Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tristram Ha | 7434 | 91.56% | 9 | 40.91% |
Robert Hancock | 440 | 5.42% | 2 | 9.09% |
Marek Vašut | 200 | 2.46% | 8 | 36.36% |
George McCollister | 40 | 0.49% | 1 | 4.55% |
Florian Fainelli | 4 | 0.05% | 1 | 4.55% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 4.55% |
Total | 8119 | 22 |
// SPDX-License-Identifier: GPL-2.0 /* * Microchip KSZ9477 switch driver main logic * * Copyright (C) 2017-2019 Microchip Technology Inc. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/iopoll.h> #include <linux/platform_data/microchip-ksz.h> #include <linux/phy.h> #include <linux/if_bridge.h> #include <net/dsa.h> #include <net/switchdev.h> #include "ksz9477_reg.h" #include "ksz_common.h" /* Used with variable features to indicate capabilities. */ #define GBIT_SUPPORT BIT(0) #define NEW_XMII BIT(1) #define IS_9893 BIT(2) static const struct { int index; char string[ETH_GSTRING_LEN]; } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = { { 0x00, "rx_hi" }, { 0x01, "rx_undersize" }, { 0x02, "rx_fragments" }, { 0x03, "rx_oversize" }, { 0x04, "rx_jabbers" }, { 0x05, "rx_symbol_err" }, { 0x06, "rx_crc_err" }, { 0x07, "rx_align_err" }, { 0x08, "rx_mac_ctrl" }, { 0x09, "rx_pause" }, { 0x0A, "rx_bcast" }, { 0x0B, "rx_mcast" }, { 0x0C, "rx_ucast" }, { 0x0D, "rx_64_or_less" }, { 0x0E, "rx_65_127" }, { 0x0F, "rx_128_255" }, { 0x10, "rx_256_511" }, { 0x11, "rx_512_1023" }, { 0x12, "rx_1024_1522" }, { 0x13, "rx_1523_2000" }, { 0x14, "rx_2001" }, { 0x15, "tx_hi" }, { 0x16, "tx_late_col" }, { 0x17, "tx_pause" }, { 0x18, "tx_bcast" }, { 0x19, "tx_mcast" }, { 0x1A, "tx_ucast" }, { 0x1B, "tx_deferred" }, { 0x1C, "tx_total_col" }, { 0x1D, "tx_exc_col" }, { 0x1E, "tx_single_col" }, { 0x1F, "tx_mult_col" }, { 0x80, "rx_total" }, { 0x81, "tx_total" }, { 0x82, "rx_discards" }, { 0x83, "tx_discards" }, }; static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set) { regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0); } static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits, bool set) { regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset), bits, set ? bits : 0); } static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set) { regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0); } static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset, u32 bits, bool set) { regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset), bits, set ? bits : 0); } static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev) { unsigned int val; return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL, val, !(val & VLAN_START), 10, 1000); } static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid, u32 *vlan_table) { int ret; mutex_lock(&dev->vlan_mutex); ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M); ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START); /* wait to be cleared */ ret = ksz9477_wait_vlan_ctrl_ready(dev); if (ret) { dev_dbg(dev->dev, "Failed to read vlan table\n"); goto exit; } ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]); ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]); ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]); ksz_write8(dev, REG_SW_VLAN_CTRL, 0); exit: mutex_unlock(&dev->vlan_mutex); return ret; } static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid, u32 *vlan_table) { int ret; mutex_lock(&dev->vlan_mutex); ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]); ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]); ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]); ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M); ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE); /* wait to be cleared */ ret = ksz9477_wait_vlan_ctrl_ready(dev); if (ret) { dev_dbg(dev->dev, "Failed to write vlan table\n"); goto exit; } ksz_write8(dev, REG_SW_VLAN_CTRL, 0); /* update vlan cache table */ dev->vlan_cache[vid].table[0] = vlan_table[0]; dev->vlan_cache[vid].table[1] = vlan_table[1]; dev->vlan_cache[vid].table[2] = vlan_table[2]; exit: mutex_unlock(&dev->vlan_mutex); return ret; } static void ksz9477_read_table(struct ksz_device *dev, u32 *table) { ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]); ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]); ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]); ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]); } static void ksz9477_write_table(struct ksz_device *dev, u32 *table) { ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]); ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]); ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]); ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]); } static int ksz9477_wait_alu_ready(struct ksz_device *dev) { unsigned int val; return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4, val, !