Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Benoit Parrot | 11527 | 98.18% | 18 | 51.43% |
Steve Longerbeam | 118 | 1.01% | 1 | 2.86% |
Nikhil Devshatwar | 24 | 0.20% | 1 | 2.86% |
Hans Verkuil | 23 | 0.20% | 4 | 11.43% |
Laurent Pinchart | 21 | 0.18% | 1 | 2.86% |
Sakari Ailus | 10 | 0.09% | 3 | 8.57% |
Rob Herring | 6 | 0.05% | 2 | 5.71% |
Wen Yang | 5 | 0.04% | 1 | 2.86% |
Mauro Carvalho Chehab | 3 | 0.03% | 1 | 2.86% |
Thomas Gleixner | 2 | 0.02% | 1 | 2.86% |
Julia Lawall | 1 | 0.01% | 1 | 2.86% |
Bhumika Goyal | 1 | 0.01% | 1 | 2.86% |
Total | 11741 | 35 |
// SPDX-License-Identifier: GPL-2.0-only /* * TI CAL camera interface driver * * Copyright (c) 2015 Texas Instruments Inc. * Benoit Parrot, <bparrot@ti.com> */ #include <linux/interrupt.h> #include <linux/io.h> #include <linux/ioctl.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/pm_runtime.h> #include <linux/slab.h> #include <linux/mfd/syscon.h> #include <linux/regmap.h> #include <linux/videodev2.h> #include <linux/of_device.h> #include <linux/of_graph.h> #include <media/v4l2-fwnode.h> #include <media/v4l2-async.h> #include <media/v4l2-common.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-device.h> #include <media/v4l2-event.h> #include <media/v4l2-ioctl.h> #include <media/v4l2-fh.h> #include <media/videobuf2-core.h> #include <media/videobuf2-dma-contig.h> #include "cal_regs.h" #define CAL_MODULE_NAME "cal" #define MAX_WIDTH_BYTES (8192 * 8) #define MAX_HEIGHT_LINES 16383 #define CAL_VERSION "0.1.0" MODULE_DESCRIPTION("TI CAL driver"); MODULE_AUTHOR("Benoit Parrot, <bparrot@ti.com>"); MODULE_LICENSE("GPL v2"); MODULE_VERSION(CAL_VERSION); static unsigned video_nr = -1; module_param(video_nr, uint, 0644); MODULE_PARM_DESC(video_nr, "videoX start number, -1 is autodetect"); static unsigned debug; module_param(debug, uint, 0644); MODULE_PARM_DESC(debug, "activates debug info"); /* timeperframe: min/max and default */ static const struct v4l2_fract tpf_default = {.numerator = 1001, .denominator = 30000}; #define cal_dbg(level, caldev, fmt, arg...) \ v4l2_dbg(level, debug, &caldev->v4l2_dev, fmt, ##arg) #define cal_info(caldev, fmt, arg...) \ v4l2_info(&caldev->v4l2_dev, fmt, ##arg) #define cal_err(caldev, fmt, arg...) \ v4l2_err(&caldev->v4l2_dev, fmt, ##arg) #define ctx_dbg(level, ctx, fmt, arg...) \ v4l2_dbg(level, debug, &ctx->v4l2_dev, fmt, ##arg) #define ctx_info(ctx, fmt, arg...) \ v4l2_info(&ctx->v4l2_dev, fmt, ##arg) #define ctx_err(ctx, fmt, arg...) \ v4l2_err(&ctx->v4l2_dev, fmt, ##arg) #define CAL_NUM_INPUT 1 #define CAL_NUM_CONTEXT 2 #define reg_read(dev, offset) ioread32(dev->base + offset) #define reg_write(dev, offset, val) iowrite32(val, dev->base + offset) #define reg_read_field(dev, offset, mask) get_field(reg_read(dev, offset), \ mask) #define reg_write_field(dev, offset, field, mask) { \ u32 val = reg_read(dev, offset); \ set_field(&val, field, mask); \ reg_write(dev, offset, val); } /* ------------------------------------------------------------------ * Basic structures * ------------------------------------------------------------------ */ struct cal_fmt { u32 fourcc; u32 code; /* Bits per pixel */ u8 bpp; }; static struct cal_fmt cal_formats[] = { { .fourcc = V4L2_PIX_FMT_YUYV, .code = MEDIA_BUS_FMT_YUYV8_2X8, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_UYVY, .code = MEDIA_BUS_FMT_UYVY8_2X8, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_YVYU, .code = MEDIA_BUS_FMT_YVYU8_2X8, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_VYUY, .code = MEDIA_BUS_FMT_VYUY8_2X8, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_RGB565, /* gggbbbbb rrrrrggg */ .code = MEDIA_BUS_FMT_RGB565_2X8_LE, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_RGB565X, /* rrrrrggg gggbbbbb */ .code = MEDIA_BUS_FMT_RGB565_2X8_BE, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_RGB555, /* gggbbbbb arrrrrgg */ .code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_LE, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_RGB555X, /* arrrrrgg gggbbbbb */ .code = MEDIA_BUS_FMT_RGB555_2X8_PADHI_BE, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_RGB24, /* rgb */ .code = MEDIA_BUS_FMT_RGB888_2X12_LE, .bpp = 24, }, { .fourcc = V4L2_PIX_FMT_BGR24, /* bgr */ .code = MEDIA_BUS_FMT_RGB888_2X12_BE, .bpp = 24, }, { .fourcc = V4L2_PIX_FMT_RGB32, /* argb */ .code = MEDIA_BUS_FMT_ARGB8888_1X32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_SBGGR8, .code = MEDIA_BUS_FMT_SBGGR8_1X8, .bpp = 8, }, { .fourcc = V4L2_PIX_FMT_SGBRG8, .code = MEDIA_BUS_FMT_SGBRG8_1X8, .bpp = 8, }, { .fourcc = V4L2_PIX_FMT_SGRBG8, .code = MEDIA_BUS_FMT_SGRBG8_1X8, .bpp = 8, }, { .fourcc = V4L2_PIX_FMT_SRGGB8, .code = MEDIA_BUS_FMT_SRGGB8_1X8, .bpp = 8, }, { .fourcc = V4L2_PIX_FMT_SBGGR10, .code = MEDIA_BUS_FMT_SBGGR10_1X10, .bpp = 10, }, { .fourcc = V4L2_PIX_FMT_SGBRG10, .code = MEDIA_BUS_FMT_SGBRG10_1X10, .bpp = 10, }, { .fourcc = V4L2_PIX_FMT_SGRBG10, .code = MEDIA_BUS_FMT_SGRBG10_1X10, .bpp = 10, }, { .fourcc = V4L2_PIX_FMT_SRGGB10, .code = MEDIA_BUS_FMT_SRGGB10_1X10, .bpp = 10, }, { .fourcc = V4L2_PIX_FMT_SBGGR12, .code = MEDIA_BUS_FMT_SBGGR12_1X12, .bpp = 12, }, { .fourcc = V4L2_PIX_FMT_SGBRG12, .code = MEDIA_BUS_FMT_SGBRG12_1X12, .bpp = 12, }, { .fourcc = V4L2_PIX_FMT_SGRBG12, .code = MEDIA_BUS_FMT_SGRBG12_1X12, .bpp = 12, }, { .fourcc = V4L2_PIX_FMT_SRGGB12, .code = MEDIA_BUS_FMT_SRGGB12_1X12, .bpp = 12, }, }; /* Print Four-character-code (FOURCC) */ static char *fourcc_to_str(u32 fmt) { static char code[5]; code[0] = (unsigned char)(fmt & 0xff); code[1] = (unsigned char)((fmt >> 8) & 0xff); code[2] = (unsigned char)((fmt >> 16) & 0xff); code[3] = (unsigned char)((fmt >> 24) & 0xff); code[4] = '\0'; return code; } /* buffer for one video frame */ struct cal_buffer { /* common v4l buffer stuff -- must be first */ struct vb2_v4l2_buffer vb; struct list_head list; const struct cal_fmt *fmt; }; struct cal_dmaqueue { struct list_head active; /* Counters to control fps rate */ int frame; int ini_jiffies; }; struct cc_data { void __iomem *base; struct resource *res; struct platform_device *pdev; }; /* CTRL_CORE_CAMERRX_CONTROL register field id */ enum cal_camerarx_field { F_CTRLCLKEN, F_CAMMODE, F_LANEENABLE, F_CSI_MODE, F_MAX_FIELDS, }; struct cal_csi2_phy { struct regmap_field *fields[F_MAX_FIELDS]; struct reg_field *base_fields; const int num_lanes; }; struct cal_data { const int num_csi2_phy; struct cal_csi2_phy *csi2_phy_core; const unsigned int flags; }; static struct reg_field dra72x_ctrl_core_csi0_reg_fields[F_MAX_FIELDS] = { [F_CTRLCLKEN] = REG_FIELD(0, 10, 10), [F_CAMMODE] = REG_FIELD(0, 11, 12), [F_LANEENABLE] = REG_FIELD(0, 13, 16), [F_CSI_MODE] = REG_FIELD(0, 17, 17), }; static struct reg_field dra72x_ctrl_core_csi1_reg_fields[F_MAX_FIELDS] = { [F_CTRLCLKEN] = REG_FIELD(0, 0, 0), [F_CAMMODE] = REG_FIELD(0, 1, 2), [F_LANEENABLE] = REG_FIELD(0, 3, 4), [F_CSI_MODE] = REG_FIELD(0, 5, 5), }; static struct cal_csi2_phy dra72x_cal_csi_phy[] = { { .base_fields = dra72x_ctrl_core_csi0_reg_fields, .num_lanes = 4, }, { .base_fields = dra72x_ctrl_core_csi1_reg_fields, .num_lanes = 2, }, }; static const struct cal_data dra72x_cal_data = { .csi2_phy_core = dra72x_cal_csi_phy, .num_csi2_phy = ARRAY_SIZE(dra72x_cal_csi_phy), }; static const struct cal_data dra72x_es1_cal_data = { .csi2_phy_core = dra72x_cal_csi_phy, .num_csi2_phy = ARRAY_SIZE(dra72x_cal_csi_phy), .flags = DRA72_CAL_PRE_ES2_LDO_DISABLE, }; static struct reg_field dra76x_ctrl_core_csi0_reg_fields[F_MAX_FIELDS] = { [F_CTRLCLKEN] = REG_FIELD(0, 8, 8), [F_CAMMODE] = REG_FIELD(0, 9, 10), [F_CSI_MODE] = REG_FIELD(0, 11, 