Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jarod Wilson | 2896 | 59.41% | 10 | 14.71% |
Heiner Kallweit | 1188 | 24.37% | 37 | 54.41% |
Antti Seppälä | 455 | 9.33% | 2 | 2.94% |
Michał Winiarski | 145 | 2.97% | 2 | 2.94% |
Joe Perches | 55 | 1.13% | 1 | 1.47% |
David Härdeman | 45 | 0.92% | 2 | 2.94% |
Luis Henriques | 41 | 0.84% | 1 | 1.47% |
Dan Carpenter | 10 | 0.21% | 1 | 1.47% |
Matthijs Kooijman | 9 | 0.18% | 1 | 1.47% |
Sean Young | 8 | 0.16% | 3 | 4.41% |
Nicolas Kaiser | 8 | 0.16% | 1 | 1.47% |
Mauro Carvalho Chehab | 8 | 0.16% | 3 | 4.41% |
Takashi Iwai | 2 | 0.04% | 1 | 1.47% |
Peter Hüwe | 2 | 0.04% | 1 | 1.47% |
Andi Shyti | 2 | 0.04% | 1 | 1.47% |
Sakari Ailus | 1 | 0.02% | 1 | 1.47% |
Total | 4875 | 68 |
/* * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR * * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com> * Copyright (C) 2009 Nuvoton PS Team * * Special thanks to Nuvoton for providing hardware, spec sheets and * sample code upon which portions of this driver are based. Indirect * thanks also to Maxim Levitsky, whose ene_ir driver this driver is * modeled after. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/pnp.h> #include <linux/io.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/slab.h> #include <media/rc-core.h> #include <linux/pci_ids.h> #include "nuvoton-cir.h" static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt); static const struct nvt_chip nvt_chips[] = { { "w83667hg", NVT_W83667HG }, { "NCT6775F", NVT_6775F }, { "NCT6776F", NVT_6776F }, { "NCT6779D", NVT_6779D }, }; static inline struct device *nvt_get_dev(const struct nvt_dev *nvt) { return nvt->rdev->dev.parent; } static inline bool is_w83667hg(struct nvt_dev *nvt) { return nvt->chip_ver == NVT_W83667HG; } /* write val to config reg */ static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg) { outb(reg, nvt->cr_efir); outb(val, nvt->cr_efdr); } /* read val from config reg */ static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg) { outb(reg, nvt->cr_efir); return inb(nvt->cr_efdr); } /* update config register bit without changing other bits */ static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg) { u8 tmp = nvt_cr_read(nvt, reg) | val; nvt_cr_write(nvt, tmp, reg); } /* clear config register bit without changing other bits */ static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg) { u8 tmp = nvt_cr_read(nvt, reg) & ~val; nvt_cr_write(nvt, tmp, reg); } /* enter extended function mode */ static inline int nvt_efm_enable(struct nvt_dev *nvt) { if (!request_muxed_region(nvt->cr_efir, 2, NVT_DRIVER_NAME)) return -EBUSY; /* Enabling Extended Function Mode explicitly requires writing 2x */ outb(EFER_EFM_ENABLE, nvt->cr_efir); outb(EFER_EFM_ENABLE, nvt->cr_efir); return 0; } /* exit extended function mode */ static inline void nvt_efm_disable(struct nvt_dev *nvt) { outb(EFER_EFM_DISABLE, nvt->cr_efir); release_region(nvt->cr_efir, 2); } /* * When you want to address a specific logical device, write its logical * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN. */ static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev) { nvt_cr_write(nvt, ldev, CR_LOGICAL_DEV_SEL); } /* select and enable logical device with setting EFM mode*/ static inline void nvt_enable_logical_dev(struct nvt_dev *nvt, u8 ldev) { nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, ldev); nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); nvt_efm_disable(nvt); } /* select and disable logical device with setting EFM mode*/ static inline void nvt_disable_logical_dev(struct nvt_dev *nvt, u8 ldev) { nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, ldev); nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN); nvt_efm_disable(nvt); } /* write val to cir config register */ static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset) { outb(val, nvt->cir_addr + offset); } /* read val from cir config register */ static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset) { return inb(nvt->cir_addr + offset); } /* write val to cir wake register */ static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt, u8 val, u8 offset) { outb(val, nvt->cir_wake_addr + offset); } /* read val from cir wake config register */ static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset) { return inb(nvt->cir_wake_addr + offset); } /* don't override io address if one is set already */ static void nvt_set_ioaddr(struct nvt_dev *nvt, unsigned long *ioaddr) { unsigned long old_addr; old_addr = nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8; old_addr |= nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO); if (old_addr) *ioaddr = old_addr; else { nvt_cr_write(nvt, *ioaddr >> 8, CR_CIR_BASE_ADDR_HI); nvt_cr_write(nvt, *ioaddr & 0xff, CR_CIR_BASE_ADDR_LO); } } static void nvt_write_wakeup_codes(struct rc_dev *dev, const u8 *wbuf, int count) { u8 tolerance, config; struct nvt_dev *nvt = dev->priv; unsigned long flags; int i; /* hardcode the tolerance to 10% */ tolerance = DIV_ROUND_UP(count, 10); spin_lock_irqsave(&nvt->lock, flags); nvt_clear_cir_wake_fifo(nvt); nvt_cir_wake_reg_write(nvt, count, CIR_WAKE_FIFO_CMP_DEEP); nvt_cir_wake_reg_write(nvt, tolerance, CIR_WAKE_FIFO_CMP_TOL); config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON); /* enable writes to wake fifo */ nvt_cir_wake_reg_write(nvt, config | CIR_WAKE_IRCON_MODE1, CIR_WAKE_IRCON); if (count) pr_info("Wake samples (%d) =", count); else pr_info("Wake sample fifo cleared"); for (i = 0; i < count; i++) nvt_cir_wake_reg_write(nvt, wbuf[i], CIR_WAKE_WR_FIFO_DATA); nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON); spin_unlock_irqrestore(&nvt->lock, flags); } static ssize_t wakeup_data_show(struct device *dev, struct device_attribute *attr, char *buf) { struct rc_dev *rc_dev = to_rc_dev(dev); struct nvt_dev *nvt = rc_dev->priv; int fifo_len, duration; unsigned long flags; ssize_t buf_len = 0; int i; spin_lock_irqsave(&nvt->lock, flags); fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT); fifo_len = min(fifo_len, WAKEUP_MAX_SIZE); /* go to first element to be read */ while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY); for (i = 0; i < fifo_len; i++) { duration = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY); duration = (duration & BUF_LEN_MASK) * SAMPLE_PERIOD; buf_len += scnprintf(buf + buf_len, PAGE_SIZE - buf_len, "%d ", duration); } buf_len += scnprintf(buf + buf_len, PAGE_SIZE - buf_len, "\n"); spin_unlock_irqrestore(&nvt->lock, flags); return buf_len; } static ssize_t wakeup_data_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct rc_dev *rc_dev = to_rc_dev(dev); u8 wake_buf[WAKEUP_MAX_SIZE]; char **argv; int i, count; unsigned int val; ssize_t ret; argv = argv_split(GFP_KERNEL, buf, &count); if (!argv) return -ENOMEM; if (!count || count > WAKEUP_MAX_SIZE) { ret = -EINVAL; goto out; } for (i = 0; i < count; i++) { ret = kstrtouint(argv[i], 10, &val); if (ret) goto out; val = DIV_ROUND_CLOSEST(val, SAMPLE_PERIOD); if (!val || val > 0x7f) { ret = -EINVAL; goto out; } wake_buf[i] = val; /* sequence must start with a pulse */ if (i % 2 == 0) wake_buf[i] |= BUF_PULSE_BIT; } nvt_write_wakeup_codes(rc_dev, wake_buf, count); ret = len; out: argv_free(argv); return ret; } static DEVICE_ATTR_RW(wakeup_data); /* dump current cir register contents */ static void cir_dump_regs(struct nvt_dev *nvt) { nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME); pr_info(" * CR CIR ACTIVE : 0x%x\n", nvt_cr_read(nvt, CR_LOGICAL_DEV_EN)); pr_info(" * CR CIR BASE ADDR: 