Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sascha Hauer | 6849 | 63.93% | 10 | 10.75% |
Huang Shijie | 2948 | 27.52% | 26 | 27.96% |
Boris Brezillon | 445 | 4.15% | 23 | 24.73% |
Stefan Agner | 112 | 1.05% | 3 | 3.23% |
Miquel Raynal | 73 | 0.68% | 3 | 3.23% |
Markus Pargmann | 58 | 0.54% | 1 | 1.08% |
Esben Haabendal | 49 | 0.46% | 2 | 2.15% |
Allen Xu | 39 | 0.36% | 3 | 3.23% |
Peter Ujfalusi | 35 | 0.33% | 1 | 1.08% |
Fabio Estevam | 23 | 0.21% | 5 | 5.38% |
Lothar Waßmann | 23 | 0.21% | 3 | 3.23% |
Brian Norris | 16 | 0.15% | 2 | 2.15% |
Michał Mirosław | 12 | 0.11% | 1 | 1.08% |
Shawn Guo | 9 | 0.08% | 2 | 2.15% |
Frans Klaver | 6 | 0.06% | 1 | 1.08% |
Ingo Molnar | 3 | 0.03% | 1 | 1.08% |
Wolfram Sang | 3 | 0.03% | 1 | 1.08% |
Josh Wu | 3 | 0.03% | 1 | 1.08% |
Gustavo A. R. Silva | 3 | 0.03% | 1 | 1.08% |
Zach Sadecki | 2 | 0.02% | 1 | 1.08% |
Nicholas Mc Guire | 2 | 0.02% | 1 | 1.08% |
Vikram Narayanan | 1 | 0.01% | 1 | 1.08% |
Total | 10714 | 93 |
// SPDX-License-Identifier: GPL-2.0+ /* * Freescale GPMI NAND Flash Driver * * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. * Copyright (C) 2008 Embedded Alley Solutions, Inc. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/sched/task_stack.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/mtd/partitions.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/pm_runtime.h> #include <linux/dma/mxs-dma.h> #include "gpmi-nand.h" #include "gpmi-regs.h" #include "bch-regs.h" /* Resource names for the GPMI NAND driver. */ #define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" /* Converts time to clock cycles */ #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) #define MXS_SET_ADDR 0x4 #define MXS_CLR_ADDR 0x8 /* * Clear the bit and poll it cleared. This is usually called with * a reset address and mask being either SFTRST(bit 31) or CLKGATE * (bit 30). */ static int clear_poll_bit(void __iomem *addr, u32 mask) { int timeout = 0x400; /* clear the bit */ writel(mask, addr + MXS_CLR_ADDR); /* * SFTRST needs 3 GPMI clocks to settle, the reference manual * recommends to wait 1us. */ udelay(1); /* poll the bit becoming clear */ while ((readl(addr) & mask) && --timeout) /* nothing */; return !timeout; } #define MODULE_CLKGATE (1 << 30) #define MODULE_SFTRST (1 << 31) /* * The current mxs_reset_block() will do two things: * [1] enable the module. * [2] reset the module. * * In most of the cases, it's ok. * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). * If you try to soft reset the BCH block, it becomes unusable until * the next hard reset. This case occurs in the NAND boot mode. When the board * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. * So If the driver tries to reset the BCH again, the BCH will not work anymore. * You will see a DMA timeout in this case. The bug has been fixed * in the following chips, such as MX28. * * To avoid this bug, just add a new parameter `just_enable` for * the mxs_reset_block(), and rewrite it here. */ static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) { int ret; int timeout = 0x400; /* clear and poll SFTRST */ ret = clear_poll_bit(reset_addr, MODULE_SFTRST); if (unlikely(ret)) goto error; /* clear CLKGATE */ writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); if (!just_enable) { /* set SFTRST to reset the block */ writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); udelay(1); /* poll CLKGATE becoming set */ while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) /* nothing */; if (unlikely(!timeout)) goto error; } /* clear and poll SFTRST */ ret = clear_poll_bit(reset_addr, MODULE_SFTRST); if (unlikely(ret)) goto error; /* clear and poll CLKGATE */ ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); if (unlikely(ret)) goto error; return 0; error: pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); return -ETIMEDOUT; } static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) { struct clk *clk; int ret; int i; for (i = 0; i < GPMI_CLK_MAX; i++) { clk = this->resources.clock[i]; if (!clk) break; if (v) { ret = clk_prepare_enable(clk); if (ret) goto err_clk; } else { clk_disable_unprepare(clk); } } return 0; err_clk: for (; i > 0; i--) clk_disable_unprepare(this->resources.clock[i - 1]); return ret; } static int gpmi_init(struct gpmi_nand_data *this) { struct resources *r = &this->resources; int ret; ret = pm_runtime_get_sync(this->dev); if (ret < 0) return ret; ret = gpmi_reset_block(r->gpmi_regs, false); if (ret) goto err_out; /* * Reset BCH here, too. We got failures otherwise :( * See later BCH reset for explanation of MX23 and MX28 handling */ ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); if (ret) goto err_out; /* Choose NAND mode. */ writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); /* Set the IRQ polarity. */ writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, r->gpmi_regs + HW_GPMI_CTRL1_SET); /* Disable Write-Protection. */ writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); /* Select BCH ECC. */ writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); /* * Decouple the chip select from dma channel. We use dma0 for all * the chips. */ writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET); err_out: pm_runtime_mark_last_busy(this->dev); pm_runtime_put_autosuspend(this->dev); return ret; } /* This function is very useful. It is called only when the bug occur. */ static void gpmi_dump_info(struct gpmi_nand_data *this) { struct resources *r = &this->resources; struct bch_geometry *geo = &this->bch_geometry; u32 reg; int i; dev_err(this->dev, "Show GPMI registers :\n"); for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { reg = readl(r->gpmi_regs + i * 0x10); dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); } /* start to print out the BCH info */ dev_err(this->dev, "Show BCH registers :\n"); for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { reg = readl(r->bch_regs + i * 0x10); dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); } dev_err(this->dev, "BCH Geometry :\n" "GF length : %u\n" "ECC Strength : %u\n" "Page Size in Bytes : %u\n" "Metadata Size in Bytes : %u\n" "ECC Chunk Size in Bytes: %u\n" "ECC Chunk Count : %u\n" "Payload Size in Bytes : %u\n" "Auxiliary Size in Bytes: %u\n" "Auxiliary Status Offset: %u\n" "Block Mark Byte Offset : %u\n" "Block Mark Bit Offset : %u\n", geo->gf_len, geo->ecc_strength, geo->page_size, geo->metadata_size, geo->ecc_chunk_size, geo->ecc_chunk_count, geo->payload_size, geo->auxiliary_size, geo->auxiliary_status_offset, geo->block_mark_byte_offset, geo->block_mark_bit_offset); } static inline bool gpmi_check_ecc(struct gpmi_nand_data *this) { struct bch_geometry *geo = &this->bch_geometry; /* Do the sanity check. */ if (GPMI_IS_MXS(this)) { /* The mx23/mx28 only support the GF13. */ if (geo->gf_len == 14) return false; } return geo->ecc_strength <= this->devdata->bch_max_ecc_strength; } /* * If we can get the ECC information from the nand chip, we do not * need to calculate them ourselves. * * We may have available oob space in this case. */ static int set_geometry_by_ecc_info(struct gpmi_nand_data *this, unsigned int ecc_strength, unsigned int ecc_step) { struct bch_geometry *geo = &this->bch_geometry; struct nand_chip *chip = &this->nand; struct mtd_info *mtd = nand_to_mtd(chip); unsigned int block_mark_bit_offset; switch (ecc_step) { case SZ_512: geo->gf_len = 13; break; case SZ_1K: geo->gf_len = 14; break; default: dev_err(this->dev, "unsupported nand chip. ecc bits : %d, ecc size : %d\n", chip->base.eccreq.strength, chip->base.eccreq.step_size); return -EINVAL; } geo->ecc_chunk_size = ecc_step; geo->ecc_strength = round_up(ecc_strength, 2); if (!gpmi_check_ecc(this)) return -EINVAL; /* Keep the C >= O */ if (geo->ecc_chunk_size < mtd->oobsize) { dev_err(this->dev, "unsupported nand chip. ecc size: %d, oob size : %d\n", ecc_step, mtd->oobsize); return -EINVAL; } /* The default value, see comment in the legacy_set_geometry(). */ geo->metadata_size = 10; geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; /* * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: * * | P | * |<----------------------------------------------------->| * | | * | (Block Mark) | * | P' | | | | * |<-------------------------------------------->| D | | O' | * | |<---->| |<--->| * V V V V V * +---+----------+-+----------+-+----------+-+----------+-+-----+ * | M | data |E| data |E| data |E| data |E| | * +---+----------+-+----------+-+----------+-+----------+-+-----+ * ^ ^ * | O | * |<------------>| * | | * * P : the page size for BCH module. * E : The ECC strength. * G : the length of Galois Field. * N : The chunk count of per page. * M : the metasize of per page. * C : the ecc chunk size, aka the "data" above. * P': the nand chip's page size. * O : the nand