Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 9679 | 71.66% | 23 | 19.66% |
Linus Torvalds | 1252 | 9.27% | 13 | 11.11% |
Jes Sorensen | 744 | 5.51% | 4 | 3.42% |
Stephen Hemminger | 670 | 4.96% | 17 | 14.53% |
Christoph Hellwig | 446 | 3.30% | 2 | 1.71% |
Jaswinder Singh Rajput | 262 | 1.94% | 1 | 0.85% |
Jeff Garzik | 97 | 0.72% | 2 | 1.71% |
Philippe Reynes | 87 | 0.64% | 1 | 0.85% |
FUJITA Tomonori | 35 | 0.26% | 2 | 1.71% |
David S. Miller | 20 | 0.15% | 3 | 2.56% |
Eric Dumazet | 16 | 0.12% | 2 | 1.71% |
Jiri Pirko | 15 | 0.11% | 4 | 3.42% |
Jarod Wilson | 12 | 0.09% | 1 | 0.85% |
Patrick McHardy | 11 | 0.08% | 3 | 2.56% |
Pawel Sikora | 10 | 0.07% | 1 | 0.85% |
Janice M. Girouard | 10 | 0.07% | 1 | 0.85% |
Al Viro | 9 | 0.07% | 1 | 0.85% |
Joe Perches | 8 | 0.06% | 1 | 0.85% |
Yang Hongyang | 8 | 0.06% | 2 | 1.71% |
Michael S. Tsirkin | 8 | 0.06% | 1 | 0.85% |
Rusty Russell | 7 | 0.05% | 1 | 0.85% |
Anton Blanchard | 7 | 0.05% | 1 | 0.85% |
Matthew Wilcox | 7 | 0.05% | 1 | 0.85% |
Paulius Zaleckas | 7 | 0.05% | 1 | 0.85% |
Alexey Kuznetsov | 6 | 0.04% | 1 | 0.85% |
Ingo Molnar | 6 | 0.04% | 2 | 1.71% |
Herbert Xu | 6 | 0.04% | 1 | 0.85% |
Benoit Taine | 6 | 0.04% | 1 | 0.85% |
Ian Campbell | 6 | 0.04% | 2 | 1.71% |
Ben Hutchings | 6 | 0.04% | 1 | 0.85% |
Peter Hüwe | 5 | 0.04% | 1 | 0.85% |
Eric Sesterhenn / Snakebyte | 4 | 0.03% | 1 | 0.85% |
Randy Dunlap | 3 | 0.02% | 1 | 0.85% |
Thomas Gleixner | 3 | 0.02% | 2 | 1.71% |
Chris Wright | 3 | 0.02% | 1 | 0.85% |
Domen Puncer | 3 | 0.02% | 1 | 0.85% |
Wang Chen | 3 | 0.02% | 1 | 0.85% |
Tejun Heo | 3 | 0.02% | 1 | 0.85% |
Wilfried Klaebe | 3 | 0.02% | 1 | 0.85% |
James Morris | 3 | 0.02% | 1 | 0.85% |
Evgeniy Polyakov | 2 | 0.01% | 1 | 0.85% |
Lucas De Marchi | 2 | 0.01% | 1 | 0.85% |
Leon Romanovsky | 1 | 0.01% | 1 | 0.85% |
Johannes Berg | 1 | 0.01% | 1 | 0.85% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 0.85% |
Wei Yang | 1 | 0.01% | 1 | 0.85% |
Steven Cole | 1 | 0.01% | 1 | 0.85% |
Michael Hayes | 1 | 0.01% | 1 | 0.85% |
Colin Ian King | 1 | 0.01% | 1 | 0.85% |
Total | 13507 | 117 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card * and other Tigon based cards. * * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>. * * Thanks to Alteon and 3Com for providing hardware and documentation * enabling me to write this driver. * * A mailing list for discussing the use of this driver has been * setup, please subscribe to the lists if you have any questions * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to * see how to subscribe. * * Additional credits: * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace * dump support. The trace dump support has not been * integrated yet however. * Troy Benjegerdes: Big Endian (PPC) patches. * Nate Stahl: Better out of memory handling and stats support. * Aman Singla: Nasty race between interrupt handler and tx code dealing * with 'testing the tx_ret_csm and setting tx_full' * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping * infrastructure and Sparc support * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the * driver under Linux/Sparc64 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards * ETHTOOL_GDRVINFO support * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx * handler and close() cleanup. * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether * memory mapped IO is enabled to * make the driver work on RS/6000. * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem * where the driver would disable * bus master mode if it had to disable * write and invalidate. * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little * endian systems. * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and * rx producer index when * flushing the Jumbo ring. * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the * driver init path. * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/delay.h> #include <linux/mm.h> #include <linux/highmem.h> #include <linux/sockios.h> #include <linux/firmware.h> #include <linux/slab.h> #include <linux/prefetch.h> #include <linux/if_vlan.h> #ifdef SIOCETHTOOL #include <linux/ethtool.h> #endif #include <net/sock.h> #include <net/ip.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/byteorder.h> #include <linux/uaccess.h> #define DRV_NAME "acenic" #undef INDEX_DEBUG #ifdef CONFIG_ACENIC_OMIT_TIGON_I #define ACE_IS_TIGON_I(ap) 0 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES #else #define ACE_IS_TIGON_I(ap) (ap->version == 1) #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries #endif #ifndef PCI_VENDOR_ID_ALTEON #define PCI_VENDOR_ID_ALTEON 0x12ae #endif #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002 #endif #ifndef PCI_DEVICE_ID_3COM_3C985 #define PCI_DEVICE_ID_3COM_3C985 0x0001 #endif #ifndef PCI_VENDOR_ID_NETGEAR #define PCI_VENDOR_ID_NETGEAR 0x1385 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a #endif #ifndef PCI_DEVICE_ID_NETGEAR_GA620T #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a #endif /* * Farallon used the DEC vendor ID by mistake and they seem not * to care - stinky! */ #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a #endif #ifndef PCI_DEVICE_ID_FARALLON_PN9100T #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa #endif #ifndef PCI_VENDOR_ID_SGI #define PCI_VENDOR_ID_SGI 0x10a9 #endif #ifndef PCI_DEVICE_ID_SGI_ACENIC #define PCI_DEVICE_ID_SGI_ACENIC 0x0009 #endif static const struct pci_device_id acenic_pci_tbl[] = { { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, /* * Farallon used the DEC vendor ID on their cards incorrectly, * then later Alteon's ID. */ { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, { } }; MODULE_DEVICE_TABLE(pci, acenic_pci_tbl); #define ace_sync_irq(irq) synchronize_irq(irq) #ifndef offset_in_page #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK) #endif #define ACE_MAX_MOD_PARMS 8 #define BOARD_IDX_STATIC 0 #define BOARD_IDX_OVERFLOW -1 #include "acenic.h" /* * These must be defined before the firmware is included. */ #define MAX_TEXT_LEN 96*1024 #define MAX_RODATA_LEN 8*1024 #define MAX_DATA_LEN 2*1024 #ifndef tigon2FwReleaseLocal #define tigon2FwReleaseLocal 0 #endif /* * This driver currently supports Tigon I and Tigon II based cards * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear * GA620. The driver should also work on the SGI, DEC and Farallon * versions of the card, however I