(val & ALU_START), 10, 1000); } static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev) { unsigned int val; return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_STAT_CTRL__4, val, !(val & ALU_STAT_START), 10, 1000); } static int ksz9477_reset_switch(struct ksz_device *dev) { u8 data8; u32 data32; /* reset switch */ ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true); /* turn off SPI DO Edge select */ regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0, SPI_AUTO_EDGE_DETECTION, 0); /* default configuration */ ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8); data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING | SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE; ksz_write8(dev, REG_SW_LUE_CTRL_1, data8); /* disable interrupts */ ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK); ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F); ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32); /* set broadcast storm protection 10% rate */ regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2, BROADCAST_STORM_RATE, (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100); if (dev->synclko_125) ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1, SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ); return 0; } static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt) { struct ksz_port *p = &dev->ports[port]; unsigned int val; u32 data; int ret; /* retain the flush/freeze bit */ data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0; data |= MIB_COUNTER_READ; data |= (addr << MIB_COUNTER_INDEX_S); ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data); ret = regmap_read_poll_timeout(dev->regmap[2], PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4), val, !(val & MIB_COUNTER_READ), 10, 1000); /* failed to read MIB. get out of loop */ if (ret) { dev_dbg(dev->dev, "Failed to get MIB\n"); return; } /* count resets upon read */ ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data); *cnt += data; } static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr, u64 *dropped, u64 *cnt) { addr = ksz9477_mib_names[addr].index; ksz9477_r_mib_cnt(dev, port, addr, cnt); } static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze) { u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0; struct ksz_port *p = &dev->ports[port]; /* enable/disable the port for flush/freeze function */ mutex_lock(&p->mib.cnt_mutex); ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val); /* used by MIB counter reading code to know freeze is enabled */ p->freeze = freeze; mutex_unlock(&p->mib.cnt_mutex); } static void ksz9477_port_init_cnt(struct ksz_device *dev, int port) { struct ksz_port_mib *mib = &dev->ports[port].mib; /* flush all enabled port MIB counters */ mutex_lock(&mib->cnt_mutex); ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, MIB_COUNTER_FLUSH_FREEZE); ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH); ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0); mutex_unlock(&mib->cnt_mutex); mib->cnt_ptr = 0; memset(mib->counters, 0, dev->mib_cnt * sizeof(u64)); } static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds, int port, enum dsa_tag_protocol mp) { enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477; struct ksz_device *dev = ds->priv; if (dev->features & IS_9893) proto = DSA_TAG_PROTO_KSZ9893; return proto; } static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg) { struct ksz_device *dev = ds->priv; u16 val = 0xffff; /* No real PHY after this. Simulate the PHY. * A fixed PHY can be setup in the device tree, but this function is * still called for that port during initialization. * For RGMII PHY there is no way to access it so the fixed PHY should * be used. For SGMII PHY the supporting code will be added later. */ if (addr >= dev->phy_port_cnt) { struct ksz_port *p = &dev->ports[addr]; switch (reg) { case MII_BMCR: val = 0x1140; break; case MII_BMSR: val = 0x796d; break; case MII_PHYSID1: val = 0x0022; break; case MII_PHYSID2: val = 0x1631; break; case MII_ADVERTISE: val = 0x05e1; break; case MII_LPA: val = 0xc5e1; break; case MII_CTRL1000: val = 0x0700; break; case MII_STAT1000: if (p->phydev.speed == SPEED_1000) val = 0x3800; else val = 0; break; } } else { ksz_pread16(dev, addr, 0x100 + (reg << 1), &val); } return val; } static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val) { struct ksz_device *dev = ds->priv; /* No real PHY after this. */ if (addr >= dev->phy_port_cnt) return 0; /* No gigabit support. Do not write to this register. */ if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000) return 0; ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val); return 0; } static void ksz9477_get_strings(struct dsa_switch *ds, int port, u32 stringset, uint8_t *buf) { int i; if (stringset != ETH_SS_STATS) return; for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) { memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string, ETH_GSTRING_LEN); } } static void