Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lars-Peter Clausen | 3264 | 64.38% | 5 | 13.89% |
Apelete Seketeli | 836 | 16.49% | 2 | 5.56% |
Ezequiel García | 311 | 6.13% | 4 | 11.11% |
Alex Smith | 273 | 5.38% | 4 | 11.11% |
Zhou Yanjie | 183 | 3.61% | 4 | 11.11% |
Paul Cercueil | 156 | 3.08% | 6 | 16.67% |
Kees Cook | 14 | 0.28% | 1 | 2.78% |
Jamie Iles | 11 | 0.22% | 1 | 2.78% |
Wei Yongjun | 6 | 0.12% | 1 | 2.78% |
Zubair Lutfullah Kakakhel | 5 | 0.10% | 1 | 2.78% |
Thomas Gleixner | 2 | 0.04% | 1 | 2.78% |
Heiner Kallweit | 2 | 0.04% | 1 | 2.78% |
Linus Walleij | 2 | 0.04% | 1 | 2.78% |
Mathieu Malaterre | 2 | 0.04% | 1 | 2.78% |
Martin K. Petersen | 1 | 0.02% | 1 | 2.78% |
Ulf Hansson | 1 | 0.02% | 1 | 2.78% |
Axel Lin | 1 | 0.02% | 1 | 2.78% |
Total | 5070 | 36 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2009-2010, Lars-Peter Clausen <lars@metafoo.de> * Copyright (C) 2013, Imagination Technologies * * JZ4740 SD/MMC controller driver */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/mmc/host.h> #include <linux/mmc/slot-gpio.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/pinctrl/consumer.h> #include <linux/platform_device.h> #include <linux/scatterlist.h> #include <asm/cacheflush.h> #define JZ_REG_MMC_STRPCL 0x00 #define JZ_REG_MMC_STATUS 0x04 #define JZ_REG_MMC_CLKRT 0x08 #define JZ_REG_MMC_CMDAT 0x0C #define JZ_REG_MMC_RESTO 0x10 #define JZ_REG_MMC_RDTO 0x14 #define JZ_REG_MMC_BLKLEN 0x18 #define JZ_REG_MMC_NOB 0x1C #define JZ_REG_MMC_SNOB 0x20 #define JZ_REG_MMC_IMASK 0x24 #define JZ_REG_MMC_IREG 0x28 #define JZ_REG_MMC_CMD 0x2C #define JZ_REG_MMC_ARG 0x30 #define JZ_REG_MMC_RESP_FIFO 0x34 #define JZ_REG_MMC_RXFIFO 0x38 #define JZ_REG_MMC_TXFIFO 0x3C #define JZ_REG_MMC_LPM 0x40 #define JZ_REG_MMC_DMAC 0x44 #define JZ_MMC_STRPCL_EXIT_MULTIPLE BIT(7) #define JZ_MMC_STRPCL_EXIT_TRANSFER BIT(6) #define JZ_MMC_STRPCL_START_READWAIT BIT(5) #define JZ_MMC_STRPCL_STOP_READWAIT BIT(4) #define JZ_MMC_STRPCL_RESET BIT(3) #define JZ_MMC_STRPCL_START_OP BIT(2) #define JZ_MMC_STRPCL_CLOCK_CONTROL (BIT(1) | BIT(0)) #define JZ_MMC_STRPCL_CLOCK_STOP BIT(0) #define JZ_MMC_STRPCL_CLOCK_START BIT(1) #define JZ_MMC_STATUS_IS_RESETTING BIT(15) #define JZ_MMC_STATUS_SDIO_INT_ACTIVE BIT(14) #define JZ_MMC_STATUS_PRG_DONE BIT(13) #define JZ_MMC_STATUS_DATA_TRAN_DONE BIT(12) #define JZ_MMC_STATUS_END_CMD_RES BIT(11) #define JZ_MMC_STATUS_DATA_FIFO_AFULL BIT(10) #define JZ_MMC_STATUS_IS_READWAIT BIT(9) #define JZ_MMC_STATUS_CLK_EN BIT(8) #define JZ_MMC_STATUS_DATA_FIFO_FULL BIT(7) #define JZ_MMC_STATUS_DATA_FIFO_EMPTY BIT(6) #define JZ_MMC_STATUS_CRC_RES_ERR BIT(5) #define JZ_MMC_STATUS_CRC_READ_ERROR BIT(4) #define JZ_MMC_STATUS_TIMEOUT_WRITE BIT(3) #define JZ_MMC_STATUS_CRC_WRITE_ERROR BIT(2) #define JZ_MMC_STATUS_TIMEOUT_RES BIT(1) #define JZ_MMC_STATUS_TIMEOUT_READ BIT(0) #define JZ_MMC_STATUS_READ_ERROR_MASK (BIT(4) | BIT(0)) #define JZ_MMC_STATUS_WRITE_ERROR_MASK (BIT(3) | BIT(2)) #define JZ_MMC_CMDAT_IO_ABORT BIT(11) #define JZ_MMC_CMDAT_BUS_WIDTH_4BIT BIT(10) #define JZ_MMC_CMDAT_BUS_WIDTH_8BIT (BIT(10) | BIT(9)) #define JZ_MMC_CMDAT_BUS_WIDTH_MASK (BIT(10) | BIT(9)) #define JZ_MMC_CMDAT_DMA_EN BIT(8) #define JZ_MMC_CMDAT_INIT BIT(7) #define JZ_MMC_CMDAT_BUSY BIT(6) #define JZ_MMC_CMDAT_STREAM BIT(5) #define JZ_MMC_CMDAT_WRITE BIT(4) #define JZ_MMC_CMDAT_DATA_EN BIT(3) #define JZ_MMC_CMDAT_RESPONSE_FORMAT (BIT(2) | BIT(1) | BIT(0)) #define JZ_MMC_CMDAT_RSP_R1 1 #define JZ_MMC_CMDAT_RSP_R2 2 #define