Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stefan Agner | 3484 | 83.43% | 4 | 14.29% |
Miquel Raynal | 408 | 9.77% | 1 | 3.57% |
Boris Brezillon | 227 | 5.44% | 14 | 50.00% |
Alexey Khoroshilov | 24 | 0.57% | 2 | 7.14% |
Aditya Pakki | 9 | 0.22% | 1 | 3.57% |
Fabio Estevam | 9 | 0.22% | 1 | 3.57% |
Masahiro Yamada | 8 | 0.19% | 2 | 7.14% |
Nishka Dasgupta | 5 | 0.12% | 1 | 3.57% |
Brian Norris | 2 | 0.05% | 2 | 7.14% |
Total | 4176 | 28 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2009-2015 Freescale Semiconductor, Inc. and others * * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver. * Jason ported to M54418TWR and MVFA5 (VF610). * Authors: Stefan Agner <stefan.agner@toradex.com> * Bill Pringlemeir <bpringlemeir@nbsps.com> * Shaohui Xie <b21989@freescale.com> * Jason Jin <Jason.jin@freescale.com> * * Based on original driver mpc5121_nfc.c. * * Limitations: * - Untested on MPC5125 and M54418. * - DMA and pipelining not used. * - 2K pages or less. * - HW ECC: Only 2K page with 64+ OOB. * - HW ECC: Only 24 and 32-bit error correction implemented. */ #include <linux/module.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/mtd/mtd.h> #include <linux/mtd/rawnand.h> #include <linux/mtd/partitions.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/swab.h> #define DRV_NAME "vf610_nfc" /* Register Offsets */ #define NFC_FLASH_CMD1 0x3F00 #define NFC_FLASH_CMD2 0x3F04 #define NFC_COL_ADDR 0x3F08 #define NFC_ROW_ADDR 0x3F0c #define NFC_ROW_ADDR_INC 0x3F14 #define NFC_FLASH_STATUS1 0x3F18 #define NFC_FLASH_STATUS2 0x3F1c #define NFC_CACHE_SWAP 0x3F28 #define NFC_SECTOR_SIZE 0x3F2c #define NFC_FLASH_CONFIG 0x3F30 #define NFC_IRQ_STATUS 0x3F38 /* Addresses for NFC MAIN RAM BUFFER areas */ #define NFC_MAIN_AREA(n) ((n) * 0x1000) #define PAGE_2K 0x0800 #define OOB_64 0x0040 #define OOB_MAX 0x0100 /* NFC_CMD2[CODE] controller cycle bit masks */ #define COMMAND_CMD_BYTE1 BIT(14) #define COMMAND_CAR_BYTE1 BIT(13) #define COMMAND_CAR_BYTE2 BIT(12) #define COMMAND_RAR_BYTE1 BIT(11) #define COMMAND_RAR_BYTE2 BIT(10) #define COMMAND_RAR_BYTE3 BIT(9) #define COMMAND_NADDR_BYTES(x) GENMASK(13, 13 - (x) + 1) #define COMMAND_WRITE_DATA BIT(8) #define COMMAND_CMD_BYTE2 BIT(7) #define COMMAND_RB_HANDSHAKE BIT(6) #define COMMAND_READ_DATA BIT(5) #define COMMAND_CMD_BYTE3 BIT(4) #define COMMAND_READ_STATUS BIT(3) #define COMMAND_READ_ID BIT(2) /* NFC ECC mode define */ #define ECC_BYPASS 0 #define ECC_45_BYTE 6 #define ECC_60_BYTE 7 /*** Register Mask and bit definitions */ /* NFC_FLASH_CMD1 Field */ #define CMD_BYTE2_MASK 0xFF000000 #define CMD_BYTE2_SHIFT 24 /* NFC_FLASH_CM2 Field */ #define CMD_BYTE1_MASK 0xFF000000 #define CMD_BYTE1_SHIFT 24 #define CMD_CODE_MASK 0x00FFFF00 #define CMD_CODE_SHIFT 8 #define BUFNO_MASK 0x00000006 #define BUFNO_SHIFT 1 #define START_BIT BIT(0) /* NFC_COL_ADDR Field */ #define COL_ADDR_MASK 0x0000FFFF #define COL_ADDR_SHIFT 0 #define COL_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos))) /* NFC_ROW_ADDR Field */ #define ROW_ADDR_MASK 0x00FFFFFF #define ROW_ADDR_SHIFT 0 #define ROW_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos))) #define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000 #define ROW_ADDR_CHIP_SEL_RB_SHIFT 28 #define ROW_ADDR_CHIP_SEL_MASK 0x0F000000 #define ROW_ADDR_CHIP_SEL_SHIFT 24 /* NFC_FLASH_STATUS2 Field */ #define STATUS_BYTE1_MASK 0x000000FF /* NFC_FLASH_CONFIG Field */ #define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000 #define CONFIG_ECC_SRAM_ADDR_SHIFT 22 #define CONFIG_ECC_SRAM_REQ_BIT BIT(21) #define CONFIG_DMA_REQ_BIT BIT(20) #define CONFIG_ECC_MODE_MASK 0x000E0000 #define CONFIG_ECC_MODE_SHIFT 17 #define CONFIG_FAST_FLASH_BIT BIT(16) #define CONFIG_16BIT BIT(7) #define CONFIG_BOOT_MODE_BIT BIT(6) #define CONFIG_ADDR_AUTO_INCR_BIT BIT(5) #define CONFIG_BUFNO_AUTO_INCR_BIT BIT(4) #define CONFIG_PAGE_CNT_MASK 0xF #define CONFIG_PAGE_CNT_SHIFT 0 /* NFC_IRQ_STATUS Field */ #define IDLE_IRQ_BIT BIT(29) #define IDLE_EN_BIT BIT(20) #define CMD_DONE_CLEAR_BIT BIT(18) #define IDLE_CLEAR_BIT BIT(17) /* * ECC status - seems to consume 8 bytes (double word). The documented * status byte is located in the lowest byte of the second word (which is * the 4th or 7th byte depending on endianness). * Calculate an offset to store the ECC status at the end of the buffer. */ #define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8) #define ECC_STATUS 0x4 #define ECC_STATUS_MASK 0x80 #define ECC_STATUS_ERR_COUNT 0x3F enum vf610_nfc_variant { NFC_VFC610 = 1, }; struct vf610_nfc { struct nand_controller base; struct nand_chip chip; struct device *dev; void __iomem *regs; struct completion cmd_done; /* Status and ID are in alternate locations. */ enum vf610_nfc_variant variant; struct clk *clk; /* * Indicate that user data is accessed (full page/oob). This is * useful to indicate the driver whether to swap byte endianness. * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram. */ bool data_access; u32 ecc_mode; }; static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip) { return container_of(chip, struct vf610_nfc, chip); } static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg) { return readl(nfc->regs + reg); } static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val) { writel(val, nfc->regs + reg); } static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits) { vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits); } static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits) { vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits); } static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg, u32 mask, u32 shift, u32 val) { vf610_nfc_write(nfc, reg, (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift); } static inline bool vf610_nfc_kernel_is_little_endian(void) { #ifdef __LITTLE_ENDIAN return true; #else return false; #endif } /** * Read accessor for internal SRAM buffer * @dst: destination address in regular memory * @src: source address in SRAM buffer * @len: bytes to copy * @fix_endian: Fix endianness if required * * Use this accessor for the internal SRAM buffers. On the ARM * Freescale Vybrid SoC it's known that the driver can treat * the SRAM buffer as if it's memory. Other platform might need * to treat the buffers differently. * * The controller stores bytes from the NAND chip internally in big * endianness. On little endian platforms such as Vybrid this leads * to reversed byte order. * For performance reason (and earlier probably due to unawareness) * the driver avoids correcting endianness where it has control over * write and read side (e.g. page wise data access). */ static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src, size_t len, bool fix_endian) { if (vf610_nfc_kernel_is_little_endian() && fix_endian) { unsigned int i; for (i = 0; i < len; i += 4) { u32 val = swab32(__raw_readl(src + i)); memcpy(dst + i, &val, min(sizeof(val), len - i)); } } else { memcpy_fromio(dst, src, len); } } /** * Write accessor for internal SRAM buffer * @dst: destination address in SRAM buffer * @src: source address in regular memory * @len: bytes to copy * @fix_endian: Fix endianness if required * * Use this accessor for the internal SRAM buffers. On the ARM * Freescale Vybrid SoC it's known that the driver can treat * the SRAM buffer as if it's memory. Other platform might need * to treat the buffers differently. * * The controller stores bytes from the NAND chip internally in big * endianness. On little endian platforms such as Vybrid this leads * to reversed byte order. * For performance reason (and earlier probably due to unawareness) * the driver avoids correcting endianness where it has control over * write and read side (e.g. page wise data access). */ static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src, size_t len, bool fix_endian) { if (vf610_nfc_kernel_is_little_endian() && fix_endian) { unsigned int i; for (i = 0; i < len; i += 4) { u32 val; memcpy(&val, src + i, min(sizeof(val), len - i)); __raw_writel(swab32(val), dst + i); } } else { memcpy_toio(dst, src, len); } } /* Clear flags for upcoming command */ static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc) { u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS); tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT; vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp); } static void vf610_nfc_done(struct vf610_nfc *nfc) { unsigned long timeout = msecs_to_jiffies(100); /* * Barrier is needed after this write. This write need * to be done before reading the next register the first * time. * vf610_nfc_set implicates such a barrier by using writel * to write to the register. */ vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT); vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT); if (!wait_for_completion_timeout(&nfc->cmd_done, timeout)) dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n"); vf610_nfc_clear_status(nfc); } static irqreturn_t vf610_nfc_irq(int irq, void *data) { struct vf610_nfc *nfc = data; vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT); complete(&nfc->cmd_done); return IRQ_HANDLED; } static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode) { vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_MODE_MASK, CONFIG_ECC_MODE_SHIFT, ecc_mode); } static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size) { vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size); } static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row, u32 cmd1, u32 cmd2, u32 trfr_sz) { vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK, COL_ADDR_SHIFT, col); vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK, ROW_ADDR_SHIFT, row); vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz); vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1); vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2); dev_dbg(nfc->dev, "col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n", col, row, cmd1, cmd2, trfr_sz); vf610_nfc_done(nfc); } static inline const struct nand_op_instr * vf610_get_next_instr(const struct nand_subop *subop, int *op_id) { if (*op_id + 1 >= subop->ninstrs) return NULL; (*op_id)++; return &subop->instrs[*op_id]; } static int vf610_nfc_cmd(struct nand_chip *chip, const struct nand_subop *subop) { const struct nand_op_instr *instr; struct vf610_nfc *nfc = chip_to_nfc(chip); int op_id = -1, trfr_sz = 0, offset = 0; u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0; bool force8bit = false; /* * Some ops are optional, but the hardware requires the operations * to be in this exact order. * The op parser enforces the order and makes sure that there isn't * a read and write element in a single operation. */ instr = vf610_get_next_instr(subop, &op_id); if (!instr) return -EINVAL; if (instr && instr->type == NAND_OP_CMD_INSTR) { cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT; code |= COMMAND_CMD_BYTE1; instr = vf610_get_next_instr(subop, &op_id); } if (instr && instr->type == NAND_OP_ADDR_INSTR) { int naddrs = nand_subop_get_num_addr_cyc(subop, op_id); int i = nand_subop_get_addr_start_off(subop, op_id); for (; i < naddrs; i++) { u8 val = instr->ctx.addr.addrs[i]; if (i < 2) col |= COL_ADDR(i, val); else row |= ROW_ADDR(i - 2, val); } code |= COMMAND_NADDR_BYTES(naddrs); instr = vf610_get_next_instr(subop, &op_id); } if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) { trfr_sz = nand_subop_get_data_len(subop, op_id); offset = nand_subop_get_data_start_off(subop, op_id); force8bit = instr->ctx.data.force_8bit; /* * Don't fix endianness on page access for historical reasons. * See comment in vf610_nfc_wr_to_sram */ vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset, instr->ctx.data.buf.out + offset, trfr_sz, !nfc->data_access); code |= COMMAND_WRITE_DATA; instr = vf610_get_next_instr(subop, &op_id); } if (instr && instr->type == NAND_OP_CMD_INSTR) { cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT; code |= COMMAND_CMD_BYTE2; instr = vf610_get_next_instr(subop, &op_id); } if (instr && instr->type == NAND_OP_WAITRDY_INSTR) { code |= COMMAND_RB_HANDSHAKE; instr = vf610_get_next_instr(subop, &op_id); } if (instr && instr->type == NAND_OP_DATA_IN_INSTR) { trfr_sz = nand_subop_get_data_len(subop, op_id); offset = nand_subop_get_data_start_off(subop, op_id); force8bit = instr->ctx.data.force_8bit; code |= COMMAND_READ_DATA; } if (force8bit && (chip->options & NAND_BUSWIDTH_16)) vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); cmd2 |= code << CMD_CODE_SHIFT; vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz); if (instr && instr->type == NAND_OP_DATA_IN_INSTR) { /* * Don't fix endianness on page access for historical reasons. * See comment in vf610_nfc_rd_from_sram */ vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset, nfc->regs + NFC_MAIN_AREA(0) + offset, trfr_sz, !nfc->data_access); } if (force8bit && (chip->options & NAND_BUSWIDTH_16)) vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); return 0; } static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER( NAND_OP_PARSER_PATTERN(vf610_nfc_cmd, NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX), NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), NAND_OP_PARSER_PATTERN(vf610_nfc_cmd, NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)), ); /* * This function supports Vybrid only (MPC5125 would have full RB and four CS) */ static void vf610_nfc_select_target(struct nand_chip *chip, unsigned int cs) { struct vf610_nfc *nfc = chip_to_nfc(chip); u32 tmp; /* Vybrid only (MPC5125 would have full RB and four CS) */ if (nfc->variant != NFC_VFC610) return; tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR); tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK); tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT; tmp |= BIT(cs) << ROW_ADDR_CHIP_SEL_SHIFT; vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp); } static int vf610_nfc_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { vf610_nfc_select_target(chip, op->cs); return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op, check_only); } static inline int vf610_nfc_correct_data(struct nand_chip *chip, uint8_t *dat, uint8_t *oob, int page) { struct vf610_nfc *nfc = chip_to_nfc(chip); struct mtd_info *mtd = nand_to_mtd(chip); u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS; u8 ecc_status; u8 ecc_count; int flips_threshold = nfc->chip.ecc.strength / 2; ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff; ecc_count = ecc_status & ECC_STATUS_ERR_COUNT; if (!(ecc_status & ECC_STATUS_MASK)) return ecc_count; nfc->data_access = true; nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize); nfc->data_access = false; /* * On an erased page, bit count (including OOB) should be zero or * at least less then half of the ECC strength. */ return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob, mtd->oobsize, NULL, 0, flips_threshold); } static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code, u32 *row) { *row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8); *code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2; if (chip->options & NAND_ROW_ADDR_3) { *row |= ROW_ADDR(2, page >> 16); *code |= COMMAND_RAR_BYTE3; } } static int vf610_nfc_read_page(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct vf610_nfc *nfc = chip_to_nfc(chip); struct mtd_info *mtd = nand_to_mtd(chip); int trfr_sz = mtd->writesize + mtd->oobsize; u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0; int stat; vf610_nfc_select_target(chip, chip->cur_cs); cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT; code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2; vf610_nfc_fill_row(chip, page, &code, &row); cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT; code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA; cmd2 |= code << CMD_CODE_SHIFT; vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz); vf610_nfc_ecc_mode(nfc, ECC_BYPASS); /* * Don't fix endianness on page access for historical reasons. * See comment in vf610_nfc_rd_from_sram */ vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0), mtd->writesize, false); if (oob_required) vf610_nfc_rd_from_sram(chip->oob_poi, nfc->regs + NFC_MAIN_AREA(0) + mtd->writesize, mtd->oobsize, false); stat = vf610_nfc_correct_data(chip, buf, chip->oob_poi, page); if (stat < 0) { mtd->ecc_stats.failed++; return 0; } else { mtd->ecc_stats.corrected += stat; return stat; } } static int