0x%x\n", (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) | nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO)); pr_info(" * CR CIR IRQ NUM: 0x%x\n", nvt_cr_read(nvt, CR_CIR_IRQ_RSRC)); nvt_efm_disable(nvt); pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME); pr_info(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON)); pr_info(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS)); pr_info(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN)); pr_info(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT)); pr_info(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP)); pr_info(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC)); pr_info(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH)); pr_info(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL)); pr_info(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON)); pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS)); pr_info(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO)); pr_info(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT)); pr_info(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO)); pr_info(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH)); pr_info(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL)); pr_info(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM)); } /* dump current cir wake register contents */ static void cir_wake_dump_regs(struct nvt_dev *nvt) { u8 i, fifo_len; nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); pr_info("%s: Dump CIR WAKE logical device registers:\n", NVT_DRIVER_NAME); pr_info(" * CR CIR WAKE ACTIVE : 0x%x\n", nvt_cr_read(nvt, CR_LOGICAL_DEV_EN)); pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n", (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) | nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO)); pr_info(" * CR CIR WAKE IRQ NUM: 0x%x\n", nvt_cr_read(nvt, CR_CIR_IRQ_RSRC)); nvt_efm_disable(nvt); pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME); pr_info(" * IRCON: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON)); pr_info(" * IRSTS: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS)); pr_info(" * IREN: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN)); pr_info(" * FIFO CMP DEEP: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP)); pr_info(" * FIFO CMP TOL: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL)); pr_info(" * FIFO COUNT: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT)); pr_info(" * SLCH: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH)); pr_info(" * SLCL: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL)); pr_info(" * FIFOCON: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON)); pr_info(" * SRXFSTS: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS)); pr_info(" * SAMPLE RX FIFO: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO)); pr_info(" * WR FIFO DATA: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA)); pr_info(" * RD FIFO ONLY: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY)); pr_info(" * RD FIFO ONLY IDX: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)); pr_info(" * FIFO IGNORE: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE)); pr_info(" * IRFSM: 0x%x\n", nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM)); fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT); pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len); pr_info("* Contents ="); for (i = 0; i < fifo_len; i++) pr_cont(" %02x", nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY)); pr_cont("\n"); } static inline const char *nvt_find_chip(struct nvt_dev *nvt, int id) { int i; for (i = 0; i < ARRAY_SIZE(nvt_chips); i++) if ((id & SIO_ID_MASK) == nvt_chips[i].chip_ver) { nvt->chip_ver = nvt_chips[i].chip_ver; return