then this driver uses the SYS-DMAC engine to move the data from * the device to memory. * * Each DRIF channel DRIFx (as per datasheet) contains two internal * channels DRIFx0 & DRIFx1 within itself with each having its own resources * like module clk, register set, irq and dma. These internal channels share * common CLK & SYNC from master. The two data pins D0 & D1 shall be * considered to represent the two internal channels. This internal split * is not visible to the master device. * * Depending on the master device, a DRIF channel can use * (1) both internal channels (D0 & D1) to receive data in parallel (or) * (2) one internal channel (D0 or D1) to receive data * * The primary design goal of this controller is to act as a Digital Radio * Interface that receives digital samples from a tuner device. Hence the * driver exposes the device as a V4L2 SDR device. In order to qualify as * a V4L2 SDR device, it should possess a tuner interface as mandated by the * framework. This driver expects a tuner driver (sub-device) to bind * asynchronously with this device and the combined drivers shall expose * a V4L2 compliant SDR device. The DRIF driver is independent of the * tuner vendor. * * The DRIF h/w can support I2S mode and Frame start synchronization pulse mode. * This driver is tested for I2S mode only because of the availability of * suitable master devices. Hence, not all configurable options of DRIF h/w * like lsb/msb first, syncdl, dtdl etc. are exposed via DT and I2S defaults * are used. These can be exposed later if needed after testing. */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/ioctl.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of_graph.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/sched.h> #include <media/v4l2-async.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-device.h> #include <media/v4l2-event.h> #include <media/v4l2-fh.h> #include <media/v4l2-ioctl.h> #include <media/videobuf2-v4l2.h> #include <media/videobuf2-vmalloc.h> /* DRIF register offsets */ #define RCAR_DRIF_SITMDR1 0x00 #define RCAR_DRIF_SITMDR2 0x04 #define RCAR_DRIF_SITMDR3 0x08 #define RCAR_DRIF_SIRMDR1 0x10 #define RCAR_DRIF_SIRMDR2 0x14 #define RCAR_DRIF_SIRMDR3 0x18 #define RCAR_DRIF_SICTR 0x28 #define RCAR_DRIF_SIFCTR 0x30 #define RCAR_DRIF_SISTR 0x40 #define RCAR_DRIF_SIIER 0x44 #define RCAR_DRIF_SIRFDR 0x60 #define RCAR_DRIF_RFOVF BIT(3) /* Receive FIFO overflow */ #define RCAR_DRIF_RFUDF BIT(4) /* Receive FIFO underflow */ #define RCAR_DRIF_RFSERR BIT(5) /* Receive frame sync error */ #define RCAR_DRIF_REOF BIT(7) /* Frame reception end */ #define RCAR_DRIF_RDREQ BIT(12) /* Receive data xfer req */ #define RCAR_DRIF_RFFUL BIT(13) /* Receive FIFO full */ /* SIRMDR1 */ #define RCAR_DRIF_SIRMDR1_SYNCMD_FRAME (0 << 28) #define RCAR_DRIF_SIRMDR1_SYNCMD_LR (3 << 28) #define RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH (0 << 25) #define RCAR_DRIF_SIRMDR1_SYNCAC_POL_LOW (1 << 25) #define RCAR_DRIF_SIRMDR1_MSB_FIRST (0 << 24) #define RCAR_DRIF_SIRMDR1_LSB_FIRST (1 << 24) #define RCAR_DRIF_SIRMDR1_DTDL_0 (0 << 20) #define RCAR_DRIF_SIRMDR1_DTDL_1 (1 << 20) #define RCAR_DRIF_SIRMDR1_DTDL_2 (2 << 20) #define RCAR_DRIF_SIRMDR1_DTDL_0PT5 (5 << 20) #define RCAR_DRIF_SIRMDR1_DTDL_1PT5 (6 << 20) #define RCAR_DRIF_SIRMDR1_SYNCDL_0 (0 << 20) #define RCAR_DRIF_SIRMDR1_SYNCDL_1 (1 << 20) #define RCAR_DRIF_SIRMDR1_SYNCDL_2 (2 << 20) #define RCAR_DRIF_SIRMDR1_SYNCDL_3 (3 << 20) #define RCAR_DRIF_SIRMDR1_SYNCDL_0PT5 (5 << 20) #define RCAR_DRIF_SIRMDR1_SYNCDL_1PT5 (6 << 20) #define RCAR_DRIF_MDR_GRPCNT(n) (((n) - 1) << 30) #define RCAR_DRIF_MDR_BITLEN(n) (((n) - 1) << 24) #define RCAR_DRIF_MDR_WDCNT(n) (((n) - 1) << 16) /* Hidden Transmit register that controls CLK & SYNC */ #define RCAR_DRIF_SITMDR1_PCON BIT(30) #define RCAR_DRIF_SICTR_RX_RISING_EDGE BIT(26) #define RCAR_DRIF_SICTR_RX_EN BIT(8) #define RCAR_DRIF_SICTR_RESET BIT(0) /* Constants */ #define RCAR_DRIF_NUM_HWBUFS 32 #define RCAR_DRIF_MAX_DEVS 4 #define RCAR_DRIF_DEFAULT_NUM_HWBUFS 16 #define RCAR_DRIF_DEFAULT_HWBUF_SIZE (4 * PAGE_SIZE) #define RCAR_DRIF_MAX_CHANNEL 2 #define RCAR_SDR_BUFFER_SIZE SZ_64K /* Internal buffer status flags */ #define RCAR_DRIF_BUF_DONE BIT(0) /* DMA completed */ #define RCAR_DRIF_BUF_OVERFLOW BIT(1) /* Overflow detected */ #define to_rcar_drif_buf_pair(sdr, ch_num, idx) \ (&((sdr)->ch[!