chip's oob size. * O': the free oob. * * The formula for P is : * * E * G * N * P = ------------ + P' + M * 8 * * The position of block mark moves forward in the ECC-based view * of page, and the delta is: * * E * G * (N - 1) * D = (---------------- + M) * 8 * * Please see the comment in legacy_set_geometry(). * With the condition C >= O , we still can get same result. * So the bit position of the physical block mark within the ECC-based * view of the page is : * (P' - D) * 8 */ geo->page_size = mtd->writesize + geo->metadata_size + (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; geo->payload_size = mtd->writesize; geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); geo->auxiliary_size = ALIGN(geo->metadata_size, 4) + ALIGN(geo->ecc_chunk_count, 4); if (!this->swap_block_mark) return 0; /* For bit swap. */ block_mark_bit_offset = mtd->writesize * 8 - (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) + geo->metadata_size * 8); geo->block_mark_byte_offset = block_mark_bit_offset / 8; geo->block_mark_bit_offset = block_mark_bit_offset % 8; return 0; } /* * Calculate the ECC strength by hand: * E : The ECC strength. * G : the length of Galois Field. * N : The chunk count of per page. * O : the oobsize of the NAND chip. * M : the metasize of per page. * * The formula is : * E * G * N * ------------ <= (O - M) * 8 * * So, we get E by: * (O - M) * 8 * E <= ------------- * G * N */ static inline int get_ecc_strength(struct gpmi_nand_data *this) { struct bch_geometry *geo = &this->bch_geometry; struct mtd_info *mtd = nand_to_mtd(&this->nand); int ecc_strength; ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) / (geo->gf_len * geo->ecc_chunk_count); /* We need the minor even number. */ return round_down(ecc_strength, 2); } static int legacy_set_geometry(struct gpmi_nand_data *this) { struct bch_geometry *geo = &this->bch_geometry; struct mtd_info *mtd = nand_to_mtd(&this->nand); unsigned int metadata_size; unsigned int status_size; unsigned int block_mark_bit_offset; /* * The size of the metadata can be changed, though we set it to 10 * bytes now. But it can't be too large, because we have to save * enough space for BCH. */ geo->metadata_size = 10; /* The default for the length of Galois Field. */ geo->gf_len = 13; /* The default for chunk size. */ geo->ecc_chunk_size = 512; while (geo->ecc_chunk_size < mtd->oobsize) { geo->ecc_chunk_size *= 2; /* keep C >= O */ geo->gf_len = 14; } geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; /* We use the same ECC strength for all chunks. */ geo->ecc_strength = get_ecc_strength(this); if (!gpmi_check_ecc(this)) { dev_err(this->dev, "ecc strength: %d cannot be supported by the controller (%d)\n" "try to use minimum ecc strength that NAND chip required\n", geo->ecc_strength, this->devdata->bch_max_ecc_strength); return -EINVAL; } geo->page_size = mtd->writesize + geo->metadata_size + (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; geo->payload_size = mtd->writesize; /* * The auxiliary buffer contains the metadata and the ECC status. The * metadata is padded to the nearest 32-bit boundary. The ECC status * contains one byte for every ECC chunk, and is also padded to the * nearest 32-bit boundary. */ metadata_size = ALIGN(geo->metadata_size, 4); status_size = ALIGN(geo->ecc_chunk_count, 4); geo->auxiliary_size = metadata_size + status_size; geo->auxiliary_status_offset = metadata_size; if (!this->swap_block_mark) return 0; /* * We need to compute the byte and bit offsets of * the physical block mark within the ECC-based view of the page. * * NAND chip with 2K page shows below: * (Block Mark) * | | * | D | * |<---->| * V V * +---+----------+-+----------+-+----------+-+----------+-+ * | M | data |E| data |E| data |E| data |E| * +---+----------+-+----------+-+----------+-+----------+-+ * * The position of block mark moves forward in the ECC-based view * of page, and the delta is: * * E * G * (N - 1) * D = (---------------- + M) * 8 * * With the formula to compute the ECC strength, and the condition * : C >= O (C is the ecc chunk size) * * It's easy to deduce to the following result: * * E * G (O - M) C - M C - M * ----------- <= ------- <= -------- < --------- * 8 N N (N - 1) * * So, we get: * * E * G * (N - 1) * D = (---------------- + M) < C * 8 * * The above inequality means the position of block mark * within the ECC-based view of the page is still in the data chunk, * and it's NOT in the ECC bits of the chunk. * * Use the following to compute the bit position of the * physical block mark within the ECC-based view of the page: * (page_size - D) * 8 * * --Huang Shijie */ block_mark_bit_offset = mtd->writesize * 8 - (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) + geo->metadata_size * 8); geo->block_mark_byte_offset = block_mark_bit_offset / 8; geo->block_mark_bit_offset = block_mark_bit_offset % 8; return 0; } static int common_nfc_set_geometry(struct gpmi_nand_data *this) { struct nand_chip *chip = &this->nand; if (chip->ecc.strength > 0 && chip->ecc.size > 0) return set_geometry_by_ecc_info(this, chip->ecc.strength, chip->ecc.size); if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")) || legacy_set_geometry(this)) { if (!(chip->base.eccreq.strength > 0 && chip->base.eccreq.step_size > 0)) return -EINVAL; return set_geometry_by_ecc_info(this, chip->base.eccreq.strength, chip->base.eccreq.step_size); } return 0; } /* Configures the geometry for BCH. */ static int bch_set_geometry(struct gpmi_nand_data *this) { struct resources *r = &this->resources; int ret; ret = common_nfc_set_geometry(this); if (ret) return ret; ret = pm_runtime_get_sync(this->dev); if (ret < 0) return ret; /* * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. * and MX28. */ ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); if (ret) goto err_out; /* Set *all* chip selects to use layout 0. */ writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); ret = 0; err_out: pm_runtime_mark_last_busy(this->dev); pm_runtime_put_autosuspend(this->dev); return ret; } /* * <1> Firstly, we should know what's the GPMI-clock means. * The GPMI-clock is the internal clock in the gpmi nand controller. * If you set 100MHz to gpmi nand controller, the GPMI-clock's period * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. * * <2> Secondly, we should know what's the frequency on the nand chip pins. * The frequency on the nand chip pins is derived from the GPMI-clock. * We can get it from the following equation: * * F = G / (DS + DH) * * F : the frequency on the nand chip pins. * G : the GPMI clock, such as 100MHz. * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD * * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, * the nand EDO(extended Data Out) timing could be applied. * The GPMI implements a feedback read strobe to sample the read data. * The feedback read strobe can be delayed to support the nand EDO timing * where the read strobe may deasserts before the read data is valid, and * read data is valid for some time after read strobe. * * The following figure illustrates some aspects of a NAND Flash read: * * |<---tREA---->| * | | * | | | * |<--tRP-->| | * | | | * __ ___|__________________________________ * RDN \________/ | * | * /---------\ * Read Data --------------< >--------- * \---------/ * | | * |<-D->| * FeedbackRDN ________ ____________ * \___________/ * * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. * * * <4> Now, we begin to describe how to compute the right RDN_DELAY. * * 4.1) From the aspect of the nand chip pins: * Delay = (tREA + C - tRP) {1} * * tREA : the maximum read access time. * C : a constant to adjust the delay. default is 4000ps. * tRP : the read pulse width, which is exactly: * tRP = (GPMI-clock-period) * DATA_SETUP * * 4.2) From the aspect of the GPMI nand controller: * Delay = RDN_DELAY * 0.125 * RP {2} * * RP : the DLL reference period. * if (GPMI-clock-period > DLL_THRETHOLD) * RP = GPMI-clock-period / 2; * else * RP = GPMI-clock-period; * * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD * is 16000ps, but in mx6q, we use 12000ps. * * 4.3) since {1} equals {2}, we get: * * (tREA + 4000 - tRP) * 8 * RDN_DELAY = ----------------------- {3} * RP */ static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this, const struct nand_sdr_timings *sdr) { struct gpmi_nfc_hardware_timing *hw = &this->hw; unsigned int dll_threshold_ps = this->devdata->max_chain_delay; unsigned int period_ps, reference_period_ps; unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; unsigned int tRP_ps; bool use_half_period; int sample_delay_ps, sample_delay_factor; u16 busy_timeout_cycles; u8 wrn_dly_sel; if (sdr->tRC_min >= 30000) { /* ONFI non-EDO modes [0-3] */ hw->clk_rate = 22000000; wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; } else