nvt_chips[i].name; } return NULL; } /* detect hardware features */ static int nvt_hw_detect(struct nvt_dev *nvt) { struct device *dev = nvt_get_dev(nvt); const char *chip_name; int chip_id; nvt_efm_enable(nvt); /* Check if we're wired for the alternate EFER setup */ nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI); if (nvt->chip_major == 0xff) { nvt_efm_disable(nvt); nvt->cr_efir = CR_EFIR2; nvt->cr_efdr = CR_EFDR2; nvt_efm_enable(nvt); nvt->chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI); } nvt->chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO); nvt_efm_disable(nvt); chip_id = nvt->chip_major << 8 | nvt->chip_minor; if (chip_id == NVT_INVALID) { dev_err(dev, "No device found on either EFM port\n"); return -ENODEV; } chip_name = nvt_find_chip(nvt, chip_id); /* warn, but still let the driver load, if we don't know this chip */ if (!chip_name) dev_warn(dev, "unknown chip, id: 0x%02x 0x%02x, it may not work...", nvt->chip_major, nvt->chip_minor); else dev_info(dev, "found %s or compatible: chip id: 0x%02x 0x%02x", chip_name, nvt->chip_major, nvt->chip_minor); return 0; } static void nvt_cir_ldev_init(struct nvt_dev *nvt) { u8 val, psreg, psmask, psval; if (is_w83667hg(nvt)) { psreg = CR_MULTIFUNC_PIN_SEL; psmask = MULTIFUNC_PIN_SEL_MASK; psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB; } else { psreg = CR_OUTPUT_PIN_SEL; psmask = OUTPUT_PIN_SEL_MASK; psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB; } /* output pin selection: enable CIR, with WB sensor enabled */ val = nvt_cr_read(nvt, psreg); val &= psmask; val |= psval; nvt_cr_write(nvt, val, psreg); /* Select CIR logical device */ nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR); nvt_set_ioaddr(nvt, &nvt->cir_addr); nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC); nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d", nvt->cir_addr, nvt->cir_irq); } static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt) { /* Select ACPI logical device and anable it */ nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI); nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); /* Enable CIR Wake via PSOUT# (Pin60) */ nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE); /* enable pme interrupt of cir wakeup event */ nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2); /* Select CIR Wake logical device */ nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); nvt_set_ioaddr(nvt, &nvt->cir_wake_addr); nvt_dbg("CIR Wake initialized, base io port address: 0x%lx", nvt->cir_wake_addr); } /* clear out the hardware's cir rx fifo */ static void nvt_clear_cir_fifo(struct nvt_dev *nvt) { u8 val = nvt_cir_reg_read(nvt, CIR_FIFOCON); nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON); } /* clear out the hardware's cir wake rx fifo */ static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt) { u8 val, config; config = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON); /* clearing wake fifo works in learning mode only */ nvt_cir_wake_reg_write(nvt, config & ~CIR_WAKE_IRCON_MODE0, CIR_WAKE_IRCON); val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON); nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR, CIR_WAKE_FIFOCON); nvt_cir_wake_reg_write(nvt, config, CIR_WAKE_IRCON); } /* clear out the hardware's cir tx fifo */ static void nvt_clear_tx_fifo(struct nvt_dev *nvt) { u8 val; val = nvt_cir_reg_read(nvt, CIR_FIFOCON); nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON); } /* enable RX Trigger Level Reach and Packet End interrupts */ static void nvt_set_cir_iren(struct nvt_dev *nvt) { u8 iren; iren = CIR_IREN_RTR | CIR_IREN_PE | CIR_IREN_RFO; nvt_cir_reg_write(nvt, iren, CIR_IREN); } static void nvt_cir_regs_init(struct nvt_dev *nvt) { nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR); /* set