ksz9477_cfg_port_member(struct ksz_device *dev, int port, u8 member) { ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member); dev->ports[port].member = member; } static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) { struct ksz_device *dev = ds->priv; struct ksz_port *p = &dev->ports[port]; u8 data; int member = -1; int forward = dev->member; ksz_pread8(dev, port, P_STP_CTRL, &data); data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE); switch (state) { case BR_STATE_DISABLED: data |= PORT_LEARN_DISABLE; if (port != dev->cpu_port) member = 0; break; case BR_STATE_LISTENING: data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE); if (port != dev->cpu_port && p->stp_state == BR_STATE_DISABLED) member = dev->host_mask | p->vid_member; break; case BR_STATE_LEARNING: data |= PORT_RX_ENABLE; break; case BR_STATE_FORWARDING: data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); /* This function is also used internally. */ if (port == dev->cpu_port) break; member = dev->host_mask | p->vid_member; mutex_lock(&dev->dev_mutex); /* Port is a member of a bridge. */ if (dev->br_member & (1 << port)) { dev->member |= (1 << port); member = dev->member; } mutex_unlock(&dev->dev_mutex); break; case BR_STATE_BLOCKING: data |= PORT_LEARN_DISABLE; if (port != dev->cpu_port && p->stp_state == BR_STATE_DISABLED) member = dev->host_mask | p->vid_member; break; default: dev_err(ds->dev, "invalid STP state: %d\n", state); return; } ksz_pwrite8(dev, port, P_STP_CTRL, data); p->stp_state = state; mutex_lock(&dev->dev_mutex); if (data & PORT_RX_ENABLE) dev->rx_ports |= (1 << port); else dev->rx_ports &= ~(1 << port); if (data & PORT_TX_ENABLE) dev->tx_ports |= (1 << port); else dev->tx_ports &= ~(1 << port); /* Port membership may share register with STP state. */ if (member >= 0 && member != p->member) ksz9477_cfg_port_member(dev, port, (u8)member); /* Check if forwarding needs to be updated. */ if (state != BR_STATE_FORWARDING) { if (dev->br_member & (1 << port)) dev->member &= ~(1 << port); } /* When topology has changed the function ksz_update_port_member * should be called to modify port forwarding behavior. */ if (forward != dev->member) ksz_update_port_member(dev, port); mutex_unlock(&dev->dev_mutex); } static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port) { u8 data; regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2, SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S, SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S); if (port < dev->mib_port_cnt) { /* flush individual port */ ksz_pread8(dev, port, P_STP_CTRL, &data); if (!(data & PORT_LEARN_DISABLE)) ksz_pwrite8(dev, port, P_STP_CTRL, data | PORT_LEARN_DISABLE); ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true); ksz_pwrite8(dev, port, P_STP_CTRL, data); } else { /* flush all */ ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true); } } static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag) { struct ksz_device *dev = ds->priv; if (flag) { ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_VLAN_LOOKUP_VID_0, true); ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true); } else { ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false); ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL, PORT_VLAN_LOOKUP_VID_0, false); } return 0; } static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct ksz_device *dev = ds->priv; u32 vlan_table[3]; u16 vid; bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) { if (ksz9477_get_vlan_table(dev, vid, vlan_table)) { dev_dbg(dev->dev, "Failed to get vlan table\n"); return; } vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M); if (untagged) vlan_table[1] |= BIT(port); else vlan_table[1] &= ~BIT(port); vlan_table[1] &= ~(BIT(dev->cpu_port)); vlan_table[2] |= BIT(port) | BIT(dev->cpu_port); if (ksz9477_set_vlan_table(dev, vid, vlan_table)) { dev_dbg(dev->dev, "Failed to set vlan table\n"); return; } /* change PVID */ if (vlan->flags & BRIDGE_VLAN_INFO_PVID) ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid); } } static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct ksz_device *dev = ds->priv; bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; u32 vlan_table[3]; u16 vid; u16 pvid; ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid); pvid = pvid & 0xFFF; for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) { if (ksz9477_get_vlan_table(dev, vid, vlan_table)) { dev_dbg(dev->dev, "Failed to get vlan table\n"); return -ETIMEDOUT; } vlan_table[2] &= ~BIT(port); if (pvid == vid) pvid = 1; if (untagged) vlan_table[1] &= ~BIT(port); if (ksz9477_set_vlan_table(dev, vid, vlan_table)) { dev_dbg(dev->dev, "Failed to set vlan table\n"); return -ETIMEDOUT; } } ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid); return 0; } static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct ksz_device *dev = ds->priv; u32 alu_table[4]; u32 data; int