if (sdr->tRC_min >= 25000) { /* ONFI EDO mode 4 */ hw->clk_rate = 80000000; wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; } else { /* ONFI EDO mode 5 */ hw->clk_rate = 100000000; wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; } /* SDR core timings are given in picoseconds */ period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate); addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps); hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) | BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) | BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles); hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096); /* * Derive NFC ideal delay from {3}: * * (tREA + 4000 - tRP) * 8 * RDN_DELAY = ----------------------- * RP */ if (period_ps > dll_threshold_ps) { use_half_period = true; reference_period_ps = period_ps / 2; } else { use_half_period = false; reference_period_ps = period_ps; } tRP_ps = data_setup_cycles * period_ps; sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; if (sample_delay_ps > 0) sample_delay_factor = sample_delay_ps / reference_period_ps; else sample_delay_factor = 0; hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel); if (sample_delay_factor) hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) | BM_GPMI_CTRL1_DLL_ENABLE | (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0); } static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this) { struct gpmi_nfc_hardware_timing *hw = &this->hw; struct resources *r = &this->resources; void __iomem *gpmi_regs = r->gpmi_regs; unsigned int dll_wait_time_us; clk_set_rate(r->clock[0], hw->clk_rate); writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0); writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1); /* * Clear several CTRL1 fields, DLL must be disabled when setting * RDN_DELAY or HALF_PERIOD. */ writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR); writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET); /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64; if (!dll_wait_time_us) dll_wait_time_us = 1; /* Wait for the DLL to settle. */ udelay(dll_wait_time_us); } static int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr, const struct nand_data_interface *conf) { struct gpmi_nand_data *this = nand_get_controller_data(chip); const struct nand_sdr_timings *sdr; /* Retrieve required NAND timings */ sdr = nand_get_sdr_timings(conf); if (IS_ERR(sdr)) return PTR_ERR(sdr); /* Only MX6 GPMI controller can reach EDO timings */ if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this)) return -ENOTSUPP; /* Stop here if this call was just a check */ if (chipnr < 0) return 0; /* Do the actual derivation of the controller timings */ gpmi_nfc_compute_timings(this, sdr); this->hw.must_apply_timings = true; return 0; } /* Clears a BCH interrupt. */ static void gpmi_clear_bch(struct gpmi_nand_data *this) { struct resources *r = &this->resources; writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); } static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) { /* We use the DMA channel 0 to access all the nand chips. */ return this->dma_chans[0]; } /* This will be called after the DMA operation is finished. */ static void dma_irq_callback(void *param) { struct gpmi_nand_data *this = param; struct completion *dma_c = &this->dma_done; complete(dma_c); } static irqreturn_t bch_irq(int irq, void *cookie) { struct gpmi_nand_data *this = cookie; gpmi_clear_bch(this); complete(&this->bch_done); return IRQ_HANDLED; } static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len) { /* * raw_len is the length to read/write including bch data which * we are passed in exec_op. Calculate the data length from it. */ if (this->bch) return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size); else return raw_len; } /* Can we use the upper's buffer directly for DMA? */ static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, int raw_len, struct scatterlist *sgl, enum dma_data_direction dr) { int ret; int len = gpmi_raw_len_to_len(this, raw_len); /* first try to map the upper buffer directly */ if (virt_addr_valid(buf) && !object_is_on_stack(buf)) { sg_init_one(sgl, buf, len); ret = dma_map_sg(this->dev, sgl, 1, dr); if (ret == 0) goto map_fail; return true; } map_fail: /* We have to use our own DMA buffer. */ sg_init_one(sgl, this->data_buffer_dma, len); if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma) memcpy(this->data_buffer_dma, buf, len); dma_map_sg(this->dev, sgl, 1, dr); return false; } /** * gpmi_copy_bits - copy bits from one memory region to another * @dst: destination buffer * @dst_bit_off: bit offset we're starting to write at * @src: source buffer * @src_bit_off: bit offset we're starting to read from * @nbits: number of bits to copy * * This functions copies bits from one memory region to another, and is used by * the GPMI driver to copy ECC sections which are not guaranteed to be byte * aligned. * * src and dst should not overlap. * */ static void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, const u8 *src, size_t src_bit_off, size_t nbits) { size_t i; size_t nbytes; u32 src_buffer = 0; size_t bits_in_src_buffer = 0; if (!nbits) return; /* * Move src and dst pointers to the closest byte pointer and store bit * offsets within a byte. */ src += src_bit_off / 8; src_bit_off %= 8; dst += dst_bit_off / 8; dst_bit_off %= 8; /* * Initialize the src_buffer value with bits available in the first * byte of data so that we end up with a byte aligned src pointer. */ if (src_bit_off) { src_buffer = src[0] >> src_bit_off; if (nbits >= (8 - src_bit_off)) { bits_in_src_buffer += 8 - src_bit_off; } else { src_buffer &= GENMASK(nbits - 1, 0); bits_in_src_buffer += nbits; } nbits -= bits_in_src_buffer; src++; } /* Calculate the number of bytes that can be copied from src to dst. */ nbytes = nbits / 8; /* Try to align dst to a byte boundary. */ if (dst_bit_off) { if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) { src_buffer |= src[0] << bits_in_src_buffer; bits_in_src_buffer += 8; src++; nbytes--; } if (bits_in_src_buffer >= (8 - dst_bit_off)) { dst[0] &= GENMASK(dst_bit_off - 1, 0); dst[0] |= src_buffer << dst_bit_off; src_buffer >>= (8 - dst_bit_off); bits_in_src_buffer -= (8 - dst_bit_off); dst_bit_off = 0; dst++; if (bits_in_src_buffer > 7) { bits_in_src_buffer -= 8; dst[0] = src_buffer; dst++; src_buffer >>= 8; } } } if (!bits_in_src_buffer && !dst_bit_off) { /* * Both src and dst pointers are byte aligned, thus we can * just use the optimized memcpy function. */ if (nbytes) memcpy(dst, src, nbytes); } else { /* * src buffer is not byte aligned, hence we have to copy each * src byte to the src_buffer variable before extracting a byte * to store in dst. */ for (i = 0; i < nbytes; i++) { src_buffer |= src[i] << bits_in_src_buffer; dst[i] = src_buffer; src_buffer >>= 8; } } /* Update dst and src pointers */ dst += nbytes; src += nbytes; /* * nbits is the number of remaining bits. It should not exceed 8 as * we've already copied as much bytes as possible. */ nbits %= 8; /* * If there's no more bits to copy to the destination and src buffer * was already byte aligned, then we're done. */ if (!nbits && !bits_in_src_buffer) return; /* Copy the remaining bits to src_buffer */ if (nbits) src_buffer |= (*src & GENMASK(nbits - 1, 0)) << bits_in_src_buffer; bits_in_src_buffer += nbits; /* * In case there were not enough bits to get a byte aligned dst buffer * prepare the src_buffer variable to match the dst organization (shift * src_buffer by dst_bit_off and retrieve the least significant bits * from dst). */ if (dst_bit_off) src_buffer = (src_buffer << dst_bit_off) | (*dst & GENMASK(dst_bit_off - 1, 0)); bits_in_src_buffer += dst_bit_off; /* * Keep most significant bits from dst if we end up with an unaligned * number of bits. */ nbytes = bits_in_src_buffer / 8; if (bits_in_src_buffer % 8) { src_buffer |= (dst[nbytes] & GENMASK(7, bits_in_src_buffer % 8)) << (nbytes * 8); nbytes++; } /* Copy the remaining bytes to dst */ for (i = 0; i < nbytes; i++) { dst[i] = src_buffer; src_buffer >>= 8; } } /* add our owner bbt descriptor */ static uint8_t scan_ff_pattern[] = { 0xff }; static struct nand_bbt_descr gpmi_bbt_descr = { .options = 0, .offs = 0, .len = 1, .pattern = scan_ff_pattern }; /* * We may change the layout if we can get the ECC info from the datasheet, * else we will use all the (page + OOB). */ static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct gpmi_nand_data *this = nand_get_controller_data(chip); struct bch_geometry *geo = &this->bch_geometry; if (section) return -ERANGE; oobregion->offset = 0; oobregion->length = geo->page_size - mtd->writesize; return 0; } static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct gpmi_nand_data *this = nand_get_controller_data(chip); struct bch_geometry *geo = &this->bch_geometry; if (section) return -ERANGE; /* The available oob size we have. */ if (geo->page_size < mtd->writesize + mtd->oobsize) { oobregion->offset = geo->page_size - mtd->writesize; oobregion->length = mtd->oobsize - oobregion->offset; } return 0; } static const char * const gpmi_clks_for_mx2x[] = { "gpmi_io", }; static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { .ecc = gpmi_ooblayout_ecc, .free = gpmi_ooblayout_free, }; static const struct gpmi_devdata gpmi_devdata_imx23 = { .type = IS_MX23, .bch_max_ecc_strength = 20, .max_chain_delay = 16000, .clks = gpmi_clks_for_mx2x, .