(ch_num)]->buf[(idx)])) #define for_each_rcar_drif_channel(ch, ch_mask) \ for_each_set_bit(ch, ch_mask, RCAR_DRIF_MAX_CHANNEL) /* Debug */ #define rdrif_dbg(sdr, fmt, arg...) \ dev_dbg(sdr->v4l2_dev.dev, fmt, ## arg) #define rdrif_err(sdr, fmt, arg...) \ dev_err(sdr->v4l2_dev.dev, fmt, ## arg) /* Stream formats */ struct rcar_drif_format { u32 pixelformat; u32 buffersize; u32 bitlen; u32 wdcnt; u32 num_ch; }; /* Format descriptions for capture */ static const struct rcar_drif_format formats[] = { { .pixelformat = V4L2_SDR_FMT_PCU16BE, .buffersize = RCAR_SDR_BUFFER_SIZE, .bitlen = 16, .wdcnt = 1, .num_ch = 2, }, { .pixelformat = V4L2_SDR_FMT_PCU18BE, .buffersize = RCAR_SDR_BUFFER_SIZE, .bitlen = 18, .wdcnt = 1, .num_ch = 2, }, { .pixelformat = V4L2_SDR_FMT_PCU20BE, .buffersize = RCAR_SDR_BUFFER_SIZE, .bitlen = 20, .wdcnt = 1, .num_ch = 2, }, }; /* Buffer for a received frame from one or both internal channels */ struct rcar_drif_frame_buf { /* Common v4l buffer stuff -- must be first */ struct vb2_v4l2_buffer vb; struct list_head list; }; /* OF graph endpoint's V4L2 async data */ struct rcar_drif_graph_ep { struct v4l2_subdev *subdev; /* Async matched subdev */ struct v4l2_async_subdev asd; /* Async sub-device descriptor */ }; /* DMA buffer */ struct rcar_drif_hwbuf { void *addr; /* CPU-side address */ unsigned int status; /* Buffer status flags */ }; /* Internal channel */ struct rcar_drif { struct rcar_drif_sdr *sdr; /* Group device */ struct platform_device *pdev; /* Channel's pdev */ void __iomem *base; /* Base register address */ resource_size_t start; /* I/O resource offset */ struct dma_chan *dmach; /* Reserved DMA channel */ struct clk *clk; /* Module clock */ struct rcar_drif_hwbuf buf[RCAR_DRIF_NUM_HWBUFS]; /* H/W bufs */ dma_addr_t dma_handle; /* Handle for all bufs */ unsigned int num; /* Channel number */ bool acting_sdr; /* Channel acting as SDR device */ }; /* DRIF V4L2 SDR */ struct rcar_drif_sdr { struct device *dev; /* Platform device */ struct video_device *vdev; /* V4L2 SDR device */ struct v4l2_device v4l2_dev; /* V4L2 device */ /* Videobuf2 queue and queued buffers list */ struct vb2_queue vb_queue; struct list_head queued_bufs; spinlock_t queued_bufs_lock; /* Protects queued_bufs */ spinlock_t dma_lock; /* To serialize DMA cb of channels */ struct mutex v4l2_mutex; /* To serialize ioctls */ struct mutex vb_queue_mutex; /* To serialize streaming ioctls */ struct v4l2_ctrl_handler ctrl_hdl; /* SDR control handler */ struct v4l2_async_notifier notifier; /* For subdev (tuner) */ struct rcar_drif_graph_ep ep; /* Endpoint V4L2 async data */ /* Current V4L2 SDR format ptr */ const struct rcar_drif_format *fmt; /* Device tree SYNC properties */ u32 mdr1; /* Internals */ struct rcar_drif *ch[RCAR_DRIF_MAX_CHANNEL]; /* DRIFx0,1 */ unsigned long hw_ch_mask; /* Enabled channels per DT */ unsigned long cur_ch_mask; /* Used channels for an SDR FMT */ u32 num_hw_ch; /* Num of DT enabled channels */ u32 num_cur_ch; /* Num of used channels */ u32 hwbuf_size; /* Each DMA buffer size */ u32 produced; /* Buffers produced by sdr dev */ }; /* Register access functions */ static void rcar_drif_write(struct rcar_drif *ch, u32 offset, u32 data) { writel(data, ch->base + offset); } static u32 rcar_drif_read(struct rcar_drif *ch, u32 offset) { return readl(ch->base + offset); } /* Release DMA channels */ static void rcar_drif_release_dmachannels(struct rcar_drif_sdr *sdr) { unsigned int i; for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) if (sdr->ch[i]->dmach) { dma_release_channel(sdr->ch[i]->dmach); sdr->ch[i]->dmach = NULL; } } /* Allocate DMA channels */ static int rcar_drif_alloc_dmachannels(struct rcar_drif_sdr *sdr) { struct dma_slave_config dma_cfg; unsigned int i; int ret; for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) { struct rcar_drif *ch = sdr->ch[i]; ch->dmach = dma_request_chan(&ch->pdev->dev, "rx"); if (IS_ERR(ch->dmach)) { ret = PTR_ERR(ch->dmach); if (ret != -EPROBE_DEFER) rdrif_err(sdr, "ch%u: dma channel req failed: %pe\n", i, ch->dmach); ch->dmach = NULL; goto dmach_error; } /* Configure slave */ memset(&dma_cfg, 0, sizeof(dma_cfg)); dma_cfg.src_addr = (phys_addr_t)(ch->start + RCAR_DRIF_SIRFDR); dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; ret = dmaengine_slave_config(ch->dmach, &dma_cfg); if (ret) { rdrif_err(sdr, "ch%u: dma slave config failed\n", i); goto dmach_error; } } return 0; dmach_error: rcar_drif_release_dmachannels(sdr); return ret; } /* Release queued vb2 buffers */ static void rcar_drif_release_queued_bufs(struct rcar_drif_sdr *sdr, enum vb2_buffer_state state) { struct rcar_drif_frame_buf *fbuf, *tmp; unsigned long flags; spin_lock_irqsave(&sdr->queued_bufs_lock, flags); list_for_each_entry_safe(fbuf, tmp, &sdr->queued_bufs, list) { list_del(&fbuf->list); vb2_buffer_done(&fbuf->vb.vb2_buf, state); } spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags); } /* Set MDR defaults */ static inline void rcar_drif_set_mdr1(struct rcar_drif_sdr *sdr) { unsigned int i; /* Set defaults for enabled internal channels */ for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) { /* Refer MSIOF section in manual for this register setting */ rcar_drif_write(sdr->ch[i], RCAR_DRIF_SITMDR1, RCAR_DRIF_SITMDR1_PCON); /* Setup