11), [F_LANEENABLE] = REG_FIELD(0, 27, 31), }; static struct reg_field dra76x_ctrl_core_csi1_reg_fields[F_MAX_FIELDS] = { [F_CTRLCLKEN] = REG_FIELD(0, 0, 0), [F_CAMMODE] = REG_FIELD(0, 1, 2), [F_CSI_MODE] = REG_FIELD(0, 3, 3), [F_LANEENABLE] = REG_FIELD(0, 24, 26), }; static struct cal_csi2_phy dra76x_cal_csi_phy[] = { { .base_fields = dra76x_ctrl_core_csi0_reg_fields, .num_lanes = 5, }, { .base_fields = dra76x_ctrl_core_csi1_reg_fields, .num_lanes = 3, }, }; static const struct cal_data dra76x_cal_data = { .csi2_phy_core = dra76x_cal_csi_phy, .num_csi2_phy = ARRAY_SIZE(dra76x_cal_csi_phy), }; static struct reg_field am654_ctrl_core_csi0_reg_fields[F_MAX_FIELDS] = { [F_CTRLCLKEN] = REG_FIELD(0, 15, 15), [F_CAMMODE] = REG_FIELD(0, 24, 25), [F_LANEENABLE] = REG_FIELD(0, 0, 4), }; static struct cal_csi2_phy am654_cal_csi_phy[] = { { .base_fields = am654_ctrl_core_csi0_reg_fields, .num_lanes = 5, }, }; static const struct cal_data am654_cal_data = { .csi2_phy_core = am654_cal_csi_phy, .num_csi2_phy = ARRAY_SIZE(am654_cal_csi_phy), }; /* * there is one cal_dev structure in the driver, it is shared by * all instances. */ struct cal_dev { int irq; void __iomem *base; struct resource *res; struct platform_device *pdev; struct v4l2_device v4l2_dev; /* Controller flags for special cases */ unsigned int flags; const struct cal_data *data; /* Control Module handle */ struct regmap *syscon_camerrx; u32 syscon_camerrx_offset; /* Camera Core Module handle */ struct cc_data *cc[CAL_NUM_CSI2_PORTS]; struct cal_ctx *ctx[CAL_NUM_CONTEXT]; }; /* * There is one cal_ctx structure for each camera core context. */ struct cal_ctx { struct v4l2_device v4l2_dev; struct v4l2_ctrl_handler ctrl_handler; struct video_device vdev; struct v4l2_async_notifier notifier; struct v4l2_subdev *sensor; struct v4l2_fwnode_endpoint endpoint; struct v4l2_fh fh; struct cal_dev *dev; struct cc_data *cc; /* v4l2_ioctl mutex */ struct mutex mutex; /* v4l2 buffers lock */ spinlock_t slock; /* Several counters */ unsigned long jiffies; struct cal_dmaqueue vidq; /* Input Number */ int input; /* video capture */ const struct cal_fmt *fmt; /* Used to store current pixel format */ struct v4l2_format v_fmt; /* Used to store current mbus frame format */ struct v4l2_mbus_framefmt m_fmt; /* Current subdev enumerated format */ struct cal_fmt *active_fmt[ARRAY_SIZE(cal_formats)]; int num_active_fmt; struct v4l2_fract timeperframe; unsigned int sequence; unsigned int external_rate; struct vb2_queue vb_vidq; unsigned int seq_count; unsigned int csi2_port; unsigned int virtual_channel; /* Pointer pointing to current v4l2_buffer */ struct cal_buffer *cur_frm; /* Pointer pointing to next v4l2_buffer */ struct cal_buffer *next_frm; }; static const struct cal_fmt *find_format_by_pix(struct cal_ctx *ctx, u32 pixelformat) { const struct cal_fmt *fmt; unsigned int k; for (k = 0; k < ctx->num_active_fmt; k++) { fmt = ctx->active_fmt[k]; if (fmt->fourcc == pixelformat) return fmt; } return NULL; } static const struct cal_fmt *find_format_by_code(struct cal_ctx *ctx, u32 code) { const struct cal_fmt *fmt; unsigned int k; for (k = 0; k < ctx->num_active_fmt; k++) { fmt = ctx->active_fmt[k]; if (fmt->code == code) return fmt; } return NULL; } static inline struct cal_ctx *notifier_to_ctx(struct v4l2_async_notifier *n) { return container_of(n, struct cal_ctx, notifier); } static inline int get_field(u32 value, u32 mask) { return (value & mask) >> __ffs(mask); } static inline void set_field(u32 *valp, u32 field, u32 mask) { u32 val = *valp; val &= ~mask; val |= (field << __ffs(mask)) & mask; *valp = val; } static u32 cal_data_get_phy_max_lanes(struct cal_ctx *ctx) { struct cal_dev *dev = ctx->dev; u32 phy_id = ctx->csi2_port - 1; return dev->data->csi2_phy_core[phy_id].num_lanes; } static u32 cal_data_get_num_csi2_phy(struct cal_dev *dev) { return dev->data->num_csi2_phy; } static int cal_camerarx_regmap_init(struct cal_dev *dev) { struct reg_field *field; struct cal_csi2_phy *phy; int i, j; if (!dev->data) return -EINVAL; for (i = 0; i < cal_data_get_num_csi2_phy(dev); i++) { phy = &dev->data->csi2_phy_core[i]; for (j = 0; j < F_MAX_FIELDS; j++) { field = &phy->base_fields[j]; /* * Here we update the reg offset with the * value found in DT */ field->reg = dev->syscon_camerrx_offset; phy->fields[j] = devm_regmap_field_alloc(&dev->pdev->dev, dev->syscon_camerrx, *field); if (IS_ERR(phy->fields[j])) { cal_err(dev, "Unable to allocate regmap fields\n"); return PTR_ERR(phy->fields[j]); } } } return 0; } static const struct regmap_config cal_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, }; static struct regmap *cal_get_camerarx_regmap(struct cal_dev *dev) { struct platform_device *pdev = dev->pdev; struct regmap *regmap; void __iomem *base; u32 reg_io_width; struct regmap_config r_config = cal_regmap_config; struct resource *res; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "camerrx_control"); base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base)) { cal_err(dev, "failed to ioremap\n"); return ERR_CAST(base); } cal_dbg(1, dev, "ioresource %s at %pa - %pa\n", res->name, &res->start, &res->end); reg_io_width = 4; r_config.reg_stride = reg_io_width; r_config.val_bits = reg_io_width * 8; r_config.max_register = resource_size(res) - reg_io_width; regmap = regmap_init_mmio(NULL, base, &r_config); if (IS_ERR(regmap)) pr_err("regmap init failed\n"); return regmap; } /* * Control Module CAMERARX block access */ static void camerarx_phy_enable(struct cal_ctx *ctx) { struct cal_csi2_phy *phy; u32 phy_id = ctx->csi2_port - 1; u32 max_lanes; phy = &ctx->dev->data->csi2_phy_core[phy_id]; regmap_field_write(phy->fields[F_CAMMODE], 0); /* Always enable all lanes at the phy control level */ max_lanes = (1 << cal_data_get_phy_max_lanes(ctx)) - 1; regmap_field_write(phy->fields[F_LANEENABLE], max_lanes); /* F_CSI_MODE is not present on every architecture */ if (phy->fields[F_CSI_MODE]) regmap_field_write(phy->fields[F_CSI_MODE], 1); regmap_field_write(phy->fields[F_CTRLCLKEN], 1); } static void camerarx_phy_disable(struct cal_ctx *ctx) { struct cal_csi2_phy *phy; u32 phy_id = ctx->csi2_port - 1; phy = &ctx->dev->data->csi2_phy_core[phy_id]; regmap_field_write(phy->fields[F_CTRLCLKEN], 0); } /* * Camera Instance access block */ static struct cc_data *cc_create(struct cal_dev *dev, unsigned int core) { struct platform_device *pdev = dev->pdev; struct cc_data *cc; cc = devm_kzalloc(&pdev->dev, sizeof(*cc), GFP_KERNEL); if (!cc) return ERR_PTR(-ENOMEM); cc->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, (core == 0) ? "cal_rx_core0" : "cal_rx_core1"); cc->base = devm_ioremap_resource(&pdev->dev, cc->res); if (IS_ERR(cc->base)) { cal_err(dev, "failed to ioremap\n"); return ERR_CAST(cc->base); } cal_dbg(1, dev, "ioresource %s at %pa - %pa\n", cc->res->name, &cc->res->start, &cc->res->end); return cc; } /* * Get Revision and HW info */ static void cal_get_hwinfo(struct cal_dev *dev) { u32 revision = 0; u32 hwinfo = 0; revision = reg_read(dev, CAL_HL_REVISION); cal_dbg(3, dev, "CAL_HL_REVISION = 0x%08x (expecting 0x40000200)\n", revision); hwinfo = reg_read(dev, CAL_HL_HWINFO); cal_dbg(3, dev, "CAL_HL_HWINFO = 0x%08x (expecting 0xA3C90469)\n", hwinfo); } /* * Errata i913: CSI2 LDO Needs to be disabled when module is powered on * * Enabling CSI2 LDO shorts it to core supply. It is crucial the 2 CSI2 * LDOs on the device are disabled if CSI-2 module is powered on * (0x4845 B304 | 0x4845 B384 [28:27] = 0x1) or in ULPS (0x4845 B304 * | 0x4845 B384 [28:27] = 0x2) mode. Common concerns include: high * current draw on the module supply in