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), }; static const struct gpmi_devdata gpmi_devdata_imx28 = { .type = IS_MX28, .bch_max_ecc_strength = 20, .max_chain_delay = 16000, .clks = gpmi_clks_for_mx2x, .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), }; static const char * const gpmi_clks_for_mx6[] = { "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", }; static const struct gpmi_devdata gpmi_devdata_imx6q = { .type = IS_MX6Q, .bch_max_ecc_strength = 40, .max_chain_delay = 12000, .clks = gpmi_clks_for_mx6, .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), }; static const struct gpmi_devdata gpmi_devdata_imx6sx = { .type = IS_MX6SX, .bch_max_ecc_strength = 62, .max_chain_delay = 12000, .clks = gpmi_clks_for_mx6, .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), }; static const char * const gpmi_clks_for_mx7d[] = { "gpmi_io", "gpmi_bch_apb", }; static const struct gpmi_devdata gpmi_devdata_imx7d = { .type = IS_MX7D, .bch_max_ecc_strength = 62, .max_chain_delay = 12000, .clks = gpmi_clks_for_mx7d, .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), }; static int acquire_register_block(struct gpmi_nand_data *this, const char *res_name) { struct platform_device *pdev = this->pdev; struct resources *res = &this->resources; struct resource *r; void __iomem *p; r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); p = devm_ioremap_resource(&pdev->dev, r); if (IS_ERR(p)) return PTR_ERR(p); if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) res->gpmi_regs = p; else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) res->bch_regs = p; else dev_err(this->dev, "unknown resource name : %s\n", res_name); return 0; } static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) { struct platform_device *pdev = this->pdev; const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; struct resource *r; int err; r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); if (!r) { dev_err(this->dev, "Can't get resource for %s\n", res_name); return -ENODEV; } err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this); if (err) dev_err(this->dev, "error requesting BCH IRQ\n"); return err; } static void release_dma_channels(struct gpmi_nand_data *this) { unsigned int i; for (i = 0; i < DMA_CHANS; i++) if (this->dma_chans[i]) { dma_release_channel(this->dma_chans[i]); this->dma_chans[i] = NULL; } } static int acquire_dma_channels(struct gpmi_nand_data *this) { struct platform_device *pdev = this->pdev; struct dma_chan *dma_chan; int ret = 0; /* request dma channel */ dma_chan = dma_request_chan(&pdev->dev, "rx-tx"); if (IS_ERR(dma_chan)) { ret = PTR_ERR(dma_chan); if (ret != -EPROBE_DEFER) dev_err(this->dev, "DMA channel request failed: %d\n", ret); release_dma_channels(this); } else { this->dma_chans[0] = dma_chan; } return ret; } static int gpmi_get_clks(struct gpmi_nand_data *this) { struct resources *r = &this->resources; struct clk *clk; int err, i; for (i = 0; i < this->devdata->clks_count; i++) { clk = devm_clk_get(this->dev, this->devdata->clks[i]); if (IS_ERR(clk)) { err = PTR_ERR(clk); goto err_clock; } r->clock[i] = clk; } if (GPMI_IS_MX6(this)) /* * Set the default value for the gpmi clock. * * If you want to use the ONFI nand which is in the * Synchronous Mode, you should change the clock as you need. */ clk_set_rate(r->clock[0], 22000000); return 0; err_clock: dev_dbg(this->dev, "failed in finding the clocks.\n"); return err; } static int acquire_resources(struct gpmi_nand_data *this) { int ret; ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); if (ret) goto exit_regs; ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); if (ret) goto exit_regs; ret = acquire_bch_irq(this, bch_irq); if (ret) goto exit_regs; ret = acquire_dma_channels(this); if (ret) goto exit_regs; ret = gpmi_get_clks(this); if (ret) goto exit_clock; return 0; exit_clock: release_dma_channels(this); exit_regs: return ret; } static void release_resources(struct gpmi_nand_data *this) { release_dma_channels(this); } static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) { struct device *dev = this->dev; struct bch_geometry *geo = &this->bch_geometry; if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt)) dma_free_coherent(dev, geo->auxiliary_size, this->auxiliary_virt, this->auxiliary_phys); kfree(this->data_buffer_dma); kfree(this->raw_buffer); this->data_buffer_dma = NULL; this->raw_buffer = NULL; } /* Allocate the DMA buffers */ static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) { struct bch_geometry *geo = &this->bch_geometry; struct device *dev = this->dev; struct mtd_info *mtd = nand_to_mtd(&this->nand); /* * [2] Allocate a read/write data buffer. * The gpmi_alloc_dma_buffer can be called twice. * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer * is called before the NAND identification; and we allocate a * buffer of the real NAND page size when the gpmi_alloc_dma_buffer * is called after. */ this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, GFP_DMA | GFP_KERNEL); if (this->data_buffer_dma == NULL) goto error_alloc; this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size, &this->auxiliary_phys, GFP_DMA); if (!this->auxiliary_virt) goto error_alloc; this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL); if (!this->raw_buffer) goto error_alloc; return 0; error_alloc: gpmi_free_dma_buffer(this); return -ENOMEM; } /* * Handles block mark swapping. * It can be called in swapping the block mark, or swapping it back, * because the the operations are the same. */ static void block_mark_swapping(struct gpmi_nand_data *this, void *payload, void *auxiliary) { struct bch_geometry *nfc_geo = &this->bch_geometry; unsigned char *p; unsigned char *a; unsigned int bit; unsigned char mask; unsigned char from_data; unsigned char from_oob; if (!this->swap_block_mark) return; /* * If control arrives here, we're swapping. Make some convenience * variables. */ bit = nfc_geo->block_mark_bit_offset; p = payload + nfc_geo->block_mark_byte_offset; a = auxiliary; /* * Get the byte from the data area that overlays the block mark. Since * the ECC engine applies its own view to the bits in the page, the * physical block mark won't (in general) appear on a byte boundary in * the data. */ from_data = (p[0] >> bit) | (p[1] << (8 - bit)); /* Get the byte from the OOB. */ from_oob = a[0]; /* Swap them. */ a[0] = from_data; mask = (0x1 << bit) - 1; p[0] = (p[0] & mask) | (from_oob << bit); mask = ~0 << bit; p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); } static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first, int last, int meta) { struct gpmi_nand_data *this = nand_get_controller_data(chip); struct bch_geometry *nfc_geo = &this->bch_geometry; struct mtd_info *mtd = nand_to_mtd(chip); int i; unsigned char *status; unsigned int max_bitflips = 0; /* Loop over status bytes, accumulating ECC status. */ status = this->auxiliary_virt + ALIGN(meta, 4); for (i = first; i < last; i++, status++) { if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) continue; if (*status == STATUS_UNCORRECTABLE) { int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; u8 *eccbuf = this->raw_buffer; int offset, bitoffset; int eccbytes; int flips; /* Read ECC bytes into our internal raw_buffer */ offset = nfc_geo->metadata_size * 8; offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1); offset -= eccbits; bitoffset = offset % 8; eccbytes = DIV_ROUND_UP(offset + eccbits, 8); offset /= 8; eccbytes -= offset; nand_change_read_column_op(chip, offset, eccbuf, eccbytes, false); /* * ECC data are not byte aligned and we may have * in-band data in the first and last byte of * eccbuf. Set non-eccbits to one so that * nand_check_erased_ecc_chunk() does not count them * as bitflips. */ if (bitoffset) eccbuf[0] |= GENMASK(bitoffset - 1, 0); bitoffset = (bitoffset + eccbits) % 8; if (bitoffset) eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); /* * The ECC hardware has an uncorrectable ECC status * code in case we have bitflips in an erased page. As * nothing was written into this subpage the ECC is * obviously wrong and we can not trust it. We assume * at this point that we are reading an erased page and * try to correct the bitflips in buffer up to * ecc_strength bitflips. If this is a page with random * data, we exceed this number of bitflips and have a * ECC failure. Otherwise we use the corrected buffer. */ if (i == 0) { /* The first block includes metadata */ flips = nand_check_erased_ecc_chunk( buf + i * nfc_geo->ecc_chunk_size, nfc_geo->ecc_chunk_size, eccbuf, eccbytes, this->auxiliary_virt, nfc_geo->metadata_size, nfc_geo->ecc_strength); } else { flips = nand_check_erased_ecc_chunk( buf + i * nfc_geo->ecc_chunk_size, nfc_geo->ecc_chunk_size, eccbuf, eccbytes, NULL, 0, nfc_geo->ecc_strength); } if (flips > 0) { max_bitflips = max_t(unsigned int, max_bitflips, flips); mtd->ecc_stats.corrected += flips; continue; } mtd->ecc_stats.failed++; continue; } mtd->ecc_stats.corrected += *status; max_bitflips = max_t(unsigned int, max_bitflips, *status); } return max_bitflips; } static void gpmi_bch_layout_std(struct gpmi_nand_data *this) { struct bch_geometry *geo = &this->bch_geometry; unsigned int ecc_strength = geo->ecc_strength >> 1; unsigned int gf_len = geo->gf_len; unsigned int block_size = geo->ecc_chunk_size; this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) | BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this); this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this); } static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct gpmi_nand_data *this = nand_get_controller_data(chip); struct mtd_info *mtd = nand_to_mtd(chip); struct bch_geometry *geo = &this->bch_geometry; unsigned int max_bitflips; int ret; gpmi_bch_layout_std(this); this->bch = true; ret = nand_read_page_op(chip, page, 0, buf, geo->page_size); if (ret) return ret; max_bitflips = gpmi_count_bitflips(chip, buf, 0, geo->ecc_chunk_count, geo->auxiliary_status_offset); /* handle the block mark swapping */ block_mark_swapping(this, buf, this->auxiliary_virt); if (oob_required) { /* * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() * for details about our policy for delivering the OOB. * * We fill the caller's buffer with set bits, and then copy the * block mark to th caller's buffer. Note that, if block mark * swapping was necessary, it has already been done, so we can * rely on the first byte of the auxiliary buffer to contain * the block mark. */ memset(chip->oob_poi, ~0, mtd->oobsize); chip->oob_poi[0] = ((uint8_t *)this->auxiliary_virt)[0]; } return max_bitflips; } /* Fake a virtual small page for the subpage read */ static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs, uint32_t len, uint8_t *buf, int page) { struct gpmi_nand_data *this = nand_get_controller_data(chip); struct bch_geometry *geo = &this->bch_geometry; int size = chip->ecc.size; /* ECC chunk size */ int meta, n, page_size; unsigned int max_bitflips; unsigned int ecc_strength; int first, last, marker_pos; int ecc_parity_size; int col = 0; int ret; /* The size of ECC parity */ ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; /* Align it with the chunk size */ first = offs / size; last = (offs + len - 1) / size; if (this->swap_block_mark) { /* * Find the chunk which contains the Block Marker. * If this chunk is in the range of [first, last], * we have to read out the whole page. * Why? since we had swapped the data at the position of Block * Marker to the metadata which is bound with the chunk 0. */ marker_pos = geo->block_mark_byte_offset / size; if (last >= marker_pos && first <= marker_pos) { dev_dbg(this->dev, "page:%d, first:%d, last:%d, marker at:%d\n", page, first, last, marker_pos); return gpmi_ecc_read_page(chip, buf, 0, page); } } meta = geo->metadata_size; if (first) { col = meta + (size + ecc_parity_size) * first; meta = 0; buf = buf + first * size; } ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; n = last - first + 1; page_size = meta + (size + ecc_parity_size) * n; ecc_strength = geo->ecc_strength >> 1; this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) | BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this); this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) | BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this); this->bch = true; ret = nand_read_page_op(chip, page, col, buf, page_size); if (ret) return ret; dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", page, offs, len, col, first, n, page_size); max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta); return max_bitflips; } static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct gpmi_nand_data *this = nand_get_controller_data(chip); struct bch_geometry *nfc_geo = &this->bch_geometry; int ret; dev_dbg(this->dev, "ecc write page.\n"); gpmi_bch_layout_std(this); this->bch = true; memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size); if (this->swap_block_mark) { /* * When doing bad block marker swapping we must always copy the * input buffer as we can't modify the const buffer. */ memcpy(this->data_buffer_dma, buf, mtd->writesize); buf = this->data_buffer_dma; block_mark_swapping(this, this->data_buffer_dma, this->auxiliary_virt); } ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size); return ret; } /* * There are several places in this driver where we have to handle the OOB and * block marks. This is the function where things are the most complicated, so * this is where we try to explain it all. All the other places refer back to * here. * * These are the rules, in order of decreasing importance: * * 1) Nothing the caller does can be allowed to imperil the block mark. * * 2) In read operations, the first byte of the OOB we return must reflect the * true state of the block mark, no matter where that block mark appears in * the physical page. * * 3) ECC-based read operations return an OOB full of set bits (since we never * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads * return). * * 4) "Raw" read operations return a direct view of the physical bytes in the * page, using the conventional definition of which bytes are data and which * are OOB. This gives the caller a way to see the actual, physical bytes * in the page, without the distortions applied by our ECC engine. * * * What we do for this specific read operation depends on two questions: * * 1) Are we doing a "raw" read, or an ECC-based read? * * 2) Are we using block mark swapping or transcription? * * There are four cases, illustrated by the following Karnaugh map: * * | Raw | ECC-based | * -------------+-------------------------+-------------------------+ * | Read the conventional | | * | OOB at the end of the | | * Swapping | page and return it. It | | * | contains exactly what | | * | we want. | Read the block mark and | * -------------+-------------------------+ return it in a buffer | * | Read the conventional | full of set bits. | * | OOB at the end of the | | * | page and also the block | | * Transcribing | mark in the metadata. | | * | Copy the block mark | | * | into the first byte of | | * | the OOB. | | * -------------+-------------------------+-------------------------+ * * Note that we break rule #4 in the Transcribing/Raw case because we're not * giving an accurate view of the actual, physical bytes in the page (we're * overwriting the block mark). That's OK because it's more important to follow * rule #2. * * It turns out that knowing whether we want an "ECC-based" or "raw" read is not * easy. When reading a page, for example, the NAND Flash MTD code calls our * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an * ECC-based or raw view of the page is implicit in which function it calls * (there is a similar pair of ECC-based/raw functions for writing). */ static int gpmi_ecc_read_oob(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct gpmi_nand_data *this = nand_get_controller_data(chip); int ret; /* clear the OOB buffer */ memset(chip->oob_poi, ~0, mtd->oobsize); /* Read out the conventional OOB. */ ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi, mtd->oobsize); if (ret) return ret; /* * Now, we want to make sure the block mark is correct. In the * non-transcribing case (!GPMI_IS_MX23()), we already have it. * Otherwise, we need to explicitly read it. */ if (GPMI_IS_MX23(this)) { /* Read the block mark into the first byte of the OOB buffer. */ ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1); if (ret) return ret; } return 0; } static int gpmi_ecc_write_oob(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct mtd_oob_region of = { }; /* Do we have available oob area? */ mtd_ooblayout_free(mtd, 0, &of); if (!of.length) return -EPERM; if (!nand_is_slc(chip)) return -EPERM; return nand_prog_page_op(chip, page, mtd->writesize + of.offset, chip->oob_poi + of.offset, of.length); } /* * This function