Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jan Glauber | 5513 | 99.24% | 5 | 45.45% |
Kevin Hao | 29 | 0.52% | 2 | 18.18% |
Steven J. Hill | 5 | 0.09% | 1 | 9.09% |
Dan Carpenter | 5 | 0.09% | 1 | 9.09% |
Rob Herring | 2 | 0.04% | 1 | 9.09% |
Linus Walleij | 1 | 0.02% | 1 | 9.09% |
Total | 5555 | 11 |
/* * Shared part of driver for MMC/SDHC controller on Cavium OCTEON and * ThunderX SOCs. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2012-2017 Cavium Inc. * Authors: * David Daney <david.daney@cavium.com> * Peter Swain <pswain@cavium.com> * Steven J. Hill <steven.hill@cavium.com> * Jan Glauber <jglauber@cavium.com> */ #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/dma-direction.h> #include <linux/dma-mapping.h> #include <linux/gpio/consumer.h> #include <linux/interrupt.h> #include <linux/mmc/mmc.h> #include <linux/mmc/slot-gpio.h> #include <linux/module.h> #include <linux/regulator/consumer.h> #include <linux/scatterlist.h> #include <linux/time.h> #include "cavium.h" const char *cvm_mmc_irq_names[] = { "MMC Buffer", "MMC Command", "MMC DMA", "MMC Command Error", "MMC DMA Error", "MMC Switch", "MMC Switch Error", "MMC DMA int Fifo", "MMC DMA int", }; /* * The Cavium MMC host hardware assumes that all commands have fixed * command and response types. These are correct if MMC devices are * being used. However, non-MMC devices like SD use command and * response types that are unexpected by the host hardware. * * The command and response types can be overridden by supplying an * XOR value that is applied to the type. We calculate the XOR value * from the values in this table and the flags passed from the MMC * core. */ static struct cvm_mmc_cr_type cvm_mmc_cr_types[] = { {0, 0}, /* CMD0 */ {0, 3}, /* CMD1 */ {0, 2}, /* CMD2 */ {0, 1}, /* CMD3 */ {0, 0}, /* CMD4 */ {0, 1}, /* CMD5 */ {0, 1}, /* CMD6 */ {0, 1}, /* CMD7 */ {1, 1}, /* CMD8 */ {0, 2}, /* CMD9 */ {0, 2}, /* CMD10 */ {1, 1}, /* CMD11 */ {0, 1}, /* CMD12 */ {0, 1}, /* CMD13 */ {1, 1}, /* CMD14 */ {0, 0}, /* CMD15 */ {0, 1}, /* CMD16 */ {1, 1}, /* CMD17 */ {1, 1}, /* CMD18 */ {3, 1}, /* CMD19 */ {2, 1}, /* CMD20 */ {0, 0}, /* CMD21 */ {0, 0}, /* CMD22 */ {0, 1}, /* CMD23 */ {2, 1}, /* CMD24 */ {2, 1}, /* CMD25 */ {2, 1}, /* CMD26 */ {2, 1}, /* CMD27 */ {0, 1}, /* CMD28 */ {0, 1}, /* CMD29 */ {1, 1}, /* CMD30 */ {1, 1}, /* CMD31 */ {0, 0}, /* CMD32 */ {0, 0}, /* CMD33 */ {0, 0}, /* CMD34 */ {0, 1}, /* CMD35 */ {0, 1}, /* CMD36 */ {0, 0}, /* CMD37 */ {0, 1}, /* CMD38 */ {0, 4}, /* CMD39 */ {0, 5}, /* CMD40 */ {0, 0}, /* CMD41 */ {2, 1}, /* CMD42 */ {0, 0}, /* CMD43 */ {0, 0}, /* CMD44 */ {0, 0}, /* CMD45 */ {0, 0}, /* CMD46 */ {0, 0}, /* CMD47 */ {0, 0}, /* CMD48 */ {0, 0}, /* CMD49 */ {0, 0}, /* CMD50 */ {0, 0}, /* CMD51 */ {0, 0}, /* CMD52 */ {0, 0}, /* CMD53 */ {0, 0}, /* CMD54 */ {0, 1}, /* CMD55 */ {0xff, 0xff}, /* CMD56 */ {0, 0}, /* CMD57 */ {0, 0}, /* CMD58 */ {0, 0}, /* CMD59 */ {0, 0}, /* CMD60 */ {0, 0}, /* CMD61 */ {0, 0}, /* CMD62 */ {0, 0} /* CMD63 */ }; static struct cvm_mmc_cr_mods cvm_mmc_get_cr_mods(struct mmc_command *cmd) { struct cvm_mmc_cr_type *cr; u8 hardware_ctype, hardware_rtype; u8 desired_ctype = 0, desired_rtype = 0; struct cvm_mmc_cr_mods r; cr = cvm_mmc_cr_types + (cmd->opcode & 0x3f); hardware_ctype = cr->ctype; hardware_rtype = cr->rtype; if (cmd->opcode == MMC_GEN_CMD) hardware_ctype = (cmd->arg & 1) ? 