sample limit count (PE interrupt raised when reached) */ nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH); nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL); /* set fifo irq trigger levels */ nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV | CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON); /* clear hardware rx and tx fifos */ nvt_clear_cir_fifo(nvt); nvt_clear_tx_fifo(nvt); nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR); } static void nvt_cir_wake_regs_init(struct nvt_dev *nvt) { nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); /* * Disable RX, set specific carrier on = low, off = high, * and sample period (currently 50us) */ nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV | CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL, CIR_WAKE_IRCON); /* clear any and all stray interrupts */ nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS); } static void nvt_enable_wake(struct nvt_dev *nvt) { unsigned long flags; nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI); nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE); nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2); nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE); nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN); nvt_efm_disable(nvt); spin_lock_irqsave(&nvt->lock, flags); nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN | CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV | CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL, CIR_WAKE_IRCON); nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS); nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN); spin_unlock_irqrestore(&nvt->lock, flags); } #if 0 /* Currently unused */ /* rx carrier detect only works in learning mode, must be called w/lock */ static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt) { u32 count, carrier, duration = 0; int i; count = nvt_cir_reg_read(nvt, CIR_FCCL) | nvt_cir_reg_read(nvt, CIR_FCCH) << 8; for (i = 0; i < nvt->pkts; i++) { if (nvt->buf[i] & BUF_PULSE_BIT) duration += nvt->buf[i] & BUF_LEN_MASK; } duration *= SAMPLE_PERIOD; if (!count || !duration) { dev_notice(nvt_get_dev(nvt), "Unable to determine carrier! (c:%u, d:%u)", count, duration); return 0; } carrier = MS_TO_NS(count) / duration; if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER)) nvt_dbg("WTF? Carrier frequency out of range!"); nvt_dbg("Carrier frequency: %u (count %u, duration %u)", carrier, count, duration); return carrier; } #endif /* * set carrier frequency * * set carrier on 2 registers: CP & CC * always set CP as 0x81 * set CC by SPEC, CC = 3MHz/carrier - 1 */ static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier) { struct nvt_dev *nvt = dev->priv; u16 val; if (carrier == 0) return -EINVAL; nvt_cir_reg_write(nvt, 1, CIR_CP); val = 3000000 / (carrier) - 1; nvt_cir_reg_write(nvt, val & 0xff, CIR_CC); nvt_dbg("cp: 0x%x cc: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC)); return 0; } static int nvt_ir_raw_set_wakeup_filter(struct rc_dev *dev, struct rc_scancode_filter *sc_filter) { u8 buf_val; int i, ret, count; unsigned int val; struct ir_raw_event *raw; u8 wake_buf[WAKEUP_MAX_SIZE]; bool complete; /* Require mask to be set */ if (!sc_filter->mask) return 0; raw = kmalloc_array(WAKEUP_MAX_SIZE, sizeof(*raw), GFP_KERNEL); if (!raw) return -ENOMEM; ret = ir_raw_encode_scancode(dev->wakeup_protocol, sc_filter->data, raw, WAKEUP_MAX_SIZE); complete = (ret != -ENOBUFS); if (!complete) ret = WAKEUP_MAX_SIZE; else if (ret < 0) goto out_raw; /* Inspect the ir samples */ for (i = 0, count = 0; i < ret && count < WAKEUP_MAX_SIZE; ++i) { /* NS to US */ val = DIV_ROUND_UP(raw[i].duration, 1000L) / SAMPLE_PERIOD; /* Split too large values into