JZ_MMC_CMDAT_RSP_R3 3 #define JZ_MMC_IRQ_SDIO BIT(7) #define JZ_MMC_IRQ_TXFIFO_WR_REQ BIT(6) #define JZ_MMC_IRQ_RXFIFO_RD_REQ BIT(5) #define JZ_MMC_IRQ_END_CMD_RES BIT(2) #define JZ_MMC_IRQ_PRG_DONE BIT(1) #define JZ_MMC_IRQ_DATA_TRAN_DONE BIT(0) #define JZ_MMC_DMAC_DMA_SEL BIT(1) #define JZ_MMC_DMAC_DMA_EN BIT(0) #define JZ_MMC_LPM_DRV_RISING BIT(31) #define JZ_MMC_LPM_DRV_RISING_QTR_PHASE_DLY BIT(31) #define JZ_MMC_LPM_DRV_RISING_1NS_DLY BIT(30) #define JZ_MMC_LPM_SMP_RISING_QTR_OR_HALF_PHASE_DLY BIT(29) #define JZ_MMC_LPM_LOW_POWER_MODE_EN BIT(0) #define JZ_MMC_CLK_RATE 24000000 enum jz4740_mmc_version { JZ_MMC_JZ4740, JZ_MMC_JZ4725B, JZ_MMC_JZ4760, JZ_MMC_JZ4780, JZ_MMC_X1000, }; enum jz4740_mmc_state { JZ4740_MMC_STATE_READ_RESPONSE, JZ4740_MMC_STATE_TRANSFER_DATA, JZ4740_MMC_STATE_SEND_STOP, JZ4740_MMC_STATE_DONE, }; /* * The MMC core allows to prepare a mmc_request while another mmc_request * is in-flight. This is used via the pre_req/post_req hooks. * This driver uses the pre_req/post_req hooks to map/unmap the mmc_request. * Following what other drivers do (sdhci, dw_mmc) we use the following cookie * flags to keep track of the mmc_request mapping state. * * COOKIE_UNMAPPED: the request is not mapped. * COOKIE_PREMAPPED: the request was mapped in pre_req, * and should be unmapped in post_req. * COOKIE_MAPPED: the request was mapped in the irq handler, * and should be unmapped before mmc_request_done is called.. */ enum jz4780_cookie { COOKIE_UNMAPPED = 0, COOKIE_PREMAPPED, COOKIE_MAPPED, }; struct jz4740_mmc_host { struct mmc_host *mmc; struct platform_device *pdev; struct clk *clk; enum jz4740_mmc_version version; int irq; int card_detect_irq; void __iomem *base; struct resource *mem_res; struct mmc_request *req; struct mmc_command *cmd; unsigned long waiting; uint32_t cmdat; uint32_t irq_mask; spinlock_t lock; struct timer_list timeout_timer; struct sg_mapping_iter miter; enum jz4740_mmc_state state; /* DMA support */ struct dma_chan *dma_rx; struct dma_chan *dma_tx; bool use_dma; /* The DMA trigger level is 8 words, that is to say, the DMA read * trigger is when data words in MSC_RXFIFO is >= 8 and the DMA write * trigger is when data words in MSC_TXFIFO is < 8. */ #define JZ4740_MMC_FIFO_HALF_SIZE 8 }; static void jz4740_mmc_write_irq_mask(struct jz4740_mmc_host *host, uint32_t val) { if (host->version >= JZ_MMC_JZ4725B) return writel(val, host->base + JZ_REG_MMC_IMASK); else return writew(val, host->base + JZ_REG_MMC_IMASK); } static void jz4740_mmc_write_irq_reg(struct jz4740_mmc_host *host, uint32_t val) { if (host->version >= JZ_MMC_JZ4780) writel(val, host->base + JZ_REG_MMC_IREG); else writew(val, host->base + JZ_REG_MMC_IREG); } static uint32_t jz4740_mmc_read_irq_reg(struct jz4740_mmc_host *host) { if (host->version >= JZ_MMC_JZ4780) return readl(host->base + JZ_REG_MMC_IREG); else return readw(host->base + JZ_REG_MMC_IREG); } /*----------------------------------------------------------------------------*/ /* DMA infrastructure */ static void jz4740_mmc_release_dma_channels(struct jz4740_mmc_host *host) { if (!host->use_dma) return; dma_release_channel(host->dma_tx); dma_release_channel(host->dma_rx); } static int jz4740_mmc_acquire_dma_channels(struct jz4740_mmc_host *host) { host->dma_tx = dma_request_chan(mmc_dev(host->mmc), "tx"); if (IS_ERR(host->dma_tx)) { dev_err(mmc_dev(host->mmc), "Failed to get dma_tx channel\n"); return PTR_ERR(host->dma_tx); } host->dma_rx = dma_request_chan(mmc_dev(host->mmc), "rx"); if (IS_ERR(host->dma_rx)) { dev_err(mmc_dev(host->mmc), "Failed to get dma_rx channel\n"); dma_release_channel(host->dma_tx); return PTR_ERR(host->dma_rx); } return 0; } static inline struct dma_chan *jz4740_mmc_get_dma_chan(struct jz4740_mmc_host *host, struct mmc_data *data) { return (data->flags & MMC_DATA_READ) ? host->dma_rx : host->dma_tx; } static void jz4740_mmc_dma_unmap(struct jz4740_mmc_host *host, struct mmc_data *data) { struct dma_chan *chan = jz4740_mmc_get_dma_chan(host, data); enum dma_data_direction dir = mmc_get_dma_dir(data); dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir); data->host_cookie = COOKIE_UNMAPPED; } /* Prepares DMA data for current or next transfer. * A request can be in-flight when this is called. */ static int jz4740_mmc_prepare_dma_data(struct jz4740_mmc_host *host, struct mmc_data *data, int cookie) { struct dma_chan *chan = jz4740_mmc_get_dma_chan(host, data); enum dma_data_direction dir = mmc_get_dma_dir(data); int sg_count; if (data->host_cookie == COOKIE_PREMAPPED) return data->sg_count; sg_count = dma_map_sg(chan->device->dev, data->sg, data->sg_len, dir); if (sg_count <= 0) { dev_err(mmc_dev(host->mmc), "Failed to map scatterlist for DMA operation\n"); return -EINVAL; } data->sg_count = sg_count; data->host_cookie = cookie; return data->sg_count; } static int jz4740_mmc_start_dma_transfer(struct jz4740_mmc_host *host, struct mmc_data *data) { struct dma_chan *chan = jz4740_mmc_get_dma_chan(host, data); struct dma_async_tx_descriptor *desc; struct dma_slave_config conf = { .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, .src_maxburst = JZ4740_MMC_FIFO_HALF_SIZE, .dst_maxburst = JZ4740_MMC_FIFO_HALF_SIZE, }; int sg_count; if (data->flags & MMC_DATA_WRITE) { conf.direction = DMA_MEM_TO_DEV; conf.dst_addr = host->mem_res->start + JZ_REG_MMC_TXFIFO; } else { conf.direction = DMA_DEV_TO_MEM; conf.src_addr = host->mem_res->start + JZ_REG_MMC_RXFIFO; } sg_count = jz4740_mmc_prepare_dma_data(host, data, COOKIE_MAPPED); if (sg_count < 0) return sg_count; dmaengine_slave_config(chan, &conf); desc = dmaengine_prep_slave_sg(chan, data->sg, sg_count, conf.direction, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_err(mmc_dev(host->mmc), "Failed to allocate DMA %s descriptor", conf.direction == DMA_MEM_TO_DEV ? "TX" : "RX"); goto dma_unmap; } dmaengine_submit(desc); dma_async_issue_pending(chan); return 0; dma_unmap: if (data->host_cookie == COOKIE_MAPPED) jz4740_mmc_dma_unmap(host, data); return -ENOMEM; } static void jz4740_mmc_pre_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct jz4740_mmc_host *host = mmc_priv(mmc); struct mmc_data *data = mrq->data; if (!host->use_dma) return; data->host_cookie = COOKIE_UNMAPPED; if (jz4740_mmc_prepare_dma_data(host, data, COOKIE_PREMAPPED) < 0) data->host_cookie = COOKIE_UNMAPPED; } static void jz4740_mmc_post_request(struct mmc_host *mmc, struct mmc_request *mrq, int err) { struct jz4740_mmc_host *host = mmc_priv(mmc); struct mmc_data *data = mrq->data; if (data && data->host_cookie != COOKIE_UNMAPPED) jz4740_mmc_dma_unmap(host, data); if (err) { struct dma_chan *chan = jz4740_mmc_get_dma_chan(host, data); dmaengine_terminate_all(chan); } } /*----------------------------------------------------------------------------*/ static void jz4740_mmc_set_irq_enabled(struct jz4740_mmc_host *host, unsigned int irq, bool enabled) { unsigned long flags; spin_lock_irqsave(&host->lock, flags); if (enabled) host->irq_mask &= ~irq; else host->irq_mask |= irq; jz4740_mmc_write_irq_mask(host, host->irq_mask); spin_unlock_irqrestore(&host->lock, flags); } static void jz4740_mmc_clock_enable(struct jz4740_mmc_host *host, bool start_transfer) { uint16_t val = JZ_MMC_STRPCL_CLOCK_START; if (start_transfer) val |= JZ_MMC_STRPCL_START_OP; writew(val, host->base + JZ_REG_MMC_STRPCL); } static void jz4740_mmc_clock_disable(struct jz4740_mmc_host *host) { uint32_t status; unsigned int timeout = 1000; writew(JZ_MMC_STRPCL_CLOCK_STOP, host->base + JZ_REG_MMC_STRPCL); do { status = readl(host->base + JZ_REG_MMC_STATUS); } while (status & JZ_MMC_STATUS_CLK_EN && --timeout); } static void jz4740_mmc_reset(struct jz4740_mmc_host *host) { uint32_t status; unsigned int timeout = 1000; writew(JZ_MMC_STRPCL_RESET, host->base + JZ_REG_MMC_STRPCL); udelay(10); do { status = readl(host->base + JZ_REG_MMC_STATUS); } while (status & JZ_MMC_STATUS_IS_RESETTING && --timeout); } static void jz4740_mmc_request_done(struct jz4740_mmc_host *host) { struct mmc_request *req; struct mmc_data *data; req = host->req; data = req->data; host->req = NULL; if (data && data->host_cookie == COOKIE_MAPPED) jz4740_mmc_dma_unmap(host, data); mmc_request_done(host->mmc, req); } static unsigned int jz4740_mmc_poll_irq(struct jz4740_mmc_host *host, unsigned int irq) { unsigned int timeout = 0x800; uint32_t status; do { status = jz4740_mmc_read_irq_reg(host); } while (!(status & irq) && --timeout); if (timeout == 0) { set_bit(0, &host->waiting); mod_timer(&host->timeout_timer, jiffies + 5*HZ); jz4740_mmc_set_irq_enabled(host, irq, true); return true; } return false; } static void jz4740_mmc_transfer_check_state(struct jz4740_mmc_host *host, struct mmc_data *data) { int status; status = readl(host->base + JZ_REG_MMC_STATUS); if (status & JZ_MMC_STATUS_WRITE_ERROR_MASK) { if (status & (JZ_MMC_STATUS_TIMEOUT_WRITE)) { host->req->cmd->error = -ETIMEDOUT; data->error = -ETIMEDOUT; } else { host->req->cmd->error = -EIO; data->error = -EIO; } } else if (status & JZ_MMC_STATUS_READ_ERROR_MASK) { if (status & (JZ_MMC_STATUS_TIMEOUT_READ)) { host->req->cmd->error = -ETIMEDOUT; data->error = -ETIMEDOUT; } else { host->req->cmd->error = -EIO; data->error = -EIO; } } } static bool jz4740_mmc_write_data(struct jz4740_mmc_host *host, struct mmc_data *data) { struct sg_mapping_iter *miter = &host->miter; void __iomem *fifo_addr = host->base + JZ_REG_MMC_TXFIFO; uint32_t *buf; bool timeout; size_t i, j; while (sg_miter_next(miter)) { buf = miter->addr; i = miter->length / 4; j = i / 8; i = i & 0x7; while (j) { timeout = jz4740_mmc_poll_irq(host, JZ_MMC_IRQ_TXFIFO_WR_REQ); if (unlikely(timeout)) goto poll_timeout; writel(buf[0], fifo_addr); writel(buf[1], fifo_addr); writel(buf[2], fifo_addr); writel(buf[3], fifo_addr); writel(buf[4], fifo_addr); writel(buf[5], fifo_addr); writel(buf[6], fifo_addr); writel(buf[7], fifo_addr); buf += 8; --j; } if (unlikely(i)) { timeout = jz4740_mmc_poll_irq(host, JZ_MMC_IRQ_TXFIFO_WR_REQ); if (unlikely(timeout)) goto poll_timeout; while (i) { writel(*buf, fifo_addr); ++buf; --i; } } data->bytes_xfered += miter->length; } sg_miter_stop(miter); return false; poll_timeout: miter->consumed = (void *)buf - miter->addr; data->bytes_xfered += miter->consumed; sg_miter_stop(miter); return true; } static bool jz4740_mmc_read_data(struct jz4740_mmc_host *host, struct mmc_data *data) { struct sg_mapping_iter *miter = &host->miter; void __iomem *fifo_addr = host->base + JZ_REG_MMC_RXFIFO; uint32_t *buf; uint32_t d; uint32_t status; size_t i, j; unsigned int timeout; while (sg_miter_next(miter)) { buf = miter->addr; i = miter->length; j = i / 32; i = i & 0x1f; while (j) { timeout = jz4740_mmc_poll_irq(host, JZ_MMC_IRQ_RXFIFO_RD_REQ); if (unlikely(timeout)) goto poll_timeout; buf[0] = readl(fifo_addr); buf[1] = readl(fifo_addr); buf[2] = readl(fifo_addr); buf[3] = readl(fifo_addr); buf[4] = readl(fifo_addr); buf[5] = readl(fifo_addr); buf[6] = readl(fifo_addr); buf[7] = readl(fifo_addr); buf += 8; --j; } if (unlikely(i)) { timeout = jz4740_mmc_poll_irq(host, JZ_MMC_IRQ_RXFIFO_RD_REQ); if (unlikely(timeout)) goto poll_timeout; while (i >= 4) { *buf++ = readl(fifo_addr); i -= 4; } if (unlikely(i > 0)) { d = readl(fifo_addr); memcpy(buf, &d, i); } } data->bytes_xfered += miter->length; /* This can go away once MIPS implements * flush_kernel_dcache_page */ flush_dcache_page(miter->page); } sg_miter_stop(miter); /* For whatever reason there is sometime one word more in the fifo then * requested */ timeout = 1000; status = readl(host->base + JZ_REG_MMC_STATUS); while (!(status & JZ_MMC_STATUS_DATA_FIFO_EMPTY) && --timeout) { d = readl(fifo_addr); status = readl(host->base + JZ_REG_MMC_STATUS); } return false; poll_timeout: miter->consumed = (void *)buf - miter->addr; data->bytes_xfered += miter->consumed; sg_miter_stop(miter); return true; } static void jz4740_mmc_timeout(struct timer_list *t) { struct jz4740_mmc_host *host = from_timer(host, t, timeout_timer); if (!test_and_clear_bit(0, &host->waiting)) return; jz4740_mmc_set_irq_enabled(host, JZ_MMC_IRQ_END_CMD_RES, false); host->req->cmd->error = -ETIMEDOUT; jz4740_mmc_request_done(host); } static void jz4740_mmc_read_response(struct jz4740_mmc_host *host, struct mmc_command *cmd) { int i; uint16_t tmp; void __iomem *fifo_addr = host->base + JZ_REG_MMC_RESP_FIFO; if (cmd->flags & MMC_RSP_136) { tmp = readw(fifo_addr); for (i = 0; i < 4; ++i) { cmd->resp[i] = tmp << 24; tmp = readw(fifo_addr); cmd->resp[i] |= tmp << 8; tmp = readw(fifo_addr); cmd->resp[i] |= tmp >> 8; } } else { cmd->resp[0] = readw(fifo_addr) << 24; cmd->resp[0] |= readw(fifo_addr) << 8; cmd->resp[0] |= readw(fifo_addr) & 0xff; } } static void jz4740_mmc_send_command(struct jz4740_mmc_host *host, struct mmc_command *cmd) { uint32_t cmdat = host->cmdat; host->cmdat &= ~JZ_MMC_CMDAT_INIT; jz4740_mmc_clock_disable(host); host->cmd = cmd; if (cmd->flags & MMC_RSP_BUSY) cmdat |= JZ_MMC_CMDAT_BUSY; switch (mmc_resp_type(cmd)) { case MMC_RSP_R1B: case MMC_RSP_R1: cmdat |= JZ_MMC_CMDAT_RSP_R1; break; case MMC_RSP_R2: cmdat |= JZ_MMC_CMDAT_RSP_R2; break; case MMC_RSP_R3: cmdat |= JZ_MMC_CMDAT_RSP_R3; break; default: break; } if (cmd->data) { cmdat |= JZ_MMC_CMDAT_DATA_EN; if (cmd->data->flags & MMC_DATA_WRITE) cmdat |= JZ_MMC_CMDAT_WRITE; if (host->use_dma) { /* * The 4780's MMC controller has integrated DMA ability * in addition to being able to use the external DMA * controller. It moves DMA control bits to a separate * register. The DMA_SEL bit chooses the external * controller over the integrated one. Earlier SoCs * can only use the external controller, and have a * single DMA enable bit in CMDAT. */ if (host->version >= JZ_MMC_JZ4780) { writel(JZ_MMC_DMAC_DMA_EN | JZ_MMC_DMAC_DMA_SEL, host->base + JZ_REG_MMC_DMAC); } else { cmdat |= JZ_MMC_CMDAT_DMA_EN; } } else if (host->version >= JZ_MMC_JZ4780) { writel(0, host->base + JZ_REG_MMC_DMAC); } writew(cmd->data->blksz, host->base + JZ_REG_MMC_BLKLEN); writew(cmd->data->blocks, host->base + JZ_REG_MMC_NOB); } writeb(cmd->opcode, host->base + JZ_REG_MMC_CMD); writel(cmd->arg, host->base + JZ_REG_MMC_ARG); writel(cmdat, host->base + JZ_REG_MMC_CMDAT); jz4740_mmc_clock_enable(host, 1); } static void jz_mmc_prepare_data_transfer(struct jz4740_mmc_host *host) { struct mmc_command *cmd = host->req->cmd; struct mmc_data *data = cmd->data; int direction; if (data->flags & MMC_DATA_READ) direction = SG_MITER_TO_SG; else direction = SG_MITER_FROM_SG; sg_miter_start(&host->miter, data->sg, data->sg_len, direction); } static irqreturn_t jz_mmc_irq_worker(int irq, void *devid) { struct jz4740_mmc_host *host = (struct jz4740_mmc_host *)devid; struct mmc_command *cmd = host->req->cmd; struct mmc_request *req = host->req; struct mmc_data *data = cmd->data; bool timeout = false; if (cmd->error) host->state = JZ4740_MMC_STATE_DONE; switch (host->state) { case JZ4740_MMC_STATE_READ_RESPONSE: if (cmd->flags & MMC_RSP_PRESENT) jz4740_mmc_read_response(host, cmd); if (!data) break; jz_mmc_prepare_data_transfer(host); /* fall through */ case JZ4740_MMC_STATE_TRANSFER_DATA: if (host->use_dma) { /* Use DMA if enabled. * Data transfer direction is defined later by * relying on data flags in * jz4740_mmc_prepare_dma_data() and * jz4740_mmc_start_dma_transfer(). */ timeout = jz4740_mmc_start_dma_transfer(host, data); data->bytes_xfered = data->blocks * data->blksz; } else if (data->flags & MMC_DATA_READ) /* Use PIO if DMA is not enabled. * Data transfer direction was defined before * by relying on data flags in * jz_mmc_prepare_data_transfer(). */ timeout = jz4740_mmc_read_data(host, data); else timeout = jz4740_mmc_write_data(host, data); if (unlikely(timeout)) { host->state = JZ4740_MMC_STATE_TRANSFER_DATA; break; } jz4740_mmc_transfer_check_state(host, data); timeout = jz4740_mmc_poll_irq(host, JZ_MMC_IRQ_DATA_TRAN_DONE); if (unlikely(timeout)) { host->state = JZ4740_MMC_STATE_SEND_STOP; break; } jz4740_mmc_write_irq_reg(host, JZ_MMC_IRQ_DATA_TRAN_DONE); /* fall through */ case JZ4740_MMC_STATE_SEND_STOP: if (!req->stop) break; jz4740_mmc_send_command(host, req->stop); if (mmc_resp_type(req->stop) & MMC_RSP_BUSY) { timeout = jz4740_mmc_poll_irq(host, JZ_MMC_IRQ_PRG_DONE); if (timeout) { host->state = JZ4740_MMC_STATE_DONE; break; } } case JZ4740_MMC_STATE_DONE: break; } if (!timeout) jz4740_mmc_request_done(host); return IRQ_HANDLED; } static irqreturn_t jz_mmc_irq(int irq, void *devid) { struct jz4740_mmc_host *host = devid; struct mmc_command *cmd = host->cmd; uint32_t irq_reg, status, tmp; status = readl(host->base + JZ_REG_MMC_STATUS); irq_reg = jz4740_mmc_read_irq_reg(host); tmp = irq_reg; irq_reg &= ~host->irq_mask; tmp &= ~(JZ_MMC_IRQ_TXFIFO_WR_REQ | JZ_MMC_IRQ_RXFIFO_RD_REQ | JZ_MMC_IRQ_PRG_DONE | JZ_MMC_IRQ_DATA_TRAN_DONE); if (tmp != irq_reg) jz4740_mmc_write_irq_reg(host, tmp & ~irq_reg); if (irq_reg & JZ_MMC_IRQ_SDIO) { jz4740_mmc_write_irq_reg(host, JZ_MMC_IRQ_SDIO); mmc_signal_sdio_irq(host->mmc); irq_reg &= ~JZ_MMC_IRQ_SDIO; } if (host->req && cmd && irq_reg) { if (test_and_clear_bit(0, &host->waiting)) { del_timer(&host->timeout_timer); if (status & JZ_MMC_STATUS_TIMEOUT_RES) { cmd->error = -ETIMEDOUT; } else if (status & JZ_MMC_STATUS_CRC_RES_ERR) { cmd->error = -EIO; } else if (status & (JZ_MMC_STATUS_CRC_READ_ERROR | JZ_MMC_STATUS_CRC_WRITE_ERROR)) { if (cmd->data) cmd->data->error = -EIO; cmd->error = -EIO; } jz4740_mmc_set_irq_enabled(host, irq_reg, false); jz4740_mmc_write_irq_reg(host, irq_reg); return IRQ_WAKE_THREAD; } } return IRQ_HANDLED; } static int jz4740_mmc_set_clock_rate(struct jz4740_mmc_host *host, int rate) { int div = 0; int real_rate; jz4740_mmc_clock_disable(host); clk_set_rate(host->clk, host->mmc->f_max); real_rate = clk_get_rate(host->clk); while (real_rate > rate && div < 7) { ++div; real_rate >>= 1; } writew(div, host->base + JZ_REG_MMC_CLKRT); if (real_rate > 25000000) { if (host->version >= JZ_MMC_X1000) { writel(JZ_MMC_LPM_DRV_RISING_QTR_PHASE_DLY | JZ_MMC_LPM_SMP_RISING_QTR_OR_HALF_PHASE_DLY | JZ_MMC_LPM_LOW_POWER_MODE_EN, host->base + JZ_REG_MMC_LPM); } else if (host->version >= JZ_MMC_JZ4760) { writel(JZ_MMC_LPM_DRV_RISING | JZ_MMC_LPM_LOW_POWER_MODE_EN, host->base + JZ_REG_MMC_LPM); } else if (host->version >= JZ_MMC_JZ4725B) writel(JZ_MMC_LPM_LOW_POWER_MODE_EN, host->base + JZ_REG_MMC_LPM); } return real_rate; } static void jz4740_mmc_request(struct mmc_host *mmc, struct mmc_request *req) { struct jz4740_mmc_host *host = mmc_priv(mmc); host->req = req; jz4740_mmc_write_irq_reg(host, ~0); jz4740_mmc_set_irq_enabled(host, JZ_MMC_IRQ_END_CMD_RES, true); host->state = JZ4740_MMC_STATE_READ_RESPONSE; set_bit(0, &host->waiting); mod_timer(&host->timeout_timer, jiffies + 5*HZ); jz4740_mmc_send_command(host, req->cmd); } static void jz4740_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct jz4740_mmc_host *host = mmc_priv(mmc); if (ios->clock) jz4740_mmc_set_clock_rate(host, ios->clock); switch (ios->power_mode) { case MMC_POWER_UP: jz4740_mmc_reset(host); if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); host->cmdat |= JZ_MMC_CMDAT_INIT; clk_prepare_enable(host->clk); break; case MMC_POWER_ON: break; default: if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); clk_disable_unprepare(host->clk); break; } switch (ios->bus_width) { case MMC_BUS_WIDTH_1: host->cmdat &= ~JZ_MMC_CMDAT_BUS_WIDTH_MASK; break; case MMC_BUS_WIDTH_4: host->cmdat &= ~JZ_MMC_CMDAT_BUS_WIDTH_MASK; host->cmdat |= JZ_MMC_CMDAT_BUS_WIDTH_4BIT; break; case MMC_BUS_WIDTH_8: host->cmdat &= ~JZ_MMC_CMDAT_BUS_WIDTH_MASK; host->cmdat |= JZ_MMC_CMDAT_BUS_WIDTH_8BIT; break; default: break; } } static void jz4740_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable) { struct jz4740_mmc_host *host = mmc_priv(mmc); jz4740_mmc_set_irq_enabled(host, JZ_MMC_IRQ_SDIO, enable); } static const struct mmc_host_ops jz4740_mmc_ops = { .request = jz4740_mmc_request, .pre_req = jz4740_mmc_pre_request, .post_req = jz4740_mmc_post_request, .set_ios = jz4740_mmc_set_ios, .get_ro = mmc_gpio_get_ro, .get_cd = mmc_gpio_get_cd, .enable_sdio_irq = jz4740_mmc_enable_sdio_irq, }; static const struct of_device_id jz4740_mmc_of_match[] = { { .compatible = "ingenic,jz4740-mmc", .data = (void *) JZ_MMC_JZ4740 }, { .compatible = "ingenic,jz4725b-mmc", .data = (void *)JZ_MMC_JZ4725B }, { .compatible = "ingenic,jz4760-mmc", .data = (void *) JZ_MMC_JZ4760 }, { .compatible = "ingenic,jz4780-mmc", .data = (void *) JZ_MMC_JZ4780 }, { .compatible = "ingenic,x1000-mmc", .data = (void *) JZ_MMC_X1000 }, {}, }; MODULE_DEVICE_TABLE(of, jz4740_mmc_of_match); static int jz4740_mmc_probe(struct platform_device* pdev) { int ret; struct mmc_host *mmc; struct jz4740_mmc_host *host; const struct of_device_id *match; mmc = mmc_alloc_host(sizeof(struct jz4740_mmc_host), &pdev->dev); if (!mmc) { dev_err(&pdev->dev, "Failed to alloc mmc host structure\n"); return -ENOMEM; } host = mmc_priv(mmc); match = of_match_device(jz4740_mmc_of_match, &pdev->dev); if (match) { host->version = (enum jz4740_mmc_version)match->data; } else { /* JZ4740 should be the only one using legacy probe */ host->version = JZ_MMC_JZ4740; } ret = mmc_of_parse(mmc); if (ret) { if (ret != -EPROBE_DEFER) dev_err(&pdev->dev, "could not parse device properties: %d\n", ret); goto err_free_host; } mmc_regulator_get_supply(mmc); host->irq = platform_get_irq(pdev, 0); if (host->irq < 0) { ret = host->irq; goto err_free_host; } host->clk = devm_clk_get(&pdev->dev, "mmc"); if (IS_ERR(host->clk)) { ret = PTR_ERR(host->clk); dev_err(&pdev->dev, "Failed to get mmc clock\n"); goto err_free_host; } host->mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); host->base = devm_ioremap_resource(&pdev->dev, host->mem_res); if (IS_ERR(host->base)) { ret = PTR_ERR(host->base); dev_err(&pdev->dev, "Failed to ioremap base memory\n"); goto err_free_host; } mmc->ops = &jz4740_mmc_ops; if (!mmc->f_max) mmc->f_max = JZ_MMC_CLK_RATE; mmc->f_min = mmc->f_max / 128; mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34; mmc->max_blk_size = (1 << 10) - 1; mmc->max_blk_count = (1 << 15) - 1; mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count; mmc->max_segs = 128; mmc->max_seg_size = mmc->max_req_size; host->mmc = mmc; host->pdev = pdev; spin_lock_init(&host->lock); host->irq_mask = ~0; jz4740_mmc_reset(host); ret = request_threaded_irq(host->irq, jz_mmc_irq, jz_mmc_irq_worker, 0, dev_name(&pdev->dev), host); if (ret) { dev_err(&pdev->dev, "Failed to request irq: %d\n", ret); goto err_free_host; } jz4740_mmc_clock_disable(host); timer_setup(&host->timeout_timer, jz4740_mmc_timeout, 0); ret = jz4740_mmc_acquire_dma_channels(host); if (ret == -EPROBE_DEFER) goto err_free_irq; host->use_dma = !ret; platform_set_drvdata(pdev, host); ret = mmc_add_host(mmc); if (ret) { dev_err(&pdev->dev, "Failed to add mmc host: %d\n", ret); goto err_release_dma; } dev_info(&pdev->dev, "Ingenic SD/MMC card driver registered\n"); dev_info(&pdev->dev, "Using %s, %d-bit mode\n", host->use_dma ? "DMA" : "PIO", (mmc->caps & MMC_CAP_8_BIT_DATA) ? 8 : ((mmc->caps & MMC_CAP_4_BIT_DATA) ? 4 : 1)); return 0; err_release_dma: if (host->use_dma) jz4740_mmc_release_dma_channels(host); err_free_irq: free_irq(host->irq, host); err_free_host: mmc_free_host(mmc); return ret; } static int jz4740_mmc_remove(struct platform_device *pdev) { struct jz4740_mmc_host *host = platform_get_drvdata(pdev); del_timer_sync(&host->timeout_timer); jz4740_mmc_set_irq_enabled(host, 0xff, false); jz4740_mmc_reset(host); mmc_remove_host(host->mmc); free_irq(host->irq, host); if (host->use_dma) jz4740_mmc_release_dma_channels(host); mmc_free_host(host->mmc); return 0; } #ifdef CONFIG_PM_SLEEP static int jz4740_mmc_suspend(struct device *dev) { return pinctrl_pm_select_sleep_state(dev); } static int jz4740_mmc_resume(struct device *dev) { return pinctrl_select_default_state(dev); } static SIMPLE_DEV_PM_OPS(jz4740_mmc_pm_ops, jz4740_mmc_suspend, jz4740_mmc_resume); #define JZ4740_MMC_PM_OPS (&jz4740_mmc_pm_ops) #else #define JZ4740_MMC_PM_OPS NULL #endif static struct platform_driver jz4740_mmc_driver = { .probe = jz4740_mmc_probe, .remove = jz4740_mmc_remove, .driver = { .name = "jz4740-mmc", .of_match_table = of_match_ptr(jz4740_mmc_of_match), .pm = JZ4740_MMC_PM_OPS, }, }; module_platform_driver(jz4740_mmc_driver); MODULE_DESCRIPTION("JZ4740 SD/MMC controller driver"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1