Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Oded Gabbay | 2318 | 80.15% | 10 | 83.33% |
Tomer Tayar | 574 | 19.85% | 2 | 16.67% |
Total | 2892 | 12 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. */ #include "habanalabs.h" #include <linux/slab.h> /* * hl_queue_add_ptr - add to pi or ci and checks if it wraps around * * @ptr: the current pi/ci value * @val: the amount to add * * Add val to ptr. It can go until twice the queue length. */ inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val) { ptr += val; ptr &= ((HL_QUEUE_LENGTH << 1) - 1); return ptr; } static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len) { int delta = (q->pi - q->ci); if (delta >= 0) return (queue_len - delta); else return (abs(delta) - queue_len); } void hl_int_hw_queue_update_ci(struct hl_cs *cs) { struct hl_device *hdev = cs->ctx->hdev; struct hl_hw_queue *q; int i; hdev->asic_funcs->hw_queues_lock(hdev); if (hdev->disabled) goto out; q = &hdev->kernel_queues[0]; for (i = 0 ; i < HL_MAX_QUEUES ; i++, q++) { if (q->queue_type == QUEUE_TYPE_INT) { q->ci += cs->jobs_in_queue_cnt[i]; q->ci &= ((q->int_queue_len << 1) - 1); } } out: hdev->asic_funcs->hw_queues_unlock(hdev); } /* * ext_and_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a * H/W queue. * @hdev: pointer to habanalabs device structure * @q: pointer to habanalabs queue structure * @ctl: BD's control word * @len: BD's length * @ptr: BD's pointer * * This function assumes there is enough space on the queue to submit a new * BD to it. It initializes the next BD and calls the device specific * function to set the pi (and doorbell) * * This function must be called when the scheduler mutex is taken * */ static void ext_and_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q, u32 ctl, u32 len, u64 ptr) { struct hl_bd *bd; bd = (struct hl_bd *) (uintptr_t) q->kernel_address; bd += hl_pi_2_offset(q->pi); bd->ctl = cpu_to_le32(ctl); bd->len = cpu_to_le32(len); bd->ptr = cpu_to_le64(ptr); q->pi = hl_queue_inc_ptr(q->pi); hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi); } /* * ext_queue_sanity_checks - perform some sanity checks on external queue * * @hdev : pointer to hl_device structure * @q : pointer to hl_hw_queue structure * @num_of_entries : how many entries to check for space * @reserve_cq_entry : whether to reserve an entry in the cq * * H/W queues spinlock should be taken before calling this function * * Perform the following: * - Make sure we have enough space in the h/w queue * - Make sure we have enough space in the completion queue * - Reserve space in the completion queue (needs to be reversed if there * is a failure down the road before the actual submission of work). Only * do this action if reserve_cq_entry is true * */ static int ext_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q, int num_of_entries, bool reserve_cq_entry) { atomic_t *free_slots = &hdev->completion_queue[q->hw_queue_id].free_slots_cnt; int free_slots_cnt; /* Check we have enough space in the queue */ free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH); if (free_slots_cnt < num_of_entries) { dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n", q->hw_queue_id, num_of_entries); return -EAGAIN; } if (reserve_cq_entry) { /* * Check we have enough space in the completion queue * Add -1 to counter (decrement) unless counter was already 0 * In that case, CQ is full so we can't submit a new CB because * we won't get ack on its completion * atomic_add_unless will return 0 if counter was already 0 */ if (atomic_add_negative(num_of_entries * -1, free_slots)) { dev_dbg(hdev->dev, "No space for %d on CQ %d\n", num_of_entries, q->hw_queue_id); atomic_add(num_of_entries, free_slots); return -EAGAIN; } } return 0; } /* * int_queue_sanity_checks - perform some sanity checks on internal queue * * @hdev : pointer to hl_device structure * @q : pointer