reads a NAND page without involving the ECC engine (no HW * ECC correction). * The tricky part in the GPMI/BCH controller is that it stores ECC bits * inline (interleaved with payload DATA), and do not align data chunk on * byte boundaries. * We thus need to take care moving the payload data and ECC bits stored in the * page into the provided buffers, which is why we're using gpmi_copy_bits. * * See set_geometry_by_ecc_info inline comments to have a full description * of the layout used by the GPMI controller. */ static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct gpmi_nand_data *this = nand_get_controller_data(chip); struct bch_geometry *nfc_geo = &this->bch_geometry; int eccsize = nfc_geo->ecc_chunk_size; int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; u8 *tmp_buf = this->raw_buffer; size_t src_bit_off; size_t oob_bit_off; size_t oob_byte_off; uint8_t *oob = chip->oob_poi; int step; int ret; ret = nand_read_page_op(chip, page, 0, tmp_buf, mtd->writesize + mtd->oobsize); if (ret) return ret; /* * If required, swap the bad block marker and the data stored in the * metadata section, so that we don't wrongly consider a block as bad. * * See the layout description for a detailed explanation on why this * is needed. */ if (this->swap_block_mark) swap(tmp_buf[0], tmp_buf[mtd->writesize]); /* * Copy the metadata section into the oob buffer (this section is * guaranteed to be aligned on a byte boundary). */ if (oob_required) memcpy(oob, tmp_buf, nfc_geo->metadata_size); oob_bit_off = nfc_geo->metadata_size * 8; src_bit_off = oob_bit_off; /* Extract interleaved payload data and ECC bits */ for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { if (buf) gpmi_copy_bits(buf, step * eccsize * 8, tmp_buf, src_bit_off, eccsize * 8); src_bit_off += eccsize * 8; /* Align last ECC block to align a byte boundary */ if (step == nfc_geo->ecc_chunk_count - 1 && (oob_bit_off + eccbits) % 8) eccbits += 8 - ((oob_bit_off + eccbits) % 8); if (oob_required) gpmi_copy_bits(oob, oob_bit_off, tmp_buf, src_bit_off, eccbits); src_bit_off += eccbits; oob_bit_off += eccbits; } if (oob_required) { oob_byte_off = oob_bit_off / 8; if (oob_byte_off < mtd->oobsize) memcpy(oob + oob_byte_off, tmp_buf + mtd->writesize + oob_byte_off, mtd->oobsize - oob_byte_off); } return 0; } /* * This function writes a NAND page without involving the ECC engine (no HW * ECC generation). * The tricky part in the GPMI/BCH controller is that it stores ECC bits * inline (interleaved with payload DATA), and do not align data chunk on * byte boundaries. * We thus need to take care moving the OOB area at the right place in the * final page, which is why we're using gpmi_copy_bits. * * See set_geometry_by_ecc_info inline comments to have a full description * of the layout used by the GPMI controller. */ static int gpmi_ecc_write_page_raw(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct gpmi_nand_data *this = nand_get_controller_data(chip); struct bch_geometry *nfc_geo = &this->bch_geometry; int eccsize = nfc_geo->ecc_chunk_size; int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; u8 *tmp_buf = this->raw_buffer; uint8_t *oob = chip->oob_poi; size_t dst_bit_off; size_t oob_bit_off; size_t oob_byte_off; int step; /* * Initialize all bits to 1 in case we don't have a buffer for the * payload or oob data in order to leave unspecified bits of data * to their initial state. */ if (!buf || !oob_required) memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); /* * First copy the metadata section (stored in oob buffer) at the * beginning of the page, as imposed by the GPMI layout. */ memcpy(tmp_buf, oob, nfc_geo->metadata_size); oob_bit_off = nfc_geo->metadata_size * 8; dst_bit_off = oob_bit_off; /* Interleave payload data and ECC bits */ for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { if (buf) gpmi_copy_bits(tmp_buf, dst_bit_off, buf, step * eccsize * 8, eccsize * 8); dst_bit_off += eccsize * 8; /* Align last ECC block to align a byte boundary */ if (step == nfc_geo->ecc_chunk_count - 1 && (oob_bit_off + eccbits) % 8) eccbits += 8 - ((oob_bit_off + eccbits) % 8); if (oob_required) gpmi_copy_bits(tmp_buf, dst_bit_off, oob, oob_bit_off, eccbits); dst_bit_off += eccbits; oob_bit_off += eccbits; } oob_byte_off = oob_bit_off / 8; if (oob_required && oob_byte_off < mtd->oobsize) memcpy(tmp_buf + mtd->writesize + oob_byte_off, oob + oob_byte_off, mtd->oobsize - oob_byte_off); /* * If required, swap the bad block marker and the first byte of the * metadata section, so that we don't modify the bad block marker. * * See the layout description for a detailed explanation on why this * is needed. */ if (this->swap_block_mark) swap(tmp_buf[0], tmp_buf[mtd->writesize]); return nand_prog_page_op(chip, page, 0, tmp_buf, mtd->writesize + mtd->oobsize); } static int gpmi_ecc_read_oob_raw(struct nand_chip *chip, int page) { return gpmi_ecc_read_page_raw(chip, NULL, 1, page); } static int gpmi_ecc_write_oob_raw(struct nand_chip *chip, int page) { return gpmi_ecc_write_page_raw(chip, NULL, 1, page); } static int gpmi_block_markbad(struct nand_chip *chip, loff_t ofs) { struct mtd_info *mtd = nand_to_mtd(chip); struct gpmi_nand_data *this = nand_get_controller_data(chip); int ret = 0; uint8_t *block_mark; int column, page, chipnr; chipnr = (int)(ofs >> chip->chip_shift); nand_select_target(chip, chipnr); column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; /* Write the block mark. */ block_mark = this->data_buffer_dma; block_mark[0] = 0; /* bad block marker */ /* Shift to get page */ page = (int)(ofs >> chip->page_shift); ret = nand_prog_page_op(chip, page, column, block_mark, 1); nand_deselect_target(chip); return ret; } static int nand_boot_set_geometry(struct gpmi_nand_data *this) { struct boot_rom_geometry *geometry = &this->rom_geometry; /* * Set the boot block stride size. * * In principle, we should be reading this from the OTP bits, since * that's where the ROM is going to get it. In fact, we don't have any * way to read the OTP bits, so we go with the default and hope for the * best. */ geometry->stride_size_in_pages = 64; /* * Set the search area stride exponent. * * In principle, we should be reading this from the OTP bits, since * that's where the ROM is going to get it. In fact, we don't have any * way to read the OTP bits, so we go with the default and hope for the * best. */ geometry->search_area_stride_exponent = 2; return 0; } static const char *fingerprint = "STMP"; static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) { struct boot_rom_geometry *rom_geo = &this->rom_geometry; struct device *dev = this->dev; struct nand_chip *chip = &this->nand; unsigned int search_area_size_in_strides; unsigned int stride; unsigned int page; u8 *buffer = nand_get_data_buf(chip); int found_an_ncb_fingerprint = false; int ret; /* Compute the number of strides in a search area. */ search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; nand_select_target(chip, 0); /* * Loop through the first search area, looking for the NCB fingerprint. */ dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); for (stride = 0; stride < search_area_size_in_strides; stride++) { /* Compute the page addresses. */ page = stride * rom_geo->stride_size_in_pages; dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); /* * Read the NCB fingerprint. The fingerprint is four bytes long * and starts in the 12th byte of the page. */ ret = nand_read_page_op(chip, page, 12, buffer, strlen(fingerprint)); if (ret) continue; /* Look for the fingerprint. */ if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { found_an_ncb_fingerprint = true; break; } } nand_deselect_target(chip); if (found_an_ncb_fingerprint) dev_dbg(dev, "\tFound a fingerprint\n"); else dev_dbg(dev, "\tNo fingerprint found\n"); return found_an_ncb_fingerprint; } /* Writes a transcription stamp. */ static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) { struct device *dev = this->dev; struct boot_rom_geometry *rom_geo = &this->rom_geometry; struct nand_chip *chip = &this->nand; struct mtd_info *mtd = nand_to_mtd(chip); unsigned int block_size_in_pages; unsigned int search_area_size_in_strides; unsigned int search_area_size_in_pages; unsigned int search_area_size_in_blocks; unsigned int block; unsigned int stride; unsigned int page; u8 *buffer = nand_get_data_buf(chip); int status; /* Compute the search area geometry. */ block_size_in_pages = mtd->erasesize / mtd->writesize; search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; search_area_size_in_pages = search_area_size_in_strides * rom_geo->stride_size_in_pages; search_area_size_in_blocks = (search_area_size_in_pages + (block_size_in_pages - 1)) / block_size_in_pages; dev_dbg(dev, "Search Area Geometry :\n"); dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); nand_select_target(chip, 0); /* Loop over blocks in the first search area, erasing them. */ dev_dbg(dev, "Erasing the search area...