active mode. * * Errata does not apply when CSI-2 module is powered off * (0x4845 B304 | 0x4845 B384 [28:27] = 0x0). * * SW Workaround: * Set the following register bits to disable the LDO, * which is essentially CSI2 REG10 bit 6: * * Core 0: 0x4845 B828 = 0x0000 0040 * Core 1: 0x4845 B928 = 0x0000 0040 */ static void i913_errata(struct cal_dev *dev, unsigned int port) { u32 reg10 = reg_read(dev->cc[port], CAL_CSI2_PHY_REG10); set_field(®10, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE, CAL_CSI2_PHY_REG10_I933_LDO_DISABLE_MASK); cal_dbg(1, dev, "CSI2_%d_REG10 = 0x%08x\n", port, reg10); reg_write(dev->cc[port], CAL_CSI2_PHY_REG10, reg10); } static int cal_runtime_get(struct cal_dev *dev) { int r; r = pm_runtime_get_sync(&dev->pdev->dev); if (dev->flags & DRA72_CAL_PRE_ES2_LDO_DISABLE) { /* * Apply errata on both port eveytime we (re-)enable * the clock */ i913_errata(dev, 0); i913_errata(dev, 1); } return r; } static inline void cal_runtime_put(struct cal_dev *dev) { pm_runtime_put_sync(&dev->pdev->dev); } static void cal_quickdump_regs(struct cal_dev *dev) { cal_info(dev, "CAL Registers @ 0x%pa:\n", &dev->res->start); print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, (__force const void *)dev->base, resource_size(dev->res), false); if (dev->ctx[0]) { cal_info(dev, "CSI2 Core 0 Registers @ %pa:\n", &dev->ctx[0]->cc->res->start); print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, (__force const void *)dev->ctx[0]->cc->base, resource_size(dev->ctx[0]->cc->res), false); } if (dev->ctx[1]) { cal_info(dev, "CSI2 Core 1 Registers @ %pa:\n", &dev->ctx[1]->cc->res->start); print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4, (__force const void *)dev->ctx[1]->cc->base, resource_size(dev->ctx[1]->cc->res), false); } } /* * Enable the expected IRQ sources */ static void enable_irqs(struct cal_ctx *ctx) { /* Enable IRQ_WDMA_END 0/1 */ reg_write_field(ctx->dev, CAL_HL_IRQENABLE_SET(2), CAL_HL_IRQ_ENABLE, CAL_HL_IRQ_MASK(ctx->csi2_port)); /* Enable IRQ_WDMA_START 0/1 */ reg_write_field(ctx->dev, CAL_HL_IRQENABLE_SET(3), CAL_HL_IRQ_ENABLE, CAL_HL_IRQ_MASK(ctx->csi2_port)); /* Todo: Add VC_IRQ and CSI2_COMPLEXIO_IRQ handling */ reg_write(ctx->dev, CAL_CSI2_VC_IRQENABLE(1), 0xFF000000); } static void disable_irqs(struct cal_ctx *ctx) { u32 val; /* Disable IRQ_WDMA_END 0/1 */ val = 0; set_field(&val, CAL_HL_IRQ_CLEAR, CAL_HL_IRQ_MASK(ctx->csi2_port)); reg_write(ctx->dev, CAL_HL_IRQENABLE_CLR(2), val); /* Disable IRQ_WDMA_START 0/1 */ val = 0; set_field(&val, CAL_HL_IRQ_CLEAR, CAL_HL_IRQ_MASK(ctx->csi2_port)); reg_write(ctx->dev, CAL_HL_IRQENABLE_CLR(3), val); /* Todo: Add VC_IRQ and CSI2_COMPLEXIO_IRQ handling */ reg_write(ctx->dev, CAL_CSI2_VC_IRQENABLE(1), 0); } static void csi2_phy_config(struct cal_ctx *ctx); static void csi2_phy_init(struct cal_ctx *ctx) { int i; u32 val; /* Steps * 1. Configure D-PHY mode and enable required lanes * 2. Reset complex IO - Wait for completion of reset * Note if the external sensor is not sending byte clock, * the reset will timeout * 3 Program Stop States * A. Program THS_TERM, THS_SETTLE, etc... Timings parameters * in terms of DDR clock periods * B. Enable stop state transition timeouts * 4.Force FORCERXMODE * D. Enable pull down using pad control * E. Power up PHY * F. Wait for power up completion * G. Wait for all enabled lane to reach stop state * H. Disable pull down using pad control */ /* 1. Configure D-PHY mode and enable required lanes */ camerarx_phy_enable(ctx); /* 2. Reset complex IO - Do not wait for reset completion */ val = reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port)); set_field(&val, CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_OPERATIONAL, CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK); reg_write(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port), val); ctx_dbg(3, ctx, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x De-assert Complex IO Reset\n", ctx->csi2_port, reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port))); /* Dummy read to allow SCP to complete */ val = reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port)); /* 3.A. Program Phy Timing Parameters */ csi2_phy_config(ctx); /* 3.B. Program Stop States */ val = reg_read(ctx->dev, CAL_CSI2_TIMING(ctx->csi2_port)); set_field(&val, CAL_GEN_ENABLE, CAL_CSI2_TIMING_STOP_STATE_X16_IO1_MASK); set_field(&val, CAL_GEN_DISABLE, CAL_CSI2_TIMING_STOP_STATE_X4_IO1_MASK); set_field(&val, 407, CAL_CSI2_TIMING_STOP_STATE_COUNTER_IO1_MASK); reg_write(ctx->dev, CAL_CSI2_TIMING(ctx->csi2_port), val); ctx_dbg(3, ctx, "CAL_CSI2_TIMING(%d) = 0x%08x Stop States\n", ctx->csi2_port, reg_read(ctx->dev, CAL_CSI2_TIMING(ctx->csi2_port))); /* 4. Force FORCERXMODE */ val = reg_read(ctx->dev, CAL_CSI2_TIMING(ctx->csi2_port)); set_field(&val, CAL_GEN_ENABLE, CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK); reg_write(ctx->dev, CAL_CSI2_TIMING(ctx->csi2_port), val); ctx_dbg(3, ctx, "CAL_CSI2_TIMING(%d) = 0x%08x Force RXMODE\n", ctx->csi2_port, reg_read(ctx->dev, CAL_CSI2_TIMING(ctx->csi2_port))); /* E. Power up the PHY using the complex IO */ val = reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port)); set_field(&val, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_ON, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK); reg_write(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port), val); /* F. Wait for power up completion */ for (i = 0; i < 10; i++) { if (reg_read_field(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port), CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK) == CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_STATE_ON) break; usleep_range(1000, 1100); } ctx_dbg(3, ctx, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Powered UP %s\n", ctx->csi2_port, reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port)), (i >= 10) ? "(timeout)" : ""); } static void csi2_wait_for_phy(struct cal_ctx *ctx) { int i; /* Steps * 2. Wait for completion of reset * Note if the external sensor is not sending byte clock, * the reset will timeout * 4.Force FORCERXMODE * G. Wait for all enabled lane to reach stop state * H. Disable pull down using pad control */ /* 2. Wait for reset completion */ for (i = 0; i < 250; i++) { if (reg_read_field(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port), CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) == CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED) break; usleep_range(1000, 1100); } ctx_dbg(3, ctx, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Complex IO Reset Done (%d) %s\n", ctx->csi2_port, reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port)), i, (i >= 250) ? "(timeout)" : ""); /* 4. G. Wait for all enabled lane to reach stop state */ for (i = 0; i < 10; i++) { if (reg_read_field(ctx->dev, CAL_CSI2_TIMING(ctx->csi2_port), CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) == CAL_GEN_DISABLE) break; usleep_range(1000, 1100); } ctx_dbg(3, ctx, "CAL_CSI2_TIMING(%d) = 0x%08x Stop State Reached %s\n", ctx->csi2_port, reg_read(ctx->dev, CAL_CSI2_TIMING(ctx->csi2_port)), (i >= 10) ? "(timeout)" : ""); ctx_dbg(1, ctx, "CSI2_%d_REG1 = 0x%08x (Bit(31,28) should be set!)