to hl_hw_queue structure * @num_of_entries : how many entries to check for space * * H/W queues spinlock should be taken before calling this function * * Perform the following: * - Make sure we have enough space in the h/w queue * */ static int int_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q, int num_of_entries) { int free_slots_cnt; /* Check we have enough space in the queue */ free_slots_cnt = queue_free_slots(q, q->int_queue_len); if (free_slots_cnt < num_of_entries) { dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n", q->hw_queue_id, num_of_entries); return -EAGAIN; } return 0; } /* * hw_queue_sanity_checks() - Perform some sanity checks on a H/W queue. * @hdev: Pointer to hl_device structure. * @q: Pointer to hl_hw_queue structure. * @num_of_entries: How many entries to check for space. * * Perform the following: * - Make sure we have enough space in the completion queue. * This check also ensures that there is enough space in the h/w queue, as * both queues are of the same size. * - Reserve space in the completion queue (needs to be reversed if there * is a failure down the road before the actual submission of work). * * Both operations are done using the "free_slots_cnt" field of the completion * queue. The CI counters of the queue and the completion queue are not * needed/used for the H/W queue type. */ static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q, int num_of_entries) { atomic_t *free_slots = &hdev->completion_queue[q->hw_queue_id].free_slots_cnt; /* * Check we have enough space in the completion queue. * Add -1 to counter (decrement) unless counter was already 0. * In that case, CQ is full so we can't submit a new CB. * atomic_add_unless will return 0 if counter was already 0. */ if (atomic_add_negative(num_of_entries * -1, free_slots)) { dev_dbg(hdev->dev, "No space for %d entries on CQ %d\n", num_of_entries, q->hw_queue_id); atomic_add(num_of_entries, free_slots); return -EAGAIN; } return 0; } /* * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion * * @hdev: pointer to hl_device structure * @hw_queue_id: Queue's type * @cb_size: size of CB * @cb_ptr: pointer to CB location * * This function sends a single CB, that must NOT generate a completion entry * */ int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, u32 cb_size, u64 cb_ptr) { struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id]; int rc = 0; /* * The CPU queue is a synchronous queue with an effective depth of * a single entry (although it is allocated with room for multiple * entries). Therefore, there is a different lock, called * send_cpu_message_lock, that serializes accesses to the CPU queue. * As a result, we don't need to lock the access to the entire H/W * queues module when submitting a JOB to the CPU queue */ if (q->queue_type != QUEUE_TYPE_CPU) hdev->asic_funcs->hw_queues_lock(hdev); if (hdev->disabled) { rc = -EPERM; goto out; } /* * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue * type only on init phase, when the queues are empty and being tested, * so there is no need for sanity checks. */ if (q->queue_type != QUEUE_TYPE_HW) { rc = ext_queue_sanity_checks(hdev, q, 1, false); if (rc) goto out; } ext_and_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr); out: if (q->queue_type != QUEUE_TYPE_CPU) hdev->asic_funcs->hw_queues_unlock(hdev); return rc; } /* * ext_queue_schedule_job - submit a JOB to an external queue * * @job: pointer to the job that needs to be submitted to the queue * * This function must be called when the scheduler mutex is taken * */ static void ext_queue_schedule_job(struct hl_cs_job *job) { struct hl_device *hdev = job->cs->ctx->hdev; struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id]; struct hl_cq_entry cq_pkt; struct hl_cq *cq; u64 cq_addr; struct hl_cb *cb; u32 ctl; u32 len; u64 ptr; /* * Update the JOB ID inside the BD