several smaller ones */ while (val > 0 && count < WAKEUP_MAX_SIZE) { /* Skip last value for better comparison tolerance */ if (complete && i == ret - 1 && val < BUF_LEN_MASK) break; /* Clamp values to BUF_LEN_MASK at most */ buf_val = (val > BUF_LEN_MASK) ? BUF_LEN_MASK : val; wake_buf[count] = buf_val; val -= buf_val; if ((raw[i]).pulse) wake_buf[count] |= BUF_PULSE_BIT; count++; } } nvt_write_wakeup_codes(dev, wake_buf, count); ret = 0; out_raw: kfree(raw); return ret; } /* dump contents of the last rx buffer we got from the hw rx fifo */ static void nvt_dump_rx_buf(struct nvt_dev *nvt) { int i; printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts); for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++) printk(KERN_CONT "0x%02x ", nvt->buf[i]); printk(KERN_CONT "\n"); } /* * Process raw data in rx driver buffer, store it in raw IR event kfifo, * trigger decode when appropriate. * * We get IR data samples one byte at a time. If the msb is set, its a pulse, * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD * (default 50us) intervals for that pulse/space. A discrete signal is * followed by a series of 0x7f packets, then either 0x7<something> or 0x80 * to signal more IR coming (repeats) or end of IR, respectively. We store * sample data in the raw event kfifo until we see 0x7<something> (except f) * or 0x80, at which time, we trigger a decode operation. */ static void nvt_process_rx_ir_data(struct nvt_dev *nvt) { struct ir_raw_event rawir = {}; u8 sample; int i; nvt_dbg_verbose("%s firing", __func__); if (debug) nvt_dump_rx_buf(nvt); nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts); for (i = 0; i < nvt->pkts; i++) { sample = nvt->buf[i]; rawir.pulse = ((sample & BUF_PULSE_BIT) != 0); rawir.duration = US_TO_NS((sample & BUF_LEN_MASK) * SAMPLE_PERIOD); nvt_dbg("Storing %s with duration %d", rawir.pulse ? "pulse" : "space", rawir.duration); ir_raw_event_store_with_filter(nvt->rdev, &rawir); } nvt->pkts = 0; nvt_dbg("Calling ir_raw_event_handle\n"); ir_raw_event_handle(nvt->rdev); nvt_dbg_verbose("%s done", __func__); } static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt) { dev_warn(nvt_get_dev(nvt), "RX FIFO overrun detected, flushing data!"); nvt->pkts = 0; nvt_clear_cir_fifo(nvt); ir_raw_event_reset(nvt->rdev); } /* copy data from hardware rx fifo into driver buffer */ static void nvt_get_rx_ir_data(struct nvt_dev *nvt) { u8 fifocount; int i; /* Get count of how many bytes to read from RX FIFO */ fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT); nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount); /* Read fifocount bytes from CIR Sample RX FIFO register */ for (i = 0; i < fifocount; i++) nvt->buf[i] = nvt_cir_reg_read(nvt, CIR_SRXFIFO); nvt->pkts = fifocount; nvt_dbg("%s: pkts now %d", __func__, nvt->pkts); nvt_process_rx_ir_data(nvt); } static void nvt_cir_log_irqs(u8 status, u8 iren) { nvt_dbg("IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s", status, iren, status & CIR_IRSTS_RDR ? " RDR" : "", status & CIR_IRSTS_RTR ? " RTR" : "", status & CIR_IRSTS_PE ? " PE" : "", status & CIR_IRSTS_RFO ? " RFO" : "", status & CIR_IRSTS_TE ? " TE" : "", status & CIR_IRSTS_TTR ? " TTR" : "", status & CIR_IRSTS_TFU ? " TFU" : "", status & CIR_IRSTS_GH ? " GH" : "", status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE | CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR | CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : ""); } /* interrupt service routine for incoming and outgoing CIR data */ static irqreturn_t nvt_cir_isr(int irq, void *data) { struct nvt_dev *nvt = data; u8 status, iren; nvt_dbg_verbose("%s firing", __func__); spin_lock(&nvt->lock); /* * Get IR Status register contents. Write 1 to ack/clear * * bit: reg name - description * 7: CIR_IRSTS_RDR - RX Data Ready * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach * 5: CIR_IRSTS_PE - Packet End * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set) * 3: CIR_IRSTS_TE - TX FIFO Empty * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach * 1: CIR_IRSTS_TFU - TX FIFO Underrun * 0: CIR_IRSTS_GH - Min Length Detected */ status = nvt_cir_reg_read(nvt, CIR_IRSTS); iren = nvt_cir_reg_read(nvt, CIR_IREN); /* At least NCT6779D creates a spurious interrupt when the * logical device is being disabled. */ if (status == 0xff && iren == 0xff) { spin_unlock(&nvt->lock); nvt_dbg_verbose("Spurious interrupt detected"); return IRQ_HANDLED; } /* IRQ may be shared with CIR WAKE, therefore check for each * status bit whether the related interrupt source is enabled */ if (!(status & iren)) { spin_unlock(&nvt->lock); nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__); return IRQ_NONE; } /* ack/clear all irq flags we've got */ nvt_cir_reg_write(nvt, status, CIR_IRSTS); nvt_cir_reg_write(nvt, 0, CIR_IRSTS); nvt_cir_log_irqs(status, iren); if (status & CIR_IRSTS_RFO) nvt_handle_rx_fifo_overrun(nvt); else if (status & (CIR_IRSTS_RTR | CIR_IRSTS_PE)) nvt_get_rx_ir_data(nvt); spin_unlock(&nvt->lock); nvt_dbg_verbose("%s done", __func__); return IRQ_HANDLED; } static void nvt_enable_cir(struct nvt_dev *nvt) { unsigned long flags; /* enable the CIR logical device */ nvt_enable_logical_dev(nvt, LOGICAL_DEV_CIR); spin_lock_irqsave(&nvt->lock, flags); /* * Enable TX and RX, specify carrier on = low, off = high, and set * sample period (currently 50us) */ nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN | CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL, CIR_IRCON); /* clear all pending interrupts */ nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); /* enable interrupts */ nvt_set_cir_iren(nvt); spin_unlock_irqrestore(&nvt->lock, flags); } static void nvt_disable_cir(struct nvt_dev *nvt) { unsigned long flags; spin_lock_irqsave(&nvt->lock, flags); /* disable CIR interrupts */ nvt_cir_reg_write(nvt, 0, CIR_IREN); /* clear any and all pending interrupts */ nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS); /* clear all function enable flags */ nvt_cir_reg_write(nvt, 0, CIR_IRCON); /* clear hardware rx and tx fifos */ nvt_clear_cir_fifo(nvt); nvt_clear_tx_fifo(nvt); spin_unlock_irqrestore(&nvt->lock, flags); /* disable the CIR logical device */ nvt_disable_logical_dev(nvt, LOGICAL_DEV_CIR); } static int nvt_open(struct rc_dev *dev) { struct nvt_dev *nvt = dev->priv; nvt_enable_cir(nvt); return 0; } static void nvt_close(struct rc_dev *dev) { struct nvt_dev *nvt = dev->priv; nvt_disable_cir(nvt); } /* Allocate memory, probe hardware, and initialize everything */ static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id) { struct nvt_dev *nvt; struct rc_dev *rdev; int ret; nvt = devm_kzalloc(&pdev->dev, sizeof(struct nvt_dev), GFP_KERNEL); if (!nvt) return -ENOMEM; /* input device for IR remote */ nvt->rdev = devm_rc_allocate_device(&pdev->dev, RC_DRIVER_IR_RAW); if (!nvt->rdev) return -ENOMEM; rdev = nvt->rdev; /* activate pnp device */ ret = pnp_activate_dev(pdev); if (ret) { dev_err(&pdev->dev, "Could not activate PNP device!\n"); return ret; } /* validate pnp resources */ if (!pnp_port_valid(pdev, 0) || pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) { dev_err(&pdev->dev, "IR PNP Port not valid!\n"); return -EINVAL; } if (!pnp_irq_valid(pdev, 0)) { dev_err(&pdev->dev, "PNP IRQ not valid!\n"); return -EINVAL; } if (!pnp_port_valid(pdev, 1) || pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) { dev_err(&pdev->dev, "Wake PNP Port not valid!