MDR1 value */ rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR1, sdr->mdr1); rdrif_dbg(sdr, "ch%u: mdr1 = 0x%08x", i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR1)); } } /* Set DRIF receive format */ static int rcar_drif_set_format(struct rcar_drif_sdr *sdr) { unsigned int i; rdrif_dbg(sdr, "setfmt: bitlen %u wdcnt %u num_ch %u\n", sdr->fmt->bitlen, sdr->fmt->wdcnt, sdr->fmt->num_ch); /* Sanity check */ if (sdr->fmt->num_ch > sdr->num_cur_ch) { rdrif_err(sdr, "fmt num_ch %u cur_ch %u mismatch\n", sdr->fmt->num_ch, sdr->num_cur_ch); return -EINVAL; } /* Setup group, bitlen & wdcnt */ for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) { u32 mdr; /* Two groups */ mdr = RCAR_DRIF_MDR_GRPCNT(2) | RCAR_DRIF_MDR_BITLEN(sdr->fmt->bitlen) | RCAR_DRIF_MDR_WDCNT(sdr->fmt->wdcnt); rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR2, mdr); mdr = RCAR_DRIF_MDR_BITLEN(sdr->fmt->bitlen) | RCAR_DRIF_MDR_WDCNT(sdr->fmt->wdcnt); rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR3, mdr); rdrif_dbg(sdr, "ch%u: new mdr[2,3] = 0x%08x, 0x%08x\n", i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR2), rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR3)); } return 0; } /* Release DMA buffers */ static void rcar_drif_release_buf(struct rcar_drif_sdr *sdr) { unsigned int i; for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) { struct rcar_drif *ch = sdr->ch[i]; /* First entry contains the dma buf ptr */ if (ch->buf[0].addr) { dma_free_coherent(&ch->pdev->dev, sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS, ch->buf[0].addr, ch->dma_handle); ch->buf[0].addr = NULL; } } } /* Request DMA buffers */ static int rcar_drif_request_buf(struct rcar_drif_sdr *sdr) { int ret = -ENOMEM; unsigned int i, j; void *addr; for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) { struct rcar_drif *ch = sdr->ch[i]; /* Allocate DMA buffers */ addr = dma_alloc_coherent(&ch->pdev->dev, sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS, &ch->dma_handle, GFP_KERNEL); if (!addr) { rdrif_err(sdr, "ch%u: dma alloc failed. num hwbufs %u size %u\n", i, RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size); goto error; } /* Split the chunk and populate bufctxt */ for (j = 0; j < RCAR_DRIF_NUM_HWBUFS; j++) { ch->buf[j].addr = addr + (j * sdr->hwbuf_size); ch->buf[j].status = 0; } } return 0; error: return ret; } /* Setup vb_queue minimum buffer requirements */ static int rcar_drif_queue_setup(struct vb2_queue *vq, unsigned int *num_buffers, unsigned int *num_planes, unsigned int sizes[], struct device *alloc_devs[]) { struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq); /* Need at least 16 buffers */ if (vq->num_buffers + *num_buffers < 16) *num_buffers = 16 - vq->num_buffers; *num_planes = 1; sizes[0] = PAGE_ALIGN(sdr->fmt->buffersize); rdrif_dbg(sdr, "num_bufs %d sizes[0] %d\n", *num_buffers, sizes[0]); return 0; } /* Enqueue buffer */ static void rcar_drif_buf_queue(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vb->vb2_queue); struct rcar_drif_frame_buf *fbuf = container_of(vbuf, struct rcar_drif_frame_buf, vb); unsigned long flags; rdrif_dbg(sdr, "buf_queue idx %u\n", vb->index); spin_lock_irqsave(&sdr->queued_bufs_lock, flags); list_add_tail(&fbuf->list, &sdr->queued_bufs); spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags); } /* Get a frame buf from list */ static struct rcar_drif_frame_buf * rcar_drif_get_fbuf(struct rcar_drif_sdr *sdr) { struct rcar_drif_frame_buf *fbuf; unsigned long flags; spin_lock_irqsave(&sdr->queued_bufs_lock, flags); fbuf = list_first_entry_or_null(&sdr->queued_bufs, struct rcar_drif_frame_buf, list); if (!fbuf) { /* * App is late in enqueing buffers. Samples lost & there will * be a gap in sequence number when app recovers */ rdrif_dbg(sdr, "\napp late: prod %u\n", sdr->produced); spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags); return NULL; } list_del(&fbuf->list); spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags); return fbuf; } /* Helpers to set/clear buf pair status */ static inline bool rcar_drif_bufs_done(struct rcar_drif_hwbuf **buf) { return (buf[0]->status & buf[1]->status & RCAR_DRIF_BUF_DONE); } static inline bool rcar_drif_bufs_overflow(struct rcar_drif_hwbuf **buf) { return ((buf[0]->status | buf[1]->status) & RCAR_DRIF_BUF_OVERFLOW); } static inline void rcar_drif_bufs_clear(struct rcar_drif_hwbuf **buf, unsigned int bit) { unsigned int i; for (i = 0; i < RCAR_DRIF_MAX_CHANNEL; i++) buf[i]->status &= ~bit; } /* Channel DMA complete */ static void rcar_drif_channel_complete(struct rcar_drif *ch, u32 idx) { u32 str; ch->buf[idx].status |= RCAR_DRIF_BUF_DONE; /* Check for DRIF errors */ str = rcar_drif_read(ch, RCAR_DRIF_SISTR); if (unlikely(str & RCAR_DRIF_RFOVF)) { /* Writing the same clears