ret = 0; mutex_lock(&dev->alu_mutex); /* find any entry with mac & vid */ data = vid << ALU_FID_INDEX_S; data |= ((addr[0] << 8) | addr[1]); ksz_write32(dev, REG_SW_ALU_INDEX_0, data); data = ((addr[2] << 24) | (addr[3] << 16)); data |= ((addr[4] << 8) | addr[5]); ksz_write32(dev, REG_SW_ALU_INDEX_1, data); /* start read operation */ ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START); /* wait to be finished */ ret = ksz9477_wait_alu_ready(dev); if (ret) { dev_dbg(dev->dev, "Failed to read ALU\n"); goto exit; } /* read ALU entry */ ksz9477_read_table(dev, alu_table); /* update ALU entry */ alu_table[0] = ALU_V_STATIC_VALID; alu_table[1] |= BIT(port); if (vid) alu_table[1] |= ALU_V_USE_FID; alu_table[2] = (vid << ALU_V_FID_S); alu_table[2] |= ((addr[0] << 8) | addr[1]); alu_table[3] = ((addr[2] << 24) | (addr[3] << 16)); alu_table[3] |= ((addr[4] << 8) | addr[5]); ksz9477_write_table(dev, alu_table); ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START); /* wait to be finished */ ret = ksz9477_wait_alu_ready(dev); if (ret) dev_dbg(dev->dev, "Failed to write ALU\n"); exit: mutex_unlock(&dev->alu_mutex); return ret; } static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid) { struct ksz_device *dev = ds->priv; u32 alu_table[4]; u32 data; int ret = 0; mutex_lock(&dev->alu_mutex); /* read any entry with mac & vid */ data = vid << ALU_FID_INDEX_S; data |= ((addr[0] << 8) | addr[1]); ksz_write32(dev, REG_SW_ALU_INDEX_0, data); data = ((addr[2] << 24) | (addr[3] << 16)); data |= ((addr[4] << 8) | addr[5]); ksz_write32(dev, REG_SW_ALU_INDEX_1, data); /* start read operation */ ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START); /* wait to be finished */ ret = ksz9477_wait_alu_ready(dev); if (ret) { dev_dbg(dev->dev, "Failed to read ALU\n"); goto exit; } ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]); if (alu_table[0] & ALU_V_STATIC_VALID) { ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]); ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]); ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]); /* clear forwarding port */ alu_table[2] &= ~BIT(port); /* if there is no port to forward, clear table */ if ((alu_table[2] & ALU_V_PORT_MAP) == 0) { alu_table[0] = 0; alu_table[1] = 0; alu_table[2] = 0; alu_table[3] = 0; } } else { alu_table[0] = 0; alu_table[1] = 0; alu_table[2] = 0; alu_table[3] = 0; } ksz9477_write_table(dev, alu_table); ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START); /* wait to be finished */ ret = ksz9477_wait_alu_ready(dev); if (ret) dev_dbg(dev->dev, "Failed to write ALU\n"); exit: mutex_unlock(&dev->alu_mutex); return ret; } static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table) { alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID); alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER); alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER); alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) & ALU_V_PRIO_AGE_CNT_M; alu->mstp = alu_table[0] & ALU_V_MSTP_M; alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE); alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID); alu->port_forward = alu_table[1] & ALU_V_PORT_MAP; alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M; alu->mac[0] = (alu_table[2] >> 8) & 0xFF; alu->mac[1] = alu_table[2] & 0xFF; alu->mac[2] = (alu_table[3] >> 24) & 0xFF; alu->mac[3] = (alu_table[3] >> 16) & 0xFF; alu->mac[4] = (alu_table[3] >> 8) & 0xFF; alu->mac[5] = alu_table[3] & 0xFF; } static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port, dsa_fdb_dump_cb_t *cb, void *data) { struct ksz_device *dev = ds->priv; int ret = 0; u32 ksz_data; u32 alu_table[4]; struct alu_struct alu; int timeout; mutex_lock(&dev->alu_mutex); /* start ALU search */ ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH); do { timeout = 1000; do { ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data); if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START)) break; usleep_range(1, 10); } while (timeout-- > 0); if (!timeout) { dev_dbg(dev->dev, "Failed to search ALU\n"); ret = -ETIMEDOUT; goto exit; } /* read ALU table */ ksz9477_read_table(dev, alu_table); ksz9477_convert_alu(&alu, alu_table); if (alu.port_forward & BIT(port)) { ret = cb(alu.mac, alu.fid, alu.is_static, data); if (ret) goto exit; } } while (ksz_data & ALU_START); exit: /* stop ALU search */ ksz_write32(dev, REG_SW_ALU_CTRL__4, 0); mutex_unlock(&dev->alu_mutex); return ret; } static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb) { struct ksz_device *dev = ds->priv; u32 static_table[4]; u32 data; int index; u32 mac_hi, mac_lo; mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]); mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16)); mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]); mutex_lock(&dev->alu_mutex); for (index = 0; index < dev->num_statics; index++) { /* find empty slot first */ data = (index << ALU_STAT_INDEX_S) | ALU_STAT_READ | ALU_STAT_START; ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); /* wait to be finished */ if (ksz9477_wait_alu_sta_ready(dev)) { dev_dbg(dev->dev, "Failed to read ALU STATIC\n"); goto exit; } /* read ALU static table */ ksz9477_read_table(dev, static_table); if (static_table[0] & ALU_V_STATIC_VALID) { /* check this has same vid & mac address */ if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) && ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) && static_table[3] == mac_lo) { /* found matching one */ break; } } else { /* found empty one */ break; } } /* no available entry */ if (index == dev->num_statics) goto exit; /* add entry */ static_table[0] = ALU_V_STATIC_VALID; static_table[1] |= BIT(port); if (mdb->vid) static_table[1] |= ALU_V_USE_FID; static_table[2] = (mdb->vid << ALU_V_FID_S); static_table[2] |= mac_hi; static_table[3] = mac_lo; ksz9477_write_table(dev, static_table); data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START; ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); /* wait to be finished */ if (ksz9477_wait_alu_sta_ready(dev)) dev_dbg(dev->dev, "Failed to read ALU STATIC\n"); exit: mutex_unlock(&dev->alu_mutex); } static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb) { struct ksz_device *dev = ds->priv; u32 static_table[4]; u32 data; int index; int ret = 0; u32 mac_hi, mac_lo; mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]); mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16)); mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]); mutex_lock(&dev->alu_mutex); for (index = 0; index < dev->num_statics; index++) { /* find empty slot first */ data = (index << ALU_STAT_INDEX_S) | ALU_STAT_READ | ALU_STAT_START; ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); /* wait to be finished */ ret = ksz9477_wait_alu_sta_ready(dev); if (ret) { dev_dbg(dev->dev, "Failed to read ALU STATIC\n"); goto exit; } /* read ALU static table */ ksz9477_read_table(dev, static_table); if (static_table[0] & ALU_V_STATIC_VALID) { /* check this has same vid & mac address */ if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) && ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) && static_table[3] == mac_lo) { /* found matching one */ break; } } } /* no available entry */ if (index == dev->num_statics) goto exit; /* clear port */ static_table[1] &= ~BIT(port); if ((static_table[1] & ALU_V_PORT_MAP) == 0) { /* delete entry */ static_table[0] = 0; static_table[1] = 0; static_table[2] = 0; static_table[3] = 0; } ksz9477_write_table(dev, static_table); data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START; ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data); /* wait to be finished */ ret = ksz9477_wait_alu_sta_ready(dev); if (ret) dev_dbg(dev->dev, "Failed to read ALU STATIC\n"); exit: mutex_unlock(&dev->alu_mutex); return ret; } static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port, struct dsa_mall_mirror_tc_entry *mirror, bool ingress) { struct ksz_device *dev = ds->priv; if (ingress) ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true); else ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true); ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false); /* configure mirror port */ ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, true); ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false); return 0; } static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port, struct dsa_mall_mirror_tc_entry *mirror) { struct ksz_device *dev = ds->priv; u8 data; if (mirror->ingress) ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false); else ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false); ksz_pread8(dev, port, P_MIRROR_CTRL, &data); if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX))) ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false); } static void ksz9477_phy_setup(struct ksz_device *dev, int port, struct phy_device *phy) { /* Only apply to port with PHY. */ if (port >= dev->phy_port_cnt) return; /* The MAC actually cannot run in 1000 half-duplex mode. */ phy_remove_link_mode(phy, ETHTOOL_LINK_MODE_1000baseT_Half_BIT); /* PHY does not support gigabit. */ if (!(dev->features & GBIT_SUPPORT)) phy_remove_link_mode(phy, ETHTOOL_LINK_MODE_1000baseT_Full_BIT); } static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data) { bool gbit; if (dev->features & NEW_XMII) gbit = !(data & PORT_MII_NOT_1GBIT); else gbit = !!