vf610_nfc_write_page(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct vf610_nfc *nfc = chip_to_nfc(chip); struct mtd_info *mtd = nand_to_mtd(chip); int trfr_sz = mtd->writesize + mtd->oobsize; u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0; u8 status; int ret; vf610_nfc_select_target(chip, chip->cur_cs); cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT; code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2; vf610_nfc_fill_row(chip, page, &code, &row); cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT; code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA; /* * Don't fix endianness on page access for historical reasons. * See comment in vf610_nfc_wr_to_sram */ vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf, mtd->writesize, false); code |= COMMAND_RB_HANDSHAKE; cmd2 |= code << CMD_CODE_SHIFT; vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz); vf610_nfc_ecc_mode(nfc, ECC_BYPASS); ret = nand_status_op(chip, &status); if (ret) return ret; if (status & NAND_STATUS_FAIL) return -EIO; return 0; } static int vf610_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct vf610_nfc *nfc = chip_to_nfc(chip); int ret; nfc->data_access = true; ret = nand_read_page_raw(chip, buf, oob_required, page); nfc->data_access = false; return ret; } static int vf610_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { struct vf610_nfc *nfc = chip_to_nfc(chip); struct mtd_info *mtd = nand_to_mtd(chip); int ret; nfc->data_access = true; ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); if (!ret && oob_required) ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); nfc->data_access = false; if (ret) return ret; return nand_prog_page_end_op(chip); } static int vf610_nfc_read_oob(struct nand_chip *chip, int page) { struct vf610_nfc *nfc = chip_to_nfc(chip); int ret; nfc->data_access = true; ret = nand_read_oob_std(chip, page); nfc->data_access = false; return ret; } static int vf610_nfc_write_oob(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct vf610_nfc *nfc = chip_to_nfc(chip); int ret; nfc->data_access = true; ret = nand_prog_page_begin_op(chip, page, mtd->writesize, chip->oob_poi, mtd->oobsize); nfc->data_access = false; if (ret) return ret; return nand_prog_page_end_op(chip); } static const struct of_device_id vf610_nfc_dt_ids[] = { { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids); static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc) { vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT); vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT); vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT); vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT); vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT); vf610_nfc_ecc_mode(nfc, ECC_BYPASS); /* Disable virtual pages, only one elementary transfer unit */ vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK, CONFIG_PAGE_CNT_SHIFT, 1); } static void vf610_nfc_init_controller(struct vf610_nfc *nfc) { if (nfc->chip.options & NAND_BUSWIDTH_16) vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); else vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); if (nfc->chip.ecc.mode == NAND_ECC_HW) { /* Set ECC status offset in SRAM */ vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_ADDR_MASK, CONFIG_ECC_SRAM_ADDR_SHIFT, ECC_SRAM_ADDR >> 3); /* Enable ECC status in SRAM */ vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT); } } static int vf610_nfc_attach_chip(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct vf610_nfc *nfc = chip_to_nfc(chip); vf610_nfc_init_controller(nfc); /* Bad block options. */ if (chip->bbt_options & NAND_BBT_USE_FLASH) chip->bbt_options |= NAND_BBT_NO_OOB; /* Single buffer only, max 256 OOB minus ECC status */ if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) { dev_err(nfc->dev, "Unsupported flash page size\n"); return -ENXIO; } if (chip->ecc.mode != NAND_ECC_HW) return 0; if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) { dev_err(nfc->dev, "Unsupported flash with hwecc\n"); return -ENXIO; } if (chip->ecc.size != mtd->writesize) { dev_err(nfc->dev, "Step