it */ rcar_drif_write(ch, RCAR_DRIF_SISTR, str); /* Overflow: some samples are lost */ ch->buf[idx].status |= RCAR_DRIF_BUF_OVERFLOW; } } /* DMA callback for each stage */ static void rcar_drif_dma_complete(void *dma_async_param) { struct rcar_drif *ch = dma_async_param; struct rcar_drif_sdr *sdr = ch->sdr; struct rcar_drif_hwbuf *buf[RCAR_DRIF_MAX_CHANNEL]; struct rcar_drif_frame_buf *fbuf; bool overflow = false; u32 idx, produced; unsigned int i; spin_lock(&sdr->dma_lock); /* DMA can be terminated while the callback was waiting on lock */ if (!vb2_is_streaming(&sdr->vb_queue)) { spin_unlock(&sdr->dma_lock); return; } idx = sdr->produced % RCAR_DRIF_NUM_HWBUFS; rcar_drif_channel_complete(ch, idx); if (sdr->num_cur_ch == RCAR_DRIF_MAX_CHANNEL) { buf[0] = ch->num ? to_rcar_drif_buf_pair(sdr, ch->num, idx) : &ch->buf[idx]; buf[1] = ch->num ? &ch->buf[idx] : to_rcar_drif_buf_pair(sdr, ch->num, idx); /* Check if both DMA buffers are done */ if (!rcar_drif_bufs_done(buf)) { spin_unlock(&sdr->dma_lock); return; } /* Clear buf done status */ rcar_drif_bufs_clear(buf, RCAR_DRIF_BUF_DONE); if (rcar_drif_bufs_overflow(buf)) { overflow = true; /* Clear the flag in status */ rcar_drif_bufs_clear(buf, RCAR_DRIF_BUF_OVERFLOW); } } else { buf[0] = &ch->buf[idx]; if (buf[0]->status & RCAR_DRIF_BUF_OVERFLOW) { overflow = true; /* Clear the flag in status */ buf[0]->status &= ~RCAR_DRIF_BUF_OVERFLOW; } } /* Buffer produced for consumption */ produced = sdr->produced++; spin_unlock(&sdr->dma_lock); rdrif_dbg(sdr, "ch%u: prod %u\n", ch->num, produced); /* Get fbuf */ fbuf = rcar_drif_get_fbuf(sdr); if (!fbuf) return; for (i = 0; i < RCAR_DRIF_MAX_CHANNEL; i++) memcpy(vb2_plane_vaddr(&fbuf->vb.vb2_buf, 0) + i * sdr->hwbuf_size, buf[i]->addr, sdr->hwbuf_size); fbuf->vb.field = V4L2_FIELD_NONE; fbuf->vb.sequence = produced; fbuf->vb.vb2_buf.timestamp = ktime_get_ns(); vb2_set_plane_payload(&fbuf->vb.vb2_buf, 0, sdr->fmt->buffersize); /* Set error state on overflow */ vb2_buffer_done(&fbuf->vb.vb2_buf, overflow ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE); } static int rcar_drif_qbuf(struct rcar_drif *ch) { struct rcar_drif_sdr *sdr = ch->sdr; dma_addr_t addr = ch->dma_handle; struct dma_async_tx_descriptor *rxd; dma_cookie_t cookie; int ret = -EIO; /* Setup cyclic DMA with given buffers */ rxd = dmaengine_prep_dma_cyclic(ch->dmach, addr, sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!rxd) { rdrif_err(sdr, "ch%u: prep dma cyclic failed\n", ch->num); return ret; } /* Submit descriptor */ rxd->callback = rcar_drif_dma_complete; rxd->callback_param = ch; cookie = dmaengine_submit(rxd); if (dma_submit_error(cookie)) { rdrif_err(sdr, "ch%u: dma submit failed\n", ch->num); return ret; } dma_async_issue_pending(ch->dmach); return 0; } /* Enable reception */ static int rcar_drif_enable_rx(struct rcar_drif_sdr *sdr) { unsigned int i; u32 ctr; int ret = -EINVAL; /* * When both internal channels are enabled, they can be synchronized * only by the master */ /* Enable receive */ for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) { ctr = rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR); ctr |= (RCAR_DRIF_SICTR_RX_RISING_EDGE | RCAR_DRIF_SICTR_RX_EN); rcar_drif_write(sdr->ch[i], RCAR_DRIF_SICTR, ctr); } /* Check receive enabled */ for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) { ret = readl_poll_timeout(sdr->ch[i]->base + RCAR_DRIF_SICTR, ctr, ctr & RCAR_DRIF_SICTR_RX_EN, 7, 100000); if (ret) { rdrif_err(sdr, "ch%u: rx en failed. ctr 0x%08x\n", i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR)); break; } } return ret; } /* Disable reception */ static void rcar_drif_disable_rx(struct rcar_drif_sdr *sdr) { unsigned int i; u32 ctr; int ret; /* Disable receive */ for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) { ctr = rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR); ctr &= ~RCAR_DRIF_SICTR_RX_EN; rcar_drif_write(sdr->ch[i], RCAR_DRIF_SICTR, ctr); } /* Check receive disabled */ for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) { ret = readl_poll_timeout(sdr->ch[i]->base + RCAR_DRIF_SICTR, ctr, !(ctr & RCAR_DRIF_SICTR_RX_EN), 7, 100000); if (ret) dev_warn(&sdr->vdev->dev, "ch%u: failed to disable rx. ctr 0x%08x\n", i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR)); } } /* Stop channel */ static void rcar_drif_stop_channel(struct rcar_drif *ch) { /* Disable DMA receive interrupt */ rcar_drif_write(ch, RCAR_DRIF_SIIER, 0x00000000); /* Terminate all DMA transfers */ dmaengine_terminate_sync(ch->dmach); } /* Stop receive operation */ static void rcar_drif_stop(struct rcar_drif_sdr *sdr) { unsigned int i; /* Disable Rx */ rcar_drif_disable_rx(sdr); for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) rcar_drif_stop_channel(sdr->ch[i]); } /* Start channel */ static int rcar_drif_start_channel(struct rcar_drif *ch) { struct rcar_drif_sdr *sdr = ch->sdr; u32 ctr, str; int ret; /* Reset receive */ rcar_drif_write(ch, RCAR_DRIF_SICTR, RCAR_DRIF_SICTR_RESET); ret = readl_poll_timeout(ch->base + RCAR_DRIF_SICTR, ctr, !