1 : 2; switch (mmc_cmd_type(cmd)) { case MMC_CMD_ADTC: desired_ctype = (cmd->data->flags & MMC_DATA_WRITE) ? 2 : 1; break; case MMC_CMD_AC: case MMC_CMD_BC: case MMC_CMD_BCR: desired_ctype = 0; break; } switch (mmc_resp_type(cmd)) { case MMC_RSP_NONE: desired_rtype = 0; break; case MMC_RSP_R1:/* MMC_RSP_R5, MMC_RSP_R6, MMC_RSP_R7 */ case MMC_RSP_R1B: desired_rtype = 1; break; case MMC_RSP_R2: desired_rtype = 2; break; case MMC_RSP_R3: /* MMC_RSP_R4 */ desired_rtype = 3; break; } r.ctype_xor = desired_ctype ^ hardware_ctype; r.rtype_xor = desired_rtype ^ hardware_rtype; return r; } static void check_switch_errors(struct cvm_mmc_host *host) { u64 emm_switch; emm_switch = readq(host->base + MIO_EMM_SWITCH(host)); if (emm_switch & MIO_EMM_SWITCH_ERR0) dev_err(host->dev, "Switch power class error\n"); if (emm_switch & MIO_EMM_SWITCH_ERR1) dev_err(host->dev, "Switch hs timing error\n"); if (emm_switch & MIO_EMM_SWITCH_ERR2) dev_err(host->dev, "Switch bus width error\n"); } static void clear_bus_id(u64 *reg) { u64 bus_id_mask = GENMASK_ULL(61, 60); *reg &= ~bus_id_mask; } static void set_bus_id(u64 *reg, int bus_id) { clear_bus_id(reg); *reg |= FIELD_PREP(GENMASK(61, 60), bus_id); } static int get_bus_id(u64 reg) { return FIELD_GET(GENMASK_ULL(61, 60), reg); } /* * We never set the switch_exe bit since that would interfere * with the commands send by the MMC core. */ static void do_switch(struct cvm_mmc_host *host, u64 emm_switch) { int retries = 100; u64 rsp_sts; int bus_id; /* * Modes setting only taken from slot 0. Work around that hardware * issue by first switching to slot 0. */ bus_id = get_bus_id(emm_switch); clear_bus_id(&emm_switch); writeq(emm_switch, host->base + MIO_EMM_SWITCH(host)); set_bus_id(&emm_switch, bus_id); writeq(emm_switch, host->base + MIO_EMM_SWITCH(host)); /* wait for the switch to finish */ do { rsp_sts = readq(host->base + MIO_EMM_RSP_STS(host)); if (!(rsp_sts & MIO_EMM_RSP_STS_SWITCH_VAL)) break; udelay(10); } while (--retries); check_switch_errors(host); } static bool switch_val_changed(struct cvm_mmc_slot *slot, u64 new_val) { /* Match BUS_ID, HS_TIMING, BUS_WIDTH, POWER_CLASS, CLK_HI, CLK_LO */ u64 match = 0x3001070fffffffffull; return (slot->cached_switch & match) != (new_val & match); } static void set_wdog(struct cvm_mmc_slot *slot, unsigned int ns) { u64 timeout; if (!slot->clock) return; if (ns) timeout = (slot->clock * ns) / NSEC_PER_SEC; else timeout = (slot->clock * 850ull) / 1000ull; writeq(timeout, slot->host->base + MIO_EMM_WDOG(slot->host)); } static void cvm_mmc_reset_bus(struct cvm_mmc_slot *slot) { struct cvm_mmc_host *host = slot->host; u64 emm_switch, wdog; emm_switch = readq(slot->host->base + MIO_EMM_SWITCH(host)); emm_switch &= ~(MIO_EMM_SWITCH_EXE | MIO_EMM_SWITCH_ERR0 | MIO_EMM_SWITCH_ERR1 | MIO_EMM_SWITCH_ERR2); set_bus_id(&emm_switch, slot->bus_id); wdog = readq(slot->host->base + MIO_EMM_WDOG(host)); do_switch(slot->host, emm_switch); slot->cached_switch = emm_switch; msleep(20); writeq(wdog, slot->host->base + MIO_EMM_WDOG(host)); } /* Switch to another slot if needed */ static void cvm_mmc_switch_to(struct cvm_mmc_slot *slot) { struct cvm_mmc_host *host = slot->host; struct cvm_mmc_slot *old_slot; u64 emm_sample, emm_switch; if (slot->bus_id == host->last_slot) return; if (host->last_slot >= 0 && host->slot[host->last_slot]) { old_slot = host->slot[host->last_slot]; old_slot->cached_switch = readq(host->base + MIO_EMM_SWITCH(host)); old_slot->cached_rca = readq(host->base + MIO_EMM_RCA(host)); } writeq(slot->cached_rca, host->base + MIO_EMM_RCA(host)); emm_switch = slot->cached_switch; set_bus_id(&emm_switch, slot->bus_id); do_switch(host, emm_switch); emm_sample = FIELD_PREP(MIO_EMM_SAMPLE_CMD_CNT, slot->cmd_cnt) | FIELD_PREP(MIO_EMM_SAMPLE_DAT_CNT, slot->dat_cnt); writeq(emm_sample, host->base + MIO_EMM_SAMPLE(host)); host->last_slot = slot->bus_id; } static void do_read(struct cvm_mmc_host *host, struct mmc_request *req, u64 dbuf) { struct sg_mapping_iter *smi = &host->smi; int data_len = req->data->blocks * req->data->blksz; int bytes_xfered, shift = -1; u64 dat = 0; /* Auto inc from offset zero */ writeq((0x10000 | (dbuf << 6)), host->base + MIO_EMM_BUF_IDX(host)); for (bytes_xfered = 0; bytes_xfered < data_len;) { if (smi->consumed >= smi->length) { if (!sg_miter_next(smi)) break; smi->consumed = 0; } if (shift < 0) { dat = readq(host->base + MIO_EMM_BUF_DAT(host)); shift = 56; } while (smi->consumed < smi->length && shift >= 0) { ((u8 *)smi->addr)[smi->consumed] = (dat >> shift) & 0xff; bytes_xfered++; smi->consumed++; shift -= 8; } } sg_miter_stop(smi); req->data->bytes_xfered = bytes_xfered; req->data->error = 0; } static void do_write(struct mmc_request *req) { req->data->bytes_xfered = req->data->blocks * req->data->blksz; req->data->error = 0; } static void set_cmd_response(struct cvm_mmc_host *host, struct mmc_request *req, u64 rsp_sts) { u64 rsp_hi, rsp_lo; if (!(rsp_sts & MIO_EMM_RSP_STS_RSP_VAL)) return; rsp_lo = readq(host->base + MIO_EMM_RSP_LO(host)); switch (FIELD_GET(MIO_EMM_RSP_STS_RSP_TYPE, rsp_sts)) { case 1: case 3: req->cmd->resp[0] = (rsp_lo >> 8) & 0xffffffff; req->cmd->resp[1] = 0; req->cmd->resp[2] = 0; req->cmd->resp[3] = 0; break; case 2: req->cmd->resp[3] = rsp_lo & 0xffffffff; req->cmd->resp[2] = (rsp_lo >> 32) & 0xffffffff; rsp_hi = readq(host->base + MIO_EMM_RSP_HI(host)); req->cmd->resp[1] = rsp_hi & 0xffffffff; req->cmd->resp[0] = (rsp_hi >> 32) & 0xffffffff; break; } } static int get_dma_dir(struct mmc_data *data) { return (data->flags & MMC_DATA_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE; } static int finish_dma_single(struct cvm_mmc_host *host, struct mmc_data *data) { data->bytes_xfered = data->blocks * data->blksz; data->error = 0; dma_unmap_sg(host->dev, data->sg, data->sg_len, get_dma_dir(data)); return 1; } static int finish_dma_sg(struct cvm_mmc_host *host, struct mmc_data *data) { u64 fifo_cfg; int count; /* Check if there are any pending requests left */ fifo_cfg = readq(host->dma_base + MIO_EMM_DMA_FIFO_CFG(host)); count = FIELD_GET(MIO_EMM_DMA_FIFO_CFG_COUNT, fifo_cfg); if (count) dev_err(host->dev, "%u requests still pending\n", count); data->bytes_xfered = data->blocks * data->blksz; data->error = 0; /* Clear and disable FIFO */ writeq(BIT_ULL(16), host->dma_base + MIO_EMM_DMA_FIFO_CFG(host)); dma_unmap_sg(host->dev, data->sg, data->sg_len, get_dma_dir(data)); return 1; } static int finish_dma(struct cvm_mmc_host *host, struct mmc_data *data) { if (host->use_sg && data->sg_len > 1) return finish_dma_sg(host, data); else return finish_dma_single(host, data); } static int check_status(u64 rsp_sts) { if (rsp_sts & MIO_EMM_RSP_STS_RSP_BAD_STS || rsp_sts & MIO_EMM_RSP_STS_RSP_CRC_ERR || rsp_sts & MIO_EMM_RSP_STS_BLK_CRC_ERR) return -EILSEQ; if (rsp_sts & MIO_EMM_RSP_STS_RSP_TIMEOUT || rsp_sts & MIO_EMM_RSP_STS_BLK_TIMEOUT) return -ETIMEDOUT; if (rsp_sts & MIO_EMM_RSP_STS_DBUF_ERR) return -EIO; return 0; } /* Try to clean up failed DMA. */ static void cleanup_dma(struct cvm_mmc_host *host, u64 rsp_sts) { u64 emm_dma; emm_dma = readq(host->base + MIO_EMM_DMA(host)); emm_dma |= FIELD_PREP(MIO_EMM_DMA_VAL, 1) | FIELD_PREP(MIO_EMM_DMA_DAT_NULL, 1); set_bus_id(&emm_dma, get_bus_id(rsp_sts)); writeq(emm_dma, host->base + MIO_EMM_DMA(host)); } irqreturn_t cvm_mmc_interrupt(int irq, void *dev_id) { struct cvm_mmc_host *host = dev_id; struct mmc_request *req; unsigned long flags = 0; u64 emm_int, rsp_sts; bool host_done; if (host->need_irq_handler_lock) spin_lock_irqsave(&host->irq_handler_lock, flags); else __acquire(&host->irq_handler_lock); /* Clear interrupt bits (write 1 clears ). */ emm_int = readq(host->base + MIO_EMM_INT(host)); writeq(emm_int, host->base + MIO_EMM_INT(host)); if (emm_int & MIO_EMM_INT_SWITCH_ERR) check_switch_errors(host); req = host->current_req; if (!req) goto out; rsp_sts = readq(host->base + MIO_EMM_RSP_STS(host)); /* * dma_val set means DMA is still in progress. Don't touch * the request and wait for the interrupt indicating that * the DMA is finished. */ if ((rsp_sts & MIO_EMM_RSP_STS_DMA_VAL) && host->dma_active) goto out; if (!host->dma_active && req->data && (emm_int & MIO_EMM_INT_BUF_DONE)) { unsigned int type = (rsp_sts >> 7) & 3; if (type == 1) do_read(host, req, rsp_sts & MIO_EMM_RSP_STS_DBUF); else if (type == 2) do_write(req); } host_done = emm_int & MIO_EMM_INT_CMD_DONE || emm_int & MIO_EMM_INT_DMA_DONE || emm_int & MIO_EMM_INT_CMD_ERR || emm_int & MIO_EMM_INT_DMA_ERR; if (!(host_done && req->done)) goto no_req_done; req->cmd->error = check_status(rsp_sts); if (host->dma_active && req->data) if (!finish_dma(host, req->data)) goto no_req_done; set_cmd_response(host, req, rsp_sts); if ((emm_int & MIO_EMM_INT_DMA_ERR) && (rsp_sts & MIO_EMM_RSP_STS_DMA_PEND)) cleanup_dma(host, rsp_sts); host->current_req = NULL; req->done(req); no_req_done: if (host->dmar_fixup_done) host->dmar_fixup_done(host); if (host_done) host->release_bus(host); out: if (host->need_irq_handler_lock) spin_unlock_irqrestore(&host->irq_handler_lock, flags); else __release(&host->irq_handler_lock); return IRQ_RETVAL(emm_int != 0); } /* * Program DMA_CFG and if needed DMA_ADR. * Returns 0 on error, DMA address otherwise. */ static u64 prepare_dma_single(struct cvm_mmc_host *host, struct mmc_data *data) { u64 dma_cfg, addr; int count, rw; count = dma_map_sg(host->dev, data->sg, data->sg_len, get_dma_dir(data)); if (!count) return 0; rw = (data->flags & MMC_DATA_WRITE) ? 1 : 0; dma_cfg = FIELD_PREP(MIO_EMM_DMA_CFG_EN, 1) | FIELD_PREP(MIO_EMM_DMA_CFG_RW, rw); #ifdef __LITTLE_ENDIAN dma_cfg |= FIELD_PREP(MIO_EMM_DMA_CFG_ENDIAN, 1); #endif dma_cfg |= FIELD_PREP(MIO_EMM_DMA_CFG_SIZE, (sg_dma_len(&data->sg[0]) / 8) - 1); addr = sg_dma_address(&data->sg[0]); if (!host->big_dma_addr) dma_cfg |= FIELD_PREP(MIO_EMM_DMA_CFG_ADR, addr); writeq(dma_cfg, host->dma_base + MIO_EMM_DMA_CFG(host)); pr_debug("[%s] sg_dma_len: %u total sg_elem: %d\n", (rw) ? "W" : "R", sg_dma_len(&data->sg[0]), count); if (host->big_dma_addr) writeq(addr, host->dma_base + MIO_EMM_DMA_ADR(host)); return addr; } /* * Queue complete sg list into the FIFO. * Returns 0 on error, 1 otherwise. */ static u64 prepare_dma_sg(struct cvm_mmc_host *host, struct mmc_data *data) { struct scatterlist *sg; u64 fifo_cmd, addr; int count, i, rw; count = dma_map_sg(host->dev, data->sg, data->sg_len, get_dma_dir(data)); if (!count) return 0; if (count > 16) goto error; /* Enable FIFO by removing CLR bit */ writeq(0, host->dma_base + MIO_EMM_DMA_FIFO_CFG(host)); for_each_sg(data->sg, sg, count, i) { /* Program DMA address */ addr = sg_dma_address(sg); if (addr & 7) goto error; writeq(addr, host->dma_base + MIO_EMM_DMA_FIFO_ADR(host)); /* * If we have scatter-gather support we also have an extra * register for the DMA addr, so no need to check * host->big_dma_addr here. */ rw = (data->flags & MMC_DATA_WRITE) ? 1 : 0; fifo_cmd = FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_RW, rw); /* enable interrupts on the last element */ fifo_cmd |= FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_INTDIS, (i + 1 == count) ? 0 : 1); #ifdef __LITTLE_ENDIAN fifo_cmd |= FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_ENDIAN, 1); #endif fifo_cmd |= FIELD_PREP(MIO_EMM_DMA_FIFO_CMD_SIZE, sg_dma_len(sg) / 8 - 1); /* * The write copies the address and the command to the FIFO * and increments the FIFO's COUNT field. */ writeq(fifo_cmd, host->dma_base + MIO_EMM_DMA_FIFO_CMD(host)); pr_debug("[%s] sg_dma_len: %u sg_elem: %d/%d\n", (rw) ? "W" : "R", sg_dma_len(sg), i, count); } /* * In difference to prepare_dma_single we don't return the * address here, as it would not make sense for scatter-gather. * The dma fixup is only required on models that don't support * scatter-gather, so that is not a problem. */ return 1; error: WARN_ON_ONCE(1); dma_unmap_sg(host->dev, data->sg, data->sg_len, get_dma_dir(data)); /* Disable FIFO */ writeq(BIT_ULL(16), host->dma_base + MIO_EMM_DMA_FIFO_CFG(host)); return 0; } static u64 prepare_dma(struct cvm_mmc_host *host, struct mmc_data *data) { if (host->use_sg && data->sg_len > 1) return prepare_dma_sg(host, data); else return prepare_dma_single(host, data); } static u64 prepare_ext_dma(struct mmc_host *mmc, struct mmc_request *mrq) { struct cvm_mmc_slot *slot = mmc_priv(mmc); u64 emm_dma; emm_dma = FIELD_PREP(MIO_EMM_DMA_VAL, 1) | FIELD_PREP(MIO_EMM_DMA_SECTOR, mmc_card_is_blockaddr(mmc->card) ? 1 : 0) | FIELD_PREP(MIO_EMM_DMA_RW, (mrq->data->flags & MMC_DATA_WRITE) ? 1 : 0) | FIELD_PREP(MIO_EMM_DMA_BLOCK_CNT, mrq->data->blocks) | FIELD_PREP(MIO_EMM_DMA_CARD_ADDR, mrq->cmd->arg); set_bus_id(&emm_dma, slot->bus_id); if (mmc_card_mmc(mmc->card) || (mmc_card_sd(mmc->card) && (mmc->card->scr.cmds & SD_SCR_CMD23_SUPPORT))) emm_dma |= FIELD_PREP(MIO_EMM_DMA_MULTI, 1); pr_debug("[%s] blocks: %u multi: %d\n", (emm_dma & MIO_EMM_DMA_RW) ? "W" : "R", mrq->data->blocks, (emm_dma & MIO_EMM_DMA_MULTI) ? 1 : 0); return emm_dma; } static void cvm_mmc_dma_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct cvm_mmc_slot *slot = mmc_priv(mmc); struct cvm_mmc_host *host = slot->host; struct mmc_data *data; u64 emm_dma, addr; if (!mrq->data || !mrq->data->sg || !mrq->data->sg_len || !mrq->stop || mrq->stop->opcode != MMC_STOP_TRANSMISSION) { dev_err(&mmc->card->dev, "Error: cmv_mmc_dma_request no data\n"); goto error; } cvm_mmc_switch_to(slot); data = mrq->data; pr_debug("DMA request blocks: %d block_size: %d total_size: %d\n", data->blocks, data->blksz, data->blocks * data->blksz); if (data->timeout_ns) set_wdog(slot, data->timeout_ns); WARN_ON(host->current_req); host->current_req = mrq; emm_dma = prepare_ext_dma(mmc, mrq); addr = prepare_dma(host, data); if (!addr) { dev_err(host->dev, "prepare_dma failed\n"); goto error; } host->dma_active = true; host->int_enable(host, MIO_EMM_INT_CMD_ERR | MIO_EMM_INT_DMA_DONE | MIO_EMM_INT_DMA_ERR); if (host->dmar_fixup) host->dmar_fixup(host, mrq->cmd, data, addr); /* * If we have a valid SD card in the slot, we set the response * bit mask to check for CRC errors and timeouts only. * Otherwise, use the default power reset value. */ if (mmc_card_sd(mmc->card)) writeq(0x00b00000ull, host->base + MIO_EMM_STS_MASK(host)); else writeq(0xe4390080ull, host->base + MIO_EMM_STS_MASK(host)); writeq(emm_dma, host->base + MIO_EMM_DMA(host)); return; error: mrq->cmd->error = -EINVAL; if (mrq->done) mrq->done(mrq); host->release_bus(host); } static void do_read_request(struct cvm_mmc_host *host, struct mmc_request *mrq) { sg_miter_start(&host->smi, mrq->data->sg, mrq->data->sg_len, SG_MITER_ATOMIC | SG_MITER_TO_SG); } static void do_write_request(struct cvm_mmc_host *host, struct mmc_request *mrq) { unsigned int data_len = mrq->data->blocks * mrq->data->blksz; struct sg_mapping_iter *smi = &host->smi; unsigned int bytes_xfered; int shift = 56; u64 dat = 0; /* Copy data to the xmit buffer before issuing the command. */ sg_miter_start(smi, mrq->data->sg, mrq->data->sg_len, SG_MITER_FROM_SG); /* Auto inc from offset zero, dbuf zero */ writeq(0x10000ull, host->base + MIO_EMM_BUF_IDX(host)); for (bytes_xfered = 0; bytes_xfered < data_len;) { if (smi->consumed >= smi->length) { if (!sg_miter_next(smi)) break; smi->consumed = 0; } while (smi->consumed < smi->length && shift >= 0) { dat |= (u64)((u8 *)smi->addr)[smi->consumed] << shift; bytes_xfered++; smi->consumed++; shift -= 8; } if (shift < 0) { writeq(dat, host->base + MIO_EMM_BUF_DAT(host)); shift = 56; dat = 0; } } sg_miter_stop(smi); } static void cvm_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct cvm_mmc_slot *slot = mmc_priv(mmc); struct cvm_mmc_host *host = slot->host; struct mmc_command *cmd = mrq->cmd; struct cvm_mmc_cr_mods mods; u64 emm_cmd, rsp_sts; int retries = 100; /* * Note about locking: * All MMC devices share the same bus and controller. Allow only a * single user of the bootbus/MMC bus at a time. The lock is acquired * on all entry points from the MMC layer. * * For requests the lock is only released after the completion * interrupt! */ host->acquire_bus(host); if (cmd->opcode == MMC_READ_MULTIPLE_BLOCK || cmd->opcode == MMC_WRITE_MULTIPLE_BLOCK) return cvm_mmc_dma_request(mmc, mrq); cvm_mmc_switch_to(slot); mods = cvm_mmc_get_cr_mods(cmd); WARN_ON(host->current_req); host->current_req = mrq; if (cmd->data) { if (cmd->data->flags & MMC_DATA_READ) do_read_request(host, mrq); else do_write_request(host, mrq); if (cmd->data->timeout_ns) set_wdog(slot, cmd->data->timeout_ns); } else set_wdog(slot, 0); host->dma_active = false; host->int_enable(host, MIO_EMM_INT_CMD_DONE | MIO_EMM_INT_CMD_ERR); emm_cmd = FIELD_PREP(MIO_EMM_CMD_VAL, 1) | FIELD_PREP(MIO_EMM_CMD_CTYPE_XOR, mods.ctype_xor) | FIELD_PREP(MIO_EMM_CMD_RTYPE_XOR, mods.rtype_xor) | FIELD_PREP(MIO_EMM_CMD_IDX, cmd->opcode) | FIELD_PREP(MIO_EMM_CMD_ARG, cmd->arg); set_bus_id(&emm_cmd, slot->bus_id); if (cmd->data && mmc_cmd_type(cmd) == MMC_CMD_ADTC) emm_cmd |= FIELD_PREP(MIO_EMM_CMD_OFFSET, 64 - ((cmd->data->blocks * cmd->data->blksz) / 8)); writeq(0, host->base + MIO_EMM_STS_MASK(host)); retry: rsp_sts = readq(host->base + MIO_EMM_RSP_STS(host)); if (rsp_sts & MIO_EMM_RSP_STS_DMA_VAL || rsp_sts & MIO_EMM_RSP_STS_CMD_VAL || rsp_sts & MIO_EMM_RSP_STS_SWITCH_VAL || rsp_sts & MIO_EMM_RSP_STS_DMA_PEND) { udelay(10); if (--retries) goto retry; } if (!retries) dev_err(host->dev, "Bad status: %llx before command write\n", rsp_sts); writeq(emm_cmd, host->base + MIO_EMM_CMD(host)); } static void cvm_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct cvm_mmc_slot *slot = mmc_priv(mmc); struct cvm_mmc_host *host = slot->host; int clk_period = 0, power_class = 10, bus_width = 0; u64 clock, emm_switch; host->acquire_bus(host); cvm_mmc_switch_to(slot); /* Set the power state */ switch (ios->power_mode) { case MMC_POWER_ON: break; case MMC_POWER_OFF: cvm_mmc_reset_bus(slot); if (host->global_pwr_gpiod) host->set_shared_power(host, 0); else if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); break; case MMC_POWER_UP: if (host->global_pwr_gpiod) host->set_shared_power(host, 1); else if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); break; } /* Convert bus width to HW definition */ switch (ios->bus_width) { case MMC_BUS_WIDTH_8: bus_width = 2; break; case MMC_BUS_WIDTH_4: bus_width = 1; break; case MMC_BUS_WIDTH_1: bus_width = 0; break; } /* DDR is available for 4/8 bit bus width */ if (ios->bus_width && ios->timing == MMC_TIMING_MMC_DDR52) bus_width |= 4; /* Change the clock frequency. */ clock = ios->clock; if (clock > 52000000) clock = 52000000; slot->clock = clock; if (clock) clk_period = (host->sys_freq + clock - 1) / (2 * clock); emm_switch = FIELD_PREP(MIO_EMM_SWITCH_HS_TIMING, (ios->timing == MMC_TIMING_MMC_HS)) | FIELD_PREP(MIO_EMM_SWITCH_BUS_WIDTH, bus_width) | FIELD_PREP(MIO_EMM_SWITCH_POWER_CLASS, power_class) | FIELD_PREP(MIO_EMM_SWITCH_CLK_HI, clk_period) | FIELD_PREP(MIO_EMM_SWITCH_CLK_LO, clk_period); set_bus_id(&emm_switch, slot->bus_id); if (!switch_val_changed(slot, emm_switch)) goto out; set_wdog(slot, 0); do_switch(host, emm_switch); slot->cached_switch = emm_switch; out: host->release_bus(host); } static const struct mmc_host_ops cvm_mmc_ops = { .request = cvm_mmc_request, .set_ios = cvm_mmc_set_ios, .get_ro = mmc_gpio_get_ro, .get_cd = mmc_gpio_get_cd, }; static void cvm_mmc_set_clock(struct cvm_mmc_slot *slot, unsigned int clock) { struct mmc_host *mmc = slot->mmc; clock = min(clock, mmc->f_max); clock = max(clock, mmc->f_min); slot->clock = clock; } static int cvm_mmc_init_lowlevel(struct cvm_mmc_slot *slot) { struct cvm_mmc_host *host = slot->host; u64 emm_switch; /* Enable this bus slot. */ host->emm_cfg |= (1ull << slot->bus_id); writeq(host->emm_cfg, slot->host->base + MIO_EMM_CFG(host)); udelay(10); /* Program initial clock speed and power. */ cvm_mmc_set_clock(slot, slot->mmc->f_min); emm_switch = FIELD_PREP(MIO_EMM_SWITCH_POWER_CLASS, 10); emm_switch |= FIELD_PREP(MIO_EMM_SWITCH_CLK_HI, (host->sys_freq / slot->clock) / 2); emm_switch |= FIELD_PREP(MIO_EMM_SWITCH_CLK_LO, (host->sys_freq / slot->clock) / 2); /* Make the changes take effect on this bus slot. */ set_bus_id(&emm_switch, slot->bus_id); do_switch(host, emm_switch); slot->cached_switch = emm_switch; /* * Set watchdog timeout value and default reset value * for the mask register. Finally, set the CARD_RCA * bit so that we can get the card address relative * to the CMD register for CMD7 transactions. */ set_wdog(slot, 0); writeq(0xe4390080ull, host->base + MIO_EMM_STS_MASK(host)); writeq(1, host->base + MIO_EMM_RCA(host)); return 0; } static int cvm_mmc_of_parse(struct device *dev, struct cvm_mmc_slot *slot) { u32 id, cmd_skew = 0, dat_skew = 0, bus_width = 0; struct device_node *node = dev->of_node; struct mmc_host *mmc = slot->mmc; u64 clock_period; int ret; ret = of_property_read_u32(node, "reg", &id); if (ret) { dev_err(dev, "Missing or invalid reg property on %pOF\n", node); return ret; } if (id >= CAVIUM_MAX_MMC || slot->host->slot[id]) { dev_err(dev, "Invalid reg property on %pOF\n", node); return -EINVAL; } ret = mmc_regulator_get_supply(mmc); if (ret) return ret; /* * Legacy Octeon firmware has no regulator entry, fall-back to * a hard-coded voltage to get a sane OCR. */ if (IS_ERR(mmc->supply.vmmc)) mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34; /* Common MMC bindings */ ret = mmc_of_parse(mmc); if (ret) return ret; /* Set bus width */ if (!(mmc->caps & (MMC_CAP_8_BIT_DATA | MMC_CAP_4_BIT_DATA))) { of_property_read_u32(node, "cavium,bus-max-width", &bus_width); if (bus_width == 8) mmc->caps |= MMC_CAP_8_BIT_DATA | MMC_CAP_4_BIT_DATA; else if (bus_width == 4) mmc->caps |= MMC_CAP_4_BIT_DATA; } /* Set maximum and minimum frequency */ if (!mmc->f_max) of_property_read_u32(node, "spi-max-frequency", &mmc->f_max); if (!mmc->f_max || mmc->f_max > 52000000) mmc->f_max = 52000000; mmc->f_min = 400000; /* Sampling register settings, period in picoseconds */ clock_period = 1000000000000ull / slot->host->sys_freq; of_property_read_u32(node, "cavium,cmd-clk-skew", &cmd_skew); of_property_read_u32(node, "cavium,dat-clk-skew", &dat_skew); slot->cmd_cnt = (cmd_skew + clock_period / 2) / clock_period; slot->dat_cnt = (dat_skew + clock_period / 2) / clock_period; return id; } int cvm_mmc_of_slot_probe(struct device *dev, struct cvm_mmc_host *host) { struct cvm_mmc_slot *slot; struct mmc_host *mmc; int ret, id; mmc = mmc_alloc_host(sizeof(struct cvm_mmc_slot), dev); if (!mmc) return -ENOMEM; slot = mmc_priv(mmc); slot->mmc = mmc; slot->host = host; ret = cvm_mmc_of_parse(dev, slot); if (ret < 0) goto error; id = ret; /* Set up host parameters */ mmc->ops = &cvm_mmc_ops; /* * We only have a 3.3v supply, we cannot support any * of the UHS modes. We do support the high speed DDR * modes up to 52MHz. * * Disable bounce buffers for max_segs = 1 */ mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED | MMC_CAP_ERASE | MMC_CAP_CMD23 | MMC_CAP_POWER_OFF_CARD | MMC_CAP_3_3V_DDR; if (host->use_sg) mmc->max_segs = 16; else mmc->max_segs = 1; /* DMA size field can address up to 8 MB */ mmc->max_seg_size = min_t(unsigned int, 8 * 1024 * 1024, dma_get_max_seg_size(host->dev)); mmc->max_req_size = mmc->max_seg_size; /* External DMA is in 512 byte blocks */ mmc->max_blk_size = 512; /* DMA block count field is 15 bits */ mmc->max_blk_count = 32767; slot->clock = mmc->f_min; slot->bus_id = id; slot->cached_rca = 1; host->acquire_bus(host); host->slot[id] = slot; cvm_mmc_switch_to(slot); cvm_mmc_init_lowlevel(slot); host->release_bus(host); ret = mmc_add_host(mmc); if (ret) { dev_err(dev, "mmc_add_host() returned %d\n", ret); slot->host->slot[id] = NULL; goto error; } return 0; error: mmc_free_host(slot->mmc); return ret; } int cvm_mmc_of_slot_remove(struct cvm_mmc_slot *slot) { mmc_remove_host(slot->mmc); slot->host->slot[slot->bus_id] = NULL; mmc_free_host(slot->mmc); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1