size needs to be page size\n"); return -ENXIO; } /* Only 64 byte ECC layouts known */ if (mtd->oobsize > 64) mtd->oobsize = 64; /* Use default large page ECC layout defined in NAND core */ mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); if (chip->ecc.strength == 32) { nfc->ecc_mode = ECC_60_BYTE; chip->ecc.bytes = 60; } else if (chip->ecc.strength == 24) { nfc->ecc_mode = ECC_45_BYTE; chip->ecc.bytes = 45; } else { dev_err(nfc->dev, "Unsupported ECC strength\n"); return -ENXIO; } chip->ecc.read_page = vf610_nfc_read_page; chip->ecc.write_page = vf610_nfc_write_page; chip->ecc.read_page_raw = vf610_nfc_read_page_raw; chip->ecc.write_page_raw = vf610_nfc_write_page_raw; chip->ecc.read_oob = vf610_nfc_read_oob; chip->ecc.write_oob = vf610_nfc_write_oob; chip->ecc.size = PAGE_2K; return 0; } static const struct nand_controller_ops vf610_nfc_controller_ops = { .attach_chip = vf610_nfc_attach_chip, .exec_op = vf610_nfc_exec_op, }; static int vf610_nfc_probe(struct platform_device *pdev) { struct vf610_nfc *nfc; struct resource *res; struct mtd_info *mtd; struct nand_chip *chip; struct device_node *child; const struct of_device_id *of_id; int err; int irq; nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); if (!nfc) return -ENOMEM; nfc->dev = &pdev->dev; chip = &nfc->chip; mtd = nand_to_mtd(chip); mtd->owner = THIS_MODULE; mtd->dev.parent = nfc->dev; mtd->name = DRV_NAME; irq = platform_get_irq(pdev, 0); if (irq <= 0) return -EINVAL; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); nfc->regs = devm_ioremap_resource(nfc->dev, res); if (IS_ERR(nfc->regs)) return PTR_ERR(nfc->regs); nfc->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(nfc->clk)) return PTR_ERR(nfc->clk); err = clk_prepare_enable(nfc->clk); if (err) { dev_err(nfc->dev, "Unable to enable clock!\n"); return err; } of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev); if (!of_id) return -ENODEV; nfc->variant = (enum vf610_nfc_variant)of_id->data; for_each_available_child_of_node(nfc->dev->of_node, child) { if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) { if (nand_get_flash_node(chip)) { dev_err(nfc->dev, "Only one NAND chip supported!\n"); err = -EINVAL; of_node_put(child); goto err_disable_clk; } nand_set_flash_node(chip, child); } } if (!nand_get_flash_node(chip)) { dev_err(nfc->dev, "NAND chip sub-node missing!\n"); err = -ENODEV; goto err_disable_clk; } chip->options |= NAND_NO_SUBPAGE_WRITE; init_completion(&nfc->cmd_done); err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, nfc); if (err) { dev_err(nfc->dev, "Error requesting IRQ!\n"); goto err_disable_clk; } vf610_nfc_preinit_controller(nfc); nand_controller_init(&nfc->base); nfc->base.ops = &vf610_nfc_controller_ops; chip->controller = &nfc->base; /* Scan the NAND chip */ err = nand_scan(chip, 1); if (err) goto err_disable_clk; platform_set_drvdata(pdev, nfc); /* Register device in MTD */ err = mtd_device_register(mtd, NULL, 0); if (err) goto err_cleanup_nand; return 0; err_cleanup_nand: nand_cleanup(chip); err_disable_clk: clk_disable_unprepare(nfc->clk); return err; } static int vf610_nfc_remove(struct platform_device *pdev) { struct vf610_nfc *nfc = platform_get_drvdata(pdev); nand_release(&nfc->chip); clk_disable_unprepare(nfc->clk); return 0; } #ifdef CONFIG_PM_SLEEP static int vf610_nfc_suspend(struct device *dev) { struct vf610_nfc *nfc = dev_get_drvdata(dev); clk_disable_unprepare(nfc->clk); return 0; } static int vf610_nfc_resume(struct device *dev) { struct vf610_nfc *nfc = dev_get_drvdata(dev); int err; err = clk_prepare_enable(nfc->clk); if (err) return err; vf610_nfc_preinit_controller(nfc); vf610_nfc_init_controller(nfc); return 0; } #endif static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume); static struct platform_driver vf610_nfc_driver = { .driver = { .name = DRV_NAME, .of_match_table = vf610_nfc_dt_ids, .pm = &vf610_nfc_pm_ops, }, .probe = vf610_nfc_probe, .remove = vf610_nfc_remove, }; module_platform_driver(vf610_nfc_driver); MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>"); MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1