(ctr & RCAR_DRIF_SICTR_RESET), 7, 100000); if (ret) { rdrif_err(sdr, "ch%u: failed to reset rx. ctr 0x%08x\n", ch->num, rcar_drif_read(ch, RCAR_DRIF_SICTR)); return ret; } /* Queue buffers for DMA */ ret = rcar_drif_qbuf(ch); if (ret) return ret; /* Clear status register flags */ str = RCAR_DRIF_RFFUL | RCAR_DRIF_REOF | RCAR_DRIF_RFSERR | RCAR_DRIF_RFUDF | RCAR_DRIF_RFOVF; rcar_drif_write(ch, RCAR_DRIF_SISTR, str); /* Enable DMA receive interrupt */ rcar_drif_write(ch, RCAR_DRIF_SIIER, 0x00009000); return ret; } /* Start receive operation */ static int rcar_drif_start(struct rcar_drif_sdr *sdr) { unsigned long enabled = 0; unsigned int i; int ret; for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) { ret = rcar_drif_start_channel(sdr->ch[i]); if (ret) goto start_error; enabled |= BIT(i); } ret = rcar_drif_enable_rx(sdr); if (ret) goto enable_error; sdr->produced = 0; return ret; enable_error: rcar_drif_disable_rx(sdr); start_error: for_each_rcar_drif_channel(i, &enabled) rcar_drif_stop_channel(sdr->ch[i]); return ret; } /* Start streaming */ static int rcar_drif_start_streaming(struct vb2_queue *vq, unsigned int count) { struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq); unsigned long enabled = 0; unsigned int i; int ret; mutex_lock(&sdr->v4l2_mutex); for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) { ret = clk_prepare_enable(sdr->ch[i]->clk); if (ret) goto error; enabled |= BIT(i); } /* Set default MDRx settings */ rcar_drif_set_mdr1(sdr); /* Set new format */ ret = rcar_drif_set_format(sdr); if (ret) goto error; if (sdr->num_cur_ch == RCAR_DRIF_MAX_CHANNEL) sdr->hwbuf_size = sdr->fmt->buffersize / RCAR_DRIF_MAX_CHANNEL; else sdr->hwbuf_size = sdr->fmt->buffersize; rdrif_dbg(sdr, "num hwbufs %u, hwbuf_size %u\n", RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size); /* Alloc DMA channel */ ret = rcar_drif_alloc_dmachannels(sdr); if (ret) goto error; /* Request buffers */ ret = rcar_drif_request_buf(sdr); if (ret) goto error; /* Start Rx */ ret = rcar_drif_start(sdr); if (ret) goto error; mutex_unlock(&sdr->v4l2_mutex); return ret; error: rcar_drif_release_queued_bufs(sdr, VB2_BUF_STATE_QUEUED); rcar_drif_release_buf(sdr); rcar_drif_release_dmachannels(sdr); for_each_rcar_drif_channel(i, &enabled) clk_disable_unprepare(sdr->ch[i]->clk); mutex_unlock(&sdr->v4l2_mutex); return ret; } /* Stop streaming */ static void rcar_drif_stop_streaming(struct vb2_queue *vq) { struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq); unsigned int i; mutex_lock(&sdr->v4l2_mutex); /* Stop hardware streaming */ rcar_drif_stop(sdr); /* Return all queued buffers to vb2 */ rcar_drif_release_queued_bufs(sdr, VB2_BUF_STATE_ERROR); /* Release buf */ rcar_drif_release_buf(sdr); /* Release DMA channel resources */ rcar_drif_release_dmachannels(sdr); for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) clk_disable_unprepare(sdr->ch[i]->clk); mutex_unlock(&sdr->v4l2_mutex); } /* Vb2 ops */ static const struct vb2_ops rcar_drif_vb2_ops = { .queue_setup = rcar_drif_queue_setup, .buf_queue = rcar_drif_buf_queue, .start_streaming = rcar_drif_start_streaming, .stop_streaming = rcar_drif_stop_streaming, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, }; static int rcar_drif_querycap(struct file *file, void *fh, struct v4l2_capability *cap) { struct rcar_drif_sdr *sdr = video_drvdata(file); strscpy(cap->driver, KBUILD_MODNAME, sizeof(cap->driver)); strscpy(cap->card, sdr->vdev->name, sizeof(cap->card)); snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s", sdr->vdev->name); return 0; } static int rcar_drif_set_default_format(struct rcar_drif_sdr *sdr) { unsigned int i; for (i = 0; i < ARRAY_SIZE(formats); i++) { /* Matching fmt based on required channels is set as default */ if (sdr->num_hw_ch == formats[i].num_ch) { sdr->fmt = &formats[i]; sdr->cur_ch_mask = sdr->hw_ch_mask; sdr->num_cur_ch = sdr->num_hw_ch; dev_dbg(sdr->dev, "default fmt[%u]: mask %lu num %u\n", i, sdr->cur_ch_mask, sdr->num_cur_ch); return 0; } } return -EINVAL; } static int rcar_drif_enum_fmt_sdr_cap(struct file *file, void *priv, struct v4l2_fmtdesc *f) { if (f->index >= ARRAY_SIZE(formats)) return -EINVAL; f->pixelformat = formats[f->index].pixelformat; return 0; } static int rcar_drif_g_fmt_sdr_cap(struct file *file, void *priv, struct v4l2_format *f) { struct rcar_drif_sdr *sdr = video_drvdata(file); memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved)); f->fmt.sdr.pixelformat = sdr->fmt->pixelformat; f->fmt.sdr.buffersize = sdr->fmt->buffersize; return 0; } static int