\n", (ctx->csi2_port - 1), reg_read(ctx->cc, CAL_CSI2_PHY_REG1)); } static void csi2_phy_deinit(struct cal_ctx *ctx) { int i; u32 val; /* Power down the PHY using the complex IO */ val = reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port)); set_field(&val, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_OFF, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK); reg_write(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port), val); /* Wait for power down completion */ for (i = 0; i < 10; i++) { if (reg_read_field(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port), CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK) == CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_STATE_OFF) break; usleep_range(1000, 1100); } ctx_dbg(3, ctx, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Powered Down %s\n", ctx->csi2_port, reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port)), (i >= 10) ? "(timeout)" : ""); /* Assert Comple IO Reset */ val = reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port)); set_field(&val, CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL, CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK); reg_write(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port), val); /* Wait for power down completion */ for (i = 0; i < 10; i++) { if (reg_read_field(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port), CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) == CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETONGOING) break; usleep_range(1000, 1100); } ctx_dbg(3, ctx, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Complex IO in Reset (%d) %s\n", ctx->csi2_port, reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port)), i, (i >= 10) ? "(timeout)" : ""); /* Disable the phy */ camerarx_phy_disable(ctx); } static void csi2_lane_config(struct cal_ctx *ctx) { u32 val = reg_read(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port)); u32 lane_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POSITION_MASK; u32 polarity_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POL_MASK; struct v4l2_fwnode_bus_mipi_csi2 *mipi_csi2 = &ctx->endpoint.bus.mipi_csi2; int lane; set_field(&val, mipi_csi2->clock_lane + 1, lane_mask); set_field(&val, mipi_csi2->lane_polarities[0], polarity_mask); for (lane = 0; lane < mipi_csi2->num_data_lanes; lane++) { /* * Every lane are one nibble apart starting with the * clock followed by the data lanes so shift masks by 4. */ lane_mask <<= 4; polarity_mask <<= 4; set_field(&val, mipi_csi2->data_lanes[lane] + 1, lane_mask); set_field(&val, mipi_csi2->lane_polarities[lane + 1], polarity_mask); } reg_write(ctx->dev, CAL_CSI2_COMPLEXIO_CFG(ctx->csi2_port), val); ctx_dbg(3, ctx, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n", ctx->csi2_port, val); } static void csi2_ppi_enable(struct cal_ctx *ctx) { reg_write_field(ctx->dev, CAL_CSI2_PPI_CTRL(ctx->csi2_port), CAL_GEN_ENABLE, CAL_CSI2_PPI_CTRL_IF_EN_MASK); } static void csi2_ppi_disable(struct cal_ctx *ctx) { reg_write_field(ctx->dev, CAL_CSI2_PPI_CTRL(ctx->csi2_port), CAL_GEN_DISABLE, CAL_CSI2_PPI_CTRL_IF_EN_MASK); } static void csi2_ctx_config(struct cal_ctx *ctx) { u32 val; val = reg_read(ctx->dev, CAL_CSI2_CTX0(ctx->csi2_port)); set_field(&val, ctx->csi2_port, CAL_CSI2_CTX_CPORT_MASK); /* * DT type: MIPI CSI-2 Specs * 0x1: All - DT filter is disabled * 0x24: RGB888 1 pixel = 3 bytes * 0x2B: RAW10 4 pixels = 5 bytes * 0x2A: RAW8 1 pixel = 1 byte * 0x1E: YUV422 2 pixels = 4 bytes */ set_field(&val, 0x1, CAL_CSI2_CTX_DT_MASK); /* Virtual Channel from the CSI2 sensor usually 0! */ set_field(&val, ctx->virtual_channel, CAL_CSI2_CTX_VC_MASK); /* NUM_LINES_PER_FRAME => 0 means auto detect */ set_field(&val, 0, CAL_CSI2_CTX_LINES_MASK); set_field(&val, CAL_CSI2_CTX_ATT_PIX, CAL_CSI2_CTX_ATT_MASK); set_field(&val, CAL_CSI2_CTX_PACK_MODE_LINE, CAL_CSI2_CTX_PACK_MODE_MASK); reg_write(ctx->dev, CAL_CSI2_CTX0(ctx->csi2_port), val); ctx_dbg(3, ctx, "CAL_CSI2_CTX0(%d) = 0x%08x\n", ctx->csi2_port, reg_read(ctx->dev, CAL_CSI2_CTX0(ctx->csi2_port))); } static void pix_proc_config(struct cal_ctx *ctx) { u32 val, extract, pack; switch (ctx->fmt->bpp) { case 8: extract = CAL_PIX_PROC_EXTRACT_B8; pack = CAL_PIX_PROC_PACK_B8; break; case 10: extract = CAL_PIX_PROC_EXTRACT_B10_MIPI; pack = CAL_PIX_PROC_PACK_B16; break; case 12: extract = CAL_PIX_PROC_EXTRACT_B12_MIPI; pack = CAL_PIX_PROC_PACK_B16; break; case 16: extract = CAL_PIX_PROC_EXTRACT_B16_LE; pack = CAL_PIX_PROC_PACK_B16; break; default: /* * If you see this warning then it means that you added * some new entry in the cal_formats[] array with a different * bit per pixel values then the one supported below. * Either add support for the new bpp value below or adjust * the new entry to use one of the value below. * * Instead of failing here just use 8 bpp as a default. */ dev_warn_once(&ctx->dev->pdev->dev, "%s:%d:%s: bpp:%d unsupported! Overwritten with 8.\n", __FILE__, __LINE__, __func__, ctx->fmt->bpp); extract = CAL_PIX_PROC_EXTRACT_B8; pack = CAL_PIX_PROC_PACK_B8; break; } val = reg_read(ctx->dev, CAL_PIX_PROC(ctx->csi2_port)); set_field(&val, extract, CAL_PIX_PROC_EXTRACT_MASK); set_field(&val, CAL_PIX_PROC_DPCMD_BYPASS, CAL_PIX_PROC_DPCMD_MASK); set_field(&val, CAL_PIX_PROC_DPCME_BYPASS, CAL_PIX_PROC_DPCME_MASK); set_field(&val, pack, CAL_PIX_PROC_PACK_MASK); set_field(&val, ctx->csi2_port, CAL_PIX_PROC_CPORT_MASK); set_field(&val, CAL_GEN_ENABLE, CAL_PIX_PROC_EN_MASK); reg_write(ctx->dev, CAL_PIX_PROC(ctx->csi2_port), val); ctx_dbg(3, ctx, "CAL_PIX_PROC(%d) = 0x%08x\n", ctx->csi2_port, reg_read(ctx->dev, CAL_PIX_PROC(ctx->csi2_port))); } static void cal_wr_dma_config(struct cal_ctx *ctx, unsigned int width, unsigned int height) { u32 val; val = reg_read(ctx->dev, CAL_WR_DMA_CTRL(ctx->csi2_port)); set_field(&val, ctx->csi2_port, CAL_WR_DMA_CTRL_CPORT_MASK); set_field(&val, height, CAL_WR_DMA_CTRL_YSIZE_MASK); set_field(&val, CAL_WR_DMA_CTRL_DTAG_PIX_DAT, CAL_WR_DMA_CTRL_DTAG_MASK); set_field(&val, CAL_WR_DMA_CTRL_MODE_CONST, CAL_WR_DMA_CTRL_MODE_MASK); set_field(&val, CAL_WR_DMA_CTRL_PATTERN_LINEAR, CAL_WR_DMA_CTRL_PATTERN_MASK); set_field(&val, CAL_GEN_ENABLE, CAL_WR_DMA_CTRL_STALL_RD_MASK); reg_write(ctx->dev, CAL_WR_DMA_CTRL(ctx->csi2_port), val); ctx_dbg(3, ctx, "CAL_WR_DMA_CTRL(%d) = 0x%08x\n", ctx->csi2_port, reg_read(ctx->dev, CAL_WR_DMA_CTRL(ctx->csi2_port))); /* * width/16 not sure but giving it a whirl. * zero does not work right */ reg_write_field(ctx->dev, CAL_WR_DMA_OFST(ctx->csi2_port), (width / 16), CAL_WR_DMA_OFST_MASK); ctx_dbg(3, ctx, "CAL_WR_DMA_OFST(%d) = 0x%08x\n", ctx->csi2_port, reg_read(ctx->dev, CAL_WR_DMA_OFST(ctx->csi2_port))); val = reg_read(ctx->dev, CAL_WR_DMA_XSIZE(ctx->csi2_port)); /* 64 bit word means no skipping */ set_field(&val, 0, CAL_WR_DMA_XSIZE_XSKIP_MASK); /* * (width*8)/64 this should be size of an entire line * in 64bit word but 0 means all data until the end * is detected automagically */ set_field(&val, (width / 8), CAL_WR_DMA_XSIZE_MASK); reg_write(ctx->dev, CAL_WR_DMA_XSIZE(ctx->csi2_port), val); ctx_dbg(3, ctx, "CAL_WR_DMA_XSIZE(%d) = 0x%08x\n", ctx->csi2_port, reg_read(ctx->dev, CAL_WR_DMA_XSIZE(ctx->csi2_port))); val = reg_read(ctx->dev, CAL_CTRL); set_field(&val, CAL_CTRL_BURSTSIZE_BURST128, CAL_CTRL_BURSTSIZE_MASK); set_field(&val, 0xF, CAL_CTRL_TAGCNT_MASK); set_field(&val, CAL_CTRL_POSTED_WRITES_NONPOSTED, CAL_CTRL_POSTED_WRITES_MASK); set_field(&val, 0xFF, CAL_CTRL_MFLAGL_MASK); set_field(&val, 0xFF, CAL_CTRL_MFLAGH_MASK); reg_write(ctx->dev, CAL_CTRL, val); ctx_dbg(3, ctx, "CAL_CTRL = 0x%08x\n", reg_read(ctx->dev, CAL_CTRL)); } static void cal_wr_dma_addr(struct cal_ctx *ctx, unsigned int dmaaddr) { reg_write(ctx->dev, CAL_WR_DMA_ADDR(ctx->csi2_port), dmaaddr); } /* * TCLK values are OK at their reset values */ #define TCLK_TERM 0 #define TCLK_MISS 1 #define TCLK_SETTLE 14 static void csi2_phy_config(struct cal_ctx *ctx) { unsigned int reg0, reg1; unsigned int ths_term, ths_settle; unsigned