\n"); return -EINVAL; } nvt->cir_addr = pnp_port_start(pdev, 0); nvt->cir_irq = pnp_irq(pdev, 0); nvt->cir_wake_addr = pnp_port_start(pdev, 1); nvt->cr_efir = CR_EFIR; nvt->cr_efdr = CR_EFDR; spin_lock_init(&nvt->lock); pnp_set_drvdata(pdev, nvt); ret = nvt_hw_detect(nvt); if (ret) return ret; /* Initialize CIR & CIR Wake Logical Devices */ nvt_efm_enable(nvt); nvt_cir_ldev_init(nvt); nvt_cir_wake_ldev_init(nvt); nvt_efm_disable(nvt); /* * Initialize CIR & CIR Wake Config Registers * and enable logical devices */ nvt_cir_regs_init(nvt); nvt_cir_wake_regs_init(nvt); /* Set up the rc device */ rdev->priv = nvt; rdev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER; rdev->allowed_wakeup_protocols = RC_PROTO_BIT_ALL_IR_ENCODER; rdev->encode_wakeup = true; rdev->open = nvt_open; rdev->close = nvt_close; rdev->s_tx_carrier = nvt_set_tx_carrier; rdev->s_wakeup_filter = nvt_ir_raw_set_wakeup_filter; rdev->device_name = "Nuvoton w836x7hg Infrared Remote Transceiver"; rdev->input_phys = "nuvoton/cir0"; rdev->input_id.bustype = BUS_HOST; rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2; rdev->input_id.product = nvt->chip_major; rdev->input_id.version = nvt->chip_minor; rdev->driver_name = NVT_DRIVER_NAME; rdev->map_name = RC_MAP_RC6_MCE; rdev->timeout = MS_TO_NS(100); /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */ rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD); #if 0 rdev->min_timeout = XYZ; rdev->max_timeout = XYZ; #endif ret = devm_rc_register_device(&pdev->dev, rdev); if (ret) return ret; /* now claim resources */ if (!devm_request_region(&pdev->dev, nvt->cir_addr, CIR_IOREG_LENGTH, NVT_DRIVER_NAME)) return -EBUSY; ret = devm_request_irq(&pdev->dev, nvt->cir_irq, nvt_cir_isr, IRQF_SHARED, NVT_DRIVER_NAME, nvt); if (ret) return ret; if (!devm_request_region(&pdev->dev, nvt->cir_wake_addr, CIR_IOREG_LENGTH, NVT_DRIVER_NAME "-wake")) return -EBUSY; ret = device_create_file(&rdev->dev, &dev_attr_wakeup_data); if (ret) return ret; device_init_wakeup(&pdev->dev, true); dev_notice(&pdev->dev, "driver has been successfully loaded\n"); if (debug) { cir_dump_regs(nvt); cir_wake_dump_regs(nvt); } return 0; } static void nvt_remove(struct pnp_dev *pdev) { struct nvt_dev *nvt = pnp_get_drvdata(pdev); device_remove_file(&nvt->rdev->dev, &dev_attr_wakeup_data); nvt_disable_cir(nvt); /* enable CIR Wake (for IR power-on) */ nvt_enable_wake(nvt); } static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state) { struct nvt_dev *nvt = pnp_get_drvdata(pdev); nvt_dbg("%s called", __func__); mutex_lock(&nvt->rdev->lock); if (nvt->rdev->users) nvt_disable_cir(nvt); mutex_unlock(&nvt->rdev->lock); /* make sure wake is enabled */ nvt_enable_wake(nvt); return 0; } static int nvt_resume(struct pnp_dev *pdev) { struct nvt_dev *nvt = pnp_get_drvdata(pdev); nvt_dbg("%s called", __func__); nvt_cir_regs_init(nvt); nvt_cir_wake_regs_init(nvt); mutex_lock(&nvt->rdev->lock); if (nvt->rdev->users) nvt_enable_cir(nvt); mutex_unlock(&nvt->rdev->lock); return 0; } static void nvt_shutdown(struct pnp_dev *pdev) { struct nvt_dev *nvt = pnp_get_drvdata(pdev); nvt_enable_wake(nvt); } static const struct pnp_device_id nvt_ids[] = { { "WEC0530", 0 }, /* CIR */ { "NTN0530", 0 }, /* CIR for new chip's pnp id*/ { "", 0 }, }; static struct pnp_driver nvt_driver = { .name = NVT_DRIVER_NAME, .id_table = nvt_ids, .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, .probe = nvt_probe, .remove = nvt_remove, .suspend = nvt_suspend, .resume = nvt_resume, .shutdown = nvt_shutdown, }; module_param(debug, int, S_IRUGO | S_IWUSR); MODULE_PARM_DESC(debug, "Enable debugging output"); MODULE_DEVICE_TABLE(pnp, nvt_ids); MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver"); MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>"); MODULE_LICENSE("GPL"); module_pnp_driver(nvt_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1