\n"); for (block = 0; block < search_area_size_in_blocks; block++) { /* Erase this block. */ dev_dbg(dev, "\tErasing block 0x%x\n", block); status = nand_erase_op(chip, block); if (status) dev_err(dev, "[%s] Erase failed.\n", __func__); } /* Write the NCB fingerprint into the page buffer. */ memset(buffer, ~0, mtd->writesize); memcpy(buffer + 12, fingerprint, strlen(fingerprint)); /* Loop through the first search area, writing NCB fingerprints. */ dev_dbg(dev, "Writing NCB fingerprints...\n"); for (stride = 0; stride < search_area_size_in_strides; stride++) { /* Compute the page addresses. */ page = stride * rom_geo->stride_size_in_pages; /* Write the first page of the current stride. */ dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); status = chip->ecc.write_page_raw(chip, buffer, 0, page); if (status) dev_err(dev, "[%s] Write failed.\n", __func__); } nand_deselect_target(chip); return 0; } static int mx23_boot_init(struct gpmi_nand_data *this) { struct device *dev = this->dev; struct nand_chip *chip = &this->nand; struct mtd_info *mtd = nand_to_mtd(chip); unsigned int block_count; unsigned int block; int chipnr; int page; loff_t byte; uint8_t block_mark; int ret = 0; /* * If control arrives here, we can't use block mark swapping, which * means we're forced to use transcription. First, scan for the * transcription stamp. If we find it, then we don't have to do * anything -- the block marks are already transcribed. */ if (mx23_check_transcription_stamp(this)) return 0; /* * If control arrives here, we couldn't find a transcription stamp, so * so we presume the block marks are in the conventional location. */ dev_dbg(dev, "Transcribing bad block marks...\n"); /* Compute the number of blocks in the entire medium. */ block_count = nanddev_eraseblocks_per_target(&chip->base); /* * Loop over all the blocks in the medium, transcribing block marks as * we go. */ for (block = 0; block < block_count; block++) { /* * Compute the chip, page and byte addresses for this block's * conventional mark. */ chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); page = block << (chip->phys_erase_shift - chip->page_shift); byte = block << chip->phys_erase_shift; /* Send the command to read the conventional block mark. */ nand_select_target(chip, chipnr); ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark, 1); nand_deselect_target(chip); if (ret) continue; /* * Check if the block is marked bad. If so, we need to mark it * again, but this time the result will be a mark in the * location where we transcribe block marks. */ if (block_mark != 0xff) { dev_dbg(dev, "Transcribing mark in block %u\n", block); ret = chip->legacy.block_markbad(chip, byte); if (ret) dev_err(dev, "Failed to mark block bad with ret %d\n", ret); } } /* Write the stamp that indicates we've transcribed the block marks. */ mx23_write_transcription_stamp(this); return 0; } static int nand_boot_init(struct gpmi_nand_data *this) { nand_boot_set_geometry(this); /* This is ROM arch-specific initilization before the BBT scanning. */ if (GPMI_IS_MX23(this)) return mx23_boot_init(this); return 0; } static int gpmi_set_geometry(struct gpmi_nand_data *this) { int ret; /* Free the temporary DMA memory for reading ID. */ gpmi_free_dma_buffer(this); /* Set up the NFC geometry which is used by BCH. */ ret = bch_set_geometry(this); if (ret) { dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); return ret; } /* Alloc the new DMA buffers according to the pagesize and oobsize */ return gpmi_alloc_dma_buffer(this); } static int gpmi_init_last(struct gpmi_nand_data *this) { struct nand_chip *chip = &this->nand; struct mtd_info *mtd = nand_to_mtd(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; struct bch_geometry *bch_geo = &this->bch_geometry; int ret; /* Set up the medium geometry */ ret = gpmi_set_geometry(this); if (ret) return ret; /* Init the nand_ecc_ctrl{} */ ecc->read_page = gpmi_ecc_read_page; ecc->write_page = gpmi_ecc_write_page; ecc->read_oob = gpmi_ecc_read_oob; ecc->write_oob = gpmi_ecc_write_oob; ecc->read_page_raw = gpmi_ecc_read_page_raw; ecc->write_page_raw = gpmi_ecc_write_page_raw; ecc->read_oob_raw = gpmi_ecc_read_oob_raw; ecc->write_oob_raw = gpmi_ecc_write_oob_raw; ecc->mode = NAND_ECC_HW; ecc->size = bch_geo->ecc_chunk_size; ecc->strength = bch_geo->ecc_strength; mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); /* * We only enable the subpage read when: * (1) the chip is imx6, and * (2) the size of the ECC parity is byte aligned. */ if (GPMI_IS_MX6(this) && ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { ecc->read_subpage = gpmi_ecc_read_subpage; chip->options |= NAND_SUBPAGE_READ; } return 0; } static int gpmi_nand_attach_chip(struct nand_chip *chip) { struct gpmi_nand_data *this = nand_get_controller_data(chip); int ret; if (chip->bbt_options & NAND_BBT_USE_FLASH) { chip->bbt_options |= NAND_BBT_NO_OOB; if (of_property_read_bool(this->dev->of_node, "fsl,no-blockmark-swap")) this->swap_block_mark = false; } dev_dbg(this->dev, "Blockmark swapping %sabled\n", this->swap_block_mark ? "en" : "dis"); ret = gpmi_init_last(this); if (ret) return ret; chip->options |= NAND_SKIP_BBTSCAN; return 0; } static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this) { struct gpmi_transfer *transfer = &this->transfers[this->ntransfers]; this->ntransfers++; if (this->ntransfers == GPMI_MAX_TRANSFERS) return NULL; return transfer; } static struct dma_async_tx_descriptor *gpmi_chain_command( struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr) { struct dma_chan *channel = get_dma_chan(this); struct dma_async_tx_descriptor *desc; struct gpmi_transfer *transfer; int chip = this->nand.cur_cs; u32 pio[3]; /* [1] send out the PIO words */ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) | BM_GPMI_CTRL0_WORD_LENGTH | BF_GPMI_CTRL0_CS(chip, this) | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) | BM_GPMI_CTRL0_ADDRESS_INCREMENT | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1); pio[1] = 0; pio[2] = 0; desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); if (!desc) return NULL; transfer = get_next_transfer(this); if (!transfer) return NULL; transfer->cmdbuf[0] = cmd; if (naddr) memcpy(&transfer->cmdbuf[1], addr, naddr); sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1); dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE); transfer->direction = DMA_TO_DEVICE; desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV, MXS_DMA_CTRL_WAIT4END); return desc; } static struct dma_async_tx_descriptor *gpmi_chain_wait_ready( struct gpmi_nand_data *this) { struct dma_chan *channel = get_dma_chan(this); u32 pio[2]; pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY) | BM_GPMI_CTRL0_WORD_LENGTH | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) | BF_GPMI_CTRL0_XFER_COUNT(0); pio[1] = 0; return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE, MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY); } static struct dma_async_tx_descriptor *gpmi_chain_data_read( struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct) { struct dma_async_tx_descriptor *desc; struct dma_chan *channel = get_dma_chan(this); struct gpmi_transfer *transfer; u32 pio[6] = {}; transfer = get_next_transfer(this); if (!transfer) return NULL; transfer->direction = DMA_FROM_DEVICE; *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_FROM_DEVICE); pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) | BM_GPMI_CTRL0_WORD_LENGTH | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) | BF_GPMI_CTRL0_XFER_COUNT(raw_len); if (this->bch) { pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE) | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); pio[3] = raw_len; pio[4] = transfer->sgl.dma_address; pio[5] = this->auxiliary_phys; } desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); if (!desc) return NULL; if (!this->bch) desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_DEV_TO_MEM, MXS_DMA_CTRL_WAIT4END); return desc; } static struct dma_async_tx_descriptor *gpmi_chain_data_write( struct gpmi_nand_data *this, const void *buf, int raw_len) { struct dma_chan *channel = get_dma_chan(this); struct dma_async_tx_descriptor *desc; struct gpmi_transfer *transfer; u32 pio[6] = {}; transfer = get_next_transfer(this); if (!transfer) return NULL; transfer->direction = DMA_TO_DEVICE; prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE); pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) | BM_GPMI_CTRL0_WORD_LENGTH | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this) | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) | BF_GPMI_CTRL0_XFER_COUNT(raw_len); if (this->bch) { pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE) | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY); pio[3] = raw_len; pio[4] = transfer->sgl.dma_address; pio[5] = this->auxiliary_phys; } desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio), DMA_TRANS_NONE, (this->bch ? MXS_DMA_CTRL_WAIT4END : 0)); if (!desc) return NULL; if (!this->bch) desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV, MXS_DMA_CTRL_WAIT4END); return desc; } static int gpmi_nfc_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { const struct nand_op_instr *instr; struct gpmi_nand_data *this = nand_get_controller_data(chip); struct dma_async_tx_descriptor *desc = NULL; int i, ret, buf_len = 0, nbufs = 0; u8 cmd = 0; void *buf_read = NULL; const void *buf_write = NULL; bool direct = false; struct completion *completion; unsigned long to; this->ntransfers = 0; for (i = 0; i < GPMI_MAX_TRANSFERS; i++) this->transfers[i].direction = DMA_NONE; ret = pm_runtime_get_sync(this->dev); if (ret < 0) return ret; /* * This driver currently supports only one NAND chip. Plus, dies share * the same configuration. So once timings have been applied on the * controller side, they will not change anymore. When the time will * come, the check on must_apply_timings will have to be dropped. */ if (this->hw.must_apply_timings) { this->hw.must_apply_timings = false; gpmi_nfc_apply_timings(this); } dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs); for (i = 0; i < op->ninstrs; i++) { instr = &op->instrs[i]; nand_op_trace(" ", instr); switch (instr->type) { case NAND_OP_WAITRDY_INSTR: desc = gpmi_chain_wait_ready(this); break; case NAND_OP_CMD_INSTR: cmd = instr->ctx.cmd.opcode; /* * When this command has an address cycle chain it * together with the address cycle */ if (i + 1 != op->ninstrs && op->instrs[i + 1].type == NAND_OP_ADDR_INSTR) continue; desc = gpmi_chain_command(this, cmd, NULL, 0); break; case NAND_OP_ADDR_INSTR: desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs, instr->ctx.addr.naddrs); break; case NAND_OP_DATA_OUT_INSTR: buf_write = instr->ctx.data.buf.out; buf_len = instr->ctx.data.len; nbufs++; desc = gpmi_chain_data_write(this, buf_write, buf_len); break; case NAND_OP_DATA_IN_INSTR: if (!instr->ctx.data.len) break; buf_read = instr->ctx.data.buf.in; buf_len = instr->ctx.data.len; nbufs++; desc = gpmi_chain_data_read(this, buf_read, buf_len, &direct); break; } if (!desc) { ret = -ENXIO; goto unmap; } } dev_dbg(this->dev, "%s setup done\n", __func__); if (nbufs > 1) { dev_err(this->dev, "Multiple data instructions not supported\n"); ret = -EINVAL; goto unmap; } if (this->bch) { writel(this->bch_flashlayout0, this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0); writel(this->bch_flashlayout1, this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1); } if (this->bch && buf_read) { writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, this->resources.bch_regs + HW_BCH_CTRL_SET); completion = &this->bch_done; } else { desc->callback = dma_irq_callback; desc->callback_param = this; completion = &this->dma_done; } init_completion(completion); dmaengine_submit(desc); dma_async_issue_pending(get_dma_chan(this)); to = wait_for_completion_timeout(completion, msecs_to_jiffies(1000)); if (!to) { dev_err(this->dev, "DMA timeout, last DMA\n"); gpmi_dump_info(this); ret = -ETIMEDOUT; goto unmap; } writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, this->resources.bch_regs + HW_BCH_CTRL_CLR); gpmi_clear_bch(this); ret = 0; unmap: for (i = 0; i < this->ntransfers; i++) { struct gpmi_transfer *transfer = &this->transfers[i]; if (transfer->direction != DMA_NONE) dma_unmap_sg(this->dev, &transfer->sgl, 1, transfer->direction); } if (!ret && buf_read && !direct) memcpy(buf_read, this->data_buffer_dma, gpmi_raw_len_to_len(this, buf_len)); this->bch = false; pm_runtime_mark_last_busy(this->dev); pm_runtime_put_autosuspend(this->dev); return ret; } static const struct nand_controller_ops gpmi_nand_controller_ops = { .attach_chip = gpmi_nand_attach_chip, .setup_data_interface = gpmi_setup_data_interface, .exec_op = gpmi_nfc_exec_op, }; static int gpmi_nand_init(struct gpmi_nand_data *this) { struct nand_chip *chip = &this->nand; struct mtd_info *mtd = nand_to_mtd(chip); int ret; /* init the MTD data structures */ mtd->name = "gpmi-nand"; mtd->dev.parent = this->dev; /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ nand_set_controller_data(chip, this); nand_set_flash_node(chip, this->pdev->dev.of_node); chip->legacy.block_markbad = gpmi_block_markbad; chip->badblock_pattern = &gpmi_bbt_descr; chip->options |= NAND_NO_SUBPAGE_WRITE; /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ this->swap_block_mark = !GPMI_IS_MX23(this); /* * Allocate a temporary DMA buffer for reading ID in the * nand_scan_ident(). */ this->bch_geometry.payload_size = 1024; this->bch_geometry.auxiliary_size = 128; ret = gpmi_alloc_dma_buffer(this); if (ret) goto err_out; nand_controller_init(&this->base); this->base.ops = &gpmi_nand_controller_ops; chip->controller = &this->base; ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1); if (ret) goto err_out; ret = nand_boot_init(this); if (ret) goto err_nand_cleanup; ret = nand_create_bbt(chip); if (ret) goto err_nand_cleanup; ret = mtd_device_register(mtd, NULL, 0); if (ret) goto err_nand_cleanup; return 0; err_nand_cleanup: nand_cleanup(chip); err_out: gpmi_free_dma_buffer(this); return ret; } static const struct of_device_id gpmi_nand_id_table[] = { { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, }, { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, }, { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, }, { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, }, { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d, }, {} }; MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); static int gpmi_nand_probe(struct platform_device *pdev) { struct gpmi_nand_data *this; const struct of_device_id *of_id; int ret; this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); if (!this) return -ENOMEM; of_id = of_match_device(gpmi_nand_id_table, &pdev->dev); if (of_id) { this->devdata = of_id->data; } else { dev_err(&pdev->dev, "Failed to find the right device id.\n"); return -ENODEV; } platform_set_drvdata(pdev, this); this->pdev = pdev; this->dev = &pdev->dev; ret = acquire_resources(this); if (ret) goto exit_acquire_resources; ret = __gpmi_enable_clk(this, true); if (ret) goto exit_nfc_init; pm_runtime_set_autosuspend_delay(&pdev->dev, 500); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); pm_runtime_get_sync(&pdev->dev); ret = gpmi_init(this); if (ret) goto exit_nfc_init; ret = gpmi_nand_init(this); if (ret) goto exit_nfc_init; pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_put_autosuspend(&pdev->dev); dev_info(this->dev, "driver registered.\n"); return 0; exit_nfc_init: pm_runtime_put(&pdev->dev); pm_runtime_disable(&pdev->dev); release_resources(this); exit_acquire_resources: return ret; } static int gpmi_nand_remove(struct platform_device *pdev) { struct gpmi_nand_data *this = platform_get_drvdata(pdev); pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); nand_release(&this->nand); gpmi_free_dma_buffer(this); release_resources(this); return 0; } #ifdef CONFIG_PM_SLEEP static int gpmi_pm_suspend(struct device *dev) { struct gpmi_nand_data *this = dev_get_drvdata(dev); release_dma_channels(this); return 0; } static int gpmi_pm_resume(struct device *dev) { struct gpmi_nand_data *this = dev_get_drvdata(dev); int ret; ret = acquire_dma_channels(this); if (ret < 0) return ret; /* re-init the GPMI registers */ ret = gpmi_init(this); if (ret) { dev_err(this->dev, "Error setting GPMI : %d\n", ret); return ret; } /* Set flag to get timing setup restored for next exec_op */ if (this->hw.clk_rate) this->hw.must_apply_timings = true; /* re-init the BCH registers */ ret = bch_set_geometry(this); if (ret) { dev_err(this->dev, "Error setting BCH : %d\n", ret); return ret; } return 0; } #endif /* CONFIG_PM_SLEEP */ static int __maybe_unused gpmi_runtime_suspend(struct device *dev) { struct gpmi_nand_data *this = dev_get_drvdata(dev); return __gpmi_enable_clk(this, false); } static int __maybe_unused gpmi_runtime_resume(struct device *dev) { struct gpmi_nand_data *this = dev_get_drvdata(dev); return __gpmi_enable_clk(this, true); } static const struct dev_pm_ops gpmi_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL) }; static struct platform_driver gpmi_nand_driver = { .driver = { .name = "gpmi-nand", .pm = &gpmi_pm_ops, .of_match_table = gpmi_nand_id_table, }, .probe = gpmi_nand_probe, .remove = gpmi_nand_remove, }; module_platform_driver(gpmi_nand_driver); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1