int csi2_ddrclk_khz; struct v4l2_fwnode_bus_mipi_csi2 *mipi_csi2 = &ctx->endpoint.bus.mipi_csi2; u32 num_lanes = mipi_csi2->num_data_lanes; /* DPHY timing configuration */ /* CSI-2 is DDR and we only count used lanes. */ csi2_ddrclk_khz = ctx->external_rate / 1000 / (2 * num_lanes) * ctx->fmt->bpp; ctx_dbg(1, ctx, "csi2_ddrclk_khz: %d\n", csi2_ddrclk_khz); /* THS_TERM: Programmed value = floor(20 ns/DDRClk period) */ ths_term = 20 * csi2_ddrclk_khz / 1000000; ctx_dbg(1, ctx, "ths_term: %d (0x%02x)\n", ths_term, ths_term); /* THS_SETTLE: Programmed value = floor(105 ns/DDRClk period) + 4 */ ths_settle = (105 * csi2_ddrclk_khz / 1000000) + 4; ctx_dbg(1, ctx, "ths_settle: %d (0x%02x)\n", ths_settle, ths_settle); reg0 = reg_read(ctx->cc, CAL_CSI2_PHY_REG0); set_field(®0, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_MASK); set_field(®0, ths_term, CAL_CSI2_PHY_REG0_THS_TERM_MASK); set_field(®0, ths_settle, CAL_CSI2_PHY_REG0_THS_SETTLE_MASK); ctx_dbg(1, ctx, "CSI2_%d_REG0 = 0x%08x\n", (ctx->csi2_port - 1), reg0); reg_write(ctx->cc, CAL_CSI2_PHY_REG0, reg0); reg1 = reg_read(ctx->cc, CAL_CSI2_PHY_REG1); set_field(®1, TCLK_TERM, CAL_CSI2_PHY_REG1_TCLK_TERM_MASK); set_field(®1, 0xb8, CAL_CSI2_PHY_REG1_DPHY_HS_SYNC_PATTERN_MASK); set_field(®1, TCLK_MISS, CAL_CSI2_PHY_REG1_CTRLCLK_DIV_FACTOR_MASK); set_field(®1, TCLK_SETTLE, CAL_CSI2_PHY_REG1_TCLK_SETTLE_MASK); ctx_dbg(1, ctx, "CSI2_%d_REG1 = 0x%08x\n", (ctx->csi2_port - 1), reg1); reg_write(ctx->cc, CAL_CSI2_PHY_REG1, reg1); } static int cal_get_external_info(struct cal_ctx *ctx) { struct v4l2_ctrl *ctrl; if (!ctx->sensor) return -ENODEV; ctrl = v4l2_ctrl_find(ctx->sensor->ctrl_handler, V4L2_CID_PIXEL_RATE); if (!ctrl) { ctx_err(ctx, "no pixel rate control in subdev: %s\n", ctx->sensor->name); return -EPIPE; } ctx->external_rate = v4l2_ctrl_g_ctrl_int64(ctrl); ctx_dbg(3, ctx, "sensor Pixel Rate: %d\n", ctx->external_rate); return 0; } static inline void cal_schedule_next_buffer(struct cal_ctx *ctx) { struct cal_dmaqueue *dma_q = &ctx->vidq; struct cal_buffer *buf; unsigned long addr; buf = list_entry(dma_q->active.next, struct cal_buffer, list); ctx->next_frm = buf; list_del(&buf->list); addr = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0); cal_wr_dma_addr(ctx, addr); } static inline void cal_process_buffer_complete(struct cal_ctx *ctx) { ctx->cur_frm->vb.vb2_buf.timestamp = ktime_get_ns(); ctx->cur_frm->vb.field = ctx->m_fmt.field; ctx->cur_frm->vb.sequence = ctx->sequence++; vb2_buffer_done(&ctx->cur_frm->vb.vb2_buf, VB2_BUF_STATE_DONE); ctx->cur_frm = ctx->next_frm; } #define isvcirqset(irq, vc, ff) (irq & \ (CAL_CSI2_VC_IRQENABLE_ ##ff ##_IRQ_##vc ##_MASK)) #define isportirqset(irq, port) (irq & CAL_HL_IRQ_MASK(port)) static irqreturn_t cal_irq(int irq_cal, void *data) { struct cal_dev *dev = (struct cal_dev *)data; struct cal_ctx *ctx; struct cal_dmaqueue *dma_q; u32 irqst2, irqst3; /* Check which DMA just finished */ irqst2 = reg_read(dev, CAL_HL_IRQSTATUS(2)); if (irqst2) { /* Clear Interrupt status */ reg_write(dev, CAL_HL_IRQSTATUS(2), irqst2); /* Need to check both port */ if (isportirqset(irqst2, 1)) { ctx = dev->ctx[0]; if (ctx->cur_frm != ctx->next_frm) cal_process_buffer_complete(ctx); } if (isportirqset(irqst2, 2)) { ctx = dev->ctx[1]; if (ctx->cur_frm != ctx->next_frm) cal_process_buffer_complete(ctx); } } /* Check which DMA just started */ irqst3 = reg_read(dev, CAL_HL_IRQSTATUS(3)); if (irqst3) { /* Clear Interrupt status */ reg_write(dev, CAL_HL_IRQSTATUS(3), irqst3); /* Need to check both port */ if (isportirqset(irqst3, 1)) { ctx = dev->ctx[0]; dma_q = &ctx->vidq; spin_lock(&ctx->slock); if (!list_empty(&dma_q->active) && ctx->cur_frm == ctx->next_frm) cal_schedule_next_buffer(ctx); spin_unlock(&ctx->slock); } if (isportirqset(irqst3, 2)) { ctx = dev->ctx[1]; dma_q = &ctx->vidq; spin_lock(&ctx->slock); if (!list_empty(&dma_q->active) && ctx->cur_frm == ctx->next_frm) cal_schedule_next_buffer(ctx); spin_unlock(&ctx->slock); } } return IRQ_HANDLED; } /* * video ioctls */ static int cal_querycap(struct file *file, void *priv, struct v4l2_capability *cap) { struct cal_ctx *ctx = video_drvdata(file); strscpy(cap->driver, CAL_MODULE_NAME, sizeof(cap->driver)); strscpy(cap->card, CAL_MODULE_NAME, sizeof(cap->card)); snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s", ctx->v4l2_dev.name); return 0; } static int cal_enum_fmt_vid_cap(struct file *file, void *priv, struct v4l2_fmtdesc *f) { struct cal_ctx *ctx = video_drvdata(file); const struct cal_fmt *fmt = NULL; if (f->index >= ctx->num_active_fmt) return -EINVAL; fmt = ctx->active_fmt[f->index]; f->pixelformat = fmt->fourcc; f->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; return 0; } static int __subdev_get_format(struct cal_ctx *ctx, struct v4l2_mbus_framefmt *fmt) { struct v4l2_subdev_format sd_fmt; struct v4l2_mbus_framefmt *mbus_fmt = &sd_fmt.format; int ret; sd_fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE; sd_fmt.pad = 0; ret = v4l2_subdev_call(ctx->sensor, pad, get_fmt, NULL, &sd_fmt); if (ret) return ret; *fmt = *mbus_fmt; ctx_dbg(1, ctx, "%s %dx%d code:%04X\n", __func__, fmt->width, fmt->height, fmt->code); return 0; } static int __subdev_set_format(struct cal_ctx *ctx, struct v4l2_mbus_framefmt *fmt) { struct v4l2_subdev_format sd_fmt; struct v4l2_mbus_framefmt *mbus_fmt = &sd_fmt.format; int ret; sd_fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE; sd_fmt.pad = 0; *mbus_fmt = *fmt; ret = v4l2_subdev_call(ctx->sensor, pad, set_fmt, NULL, &sd_fmt); if (ret) return ret; ctx_dbg(1, ctx, "%s %dx%d code:%04X\n", __func__, fmt->width, fmt->height, fmt->code); return 0; } static int cal_calc_format_size(struct cal_ctx *ctx, const struct cal_fmt *fmt, struct v4l2_format *f) { u32 bpl, max_width; if (!fmt) { ctx_dbg(3, ctx, "No cal_fmt provided!\n"); return -EINVAL; } /* * Maximum width is bound by the DMA max width in bytes. * We need to recalculate the actual maxi width depending on the * number of bytes per pixels required. */ max_width = MAX_WIDTH_BYTES / (ALIGN(fmt->bpp, 8) >> 3); v4l_bound_align_image(&f->fmt.pix.width, 48, max_width, 2, &f->fmt.pix.height, 32, MAX_HEIGHT_LINES, 0, 0); bpl = (f->fmt.pix.width * ALIGN(fmt->bpp, 8)) >> 3; f->fmt.pix.bytesperline = ALIGN(bpl, 16); f->fmt.pix.sizeimage = f->fmt.pix.height * f->fmt.pix.bytesperline; ctx_dbg(3, ctx, "%s: fourcc: %s size: %dx%d bpl:%d img_size:%d\n", __func__, fourcc_to_str(f->fmt.pix.pixelformat), f->fmt.pix.width, f->fmt.pix.height, f->fmt.pix.bytesperline, f->fmt.pix.sizeimage); return 0; } static int cal_g_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct cal_ctx *ctx = video_drvdata(file); *f = ctx->v_fmt; return 0; } static int cal_try_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct cal_ctx *ctx = video_drvdata(file); const struct cal_fmt *fmt; struct v4l2_subdev_frame_size_enum fse; int ret, found; fmt = find_format_by_pix(ctx, f->fmt.pix.pixelformat); if (!fmt) { ctx_dbg(3, ctx, "Fourcc format (0x%08x) not found.