have not been able to test that * myself. * * This card is really neat, it supports receive hardware checksumming * and jumbo frames (up to 9000 bytes) and does a lot of work in the * firmware. Also the programming interface is quite neat, except for * the parts dealing with the i2c eeprom on the card ;-) * * Using jumbo frames: * * To enable jumbo frames, simply specify an mtu between 1500 and 9000 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet * interface number and <MTU> being the MTU value. * * Module parameters: * * When compiled as a loadable module, the driver allows for a number * of module parameters to be specified. The driver supports the * following module parameters: * * trace=<val> - Firmware trace level. This requires special traced * firmware to replace the firmware supplied with * the driver - for debugging purposes only. * * link=<val> - Link state. Normally you want to use the default link * parameters set by the driver. This can be used to * override these in case your switch doesn't negotiate * the link properly. Valid values are: * 0x0001 - Force half duplex link. * 0x0002 - Do not negotiate line speed with the other end. * 0x0010 - 10Mbit/sec link. * 0x0020 - 100Mbit/sec link. * 0x0040 - 1000Mbit/sec link. * 0x0100 - Do not negotiate flow control. * 0x0200 - Enable RX flow control Y * 0x0400 - Enable TX flow control Y (Tigon II NICs only). * Default value is 0x0270, ie. enable link+flow * control negotiation. Negotiating the highest * possible link speed with RX flow control enabled. * * When disabling link speed negotiation, only one link * speed is allowed to be specified! * * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed * to wait for more packets to arive before * interrupting the host, from the time the first * packet arrives. * * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed * to wait for more packets to arive in the transmit ring, * before interrupting the host, after transmitting the * first packet in the ring. * * max_tx_desc=<val> - maximum number of transmit descriptors * (packets) transmitted before interrupting the host. * * max_rx_desc=<val> - maximum number of receive descriptors * (packets) received before interrupting the host. * * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th * increments of the NIC's on board memory to be used for * transmit and receive buffers. For the 1MB NIC app. 800KB * is available, on the 1/2MB NIC app. 300KB is available. * 68KB will always be available as a minimum for both * directions. The default value is a 50/50 split. * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate * operations, default (1) is to always disable this as * that is what Alteon does on NT. I have not been able * to measure any real performance differences with * this on my systems. Set <val>=0 if you want to * enable these operations. * * If you use more than one NIC, specify the parameters for the * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to * run tracing on NIC #2 but not on NIC #1 and #3. * * TODO: * * - Proper multicast support. * - NIC dump support. * - More tuning parameters. * * The mini ring is not used under Linux and I am not sure it makes sense * to actually use it. * * New interrupt handler strategy: * * The old interrupt handler worked using the traditional method of * replacing an skbuff with a new one when a packet arrives. However * the rx rings do not need to contain a static number of buffer * descriptors, thus it makes sense to move the memory allocation out * of the main interrupt handler and do it in a bottom half handler * and only allocate new buffers when the number of buffers in the * ring is below a certain threshold. In order to avoid starving the * NIC under heavy load it is however necessary to force allocation * when hitting a minimum threshold. The strategy for alloction is as * follows: * * RX_LOW_BUF_THRES - allocate buffers in the bottom half * RX_PANIC_LOW_THRES - we are very low on buffers, allocate * the buffers in the interrupt handler * RX_RING_THRES - maximum number of buffers in the rx ring * RX_MINI_THRES - maximum number of buffers in the mini ring * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring * * One advantagous side effect of this allocation approach is that the * entire rx processing can be done without holding any spin lock * since the rx rings and registers are totally independent of the tx * ring and its registers. This of course includes the kmalloc's of * new skb's. Thus start_xmit can run in parallel with rx processing * and the memory allocation on SMP systems. * * Note that running the skb reallocation in a bottom half opens up * another can of races which needs to be handled properly. In * particular it can happen that the interrupt handler tries to run * the reallocation while the bottom half is either running on another * CPU or was interrupted on the same CPU. To get around this the * driver uses bitops to prevent the reallocation routines from being * reentered. * * TX handling can also be done without holding any spin lock, wheee * this is fun! since tx_ret_csm is only written to by the interrupt * handler. The case to be aware of is when shutting down the device * and cleaning up where it is necessary to make sure that * start_xmit() is not running while this is happening. Well DaveM * informs me that this case is already protected against ... bye bye * Mr. Spin Lock, it was nice to know you. * * TX interrupts are now partly disabled so the NIC will only generate * TX interrupts for the number of coal ticks, not for the number of * TX packets in the queue. This should reduce the number of TX only, * ie. when no RX processing is done, interrupts seen. */ /* * Threshold values for RX buffer allocation - the low water marks for * when to start refilling the rings are set to 75% of the ring * sizes. It seems to make sense to refill the rings entirely from the * intrrupt handler once it gets below the panic threshold, that way * we don't risk that the refilling is moved to another CPU when the * one running the interrupt handler just got the slab code hot in its * cache. */ #define RX_RING_SIZE 72 #define RX_MINI_SIZE 64 #define RX_JUMBO_SIZE 48 #define RX_PANIC_STD_THRES 16 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4 #define RX_PANIC_MINI_THRES 12 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4 #define RX_PANIC_JUMBO_THRES 