(data & PORT_MII_1000MBIT_S1); return gbit; } static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data) { if (dev->features & NEW_XMII) { if (gbit) *data &= ~PORT_MII_NOT_1GBIT; else *data |= PORT_MII_NOT_1GBIT; } else { if (gbit) *data |= PORT_MII_1000MBIT_S1; else *data &= ~PORT_MII_1000MBIT_S1; } } static int ksz9477_get_xmii(struct ksz_device *dev, u8 data) { int mode; if (dev->features & NEW_XMII) { switch (data & PORT_MII_SEL_M) { case PORT_MII_SEL: mode = 0; break; case PORT_RMII_SEL: mode = 1; break; case PORT_GMII_SEL: mode = 2; break; default: mode = 3; } } else { switch (data & PORT_MII_SEL_M) { case PORT_MII_SEL_S1: mode = 0; break; case PORT_RMII_SEL_S1: mode = 1; break; case PORT_GMII_SEL_S1: mode = 2; break; default: mode = 3; } } return mode; } static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data) { u8 xmii; if (dev->features & NEW_XMII) { switch (mode) { case 0: xmii = PORT_MII_SEL; break; case 1: xmii = PORT_RMII_SEL; break; case 2: xmii = PORT_GMII_SEL; break; default: xmii = PORT_RGMII_SEL; break; } } else { switch (mode) { case 0: xmii = PORT_MII_SEL_S1; break; case 1: xmii = PORT_RMII_SEL_S1; break; case 2: xmii = PORT_GMII_SEL_S1; break; default: xmii = PORT_RGMII_SEL_S1; break; } } *data &= ~PORT_MII_SEL_M; *data |= xmii; } static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port) { phy_interface_t interface; bool gbit; int mode; u8 data8; if (port < dev->phy_port_cnt) return PHY_INTERFACE_MODE_NA; ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8); gbit = ksz9477_get_gbit(dev, data8); mode = ksz9477_get_xmii(dev, data8); switch (mode) { case 2: interface = PHY_INTERFACE_MODE_GMII; if (gbit) break; /* fall through */ case 0: interface = PHY_INTERFACE_MODE_MII; break; case 1: interface = PHY_INTERFACE_MODE_RMII; break; default: interface = PHY_INTERFACE_MODE_RGMII; if (data8 & PORT_RGMII_ID_EG_ENABLE) interface = PHY_INTERFACE_MODE_RGMII_TXID; if (data8 & PORT_RGMII_ID_IG_ENABLE) { interface = PHY_INTERFACE_MODE_RGMII_RXID; if (data8 & PORT_RGMII_ID_EG_ENABLE) interface = PHY_INTERFACE_MODE_RGMII_ID; } break; } return interface; } static void ksz9477_port_mmd_write(struct ksz_device *dev, int port, u8 dev_addr, u16 reg_addr, u16 val) { ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP, MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr)); ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr); ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP, MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr)); ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val); } static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port) { /* Apply PHY settings to address errata listed in * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 * Silicon Errata and Data Sheet Clarification documents: * * Register settings are needed to improve PHY receive performance */ ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b); ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032); ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c); ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060); ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777); ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008); ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001); /* Transmit waveform amplitude can be improved * (1000BASE-T, 100BASE-TX, 10BASE-Te) */ ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0); /* Energy Efficient Ethernet (EEE) feature select must * be manually disabled (except on KSZ8565 which is 100Mbit) */ if (dev->features & GBIT_SUPPORT) ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000); /* Register settings are required to meet data sheet * supply current specifications */ ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff); ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff); ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff); ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff); ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff); ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff); ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff); ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff); ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff); ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff); ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff); ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff); ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee); } static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port) { u8 data8; u8 member; u16 data16; struct ksz_port *p = &dev->ports[port]; /* enable tag tail for host port */ if (cpu_port) ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE, true); ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false); /* set back pressure */ ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true); /* enable broadcast storm limit */ ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true); /* disable DiffServ priority */ ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false); /* replace priority */ ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING, false); ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4, MTI_PVID_REPLACE, false); /* enable 802.1p priority */ ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true); if (port < dev->phy_port_cnt) { /* do not force flow control */ ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, false); if (dev->phy_errata_9477) ksz9477_phy_errata_setup(dev, port); } else { /* force flow control */ ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true); /* configure MAC to 1G & RGMII mode */ ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8); switch (dev->interface) { case PHY_INTERFACE_MODE_MII: ksz9477_set_xmii(dev, 0, &data8); ksz9477_set_gbit(dev, false, &data8); p->phydev.speed = SPEED_100; break; case PHY_INTERFACE_MODE_RMII: ksz9477_set_xmii(dev, 1, &data8); ksz9477_set_gbit(dev, false, &data8); p->phydev.speed = SPEED_100; break; case PHY_INTERFACE_MODE_GMII: ksz9477_set_xmii(dev, 2, &data8); ksz9477_set_gbit(dev, true, &data8); p->phydev.speed = SPEED_1000; break; default: ksz9477_set_xmii(dev, 3, &data8); ksz9477_set_gbit(dev, true, &data8); data8 &= ~PORT_RGMII_ID_IG_ENABLE; data8 &= ~PORT_RGMII_ID_EG_ENABLE; if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID || dev->interface == PHY_INTERFACE_MODE_RGMII_RXID) data8 |= PORT_RGMII_ID_IG_ENABLE; if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID || dev->interface == PHY_INTERFACE_MODE_RGMII_TXID) data8 |= PORT_RGMII_ID_EG_ENABLE; p->phydev.speed = SPEED_1000; break; } ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8); p->phydev.duplex = 1; } mutex_lock(&dev->dev_mutex); if (cpu_port) { member = dev->port_mask; dev->on_ports = dev->host_mask; dev->live_ports = dev->host_mask; } else { member = dev->host_mask | p->vid_member; dev->on_ports |= (1 << port); /* Link was detected before port is enabled. */ if (p->phydev.link) dev->live_ports |= (1 << port); } mutex_unlock(&dev->dev_mutex); ksz9477_cfg_port_member(dev, port, member); /* clear pending interrupts */ if (port < dev->phy_port_cnt) ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16); } static void ksz9477_config_cpu_port(struct dsa_switch *ds) { struct ksz_device *dev = ds->priv; struct ksz_port *p; int i; ds->num_ports = dev->port_cnt; for (i = 0; i < dev->port_cnt; i++) { if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) { phy_interface_t interface; dev->cpu_port = i; dev->host_mask = (1 << dev->cpu_port); dev->port_mask |= dev->host_mask; /* Read from XMII register to determine host port * interface. If set specifically in device tree * note the difference to help debugging. */ interface = ksz9477_get_interface(dev, i); if (!dev->interface) dev->interface = interface; if (interface && interface != dev->interface) dev_info(dev->dev, "use %s instead of %s\n", phy_modes(dev->interface), phy_modes(interface)); /* enable cpu port */ ksz9477_port_setup(dev, i, true); p = &dev->ports[dev->cpu_port]; p->vid_member = dev->port_mask; p->on = 1; } } dev->member = dev->host_mask; for (i = 0; i < dev->mib_port_cnt; i++) { if (i == dev->cpu_port) continue; p = &dev->ports[i]; /* Initialize to non-zero so that ksz_cfg_port_member() will * be called. */ p->vid_member = (1 << i); p->member = dev->port_mask; ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED); p->on = 1; if (i < dev->phy_port_cnt) p->phy = 1; if (dev->chip_id == 0x00947700 && i == 6) { p->sgmii = 1; /* SGMII PHY detection code is not implemented yet. */ p->phy = 0; } } } static int ksz9477_setup(struct dsa_switch *ds) { struct ksz_device *dev = ds->priv; int ret = 0; dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table), dev->num_vlans, GFP_KERNEL); if (!dev->vlan_cache) return -ENOMEM; ret = ksz9477_reset_switch(dev); if (ret) { dev_err(ds->dev, "failed to reset switch\n"); return ret; } /* Required for port partitioning. */ ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true); /* Do not work correctly with tail tagging. */ ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false); /* accept packet up to 2000bytes */ ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true); ksz9477_config_cpu_port(ds); ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true); /* queue based egress rate limit */ ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true); /* enable global MIB counter freeze function */ ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true); /* start switch */ ksz_cfg(dev, REG_SW_OPERATION, SW_START, true); ksz_init_mib_timer(dev); return 0; } static const struct dsa_switch_ops ksz9477_switch_ops = { .get_tag_protocol = ksz9477_get_tag_protocol, .setup = ksz9477_setup, .phy_read = ksz9477_phy_read16, .phy_write = ksz9477_phy_write16, .adjust_link = ksz_adjust_link, .port_enable = ksz_enable_port, .port_disable = ksz_disable_port, .get_strings = ksz9477_get_strings, .get_ethtool_stats = ksz_get_ethtool_stats, .get_sset_count = ksz_sset_count, .port_bridge_join = ksz_port_bridge_join, .port_bridge_leave = ksz_port_bridge_leave, .port_stp_state_set = ksz9477_port_stp_state_set, .port_fast_age = ksz_port_fast_age, .port_vlan_filtering = ksz9477_port_vlan_filtering, .port_vlan_prepare = ksz_port_vlan_prepare, .port_vlan_add = ksz9477_port_vlan_add, .port_vlan_del = ksz9477_port_vlan_del, .port_fdb_dump = ksz9477_port_fdb_dump, .port_fdb_add = ksz9477_port_fdb_add, .port_fdb_del = ksz9477_port_fdb_del, .port_mdb_prepare = ksz_port_mdb_prepare, .port_mdb_add = ksz9477_port_mdb_add, .port_mdb_del = ksz9477_port_mdb_del, .port_mirror_add = ksz9477_port_mirror_add, .port_mirror_del = ksz9477_port_mirror_del, }; static u32 ksz9477_get_port_addr(int port, int offset) { return PORT_CTRL_ADDR(port, offset); } static int ksz9477_switch_detect(struct ksz_device *dev) { u8 data8; u8 id_hi; u8 id_lo; u32 id32; int ret; /* turn off SPI DO Edge select */ ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8); if (ret) return ret; data8 &= ~SPI_AUTO_EDGE_DETECTION; ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8); if (ret) return ret; /* read chip id */ ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32); if (ret) return ret; ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8); if (ret) return ret; /* Number of ports can be reduced depending on chip. */ dev->mib_port_cnt = TOTAL_PORT_NUM; dev->phy_port_cnt = 5; /* Default capability is gigabit capable. */ dev->features = GBIT_SUPPORT; id_hi = (u8)(id32 >> 16); id_lo = (u8)(id32 >> 8); if ((id_lo & 0xf) == 3) { /* Chip is from KSZ9893 design. */ dev->features |= IS_9893; /* Chip does not support gigabit. */ if (data8 & SW_QW_ABLE) dev->features &= ~GBIT_SUPPORT; dev->mib_port_cnt = 3; dev->phy_port_cnt = 2; } else { /* Chip uses new XMII register definitions. */ dev->features |= NEW_XMII; /* Chip does not support gigabit. */ if (!(data8 & SW_GIGABIT_ABLE)) dev->features &= ~GBIT_SUPPORT; } /* Change chip id to known ones so it can be matched against them. */ id32 = (id_hi << 16) | (id_lo << 8); dev->chip_id = id32; return 0; } struct ksz_chip_data { u32 chip_id; const char *dev_name; int num_vlans; int num_alus; int num_statics; int cpu_ports; int port_cnt; bool phy_errata_9477; }; static const struct ksz_chip_data ksz9477_switch_chips[] = { { .chip_id = 0x00947700, .dev_name = "KSZ9477", .num_vlans = 4096, .num_alus = 4096, .num_statics = 16, .cpu_ports = 0x7F, /* can be configured as cpu port */ .port_cnt = 7, /* total physical port count */ .phy_errata_9477 = true, }, { .chip_id = 0x00989700, .dev_name = "KSZ9897", .num_vlans = 4096, .num_alus = 4096, .num_statics = 16, .cpu_ports = 0x7F, /* can be configured as cpu port */ .port_cnt = 7, /* total physical port count */ .phy_errata_9477 = true, }, { .chip_id = 0x00989300, .dev_name = "KSZ9893", .num_vlans = 4096, .num_alus = 4096, .num_statics = 16, .cpu_ports = 0x07, /* can be configured as cpu port */ .port_cnt = 3, /* total port count */ }, { .chip_id = 0x00956700, .dev_name = "KSZ9567", .num_vlans = 4096, .num_alus = 4096, .num_statics = 16, .cpu_ports = 0x7F, /* can be configured as cpu port */ .port_cnt = 7, /* total physical port count */ }, }; static int ksz9477_switch_init(struct ksz_device *dev) { int i; dev->ds->ops = &ksz9477_switch_ops; for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) { const struct ksz_chip_data *chip = &ksz9477_switch_chips[i]; if (dev->chip_id == chip->chip_id) { dev->name = chip->dev_name; dev->num_vlans = chip->num_vlans; dev->num_alus = chip->num_alus; dev->num_statics = chip->num_statics; dev->port_cnt = chip->port_cnt; dev->cpu_ports = chip->cpu_ports; dev->phy_errata_9477 = chip->phy_errata_9477; break; } } /* no switch found */ if (!dev->port_cnt) return -ENODEV; dev->port_mask = (1 << dev->port_cnt) - 1; dev->reg_mib_cnt = SWITCH_COUNTER_NUM; dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM; i = dev->mib_port_cnt; dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i, GFP_KERNEL); if (!dev->ports) return -ENOMEM; for (i = 0; i < dev->mib_port_cnt; i++) { mutex_init(&dev->ports[i].mib.cnt_mutex); dev->ports[i].mib.counters = devm_kzalloc(dev->dev, sizeof(u64) * (TOTAL_SWITCH_COUNTER_NUM + 1), GFP_KERNEL); if (!dev->ports[i].mib.counters) return -ENOMEM; } return 0; } static void ksz9477_switch_exit(struct ksz_device *dev) { ksz9477_reset_switch(dev); } static const struct ksz_dev_ops ksz9477_dev_ops = { .get_port_addr = ksz9477_get_port_addr, .cfg_port_member = ksz9477_cfg_port_member, .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table, .phy_setup = ksz9477_phy_setup, .port_setup = ksz9477_port_setup, .r_mib_cnt = ksz9477_r_mib_cnt, .r_mib_pkt = ksz9477_r_mib_pkt, .freeze_mib = ksz9477_freeze_mib, .port_init_cnt = ksz9477_port_init_cnt, .shutdown = ksz9477_reset_switch, .detect = ksz9477_switch_detect, .init = ksz9477_switch_init, .exit = ksz9477_switch_exit, }; int ksz9477_switch_register(struct ksz_device *dev) { return ksz_switch_register(dev, &ksz9477_dev_ops); } EXPORT_SYMBOL(ksz9477_switch_register); MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>"); MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1