CTL so the device would know what * to write in the completion queue */ ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK); cb = job->patched_cb; len = job->job_cb_size; ptr = cb->bus_address; cq_pkt.data = cpu_to_le32( ((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT) & CQ_ENTRY_SHADOW_INDEX_MASK) | (1 << CQ_ENTRY_SHADOW_INDEX_VALID_SHIFT) | (1 << CQ_ENTRY_READY_SHIFT)); /* * No need to protect pi_offset because scheduling to the * H/W queues is done under the scheduler mutex * * No need to check if CQ is full because it was already * checked in ext_queue_sanity_checks */ cq = &hdev->completion_queue[q->hw_queue_id]; cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry); hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len, cq_addr, le32_to_cpu(cq_pkt.data), q->hw_queue_id); q->shadow_queue[hl_pi_2_offset(q->pi)] = job; cq->pi = hl_cq_inc_ptr(cq->pi); ext_and_hw_queue_submit_bd(hdev, q, ctl, len, ptr); } /* * int_queue_schedule_job - submit a JOB to an internal queue * * @job: pointer to the job that needs to be submitted to the queue * * This function must be called when the scheduler mutex is taken * */ static void int_queue_schedule_job(struct hl_cs_job *job) { struct hl_device *hdev = job->cs->ctx->hdev; struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id]; struct hl_bd bd; __le64 *pi; bd.ctl = 0; bd.len = cpu_to_le32(job->job_cb_size); bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb); pi = (__le64 *) (uintptr_t) (q->kernel_address + ((q->pi & (q->int_queue_len - 1)) * sizeof(bd))); q->pi++; q->pi &= ((q->int_queue_len << 1) - 1); hdev->asic_funcs->pqe_write(hdev, pi, &bd); hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi); } /* * hw_queue_schedule_job - submit a JOB to a H/W queue * * @job: pointer to the job that needs to be submitted to the queue * * This function must be called when the scheduler mutex is taken * */ static void hw_queue_schedule_job(struct hl_cs_job *job) { struct hl_device *hdev = job->cs->ctx->hdev; struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id]; struct hl_cq *cq; u64 ptr; u32 offset, ctl, len; /* * Upon PQE completion, COMP_DATA is used as the write data to the * completion queue (QMAN HBW message), and COMP_OFFSET is used as the * write address offset in the SM block (QMAN LBW message). * The write address offset is calculated as "COMP_OFFSET << 2". */ offset = job->cs->sequence & (HL_MAX_PENDING_CS - 1); ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) | ((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK); len = job->job_cb_size; /* * A patched CB is created only if a user CB was allocated by driver and * MMU is disabled. If MMU is enabled, the user CB should be used * instead. If the user CB wasn't allocated by driver, assume that it * holds an address. */ if (job->patched_cb) ptr = job->patched_cb->bus_address; else if (job->is_kernel_allocated_cb) ptr = job->user_cb->bus_address; else ptr = (u64) (uintptr_t) job->user_cb; /* * No need to protect pi_offset because scheduling to the * H/W queues is done under the scheduler mutex * * No need to check if CQ is full because it was already * checked in hw_queue_sanity_checks */ cq = &hdev->completion_queue[q->hw_queue_id]; cq->pi = hl_cq_inc_ptr(cq->pi); ext_and_hw_queue_submit_bd(hdev, q, ctl, len, ptr); } /* * hl_hw_queue_schedule_cs - schedule a command submission * * @job : pointer to the CS * */ int hl_hw_queue_schedule_cs(struct hl_cs *cs) { struct hl_device *hdev = cs->ctx->hdev; struct hl_cs_job *job, *tmp; struct hl_hw_queue *q; int rc = 0, i, cq_cnt; hdev->asic_funcs->hw_queues_lock(hdev); if (hl_device_disabled_or_in_reset(hdev)) { dev_err(hdev->dev, "device is disabled or in reset, CS rejected!