6 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4 /* * Size of the mini ring entries, basically these just should be big * enough to take TCP ACKs */ #define ACE_MINI_SIZE 100 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4) #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4) /* * There seems to be a magic difference in the effect between 995 and 996 * but little difference between 900 and 995 ... no idea why. * * There is now a default set of tuning parameters which is set, depending * on whether or not the user enables Jumbo frames. It's assumed that if * Jumbo frames are enabled, the user wants optimal tuning for that case. */ #define DEF_TX_COAL 400 /* 996 */ #define DEF_TX_MAX_DESC 60 /* was 40 */ #define DEF_RX_COAL 120 /* 1000 */ #define DEF_RX_MAX_DESC 25 #define DEF_TX_RATIO 21 /* 24 */ #define DEF_JUMBO_TX_COAL 20 #define DEF_JUMBO_TX_MAX_DESC 60 #define DEF_JUMBO_RX_COAL 30 #define DEF_JUMBO_RX_MAX_DESC 6 #define DEF_JUMBO_TX_RATIO 21 #if tigon2FwReleaseLocal < 20001118 /* * Standard firmware and early modifications duplicate * IRQ load without this flag (coal timer is never reset). * Note that with this flag tx_coal should be less than * time to xmit full tx ring. * 400usec is not so bad for tx ring size of 128. */ #define TX_COAL_INTS_ONLY 1 /* worth it */ #else /* * With modified firmware, this is not necessary, but still useful. */ #define TX_COAL_INTS_ONLY 1 #endif #define DEF_TRACE 0 #define DEF_STAT (2 * TICKS_PER_SEC) static int link_state[ACE_MAX_MOD_PARMS]; static int trace[ACE_MAX_MOD_PARMS]; static int tx_coal_tick[ACE_MAX_MOD_PARMS]; static int rx_coal_tick[ACE_MAX_MOD_PARMS]; static int max_tx_desc[ACE_MAX_MOD_PARMS]; static int max_rx_desc[ACE_MAX_MOD_PARMS]; static int tx_ratio[ACE_MAX_MOD_PARMS]; static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1}; MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver"); #ifndef CONFIG_ACENIC_OMIT_TIGON_I MODULE_FIRMWARE("acenic/tg1.bin"); #endif MODULE_FIRMWARE("acenic/tg2.bin"); module_param_array_named(link, link_state, int, NULL, 0); module_param_array(trace, int, NULL, 0); module_param_array(tx_coal_tick, int, NULL, 0); module_param_array(max_tx_desc, int, NULL, 0); module_param_array(rx_coal_tick, int, NULL, 0); module_param_array(max_rx_desc, int, NULL, 0); module_param_array(tx_ratio, int, NULL, 0); MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state"); MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level"); MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives"); MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait"); MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives"); MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait"); MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)"); static const char version[] = "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n" " http://home.cern.ch/~jes/gige/acenic.html\n"; static int ace_get_link_ksettings(struct net_device *, struct ethtool_link_ksettings *); static int ace_set_link_ksettings(struct net_device *, const struct ethtool_link_ksettings *); static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *); static const struct ethtool_ops ace_ethtool_ops = { .get_drvinfo = ace_get_drvinfo, .get_link_ksettings = ace_get_link_ksettings, .set_link_ksettings = ace_set_link_ksettings, }; static void ace_watchdog(struct net_device *dev, unsigned int txqueue); static const struct net_device_ops ace_netdev_ops = { .ndo_open = ace_open, .ndo_stop = ace_close, .ndo_tx_timeout = ace_watchdog, .ndo_get_stats = ace_get_stats, .ndo_start_xmit = ace_start_xmit, .ndo_set_rx_mode = ace_set_multicast_list, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = ace_set_mac_addr, .ndo_change_mtu = ace_change_mtu, }; static int acenic_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) { struct net_device *dev; struct ace_private *ap; static int boards_found; dev = alloc_etherdev(sizeof(struct ace_private)); if (dev == NULL) return -ENOMEM; SET_NETDEV_DEV(dev, &pdev->dev); ap = netdev_priv(dev); ap->pdev = pdev; ap->name = pci_name(pdev); dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; dev->watchdog_timeo = 5*HZ; dev->min_mtu = 0; dev->max_mtu = ACE_JUMBO_MTU; dev->netdev_ops = &ace_netdev_ops; dev->ethtool_ops = &ace_ethtool_ops; /* we only display this string ONCE */ if (!boards_found) printk(version); if (pci_enable_device(pdev)) goto fail_free_netdev; /* * Enable master mode before we start playing with the * pci_command word since pci_set_master() will modify * it. */ pci_set_master(pdev); pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command); /* OpenFirmware on Mac's does not set this - DOH.. */ if (!(ap->pci_command & PCI_COMMAND_MEMORY)) { printk(KERN_INFO "%s: Enabling PCI Memory Mapped " "access - was not enabled by BIOS/Firmware\n", ap->name); ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY; pci_write_config_word(ap->pdev, PCI_COMMAND, ap->pci_command); wmb(); } pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency); if (ap->pci_latency <= 0x40) { ap->pci_latency = 0x40; pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency); } /* * Remap the regs into kernel space - this is abuse of * dev->base_addr since it was means for I/O port * addresses but who gives a damn. */ dev->base_addr = pci_resource_start(pdev, 0); ap->regs = ioremap(dev->base_addr, 0x4000); if (!ap->regs) { printk(KERN_ERR "%s: Unable to map I/O register, " "AceNIC %i will be disabled.