rcar_drif_s_fmt_sdr_cap(struct file *file, void *priv, struct v4l2_format *f) { struct rcar_drif_sdr *sdr = video_drvdata(file); struct vb2_queue *q = &sdr->vb_queue; unsigned int i; if (vb2_is_busy(q)) return -EBUSY; for (i = 0; i < ARRAY_SIZE(formats); i++) { if (formats[i].pixelformat == f->fmt.sdr.pixelformat) break; } if (i == ARRAY_SIZE(formats)) i = 0; /* Set the 1st format as default on no match */ sdr->fmt = &formats[i]; f->fmt.sdr.pixelformat = sdr->fmt->pixelformat; f->fmt.sdr.buffersize = formats[i].buffersize; memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved)); /* * If a format demands one channel only out of two * enabled channels, pick the 0th channel. */ if (formats[i].num_ch < sdr->num_hw_ch) { sdr->cur_ch_mask = BIT(0); sdr->num_cur_ch = formats[i].num_ch; } else { sdr->cur_ch_mask = sdr->hw_ch_mask; sdr->num_cur_ch = sdr->num_hw_ch; } rdrif_dbg(sdr, "cur: idx %u mask %lu num %u\n", i, sdr->cur_ch_mask, sdr->num_cur_ch); return 0; } static int rcar_drif_try_fmt_sdr_cap(struct file *file, void *priv, struct v4l2_format *f) { unsigned int i; for (i = 0; i < ARRAY_SIZE(formats); i++) { if (formats[i].pixelformat == f->fmt.sdr.pixelformat) { f->fmt.sdr.buffersize = formats[i].buffersize; return 0; } } f->fmt.sdr.pixelformat = formats[0].pixelformat; f->fmt.sdr.buffersize = formats[0].buffersize; memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved)); return 0; } /* Tuner subdev ioctls */ static int rcar_drif_enum_freq_bands(struct file *file, void *priv, struct v4l2_frequency_band *band) { struct rcar_drif_sdr *sdr = video_drvdata(file); return v4l2_subdev_call(sdr->ep.subdev, tuner, enum_freq_bands, band); } static int rcar_drif_g_frequency(struct file *file, void *priv, struct v4l2_frequency *f) { struct rcar_drif_sdr *sdr = video_drvdata(file); return v4l2_subdev_call(sdr->ep.subdev, tuner, g_frequency, f); } static int rcar_drif_s_frequency(struct file *file, void *priv, const struct v4l2_frequency *f) { struct rcar_drif_sdr *sdr = video_drvdata(file); return v4l2_subdev_call(sdr->ep.subdev, tuner, s_frequency, f); } static int rcar_drif_g_tuner(struct file *file, void *priv, struct v4l2_tuner *vt) { struct rcar_drif_sdr *sdr = video_drvdata(file); return v4l2_subdev_call(sdr->ep.subdev, tuner, g_tuner, vt); } static int rcar_drif_s_tuner(struct file *file, void *priv, const struct v4l2_tuner *vt) { struct rcar_drif_sdr *sdr = video_drvdata(file); return v4l2_subdev_call(sdr->ep.subdev, tuner, s_tuner, vt); } static const struct v4l2_ioctl_ops rcar_drif_ioctl_ops = { .vidioc_querycap = rcar_drif_querycap, .vidioc_enum_fmt_sdr_cap = rcar_drif_enum_fmt_sdr_cap, .vidioc_g_fmt_sdr_cap = rcar_drif_g_fmt_sdr_cap, .vidioc_s_fmt_sdr_cap = rcar_drif_s_fmt_sdr_cap, .vidioc_try_fmt_sdr_cap = rcar_drif_try_fmt_sdr_cap, .vidioc_reqbufs = vb2_ioctl_reqbufs, .vidioc_create_bufs = vb2_ioctl_create_bufs, .vidioc_prepare_buf = vb2_ioctl_prepare_buf, .vidioc_querybuf = vb2_ioctl_querybuf, .vidioc_qbuf = vb2_ioctl_qbuf, .vidioc_dqbuf = vb2_ioctl_dqbuf, .vidioc_streamon = vb2_ioctl_streamon, .vidioc_streamoff = vb2_ioctl_streamoff, .vidioc_s_frequency = rcar_drif_s_frequency, .vidioc_g_frequency = rcar_drif_g_frequency, .vidioc_s_tuner = rcar_drif_s_tuner, .vidioc_g_tuner = rcar_drif_g_tuner, .vidioc_enum_freq_bands = rcar_drif_enum_freq_bands, .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, .vidioc_unsubscribe_event = v4l2_event_unsubscribe, .vidioc_log_status = v4l2_ctrl_log_status, }; static const struct v4l2_file_operations rcar_drif_fops = { .owner = THIS_MODULE, .open = v4l2_fh_open, .release = vb2_fop_release, .read = vb2_fop_read, .poll = vb2_fop_poll, .mmap = vb2_fop_mmap, .unlocked_ioctl = video_ioctl2, }; static int rcar_drif_sdr_register(struct rcar_drif_sdr *sdr) { int ret; /* Init video_device structure */ sdr->vdev = video_device_alloc(); if (!sdr->vdev) return -ENOMEM; snprintf(sdr->vdev->name, sizeof(sdr->vdev->name), "R-Car DRIF"); sdr->vdev->fops = &rcar_drif_fops; sdr->vdev->ioctl_ops = &rcar_drif_ioctl_ops; sdr->vdev->release = video_device_release; sdr->vdev->lock = &sdr->v4l2_mutex; sdr->vdev->queue = &sdr->vb_queue; sdr->vdev->queue->lock = &sdr->vb_queue_mutex; sdr->vdev->ctrl_handler = &sdr->ctrl_hdl; sdr->vdev->v4l2_dev = &sdr->v4l2_dev; sdr->vdev->device_caps = V4L2_CAP_SDR_CAPTURE | V4L2_CAP_TUNER | V4L2_CAP_STREAMING | V4L2_CAP_READWRITE; video_set_drvdata(sdr->vdev, sdr); /* Register V4L2 SDR device */ ret = video_register_device(sdr->vdev, VFL_TYPE_SDR, -1); if (ret) { video_device_release(sdr->vdev); sdr->vdev = NULL; dev_err(sdr->dev, "failed video_register_device (%d)\n", ret); } return ret; } static void rcar_drif_sdr_unregister(struct rcar_drif_sdr *sdr) { video_unregister_device(sdr->vdev); sdr->vdev = NULL; } /* Sub-device bound callback */ static int