\n"); rc = -EPERM; goto out; } q = &hdev->kernel_queues[0]; for (i = 0, cq_cnt = 0 ; i < HL_MAX_QUEUES ; i++, q++) { if (cs->jobs_in_queue_cnt[i]) { switch (q->queue_type) { case QUEUE_TYPE_EXT: rc = ext_queue_sanity_checks(hdev, q, cs->jobs_in_queue_cnt[i], true); break; case QUEUE_TYPE_INT: rc = int_queue_sanity_checks(hdev, q, cs->jobs_in_queue_cnt[i]); break; case QUEUE_TYPE_HW: rc = hw_queue_sanity_checks(hdev, q, cs->jobs_in_queue_cnt[i]); break; default: dev_err(hdev->dev, "Queue type %d is invalid\n", q->queue_type); rc = -EINVAL; break; } if (rc) goto unroll_cq_resv; if (q->queue_type == QUEUE_TYPE_EXT || q->queue_type == QUEUE_TYPE_HW) cq_cnt++; } } spin_lock(&hdev->hw_queues_mirror_lock); list_add_tail(&cs->mirror_node, &hdev->hw_queues_mirror_list); /* Queue TDR if the CS is the first entry and if timeout is wanted */ if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) && (list_first_entry(&hdev->hw_queues_mirror_list, struct hl_cs, mirror_node) == cs)) { cs->tdr_active = true; schedule_delayed_work(&cs->work_tdr, hdev->timeout_jiffies); spin_unlock(&hdev->hw_queues_mirror_lock); } else { spin_unlock(&hdev->hw_queues_mirror_lock); } if (!hdev->cs_active_cnt++) { struct hl_device_idle_busy_ts *ts; ts = &hdev->idle_busy_ts_arr[hdev->idle_busy_ts_idx]; ts->busy_to_idle_ts = ktime_set(0, 0); ts->idle_to_busy_ts = ktime_get(); } list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) switch (job->queue_type) { case QUEUE_TYPE_EXT: ext_queue_schedule_job(job); break; case QUEUE_TYPE_INT: int_queue_schedule_job(job); break; case QUEUE_TYPE_HW: hw_queue_schedule_job(job); break; default: break; } cs->submitted = true; goto out; unroll_cq_resv: q = &hdev->kernel_queues[0]; for (i = 0 ; (i < HL_MAX_QUEUES) && (cq_cnt > 0) ; i++, q++) { if ((q->queue_type == QUEUE_TYPE_EXT || q->queue_type == QUEUE_TYPE_HW) && cs->jobs_in_queue_cnt[i]) { atomic_t *free_slots = &hdev->completion_queue[i].free_slots_cnt; atomic_add(cs->jobs_in_queue_cnt[i], free_slots); cq_cnt--; } } out: hdev->asic_funcs->hw_queues_unlock(hdev); return rc; } /* * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue * * @hdev: pointer to hl_device structure * @hw_queue_id: which queue to increment its ci */ void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id) { struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id]; q->ci = hl_queue_inc_ptr(q->ci); } static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q, bool is_cpu_queue) { void *p; int rc; if (is_cpu_queue) p = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address); else p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address, GFP_KERNEL | __GFP_ZERO); if (!p) return -ENOMEM; q->kernel_address = (u64) (uintptr_t) p; q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH, sizeof(*q->shadow_queue), GFP_KERNEL); if (!q->shadow_queue) { dev_err(hdev->dev, "Failed to allocate shadow queue for H/W queue %d\n", q->hw_queue_id); rc = -ENOMEM; goto free_queue; } /* Make sure read/write pointers are initialized to start of queue */ q->ci = 0; q->pi = 0; return 0; free_queue: if (is_cpu_queue) hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, (void *) (uintptr_t) q->kernel_address); else hdev->asic_funcs->asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, (void *) (uintptr_t) q->kernel_address, q->bus_address); return rc; } static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q) { void *p; p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id, &q->bus_address, &q->int_queue_len); if (!p) { dev_err(hdev->dev, "Failed to get base address for internal queue %d\n", q->hw_queue_id); return -EFAULT; } q->kernel_address = (u64) (uintptr_t) p; q->pi = 0; q->ci = 0; return 0; } static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q) { return ext_and_cpu_queue_init(hdev, q, true); } static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q) { return ext_and_cpu_queue_init(hdev, q, false); } static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q) { void *p; p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address, GFP_KERNEL | __GFP_ZERO); if (!p) return -ENOMEM; q->kernel_address = (u64) (uintptr_t) p; /* Make sure read/write pointers are initialized to start of queue */ q->ci = 0; q->pi = 0; return 0; } /* * queue_init - main initialization function for H/W queue object * * @hdev: pointer to hl_device device structure * @q: pointer to hl_hw_queue queue structure * @hw_queue_id: The id of the H/W queue * * Allocate dma-able memory for the queue and initialize fields * Returns 0 on success */ static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q, u32 hw_queue_id) { int rc; BUILD_BUG_ON(HL_QUEUE_SIZE_IN_BYTES > HL_PAGE_SIZE); q->hw_queue_id = hw_queue_id; switch (q->queue_type) { case QUEUE_TYPE_EXT: rc = ext_queue_init(hdev, q); break; case QUEUE_TYPE_INT: rc = int_queue_init(hdev, q); break; case QUEUE_TYPE_CPU: rc = cpu_queue_init(hdev, q); break; case QUEUE_TYPE_HW: rc = hw_queue_init(hdev, q); break; case QUEUE_TYPE_NA: q->valid = 0; return 0; default: dev_crit(hdev->dev, "wrong queue type %d during init\n", q->queue_type); rc = -EINVAL; break; } if (rc) return rc; q->valid = 1; return 0; } /* * hw_queue_fini - destroy queue * * @hdev: pointer to hl_device device structure * @q: pointer to hl_hw_queue queue structure * * Free the queue memory */ static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q) { if (!q->valid) return; /* * If we arrived here, there are no jobs waiting on this queue * so we can safely remove it. * This is because this function can only called when: * 1. Either a context is deleted, which only can occur if all its * jobs were finished * 2. A context wasn't able to be created due to failure or timeout, * which means there are no jobs on the queue yet * * The only exception are the queues of the kernel context, but * if they are being destroyed, it means that the entire module is * being removed. If the module is removed, it means there is no open * user context. It also means that if a job was submitted by * the kernel driver (e.g. context creation), the job itself was * released by the kernel driver when a timeout occurred on its * Completion. Thus, we don't need to release it again. */ if (q->queue_type == QUEUE_TYPE_INT) return; kfree(q->shadow_queue); if (q->queue_type == QUEUE_TYPE_CPU) hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, (void *) (uintptr_t) q->kernel_address); else hdev->asic_funcs->asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, (void *) (uintptr_t) q->kernel_address, q->bus_address); } int hl_hw_queues_create(struct hl_device *hdev) { struct asic_fixed_properties *asic = &hdev->asic_prop; struct hl_hw_queue *q; int i, rc, q_ready_cnt; hdev->kernel_queues = kcalloc(HL_MAX_QUEUES, sizeof(*hdev->kernel_queues), GFP_KERNEL); if (!hdev->kernel_queues) { dev_err(hdev->dev, "Not enough memory for H/W queues\n"); return -ENOMEM; } /* Initialize the H/W queues */ for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues; i < HL_MAX_QUEUES ; i++, q_ready_cnt++, q++) { q->queue_type = asic->hw_queues_props[i].type; rc = queue_init(hdev, q, i); if (rc) { dev_err(hdev->dev, "failed to initialize queue %d\n", i); goto release_queues; } } return 0; release_queues: for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++) queue_fini(hdev, q); kfree(hdev->kernel_queues); return rc; } void hl_hw_queues_destroy(struct hl_device *hdev) { struct hl_hw_queue *q; int i; for (i = 0, q = hdev->kernel_queues ; i < HL_MAX_QUEUES ; i++, q++) queue_fini(hdev, q); kfree(hdev->kernel_queues); } void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset) { struct hl_hw_queue *q; int i; for (i = 0, q = hdev->kernel_queues ; i < HL_MAX_QUEUES ; i++, q++) { if ((!q->valid) || ((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU))) continue; q->pi = q->ci = 0; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1