\n", ap->name, boards_found); goto fail_free_netdev; } switch(pdev->vendor) { case PCI_VENDOR_ID_ALTEON: if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) { printk(KERN_INFO "%s: Farallon PN9100-T ", ap->name); } else { printk(KERN_INFO "%s: Alteon AceNIC ", ap->name); } break; case PCI_VENDOR_ID_3COM: printk(KERN_INFO "%s: 3Com 3C985 ", ap->name); break; case PCI_VENDOR_ID_NETGEAR: printk(KERN_INFO "%s: NetGear GA620 ", ap->name); break; case PCI_VENDOR_ID_DEC: if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) { printk(KERN_INFO "%s: Farallon PN9000-SX ", ap->name); break; } /* Fall through */ case PCI_VENDOR_ID_SGI: printk(KERN_INFO "%s: SGI AceNIC ", ap->name); break; default: printk(KERN_INFO "%s: Unknown AceNIC ", ap->name); break; } printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr); printk("irq %d\n", pdev->irq); #ifdef CONFIG_ACENIC_OMIT_TIGON_I if ((readl(&ap->regs->HostCtrl) >> 28) == 4) { printk(KERN_ERR "%s: Driver compiled without Tigon I" " support - NIC disabled\n", dev->name); goto fail_uninit; } #endif if (ace_allocate_descriptors(dev)) goto fail_free_netdev; #ifdef MODULE if (boards_found >= ACE_MAX_MOD_PARMS) ap->board_idx = BOARD_IDX_OVERFLOW; else ap->board_idx = boards_found; #else ap->board_idx = BOARD_IDX_STATIC; #endif if (ace_init(dev)) goto fail_free_netdev; if (register_netdev(dev)) { printk(KERN_ERR "acenic: device registration failed\n"); goto fail_uninit; } ap->name = dev->name; if (ap->pci_using_dac) dev->features |= NETIF_F_HIGHDMA; pci_set_drvdata(pdev, dev); boards_found++; return 0; fail_uninit: ace_init_cleanup(dev); fail_free_netdev: free_netdev(dev); return -ENODEV; } static void acenic_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; short i; unregister_netdev(dev); writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); if (ap->version >= 2) writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); /* * This clears any pending interrupts */ writel(1, ®s->Mb0Lo); readl(®s->CpuCtrl); /* flush */ /* * Make sure no other CPUs are processing interrupts * on the card before the buffers are being released. * Otherwise one might experience some `interesting' * effects. * * Then release the RX buffers - jumbo buffers were * already released in ace_close(). */ ace_sync_irq(dev->irq); for (i = 0; i < RX_STD_RING_ENTRIES; i++) { struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb; if (skb) { struct ring_info *ringp; dma_addr_t mapping; ringp = &ap->skb->rx_std_skbuff[i]; mapping = dma_unmap_addr(ringp, mapping); pci_unmap_page(ap->pdev, mapping, ACE_STD_BUFSIZE, PCI_DMA_FROMDEVICE); ap->rx_std_ring[i].size = 0; ap->skb->rx_std_skbuff[i].skb = NULL; dev_kfree_skb(skb); } } if (ap->version >= 2) { for (i = 0; i < RX_MINI_RING_ENTRIES; i++) { struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb; if (skb) { struct ring_info *ringp; dma_addr_t mapping; ringp = &ap->skb->rx_mini_skbuff[i]; mapping = dma_unmap_addr(ringp,mapping); pci_unmap_page(ap->pdev, mapping, ACE_MINI_BUFSIZE, PCI_DMA_FROMDEVICE); ap->rx_mini_ring[i].size = 0; ap->skb->rx_mini_skbuff[i].skb = NULL; dev_kfree_skb(skb); } } } for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb; if (skb) { struct ring_info *ringp; dma_addr_t mapping; ringp = &ap->skb->rx_jumbo_skbuff[i]; mapping = dma_unmap_addr(ringp, mapping); pci_unmap_page(ap->pdev, mapping, ACE_JUMBO_BUFSIZE, PCI_DMA_FROMDEVICE); ap->rx_jumbo_ring[i].size = 0; ap->skb->rx_jumbo_skbuff[i].skb = NULL; dev_kfree_skb(skb); } } ace_init_cleanup(dev); free_netdev(dev); } static struct pci_driver acenic_pci_driver = { .name = "acenic", .id_table = acenic_pci_tbl, .probe = acenic_probe_one, .remove = acenic_remove_one, }; static void ace_free_descriptors(struct net_device *dev) { struct ace_private *ap = netdev_priv(dev); int size; if (ap->rx_std_ring != NULL) { size = (sizeof(struct rx_desc) * (RX_STD_RING_ENTRIES + RX_JUMBO_RING_ENTRIES + RX_MINI_RING_ENTRIES + RX_RETURN_RING_ENTRIES)); pci_free_consistent(ap->pdev, size, ap->rx_std_ring, ap->rx_ring_base_dma); ap->rx_std_ring = NULL; ap->rx_jumbo_ring = NULL; ap->rx_mini_ring = NULL; ap->rx_return_ring = NULL; } if (ap->evt_ring != NULL) { size = (sizeof(struct event) * EVT_RING_ENTRIES); pci_free_consistent(ap->pdev, size, ap->evt_ring, ap->evt_ring_dma); ap->evt_ring = NULL; } if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) { size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); pci_free_consistent(ap->pdev, size, ap->tx_ring, ap->tx_ring_dma); } ap->tx_ring = NULL; if (ap->evt_prd != NULL) { pci_free_consistent(ap->pdev, sizeof(u32), (void *)ap->evt_prd, ap->evt_prd_dma); ap->evt_prd = NULL; } if (ap->rx_ret_prd != NULL) { pci_free_consistent(ap->pdev, sizeof(u32), (void *)ap->rx_ret_prd, ap->rx_ret_prd_dma); ap->rx_ret_prd = NULL; } if (ap->tx_csm != NULL) { pci_free_consistent(ap->pdev, sizeof(u32), (void *)ap->tx_csm, ap->tx_csm_dma); ap->tx_csm = NULL; } } static int ace_allocate_descriptors(struct net_device *dev) { struct ace_private *ap = netdev_priv(dev); int size; size = (sizeof(struct rx_desc) * (RX_STD_RING_ENTRIES + RX_JUMBO_RING_ENTRIES + RX_MINI_RING_ENTRIES + RX_RETURN_RING_ENTRIES)); ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size, &ap->rx_ring_base_dma); if (ap->rx_std_ring == NULL) goto fail; ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES; ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES; ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES; size = (sizeof(struct event) * EVT_RING_ENTRIES); ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma); if (ap->evt_ring == NULL) goto fail; /* * Only allocate a host TX ring for the Tigon II, the Tigon I * has to use PCI registers for this ;-( */ if (!ACE_IS_TIGON_I(ap)) { size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); ap->tx_ring = pci_alloc_consistent(ap->pdev, size, &ap->tx_ring_dma); if (ap->tx_ring == NULL) goto fail; } ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), &ap->evt_prd_dma); if (ap->evt_prd == NULL) goto fail; ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), &ap->rx_ret_prd_dma); if (ap->rx_ret_prd == NULL) goto fail; ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32), &ap->tx_csm_dma); if (ap->tx_csm == NULL) goto fail; return 0; fail: /* Clean up. */ ace_init_cleanup(dev); return 1; } /* * Generic cleanup handling data allocated during init. Used when the * module is unloaded or if an error occurs during initialization */ static void ace_init_cleanup(struct net_device *dev) { struct ace_private *ap; ap = netdev_priv(dev); ace_free_descriptors(dev); if (ap->info) pci_free_consistent(ap->pdev, sizeof(struct ace_info), ap->info, ap->info_dma); kfree(ap->skb); kfree(ap->trace_buf); if (dev->irq) free_irq(dev->irq, dev); iounmap(ap->regs); } /* * Commands are considered to be slow. */ static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd) { u32 idx; idx = readl(®s->CmdPrd); writel(*(u32 *)(cmd), ®s->CmdRng[idx]); idx = (idx + 1) % CMD_RING_ENTRIES; writel(idx, ®s->CmdPrd); } static int ace_init(struct net_device *dev) { struct ace_private *ap; struct ace_regs __iomem *regs; struct ace_info *info = NULL; struct pci_dev *pdev; unsigned long myjif; u64 tmp_ptr; u32 tig_ver, mac1, mac2, tmp, pci_state; int board_idx, ecode = 0; short i; unsigned char cache_size; ap = netdev_priv(dev); regs = ap->regs; board_idx = ap->board_idx; /* * aman@sgi.com - its useful to do a NIC reset here to * address the `Firmware not running' problem subsequent * to any crashes involving the NIC */ writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl); readl(®s->HostCtrl); /* PCI write posting */ udelay(5); /* * Don't access any other registers before this point! */ #ifdef __BIG_ENDIAN /* * This will most likely need BYTE_SWAP once we switch * to using __raw_writel() */ writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)), ®s->HostCtrl); #else writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)), ®s->HostCtrl); #endif readl(®s->HostCtrl); /* PCI write posting */ /* * Stop the NIC CPU and clear pending interrupts */ writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); readl(®s->CpuCtrl); /* PCI write posting */ writel(0, ®s->Mb0Lo); tig_ver = readl(®s->HostCtrl) >> 28; switch(tig_ver){ #ifndef CONFIG_ACENIC_OMIT_TIGON_I case 4: case 5: printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ", tig_ver, ap->firmware_major, ap->firmware_minor, ap->firmware_fix); writel(0, ®s->LocalCtrl); ap->version = 1; ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES; break; #endif case 6: printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ", tig_ver, ap->firmware_major, ap->firmware_minor, ap->firmware_fix); writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); readl(®s->CpuBCtrl); /* PCI write posting */ /* * The SRAM bank size does _not_ indicate the amount * of memory on the card, it controls the _bank_ size! * Ie. a 1MB AceNIC will have two banks of 512KB. */ writel(SRAM_BANK_512K, ®s->LocalCtrl); writel(SYNC_SRAM_TIMING, ®s->MiscCfg); ap->version = 2; ap->tx_ring_entries = MAX_TX_RING_ENTRIES; break; default: printk(KERN_WARNING " Unsupported Tigon version detected " "(%i)\n", tig_ver); ecode = -ENODEV; goto init_error; } /* * ModeStat _must_ be set after the SRAM settings as this change * seems to corrupt the ModeStat and possible other registers. * The SRAM settings survive resets and setting it to the same * value a second time works as well. This is what caused the * `Firmware not running' problem on the Tigon II. */ #ifdef __BIG_ENDIAN writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD | ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); #else writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); #endif readl(®s->ModeStat); /* PCI write posting */ mac1 = 0; for(i = 0; i < 4; i++) { int t; mac1 = mac1 << 8; t = read_eeprom_byte(dev, 0x8c+i); if (t < 0) { ecode = -EIO; goto init_error; } else mac1 |= (t & 0xff); } mac2 = 0; for(i = 4; i < 8; i++) { int t; mac2 = mac2 << 8; t = read_eeprom_byte(dev, 0x8c+i); if (t < 0) { ecode = -EIO; goto init_error; } else mac2 |= (t & 0xff); } writel(mac1, ®s->MacAddrHi); writel(mac2, ®s->MacAddrLo); dev->dev_addr[0] = (mac1 >> 8) & 0xff; dev->dev_addr[1] = mac1 & 0xff; dev->dev_addr[2] = (mac2 >> 24) & 0xff; dev->dev_addr[3] = (mac2 >> 16) & 0xff; dev->dev_addr[4] = (mac2 >> 8) & 0xff; dev->dev_addr[5] = mac2 & 0xff; printk("MAC: %pM\n", dev->dev_addr); /* * Looks like this is necessary to deal with on all architectures, * even this %$#%$# N440BX Intel based thing doesn't get it right. * Ie. having two NICs in the machine, one will have the cache * line set at boot time, the other will not. */ pdev = ap->pdev; pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size); cache_size <<= 2; if (cache_size != SMP_CACHE_BYTES) { printk(KERN_INFO " PCI cache line size set incorrectly " "(%i bytes) by BIOS/FW, ", cache_size); if (cache_size > SMP_CACHE_BYTES) printk("expecting %i\n", SMP_CACHE_BYTES); else { printk("correcting to %i\n", SMP_CACHE_BYTES); pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, SMP_CACHE_BYTES >> 2); } } pci_state = readl(®s->PciState); printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, " "latency: %i clks\n", (pci_state & PCI_32BIT) ? 32 : 64, (pci_state & PCI_66MHZ) ? 66 : 33, ap->pci_latency); /* * Set the max DMA transfer size. Seems that for most systems * the performance is better when no MAX parameter is * set. However for systems enabling PCI write and invalidate, * DMA writes must be set to the L1 cache line size to get * optimal performance. * * The default is now to turn the PCI write and invalidate off * - that is what Alteon does for NT. */ tmp = READ_CMD_MEM | WRITE_CMD_MEM; if (ap->version >= 2) { tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ)); /* * Tuning parameters only supported for 8 cards */ if (board_idx == BOARD_IDX_OVERFLOW || dis_pci_mem_inval[board_idx]) { if (ap->pci_command & PCI_COMMAND_INVALIDATE) { ap->pci_command &= ~PCI_COMMAND_INVALIDATE; pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command); printk(KERN_INFO " Disabling PCI memory " "write and invalidate\n"); } } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) { printk(KERN_INFO " PCI memory write & invalidate " "enabled by BIOS, enabling counter measures\n"); switch(SMP_CACHE_BYTES) { case 16: tmp |= DMA_WRITE_MAX_16; break; case 32: tmp |= DMA_WRITE_MAX_32; break; case 64: tmp |= DMA_WRITE_MAX_64; break; case 128: tmp |= DMA_WRITE_MAX_128; break; default: printk(KERN_INFO " Cache line size %i not " "supported, PCI write and invalidate " "disabled\n", SMP_CACHE_BYTES); ap->pci_command &= ~PCI_COMMAND_INVALIDATE; pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command); } } } #ifdef __sparc__ /* * On this platform, we know what the best dma settings * are. We use 64-byte maximum bursts, because if we * burst larger than the cache line size (or even cross * a 64byte boundary in a single burst) the UltraSparc * PCI controller will disconnect at 64-byte multiples. * * Read-multiple will be properly enabled above, and when * set will give the PCI controller proper hints about * prefetching. */ tmp &= ~DMA_READ_WRITE_MASK; tmp |= DMA_READ_MAX_64; tmp |= DMA_WRITE_MAX_64; #endif #ifdef __alpha__ tmp &= ~DMA_READ_WRITE_MASK; tmp |= DMA_READ_MAX_128; /* * All the docs say MUST NOT. Well, I did. * Nothing terrible happens, if we load wrong size. * Bit w&i still works better! */ tmp |= DMA_WRITE_MAX_128; #endif writel(tmp, ®s->PciState); #if 0 /* * The Host PCI bus controller driver has to set FBB. * If all devices on that PCI bus support FBB, then the controller * can enable FBB support in the Host PCI Bus controller (or on * the PCI-PCI bridge if that applies). * -ggg */ /* * I