\n", f->fmt.pix.pixelformat); /* Just get the first one enumerated */ fmt = ctx->active_fmt[0]; f->fmt.pix.pixelformat = fmt->fourcc; } f->fmt.pix.field = ctx->v_fmt.fmt.pix.field; /* check for/find a valid width/height */ ret = 0; found = false; fse.pad = 0; fse.code = fmt->code; fse.which = V4L2_SUBDEV_FORMAT_ACTIVE; for (fse.index = 0; ; fse.index++) { ret = v4l2_subdev_call(ctx->sensor, pad, enum_frame_size, NULL, &fse); if (ret) break; if ((f->fmt.pix.width == fse.max_width) && (f->fmt.pix.height == fse.max_height)) { found = true; break; } else if ((f->fmt.pix.width >= fse.min_width) && (f->fmt.pix.width <= fse.max_width) && (f->fmt.pix.height >= fse.min_height) && (f->fmt.pix.height <= fse.max_height)) { found = true; break; } } if (!found) { /* use existing values as default */ f->fmt.pix.width = ctx->v_fmt.fmt.pix.width; f->fmt.pix.height = ctx->v_fmt.fmt.pix.height; } /* * Use current colorspace for now, it will get * updated properly during s_fmt */ f->fmt.pix.colorspace = ctx->v_fmt.fmt.pix.colorspace; return cal_calc_format_size(ctx, fmt, f); } static int cal_s_fmt_vid_cap(struct file *file, void *priv, struct v4l2_format *f) { struct cal_ctx *ctx = video_drvdata(file); struct vb2_queue *q = &ctx->vb_vidq; const struct cal_fmt *fmt; struct v4l2_mbus_framefmt mbus_fmt; int ret; if (vb2_is_busy(q)) { ctx_dbg(3, ctx, "%s device busy\n", __func__); return -EBUSY; } ret = cal_try_fmt_vid_cap(file, priv, f); if (ret < 0) return ret; fmt = find_format_by_pix(ctx, f->fmt.pix.pixelformat); v4l2_fill_mbus_format(&mbus_fmt, &f->fmt.pix, fmt->code); ret = __subdev_set_format(ctx, &mbus_fmt); if (ret) return ret; /* Just double check nothing has gone wrong */ if (mbus_fmt.code != fmt->code) { ctx_dbg(3, ctx, "%s subdev changed format on us, this should not happen\n", __func__); return -EINVAL; } v4l2_fill_pix_format(&ctx->v_fmt.fmt.pix, &mbus_fmt); ctx->v_fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; ctx->v_fmt.fmt.pix.pixelformat = fmt->fourcc; cal_calc_format_size(ctx, fmt, &ctx->v_fmt); ctx->fmt = fmt; ctx->m_fmt = mbus_fmt; *f = ctx->v_fmt; return 0; } static int cal_enum_framesizes(struct file *file, void *fh, struct v4l2_frmsizeenum *fsize) { struct cal_ctx *ctx = video_drvdata(file); const struct cal_fmt *fmt; struct v4l2_subdev_frame_size_enum fse; int ret; /* check for valid format */ fmt = find_format_by_pix(ctx, fsize->pixel_format); if (!fmt) { ctx_dbg(3, ctx, "Invalid pixel code: %x\n", fsize->pixel_format); return -EINVAL; } fse.index = fsize->index; fse.pad = 0; fse.code = fmt->code; fse.which = V4L2_SUBDEV_FORMAT_ACTIVE; ret = v4l2_subdev_call(ctx->sensor, pad, enum_frame_size, NULL, &fse); if (ret) return ret; ctx_dbg(1, ctx, "%s: index: %d code: %x W:[%d,%d] H:[%d,%d]\n", __func__, fse.index, fse.code, fse.min_width, fse.max_width, fse.min_height, fse.max_height); fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE; fsize->discrete.width = fse.max_width; fsize->discrete.height = fse.max_height; return 0; } static int cal_enum_input(struct file *file, void *priv, struct v4l2_input *inp) { if (inp->index >= CAL_NUM_INPUT) return -EINVAL; inp->type = V4L2_INPUT_TYPE_CAMERA; sprintf(inp->name, "Camera %u", inp->index); return 0; } static int cal_g_input(struct file *file, void *priv, unsigned int *i) { struct cal_ctx *ctx = video_drvdata(file); *i = ctx->input; return 0; } static int cal_s_input(struct file *file, void *priv, unsigned int i) { struct cal_ctx *ctx = video_drvdata(file); if (i >= CAL_NUM_INPUT) return -EINVAL; ctx->input = i; return 0; } /* timeperframe is arbitrary and continuous */ static int cal_enum_frameintervals(struct file *file, void *priv, struct v4l2_frmivalenum *fival) { struct cal_ctx *ctx = video_drvdata(file); const struct cal_fmt *fmt; struct v4l2_subdev_frame_interval_enum fie = { .index = fival->index, .width = fival->width, .height = fival->height, .which = V4L2_SUBDEV_FORMAT_ACTIVE, }; int ret; fmt = find_format_by_pix(ctx, fival->pixel_format); if (!fmt) return -EINVAL; fie.code = fmt->code; ret = v4l2_subdev_call(ctx->sensor, pad, enum_frame_interval, NULL, &fie); if (ret) return ret; fival->type = V4L2_FRMIVAL_TYPE_DISCRETE; fival->discrete = fie.interval; return 0; } /* * Videobuf operations */ static int cal_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers, unsigned int *nplanes, unsigned int sizes[], struct device *alloc_devs[]) { struct cal_ctx *ctx = vb2_get_drv_priv(vq); unsigned size = ctx->v_fmt.fmt.pix.sizeimage; if (vq->num_buffers + *nbuffers < 3) *nbuffers = 3 - vq->num_buffers; if (*nplanes) { if (sizes[0] < size) return -EINVAL; size = sizes[0]; } *nplanes = 1; sizes[0] = size; ctx_dbg(3, ctx, "nbuffers=%d, size=%d\n", *nbuffers, sizes[0]); return 0; } static int cal_buffer_prepare(struct vb2_buffer *vb) { struct cal_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); struct cal_buffer *buf = container_of(vb, struct cal_buffer, vb.vb2_buf); unsigned long size; if (WARN_ON(!ctx->fmt)) return -EINVAL; size = ctx->v_fmt.fmt.pix.sizeimage; if (vb2_plane_size(vb, 0) < size) { ctx_err(ctx, "data will not fit into plane (%lu < %lu)\n", vb2_plane_size(vb, 0), size); return -EINVAL; } vb2_set_plane_payload(&buf->vb.vb2_buf, 0, size); return 0; } static void cal_buffer_queue(struct vb2_buffer *vb) { struct cal_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue); struct cal_buffer *buf = container_of(vb, struct cal_buffer, vb.vb2_buf); struct cal_dmaqueue *vidq = &ctx->vidq; unsigned long flags = 0; /* recheck locking */ spin_lock_irqsave(&ctx->slock, flags); list_add_tail(&buf->list, &vidq->active); spin_unlock_irqrestore(&ctx->slock, flags); } static int cal_start_streaming(struct vb2_queue *vq, unsigned int count) { struct cal_ctx *ctx = vb2_get_drv_priv(vq); struct cal_dmaqueue *dma_q = &ctx->vidq; struct cal_buffer *buf, *tmp; unsigned long addr = 0; unsigned long flags; int ret; spin_lock_irqsave(&ctx->slock, flags); if (list_empty(&dma_q->active)) { spin_unlock_irqrestore(&ctx->slock, flags); ctx_dbg(3, ctx, "buffer queue is empty\n"); return -EIO; } buf = list_entry(dma_q->active.next, struct cal_buffer, list); ctx->cur_frm = buf; ctx->next_frm = buf; list_del(&buf->list); spin_unlock_irqrestore(&ctx->slock, flags); addr = vb2_dma_contig_plane_dma_addr(&ctx->cur_frm->vb.vb2_buf, 0); ctx->sequence = 0; ret = cal_get_external_info(ctx); if (ret < 0) goto err; ret = v4l2_subdev_call(ctx->sensor, core, s_power, 1); if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) { ctx_err(ctx, "power on failed in subdev\n"); goto err; } cal_runtime_get(ctx->dev); csi2_ctx_config(ctx); pix_proc_config(ctx); cal_wr_dma_config(ctx, ctx->v_fmt.fmt.pix.bytesperline, ctx->v_fmt.fmt.pix.height); csi2_lane_config(ctx); enable_irqs(ctx); csi2_phy_init(ctx); ret = v4l2_subdev_call(ctx->sensor, video, s_stream, 1); if (ret) { v4l2_subdev_call(ctx->sensor, core, s_power, 0); ctx_err(ctx, "stream on failed in subdev\n"); cal_runtime_put(ctx->dev); goto err; } csi2_wait_for_phy(ctx); cal_wr_dma_addr(ctx, addr); csi2_ppi_enable(ctx); if (debug >= 4) cal_quickdump_regs(ctx->dev); return 0; err: spin_lock_irqsave(&ctx->slock, flags); vb2_buffer_done(&ctx->cur_frm->vb.vb2_buf, VB2_BUF_STATE_QUEUED); ctx->cur_frm = NULL; ctx->next_frm = NULL; list_for_each_entry_safe(buf, tmp, &dma_q->active, list) { list_del(&buf->list); vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_QUEUED); } spin_unlock_irqrestore(&ctx->slock, flags); return ret; } static void cal_stop_streaming(struct vb2_queue *vq) { struct cal_ctx *ctx = vb2_get_drv_priv(vq); struct cal_dmaqueue *dma_q = &ctx->vidq; struct cal_buffer *buf, *tmp; unsigned long flags; int ret; csi2_ppi_disable(ctx); disable_irqs(ctx); csi2_phy_deinit(ctx); if (v4l2_subdev_call(ctx->sensor, video, s_stream, 0)) ctx_err(ctx, "stream off failed in subdev\n"); ret = v4l2_subdev_call(ctx->sensor, core, s_power, 0); if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) ctx_err(ctx, "power off failed in subdev\n"); /* Release all active buffers */ spin_lock_irqsave(&ctx->slock, flags); list_for_each_entry_safe(buf, tmp, &dma_q->active, list) { list_del(&buf->list); vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR); } if (ctx->cur_frm == ctx->next_frm) { vb2_buffer_done(&ctx->cur_frm->vb.vb2_buf, VB2_BUF_STATE_ERROR); } else { vb2_buffer_done(&ctx->cur_frm->vb.vb2_buf, VB2_BUF_STATE_ERROR); vb2_buffer_done(&ctx->next_frm->vb.vb2_buf, VB2_BUF_STATE_ERROR); } ctx->cur_frm = NULL; ctx->next_frm = NULL; spin_unlock_irqrestore(&ctx->slock, flags); cal_runtime_put(ctx->dev); } static const struct vb2_ops cal_video_qops = { .queue_setup = cal_queue_setup, .buf_prepare = cal_buffer_prepare, .buf_queue = cal_buffer_queue, .start_streaming = cal_start_streaming, .stop_streaming = cal_stop_streaming, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, }; static const struct v4l2_file_operations cal_fops = { .owner = THIS_MODULE, .open = v4l2_fh_open, .release = vb2_fop_release, .read = vb2_fop_read, .poll = vb2_fop_poll, .unlocked_ioctl = video_ioctl2, /* V4L2 ioctl handler */ .mmap = vb2_fop_mmap, }; static const struct v4l2_ioctl_ops cal_ioctl_ops = { .vidioc_querycap = cal_querycap, .vidioc_enum_fmt_vid_cap = cal_enum_fmt_vid_cap, .vidioc_g_fmt_vid_cap = cal_g_fmt_vid_cap, .vidioc_try_fmt_vid_cap = cal_try_fmt_vid_cap, .vidioc_s_fmt_vid_cap = cal_s_fmt_vid_cap, .vidioc_enum_framesizes = cal_enum_framesizes, .vidioc_reqbufs = vb2_ioctl_reqbufs, .vidioc_create_bufs = vb2_ioctl_create_bufs, .vidioc_prepare_buf = vb2_ioctl_prepare_buf, .vidioc_querybuf = vb2_ioctl_querybuf, .vidioc_qbuf = vb2_ioctl_qbuf, .vidioc_dqbuf = vb2_ioctl_dqbuf, .vidioc_expbuf = vb2_ioctl_expbuf, .vidioc_enum_input = cal_enum_input, .vidioc_g_input = cal_g_input, .vidioc_s_input = cal_s_input, .vidioc_enum_frameintervals = cal_enum_frameintervals, .vidioc_streamon = vb2_ioctl_streamon, .vidioc_streamoff = vb2_ioctl_streamoff, .vidioc_log_status = v4l2_ctrl_log_status, .vidioc_subscribe_event = v4l2_ctrl_subscribe_event, .vidioc_unsubscribe_event = v4l2_event_unsubscribe, }; static const struct video_device cal_videodev = { .name = CAL_MODULE_NAME, .fops = &cal_fops, .ioctl_ops = &cal_ioctl_ops, .minor = -1, .release = video_device_release_empty, .device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING | V4L2_CAP_READWRITE, }; /* ----------------------------------------------------------------- * Initialization and module stuff * ------------------------------------------------------------------ */ static int cal_complete_ctx(struct cal_ctx *ctx); static int cal_async_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *subdev, struct v4l2_async_subdev *asd) { struct cal_ctx *ctx = notifier_to_ctx(notifier); struct v4l2_subdev_mbus_code_enum mbus_code; int ret = 0; int i, j, k; if (ctx->sensor) { ctx_info(ctx, "Rejecting subdev %s (Already set!!)", subdev->name); return 0; } ctx->sensor = subdev; ctx_dbg(1, ctx, "Using sensor %s for capture\n", subdev->name); /* Enumerate sub device formats and enable all matching local formats */ ctx->num_active_fmt = 0; for (j = 0, i = 0; ret != -EINVAL; ++j) { struct cal_fmt *fmt; memset(&mbus_code, 0, sizeof(mbus_code)); mbus_code.index = j; mbus_code.which = V4L2_SUBDEV_FORMAT_ACTIVE; ret = v4l2_subdev_call(subdev, pad, enum_mbus_code, NULL, &mbus_code); if (ret) continue; ctx_dbg(2, ctx, "subdev %s: code: %04x idx: %d\n", subdev->name, mbus_code.code, j); for (k = 0; k < ARRAY_SIZE(cal_formats); k++) { fmt = &cal_formats[k]; if (mbus_code.code == fmt->code) { ctx->active_fmt[i] = fmt; ctx_dbg(2, ctx, "matched fourcc: %s: code: %04x idx: %d\n", fourcc_to_str(fmt->fourcc), fmt->code, i); ctx->num_active_fmt = ++i; } } } if (i == 0) { ctx_err(ctx, "No suitable format reported by subdev %s\n", subdev->name); return -EINVAL; } cal_complete_ctx(ctx); return 0; } static int cal_async_complete(struct v4l2_async_notifier *notifier) { struct cal_ctx *ctx = notifier_to_ctx(notifier); const struct cal_fmt *fmt; struct v4l2_mbus_framefmt mbus_fmt; int ret; ret = __subdev_get_format(ctx, &mbus_fmt); if (ret) return ret; fmt = find_format_by_code(ctx, mbus_fmt.code); if (!fmt) { ctx_dbg(3, ctx, "mbus code format (0x%08x) not found.\n", mbus_fmt.code); return -EINVAL; } /* Save current subdev format */ v4l2_fill_pix_format(&ctx->v_fmt.fmt.pix, &mbus_fmt); ctx->v_fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; ctx->v_fmt.fmt.pix.pixelformat = fmt->fourcc; cal_calc_format_size(ctx, fmt, &ctx->v_fmt); ctx->fmt = fmt; ctx->m_fmt = mbus_fmt; return 0; } static const struct v4l2_async_notifier_operations cal_async_ops = { .bound = cal_async_bound, .complete = cal_async_complete, }; static int cal_complete_ctx(struct cal_ctx *ctx) { struct video_device *vfd; struct vb2_queue *q; int ret; ctx->timeperframe = tpf_default; ctx->external_rate = 192000000; /* initialize locks */ spin_lock_init(&ctx->slock); mutex_init(&ctx->mutex); /* initialize queue */ q = &ctx->vb_vidq; q->type = V4L2_BUF_TYPE_VIDEO_CAPTURE; q->io_modes = VB2_MMAP | VB2_DMABUF | VB2_READ; q->drv_priv = ctx; q->buf_struct_size = sizeof(struct cal_buffer); q->ops = &cal_video_qops; q->mem_ops = &vb2_dma_contig_memops; q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC; q->lock = &ctx->mutex; q->min_buffers_needed = 3; q->dev = ctx->v4l2_dev.dev; ret = vb2_queue_init(q); if (ret) return ret; /* init video dma queues */ INIT_LIST_HEAD(&ctx->vidq.active); vfd = &ctx->vdev; *vfd = cal_videodev; vfd->v4l2_dev = &ctx->v4l2_dev; vfd->queue = q; /* * Provide a mutex to v4l2 core. It will be used to protect * all fops and v4l2 ioctls. */ vfd->lock = &ctx->mutex; video_set_drvdata(vfd, ctx); ret = video_register_device(vfd, VFL_TYPE_VIDEO, video_nr); if (ret < 0) return ret; v4l2_info(&ctx->v4l2_dev, "V4L2 device registered as %s\n", video_device_node_name(vfd)); return 0; } static struct device_node * of_get_next_port(const struct device_node *parent, struct device_node *prev) { struct device_node *port = NULL; if (!parent) return NULL; if (!prev) { struct device_node *ports; /* * It's the first call, we have to find a port subnode * within this node or within an optional 'ports' node. */ ports = of_get_child_by_name(parent, "ports"); if (ports) parent = ports; port = of_get_child_by_name(parent, "port"); /* release the 'ports' node */ of_node_put(ports); } else { struct device_node *ports; ports = of_get_parent(prev); if (!ports) return NULL; do { port = of_get_next_child(ports, prev); if (!port) { of_node_put(ports); return NULL; } prev = port; } while (!of_node_name_eq(port, "port")); of_node_put(ports); } return port; } static struct device_node * of_get_next_endpoint(const struct device_node *parent, struct device_node *prev) { struct device_node *ep = NULL; if (!parent) return NULL; do { ep = of_get_next_child(parent, prev); if (!ep) return NULL; prev = ep; } while (!of_node_name_eq(ep, "endpoint")); return ep; } static int of_cal_create_instance(struct cal_ctx *ctx, int inst) { struct platform_device *pdev = ctx->dev->pdev; struct device_node *ep_node, *port, *sensor_node, *parent; struct v4l2_fwnode_endpoint *endpoint; struct v4l2_async_subdev *asd; u32 regval = 0; int ret, index, found_port = 0, lane; parent = pdev->dev.of_node; endpoint = &ctx->endpoint; ep_node = NULL; port = NULL; sensor_node = NULL; ret = -EINVAL; ctx_dbg(3, ctx, "Scanning Port node for csi2 port: %d\n", inst); for (index = 0; index < CAL_NUM_CSI2_PORTS; index++) { port = of_get_next_port(parent, port); if (!port) { ctx_dbg(1, ctx, "No port node found for csi2 port:%d\n", index); goto cleanup_exit; } /* Match the slice number with <REG> */ of_property_read_u32(port, "reg", ®val); ctx_dbg(3, ctx, "port:%d inst:%d <reg>:%d\n", index, inst, regval); if ((regval == inst) && (index == inst)) { found_port = 1; break; } } if (!found_port) { ctx_dbg(1, ctx, "No