rcar_drif_notify_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *subdev, struct v4l2_async_subdev *asd) { struct rcar_drif_sdr *sdr = container_of(notifier, struct rcar_drif_sdr, notifier); if (sdr->ep.asd.match.fwnode != of_fwnode_handle(subdev->dev->of_node)) { rdrif_err(sdr, "subdev %s cannot bind\n", subdev->name); return -EINVAL; } v4l2_set_subdev_hostdata(subdev, sdr); sdr->ep.subdev = subdev; rdrif_dbg(sdr, "bound asd %s\n", subdev->name); return 0; } /* Sub-device unbind callback */ static void rcar_drif_notify_unbind(struct v4l2_async_notifier *notifier, struct v4l2_subdev *subdev, struct v4l2_async_subdev *asd) { struct rcar_drif_sdr *sdr = container_of(notifier, struct rcar_drif_sdr, notifier); if (sdr->ep.subdev != subdev) { rdrif_err(sdr, "subdev %s is not bound\n", subdev->name); return; } /* Free ctrl handler if initialized */ v4l2_ctrl_handler_free(&sdr->ctrl_hdl); sdr->v4l2_dev.ctrl_handler = NULL; sdr->ep.subdev = NULL; rcar_drif_sdr_unregister(sdr); rdrif_dbg(sdr, "unbind asd %s\n", subdev->name); } /* Sub-device registered notification callback */ static int rcar_drif_notify_complete(struct v4l2_async_notifier *notifier) { struct rcar_drif_sdr *sdr = container_of(notifier, struct rcar_drif_sdr, notifier); int ret; /* * The subdev tested at this point uses 4 controls. Using 10 as a worst * case scenario hint. When less controls are needed there will be some * unused memory and when more controls are needed the framework uses * hash to manage controls within this number. */ ret = v4l2_ctrl_handler_init(&sdr->ctrl_hdl, 10); if (ret) return -ENOMEM; sdr->v4l2_dev.ctrl_handler = &sdr->ctrl_hdl; ret = v4l2_device_register_subdev_nodes(&sdr->v4l2_dev); if (ret) { rdrif_err(sdr, "failed: register subdev nodes ret %d\n", ret); goto error; } ret = v4l2_ctrl_add_handler(&sdr->ctrl_hdl, sdr->ep.subdev->ctrl_handler, NULL, true); if (ret) { rdrif_err(sdr, "failed: ctrl add hdlr ret %d\n", ret); goto error; } ret = rcar_drif_sdr_register(sdr); if (ret) goto error; return ret; error: v4l2_ctrl_handler_free(&sdr->ctrl_hdl); return ret; } static const struct v4l2_async_notifier_operations rcar_drif_notify_ops = { .bound = rcar_drif_notify_bound, .unbind = rcar_drif_notify_unbind, .complete = rcar_drif_notify_complete, }; /* Read endpoint properties */ static void rcar_drif_get_ep_properties(struct rcar_drif_sdr *sdr, struct fwnode_handle *fwnode) { u32 val; /* Set the I2S defaults for SIRMDR1*/ sdr->mdr1 = RCAR_DRIF_SIRMDR1_SYNCMD_LR | RCAR_DRIF_SIRMDR1_MSB_FIRST | RCAR_DRIF_SIRMDR1_DTDL_1 | RCAR_DRIF_SIRMDR1_SYNCDL_0; /* Parse sync polarity from endpoint */ if (!fwnode_property_read_u32(fwnode, "sync-active", &val)) sdr->mdr1 |= val ? RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH : RCAR_DRIF_SIRMDR1_SYNCAC_POL_LOW; else sdr->mdr1 |= RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH; /* default */ dev_dbg(sdr->dev, "mdr1 0x%08x\n", sdr->mdr1); } /* Parse sub-devs (tuner) to find a matching device */ static int rcar_drif_parse_subdevs(struct rcar_drif_sdr *sdr) { struct v4l2_async_notifier *notifier = &sdr->notifier; struct fwnode_handle *fwnode, *ep; int ret; v4l2_async_notifier_init(notifier); ep = fwnode_graph_get_next_endpoint(of_fwnode_handle(sdr->dev->of_node), NULL); if (!ep) return 0; fwnode = fwnode_graph_get_remote_port_parent(ep); if (!fwnode) { dev_warn(sdr->dev, "bad remote port parent\n"); fwnode_handle_put(ep); return -EINVAL; } sdr->ep.asd.match.fwnode = fwnode; sdr->ep.asd.match_type = V4L2_ASYNC_MATCH_FWNODE; ret = v4l2_async_notifier_add_subdev(notifier, &sdr->ep.asd); if (ret) { fwnode_handle_put(fwnode); return ret; } /* Get the endpoint properties */ rcar_drif_get_ep_properties(sdr, ep); fwnode_handle_put(fwnode); fwnode_handle_put(ep); return 0; } /* Check if the given device is the primary bond */ static bool rcar_drif_primary_bond(struct platform_device *pdev) { return of_property_read_bool(pdev->dev.of_node, "renesas,primary-bond"); } /* Check if both devices of the bond are enabled */ static struct device_node *rcar_drif_bond_enabled(struct platform_device *p) { struct device_node *np; np = of_parse_phandle(p->dev.of_node, "renesas,bonding", 0); if (np && of_device_is_available(np)) return np; return NULL; } /* Check if the bonded device is probed */ static int rcar_drif_bond_available(struct rcar_drif_sdr *sdr, struct device_node *np) { struct platform_device *pdev; struct rcar_drif *ch; int ret = 0; pdev = of_find_device_by_node(np); if (!pdev) { dev_err(sdr->dev, "failed to get bonded device from node\n"); return -ENODEV; } device_lock(&pdev->dev); ch = platform_get_drvdata(pdev); if (ch) { /* Update sdr data in the bonded device */ ch->sdr = sdr; /* Update sdr with bonded device data */ sdr->ch[ch->num] = ch; sdr->hw_ch_mask |= BIT(ch->num); } else { /* Defer */ dev_info(sdr->dev, "defer probe\n"); ret = -EPROBE_DEFER; } device_unlock(&pdev->dev); put_device(&pdev->dev); return ret; } /* V4L2 SDR device probe */ static int rcar_drif_sdr_probe(struct rcar_drif_sdr *sdr) { int ret; /* Validate any supported format for enabled channels */ ret = rcar_drif_set_default_format(sdr); if (ret) { dev_err(sdr->dev, "failed to set default format\n"); return ret; } /* Set defaults */ sdr->hwbuf_size = RCAR_DRIF_DEFAULT_HWBUF_SIZE; mutex_init(&sdr->v4l2_mutex); mutex_init(&sdr->vb_queue_mutex); spin_lock_init(&sdr->queued_bufs_lock); spin_lock_init(&sdr->dma_lock); INIT_LIST_HEAD(&sdr->queued_bufs); /* Init videobuf2 queue structure */ sdr->vb_queue.type = V4L2_BUF_TYPE_SDR_CAPTURE; sdr->vb_queue.io_modes = VB2_READ | VB2_MMAP | VB2_DMABUF; sdr->vb_queue.drv_priv = sdr; sdr->vb_queue.buf_struct_size = sizeof(struct rcar_drif_frame_buf); sdr->vb_queue.ops = &rcar_drif_vb2_ops; sdr->vb_queue.mem_ops = &vb2_vmalloc_memops; sdr->vb_queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; /* Init videobuf2 queue */ ret = vb2_queue_init(&sdr->vb_queue); if (ret) { dev_err(sdr->dev, "failed: vb2_queue_init ret %d\n", ret); return ret; } /* Register the v4l2_device */ ret = v4l2_device_register(sdr->dev, &sdr->v4l2_dev); if (ret) { dev_err(sdr->dev, "failed: v4l2_device_register ret %d\n", ret); return ret; } /* * Parse subdevs after v4l2_device_register because if the subdev * is already probed, bound and complete will be called immediately */ ret = rcar_drif_parse_subdevs(sdr); if (ret) goto error; sdr->notifier.ops = &rcar_drif_notify_ops; /* Register notifier */ ret = v4l2_async_notifier_register(&sdr->v4l2_dev, &sdr->notifier); if (ret < 0) { dev_err(sdr->dev, "failed: notifier register ret %d\n", ret); goto cleanup; } return ret; cleanup: v4l2_async_notifier_cleanup(&sdr->notifier); error: v4l2_device_unregister(&sdr->v4l2_dev); return ret; } /* V4L2 SDR device remove */ static void rcar_drif_sdr_remove(struct rcar_drif_sdr *sdr) { v4l2_async_notifier_unregister(&sdr->notifier); v4l2_async_notifier_cleanup(&sdr->notifier); v4l2_device_unregister(&sdr->v4l2_dev); } /* DRIF channel probe */ static int rcar_drif_probe(struct platform_device *pdev) { struct rcar_drif_sdr *sdr; struct device_node *np; struct rcar_drif *ch; struct resource *res; int ret; /* Reserve memory for enabled channel */ ch = devm_kzalloc(&pdev->dev, sizeof(*ch), GFP_KERNEL); if (!ch) return -ENOMEM; ch->pdev = pdev; /* Module clock */ ch->clk = devm_clk_get(&pdev->dev, "fck"); if (IS_ERR(ch->clk)) { ret = PTR_ERR(ch->clk); dev_err(&pdev->dev, "clk get failed (%d)\n", ret); return ret; } /* Register map */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ch->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(ch->base)) return PTR_ERR(ch->base); ch->start = res->start; platform_set_drvdata(pdev, ch); /* Check if both channels of the bond are enabled */ np = rcar_drif_bond_enabled(pdev); if (np) { /* Check if current channel acting as primary-bond */ if (!rcar_drif_primary_bond(pdev)) { ch->num = 1; /* Primary bond is channel 0 always */ of_node_put(np); return 0; } } /* Reserve memory for SDR structure */ sdr = devm_kzalloc(&pdev->dev, sizeof(*sdr), GFP_KERNEL); if (!sdr) { of_node_put(np); return -ENOMEM; } ch->sdr = sdr; sdr->dev = &pdev->dev; /* Establish links between SDR and channel(s) */ sdr->ch[ch->num] = ch; sdr->hw_ch_mask = BIT(ch->num); if (np) { /* Check if bonded device is ready */ ret = rcar_drif_bond_available(sdr, np); of_node_put(np); if (ret) return ret; } sdr->num_hw_ch = hweight_long(sdr->hw_ch_mask); return rcar_drif_sdr_probe(sdr); } /* DRIF channel remove */ static int rcar_drif_remove(struct platform_device *pdev) { struct rcar_drif *ch = platform_get_drvdata(pdev); struct rcar_drif_sdr *sdr = ch->sdr; /* Channel 0 will be the SDR instance */ if (ch->num) return 0; /* SDR instance */ rcar_drif_sdr_remove(sdr); return 0; } /* FIXME: Implement suspend/resume support */ static int __maybe_unused rcar_drif_suspend(struct device *dev) { return 0; } static int __maybe_unused rcar_drif_resume(struct device *dev) { return 0; } static SIMPLE_DEV_PM_OPS(rcar_drif_pm_ops, rcar_drif_suspend, rcar_drif_resume); static const struct of_device_id rcar_drif_of_table[] = { { .compatible = "renesas,rcar-gen3-drif" }, { } }; MODULE_DEVICE_TABLE(of, rcar_drif_of_table); #define RCAR_DRIF_DRV_NAME "rcar_drif" static struct platform_driver rcar_drif_driver = { .driver = { .name = RCAR_DRIF_DRV_NAME, .of_match_table = of_match_ptr(rcar_drif_of_table), .pm = &rcar_drif_pm_ops, }, .probe = rcar_drif_probe, .remove = rcar_drif_remove, }; module_platform_driver(rcar_drif_driver); MODULE_DESCRIPTION("Renesas R-Car Gen3 DRIF driver"); MODULE_ALIAS("platform:" RCAR_DRIF_DRV_NAME); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1