have received reports from people having problems when this * bit is enabled. */ if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) { printk(KERN_INFO " Enabling PCI Fast Back to Back\n"); ap->pci_command |= PCI_COMMAND_FAST_BACK; pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command); } #endif /* * Configure DMA attributes. */ if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { ap->pci_using_dac = 1; } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { ap->pci_using_dac = 0; } else { ecode = -ENODEV; goto init_error; } /* * Initialize the generic info block and the command+event rings * and the control blocks for the transmit and receive rings * as they need to be setup once and for all. */ if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info), &ap->info_dma))) { ecode = -EAGAIN; goto init_error; } ap->info = info; /* * Get the memory for the skb rings. */ if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) { ecode = -EAGAIN; goto init_error; } ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED, DRV_NAME, dev); if (ecode) { printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", DRV_NAME, pdev->irq); goto init_error; } else dev->irq = pdev->irq; #ifdef INDEX_DEBUG spin_lock_init(&ap->debug_lock); ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1; ap->last_std_rx = 0; ap->last_mini_rx = 0; #endif memset(ap->info, 0, sizeof(struct ace_info)); memset(ap->skb, 0, sizeof(struct ace_skb)); ecode = ace_load_firmware(dev); if (ecode) goto init_error; ap->fw_running = 0; tmp_ptr = ap->info_dma; writel(tmp_ptr >> 32, ®s->InfoPtrHi); writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo); memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event)); set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma); info->evt_ctrl.flags = 0; *(ap->evt_prd) = 0; wmb(); set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma); writel(0, ®s->EvtCsm); set_aceaddr(&info->cmd_ctrl.rngptr, 0x100); info->cmd_ctrl.flags = 0; info->cmd_ctrl.max_len = 0; for (i = 0; i < CMD_RING_ENTRIES; i++) writel(0, ®s->CmdRng[i]); writel(0, ®s->CmdPrd); writel(0, ®s->CmdCsm); tmp_ptr = ap->info_dma; tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats); set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr); set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma); info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE; info->rx_std_ctrl.flags = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; memset(ap->rx_std_ring, 0, RX_STD_RING_ENTRIES * sizeof(struct rx_desc)); for (i = 0; i < RX_STD_RING_ENTRIES; i++) ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM; ap->rx_std_skbprd = 0; atomic_set(&ap->cur_rx_bufs, 0); set_aceaddr(&info->rx_jumbo_ctrl.rngptr, (ap->rx_ring_base_dma + (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES))); info->rx_jumbo_ctrl.max_len = 0; info->rx_jumbo_ctrl.flags = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; memset(ap->rx_jumbo_ring, 0, RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc)); for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO; ap->rx_jumbo_skbprd = 0; atomic_set(&ap->cur_jumbo_bufs, 0); memset(ap->rx_mini_ring, 0, RX_MINI_RING_ENTRIES * sizeof(struct rx_desc)); if (ap->version >= 2) { set_aceaddr(&info->rx_mini_ctrl.rngptr, (ap->rx_ring_base_dma + (sizeof(struct rx_desc) * (RX_STD_RING_ENTRIES + RX_JUMBO_RING_ENTRIES)))); info->rx_mini_ctrl.max_len = ACE_MINI_SIZE; info->rx_mini_ctrl.flags = RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST; for (i = 0; i < RX_MINI_RING_ENTRIES; i++) ap->rx_mini_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_MINI; } else { set_aceaddr(&info->rx_mini_ctrl.rngptr, 0); info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE; info->rx_mini_ctrl.max_len = 0; } ap->rx_mini_skbprd = 0; atomic_set(&ap->cur_mini_bufs, 0); set_aceaddr(&info->rx_return_ctrl.rngptr, (ap->rx_ring_base_dma + (sizeof(struct rx_desc) * (RX_STD_RING_ENTRIES + RX_JUMBO_RING_ENTRIES + RX_MINI_RING_ENTRIES)))); info->rx_return_ctrl.flags = 0; info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES; memset(ap->rx_return_ring, 0, RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc)); set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma); *(ap->rx_ret_prd) = 0; writel(TX_RING_BASE, ®s->WinBase); if (ACE_IS_TIGON_I(ap)) { ap->tx_ring = (__force struct tx_desc *) regs->Window; for (i = 0; i < (TIGON_I_TX_RING_ENTRIES * sizeof(struct tx_desc)) / sizeof(u32); i++) writel(0, (__force void __iomem *)ap->tx_ring + i * 4); set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE); } else { memset(ap->tx_ring, 0, MAX_TX_RING_ENTRIES * sizeof(struct tx_desc)); set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma); } info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap); tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; /* * The Tigon I does not like having the TX ring in host memory ;-( */ if (!ACE_IS_TIGON_I(ap)) tmp |= RCB_FLG_TX_HOST_RING; #if TX_COAL_INTS_ONLY tmp |= RCB_FLG_COAL_INT_ONLY; #endif info->tx_ctrl.flags = tmp; set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma); /* * Potential item for tuning parameter */ #if 0 /* NO */ writel(DMA_THRESH_16W, ®s->DmaReadCfg); writel(DMA_THRESH_16W, ®s->DmaWriteCfg); #else writel(DMA_THRESH_8W, ®s->DmaReadCfg); writel(DMA_THRESH_8W, ®s->DmaWriteCfg); #endif writel(0, ®s->MaskInt); writel(1, ®s->IfIdx); #if 0 /* * McKinley boxes do not like us fiddling with AssistState * this early */ writel(1, ®s->AssistState); #endif writel(DEF_STAT, ®s->TuneStatTicks); writel(DEF_TRACE, ®s->TuneTrace); ace_set_rxtx_parms(dev, 0); if (board_idx == BOARD_IDX_OVERFLOW) { printk(KERN_WARNING "%s: more than %i NICs detected, " "ignoring module parameters!