port node matches csi2 port:%d\n", inst); goto cleanup_exit; } ctx_dbg(3, ctx, "Scanning sub-device for csi2 port: %d\n", inst); ep_node = of_get_next_endpoint(port, ep_node); if (!ep_node) { ctx_dbg(3, ctx, "can't get next endpoint\n"); goto cleanup_exit; } sensor_node = of_graph_get_remote_port_parent(ep_node); if (!sensor_node) { ctx_dbg(3, ctx, "can't get remote parent\n"); goto cleanup_exit; } v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), endpoint); if (endpoint->bus_type != V4L2_MBUS_CSI2_DPHY) { ctx_err(ctx, "Port:%d sub-device %pOFn is not a CSI2 device\n", inst, sensor_node); goto cleanup_exit; } /* Store Virtual Channel number */ ctx->virtual_channel = endpoint->base.id; ctx_dbg(3, ctx, "Port:%d v4l2-endpoint: CSI2\n", inst); ctx_dbg(3, ctx, "Virtual Channel=%d\n", ctx->virtual_channel); ctx_dbg(3, ctx, "flags=0x%08x\n", endpoint->bus.mipi_csi2.flags); ctx_dbg(3, ctx, "clock_lane=%d\n", endpoint->bus.mipi_csi2.clock_lane); ctx_dbg(3, ctx, "num_data_lanes=%d\n", endpoint->bus.mipi_csi2.num_data_lanes); ctx_dbg(3, ctx, "data_lanes= <\n"); for (lane = 0; lane < endpoint->bus.mipi_csi2.num_data_lanes; lane++) ctx_dbg(3, ctx, "\t%d\n", endpoint->bus.mipi_csi2.data_lanes[lane]); ctx_dbg(3, ctx, "\t>\n"); ctx_dbg(1, ctx, "Port: %d found sub-device %pOFn\n", inst, sensor_node); v4l2_async_notifier_init(&ctx->notifier); asd = kzalloc(sizeof(*asd), GFP_KERNEL); if (!asd) goto cleanup_exit; asd->match_type = V4L2_ASYNC_MATCH_FWNODE; asd->match.fwnode = of_fwnode_handle(sensor_node); ret = v4l2_async_notifier_add_subdev(&ctx->notifier, asd); if (ret) { ctx_err(ctx, "Error adding asd\n"); kfree(asd); goto cleanup_exit; } ctx->notifier.ops = &cal_async_ops; ret = v4l2_async_notifier_register(&ctx->v4l2_dev, &ctx->notifier); if (ret) { ctx_err(ctx, "Error registering async notifier\n"); v4l2_async_notifier_cleanup(&ctx->notifier); ret = -EINVAL; } /* * On success we need to keep reference on sensor_node, or * if notifier_cleanup was called above, sensor_node was * already put. */ sensor_node = NULL; cleanup_exit: of_node_put(sensor_node); of_node_put(ep_node); of_node_put(port); return ret; } static struct cal_ctx *cal_create_instance(struct cal_dev *dev, int inst) { struct cal_ctx *ctx; struct v4l2_ctrl_handler *hdl; int ret; ctx = devm_kzalloc(&dev->pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return NULL; /* save the cal_dev * for future ref */ ctx->dev = dev; snprintf(ctx->v4l2_dev.name, sizeof(ctx->v4l2_dev.name), "%s-%03d", CAL_MODULE_NAME, inst); ret = v4l2_device_register(&dev->pdev->dev, &ctx->v4l2_dev); if (ret) goto err_exit; hdl = &ctx->ctrl_handler; ret = v4l2_ctrl_handler_init(hdl, 11); if (ret) { ctx_err(ctx, "Failed to init ctrl handler\n"); goto unreg_dev; } ctx->v4l2_dev.ctrl_handler = hdl; /* Make sure Camera Core H/W register area is available */ ctx->cc = dev->cc[inst]; /* Store the instance id */ ctx->csi2_port = inst + 1; ret = of_cal_create_instance(ctx, inst); if (ret) { ret = -EINVAL; goto free_hdl; } return ctx; free_hdl: v4l2_ctrl_handler_free(hdl); unreg_dev: v4l2_device_unregister(&ctx->v4l2_dev); err_exit: return NULL; } static const struct of_device_id cal_of_match[]; static int cal_probe(struct platform_device *pdev) { struct cal_dev *dev; struct cal_ctx *ctx; struct device_node *parent = pdev->dev.of_node; struct regmap *syscon_camerrx = NULL; u32 syscon_camerrx_offset = 0; int ret; int irq; int i; dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; dev->data = of_device_get_match_data(&pdev->dev); if (!dev->data) { dev_err(&pdev->dev, "Could not get feature data based on compatible version\n"); return -ENODEV; } dev->flags = dev->data->flags; /* set pseudo v4l2 device name so we can use v4l2_printk */ strscpy(dev->v4l2_dev.name, CAL_MODULE_NAME, sizeof(dev->v4l2_dev.name)); /* save pdev pointer */ dev->pdev = pdev; syscon_camerrx = syscon_regmap_lookup_by_phandle(parent, "ti,camerrx-control"); ret = of_property_read_u32_index(parent, "ti,camerrx-control", 1, &syscon_camerrx_offset); if (IS_ERR(syscon_camerrx)) ret = PTR_ERR(syscon_camerrx); if (ret) { dev_warn(&pdev->dev, "failed to get ti,camerrx-control: %d\n", ret); /* * Backward DTS compatibility. * If syscon entry is not present then check if the * camerrx_control resource is present. */ syscon_camerrx = cal_get_camerarx_regmap(dev); if (IS_ERR(syscon_camerrx)) { dev_err(&pdev->dev, "failed to get camerrx_control regmap\n"); return PTR_ERR(syscon_camerrx); } /* In this case the base already point to the direct * CM register so no need for an offset */ syscon_camerrx_offset = 0; } dev->syscon_camerrx = syscon_camerrx; dev->syscon_camerrx_offset = syscon_camerrx_offset; ret = cal_camerarx_regmap_init(dev); if (ret) return ret; dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cal_top"); dev->base = devm_ioremap_resource(&pdev->dev, dev->res); if (IS_ERR(dev->base)) return PTR_ERR(dev->base); cal_dbg(1, dev, "ioresource %s at %pa - %pa\n", dev->res->name, &dev->res->start, &dev->res->end); irq = platform_get_irq(pdev, 0); cal_dbg(1, dev, "got irq# %d\n", irq); ret = devm_request_irq(&pdev->dev, irq, cal_irq, 0, CAL_MODULE_NAME, dev); if (ret) return ret; platform_set_drvdata(pdev, dev); dev->cc[0] = cc_create(dev, 0); if (IS_ERR(dev->cc[0])) return PTR_ERR(dev->cc[0]); if (cal_data_get_num_csi2_phy(dev) > 1) { dev->cc[1] = cc_create(dev, 1); if (IS_ERR(dev->cc[1])) return PTR_ERR(dev->cc[1]); } else { dev->cc[1] = NULL; } dev->ctx[0] = NULL; dev->ctx[1] = NULL; dev->ctx[0] = cal_create_instance(dev, 0); if (cal_data_get_num_csi2_phy(dev) > 1) dev->ctx[1] = cal_create_instance(dev, 1); if (!dev->ctx[0] && !dev->ctx[1]) { cal_err(dev, "Neither port is configured, no point in staying up\n"); return -ENODEV; } pm_runtime_enable(&pdev->dev); ret = cal_runtime_get(dev); if (ret) goto runtime_disable; /* Just check we can actually access the module */ cal_get_hwinfo(dev); cal_runtime_put(dev); return 0; runtime_disable: pm_runtime_disable(&pdev->dev); for (i = 0; i < CAL_NUM_CONTEXT; i++) { ctx = dev->ctx[i]; if (ctx) { v4l2_async_notifier_unregister(&ctx->notifier); v4l2_async_notifier_cleanup(&ctx->notifier); v4l2_ctrl_handler_free(&ctx->ctrl_handler); v4l2_device_unregister(&ctx->v4l2_dev); } } return ret; } static int cal_remove(struct platform_device *pdev) { struct cal_dev *dev = (struct cal_dev *)platform_get_drvdata(pdev); struct cal_ctx *ctx; int i; cal_dbg(1, dev, "Removing %s\n", CAL_MODULE_NAME); cal_runtime_get(dev); for (i = 0; i < CAL_NUM_CONTEXT; i++) { ctx = dev->ctx[i]; if (ctx) { ctx_dbg(1, ctx, "unregistering %s\n", video_device_node_name(&ctx->vdev)); camerarx_phy_disable(ctx); v4l2_async_notifier_unregister(&ctx->notifier); v4l2_async_notifier_cleanup(&ctx->notifier); v4l2_ctrl_handler_free(&ctx->ctrl_handler); v4l2_device_unregister(&ctx->v4l2_dev); video_unregister_device(&ctx->vdev); } } cal_runtime_put(dev); pm_runtime_disable(&pdev->dev); return 0; } #if defined(CONFIG_OF) static const struct of_device_id cal_of_match[] = { { .compatible = "ti,dra72-cal", .data = (void *)&dra72x_cal_data, }, { .compatible = "ti,dra72-pre-es2-cal", .data = (void *)&dra72x_es1_cal_data, }, { .compatible = "ti,dra76-cal", .data = (void *)&dra76x_cal_data, }, { .compatible = "ti,am654-cal", .data = (void *)&am654_cal_data, }, {}, }; MODULE_DEVICE_TABLE(of, cal_of_match); #endif static struct platform_driver cal_pdrv = { .probe = cal_probe, .remove = cal_remove, .driver = { .name = CAL_MODULE_NAME, .of_match_table = of_match_ptr(cal_of_match), }, }; module_platform_driver(cal_pdrv);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1