\n", ap->name, ACE_MAX_MOD_PARMS); } else if (board_idx >= 0) { if (tx_coal_tick[board_idx]) writel(tx_coal_tick[board_idx], ®s->TuneTxCoalTicks); if (max_tx_desc[board_idx]) writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc); if (rx_coal_tick[board_idx]) writel(rx_coal_tick[board_idx], ®s->TuneRxCoalTicks); if (max_rx_desc[board_idx]) writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc); if (trace[board_idx]) writel(trace[board_idx], ®s->TuneTrace); if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64)) writel(tx_ratio[board_idx], ®s->TxBufRat); } /* * Default link parameters */ tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB | LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE; if(ap->version >= 2) tmp |= LNK_TX_FLOW_CTL_Y; /* * Override link default parameters */ if ((board_idx >= 0) && link_state[board_idx]) { int option = link_state[board_idx]; tmp = LNK_ENABLE; if (option & 0x01) { printk(KERN_INFO "%s: Setting half duplex link\n", ap->name); tmp &= ~LNK_FULL_DUPLEX; } if (option & 0x02) tmp &= ~LNK_NEGOTIATE; if (option & 0x10) tmp |= LNK_10MB; if (option & 0x20) tmp |= LNK_100MB; if (option & 0x40) tmp |= LNK_1000MB; if ((option & 0x70) == 0) { printk(KERN_WARNING "%s: No media speed specified, " "forcing auto negotiation\n", ap->name); tmp |= LNK_NEGOTIATE | LNK_1000MB | LNK_100MB | LNK_10MB; } if ((option & 0x100) == 0) tmp |= LNK_NEG_FCTL; else printk(KERN_INFO "%s: Disabling flow control " "negotiation\n", ap->name); if (option & 0x200) tmp |= LNK_RX_FLOW_CTL_Y; if ((option & 0x400) && (ap->version >= 2)) { printk(KERN_INFO "%s: Enabling TX flow control\n", ap->name); tmp |= LNK_TX_FLOW_CTL_Y; } } ap->link = tmp; writel(tmp, ®s->TuneLink); if (ap->version >= 2) writel(tmp, ®s->TuneFastLink); writel(ap->firmware_start, ®s->Pc); writel(0, ®s->Mb0Lo); /* * Set tx_csm before we start receiving interrupts, otherwise * the interrupt handler might think it is supposed to process * tx ints before we are up and running, which may cause a null * pointer access in the int handler. */ ap->cur_rx = 0; ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0; wmb(); ace_set_txprd(regs, ap, 0); writel(0, ®s->RxRetCsm); /* * Enable DMA engine now. * If we do this sooner, Mckinley box pukes. * I assume it's because Tigon II DMA engine wants to check * *something* even before the CPU is started. */ writel(1, ®s->AssistState); /* enable DMA */ /* * Start the NIC CPU */ writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl); readl(®s->CpuCtrl); /* * Wait for the firmware to spin up - max 3 seconds. */ myjif = jiffies + 3 * HZ; while (time_before(jiffies, myjif) && !ap->fw_running) cpu_relax(); if (!ap->fw_running) { printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name); ace_dump_trace(ap); writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); readl(®s->CpuCtrl); /* aman@sgi.com - account for badly behaving firmware/NIC: * - have observed that the NIC may continue to generate * interrupts for some reason; attempt to stop it - halt * second CPU for Tigon II cards, and also clear Mb0 * - if we're a module, we'll fail to load if this was * the only GbE card in the system => if the kernel does * see an interrupt from the NIC, code to handle it is * gone and OOps! - so free_irq also */ if (ap->version >= 2) writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); writel(0, ®s->Mb0Lo); readl(®s->Mb0Lo); ecode = -EBUSY; goto init_error; } /* * We load the ring here as there seem to be no way to tell the * firmware to wipe the ring without re-initializing it. */ if (!test_and_set_bit(0, &ap->std_refill_busy)) ace_load_std_rx_ring(dev, RX_RING_SIZE); else printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n", ap->name); if (ap->version >= 2) { if (!test_and_set_bit(0, &ap->mini_refill_busy)) ace_load_mini_rx_ring(dev, RX_MINI_SIZE); else printk(KERN_ERR "%s: Someone is busy refilling " "the RX mini ring\n", ap->name); } return 0; init_error: ace_init_cleanup(dev); return ecode; } static void ace_set_rxtx_parms(struct net_device *dev, int jumbo) { struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; int board_idx = ap->board_idx; if (board_idx >= 0) { if (!jumbo) { if (!tx_coal_tick[board_idx]) writel(DEF_TX_COAL, ®s->TuneTxCoalTicks); if (!max_tx_desc[board_idx]) writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc); if (!rx_coal_tick[board_idx]) writel(DEF_RX_COAL, ®s->TuneRxCoalTicks); if (!max_rx_desc[board_idx]) writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc); if (!tx_ratio[board_idx]) writel(DEF_TX_RATIO, ®s->TxBufRat); } else { if (!tx_coal_tick[board_idx]) writel(DEF_JUMBO_TX_COAL, ®s->TuneTxCoalTicks); if (!max_tx_desc[board_idx]) writel(DEF_JUMBO_TX_MAX_DESC, ®s->TuneMaxTxDesc); if (!rx_coal_tick[board_idx]) writel(DEF_JUMBO_RX_COAL, ®s->TuneRxCoalTicks); if (!max_rx_desc[board_idx]) writel(DEF_JUMBO_RX_MAX_DESC, ®s->TuneMaxRxDesc); if (!tx_ratio[board_idx]) writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat); } } } static void ace_watchdog(struct net_device *data, unsigned int txqueue) { struct net_device *dev = data; struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; /* * We haven't received a stats update event for more than 2.5 * seconds and there is data in the transmit queue, thus we * assume the card is stuck. */ if (*ap->tx_csm != ap->tx_ret_csm) { printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n", dev->name, (unsigned int)readl(®s->HostCtrl)); /* This can happen due to ieee flow control. */ } else { printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n", dev->name); #if 0 netif_wake_queue(dev); #endif } } static void ace_tasklet(unsigned long arg) { struct net_device *dev = (struct net_device *) arg; struct ace_private *ap = netdev_priv(dev); int cur_size; cur_size = atomic_read(&ap->cur_rx_bufs); if ((cur_size < RX_LOW_STD_THRES) && !test_and_set_bit(0, &ap->std_refill_busy)) { #ifdef DEBUG printk("refilling buffers (current %i)\n", cur_size); #endif ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size); } if (ap->version >= 2) { cur_size = atomic_read(&ap->cur_mini_bufs); if ((cur_size < RX_LOW_MINI_THRES) && !test_and_set_bit(0, &ap->mini_refill_busy)) { #ifdef DEBUG printk("refilling mini buffers (current %i)\n", cur_size); #endif ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size); } } cur_size = atomic_read(&ap->cur_jumbo_bufs); if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) && !test_and_set_bit(0, &ap->jumbo_refill_busy)) { #ifdef DEBUG printk("refilling jumbo buffers (current %i)\n", cur_size); #endif ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size); } ap->tasklet_pending = 0; } /* * Copy the contents of the NIC's trace buffer to kernel memory. */ static void ace_dump_trace(struct ace_private *ap) { #if 0 if (!ap->trace_buf) if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL))) return; #endif } /* * Load the standard rx ring. * * Loading rings is safe without holding the spin lock since this is * done only before the device is enabled, thus no interrupts are * generated and by the interrupt handler/tasklet handler. */ static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs) { struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; short i, idx; prefetchw(&ap->cur_rx_bufs); idx = ap->rx_std_skbprd; for (i = 0; i < nr_bufs; i++) { struct sk_buff *skb; struct rx_desc *rd; dma_addr_t mapping; skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE); if (!skb) break; mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), offset_in_page(skb->data), ACE_STD_BUFSIZE, PCI_DMA_FROMDEVICE); ap->skb->rx_std_skbuff[idx].skb = skb; dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx], mapping, mapping); rd = &ap->rx_std_ring[idx]; set_aceaddr(&rd->addr, mapping); rd->size = ACE_STD_BUFSIZE; rd->idx = idx; idx = (idx + 1) % RX_STD_RING_ENTRIES; } if (!i) goto error_out; atomic_add(i, &ap->cur_rx_bufs); ap->rx_std_skbprd = idx; if (ACE_IS_TIGON_I(ap)) { struct cmd cmd; cmd.evt = C_SET_RX_PRD_IDX; cmd.code = 0; cmd.idx = ap->rx_std_skbprd; ace_issue_cmd(regs, &cmd); } else { writel(idx, ®s->RxStdPrd); wmb(); } out: clear_bit(0, &ap->std_refill_busy); return; error_out: printk(KERN_INFO "Out of memory when allocating " "standard receive buffers\n"); goto out; } static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs) { struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; short i, idx; prefetchw(&ap->cur_mini_bufs); idx = ap->rx_mini_skbprd; for (i = 0; i < nr_bufs; i++) { struct sk_buff *skb; struct rx_desc *rd; dma_addr_t mapping; skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE); if (!skb) break; mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), offset_in_page(skb->data), ACE_MINI_BUFSIZE, PCI_DMA_FROMDEVICE); ap->skb->rx_mini_skbuff[idx].skb = skb; dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx], mapping, mapping); rd = &ap->rx_mini_ring[idx]; set_aceaddr(&rd->addr, mapping); rd->size = ACE_MINI_BUFSIZE; rd->idx = idx; idx = (idx + 1) % RX_MINI_RING_ENTRIES; } if (!i) goto error_out; atomic_add(i, &ap->cur_mini_bufs); ap->rx_mini_skbprd = idx; writel(idx, ®s->RxMiniPrd); wmb(); out: clear_bit(0, &ap->mini_refill_busy); return; error_out: printk(KERN_INFO "Out of memory when allocating " "mini receive buffers\n"); goto out; } /* * Load the jumbo rx ring, this may happen at any time if the MTU * is changed to a value > 1500. */ static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs) { struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; short i, idx; idx = ap->rx_jumbo_skbprd; for (i = 0; i < nr_bufs; i++) { struct sk_buff *skb; struct rx_desc *rd; dma_addr_t mapping; skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE); if (!skb) break; mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), offset_in_page(skb->data), ACE_JUMBO_BUFSIZE, PCI_DMA_FROMDEVICE); ap->skb->rx_jumbo_skbuff[idx].skb = skb; dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx], mapping, mapping); rd = &ap->rx_jumbo_ring[idx]; set_aceaddr(&rd->addr, mapping); rd->size = ACE_JUMBO_BUFSIZE; rd->idx = idx; idx = (idx + 1) % RX_JUMBO_RING_ENTRIES; } if (!i) goto error_out; atomic_add(i, &ap->cur_jumbo_bufs); ap->rx_jumbo_skbprd = idx; if (ACE_IS_TIGON_I(ap)) { struct cmd cmd; cmd.evt = C_SET_RX_JUMBO_PRD_IDX; cmd.code = 0; cmd.idx = ap->rx_jumbo_skbprd; ace_issue_cmd(regs, &cmd); } else { writel(idx, ®s->RxJumboPrd); wmb(); } out: clear_bit(0, &ap->jumbo_refill_busy); return; error_out: if (net_ratelimit()) printk(KERN_INFO "Out of memory when allocating " "jumbo receive buffers\n"); goto out; } /* * All events are considered to be slow (RX/TX ints do not generate * events) and are handled here, outside the main interrupt handler, * to reduce the size of the handler. */ static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd) { struct ace_private *ap; ap = netdev_priv(dev); while (evtcsm != evtprd) { switch (ap->evt_ring[evtcsm].evt) { case E_FW_RUNNING: printk(KERN_INFO "%s: Firmware up and running\n", ap->name); ap->fw_running = 1; wmb(); break; case E_STATS_UPDATED: break; case E_LNK_STATE: { u16 code = ap->evt_ring[evtcsm].code; switch (code) { case E_C_LINK_UP: { u32 state = readl(&ap->regs->GigLnkState); printk(KERN_WARNING "%s: Optical link UP " "(%s Duplex, Flow Control: %s%s)\n", ap->name, state & LNK_FULL_DUPLEX ? "Full":"Half", state & LNK_TX_FLOW_CTL_Y ? "TX " : "", state & LNK_RX_FLOW_CTL_Y ? "RX" : ""); break; } case E_C_LINK_DOWN: printk(KERN_WARNING "%s: Optical link DOWN\n", ap->name); break; case E_C_LINK_10_100: printk(KERN_WARNING "%s: 10/100BaseT link " "UP\n", ap->name); break; default: printk(KERN_ERR "%s: Unknown optical link " "state %02x\n", ap->name, code); } break; } case E_ERROR: switch(ap->evt_ring[evtcsm].code) { case E_C_ERR_INVAL_CMD: printk(KERN_ERR "%s: invalid command error\n", ap->name); break; case E_C_ERR_UNIMP_CMD: printk(KERN_ERR "%s: unimplemented command " "error\n", ap->name); break; case E_C_ERR_BAD_CFG: printk(KERN_ERR "%s: bad config error\n", ap->name); break; default: printk(KERN_ERR "%s: unknown error %02x\n", ap->name, ap->evt_ring[evtcsm].code); } break; case E_RESET_JUMBO_RNG: { int i; for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { if (ap->skb->rx_jumbo_skbuff[i].skb) { ap->rx_jumbo_ring[i].size = 0; set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0); dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb); ap->skb->rx_jumbo_skbuff[i].skb = NULL; } } if (ACE_IS_TIGON_I(ap)) { struct cmd cmd; cmd.evt = C_SET_RX_JUMBO_PRD_IDX; cmd.code = 0; cmd.idx = 0; ace_issue_cmd(ap->regs, &cmd); } else { writel(0, &((ap->regs)->RxJumboPrd)); wmb(); } ap->jumbo = 0; ap->rx_jumbo_skbprd = 0; printk(KERN_INFO "%s: Jumbo ring flushed\n", ap->name); clear_bit(0, &ap->jumbo_refill_busy); break; } default: printk(KERN_ERR "%s: Unhandled event 0x%02x\n", ap->name, ap->evt_ring[evtcsm].evt); } evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES; } return evtcsm; } static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm) { struct ace_private *ap = netdev_priv(dev); u32 idx; int mini_count = 0, std_count = 0; idx = rxretcsm; prefetchw(&ap->cur_rx_bufs); prefetchw(&ap->cur_mini_bufs); while (idx != rxretprd) { struct ring_info *rip; struct sk_buff *skb; struct rx_desc *retdesc; u32 skbidx; int bd_flags, desc_type, mapsize; u16 csum; /* make sure the rx descriptor isn't read before rxretprd */ if (idx == rxretcsm) rmb(); retdesc = &ap->rx_return_ring[idx]; skbidx = retdesc->idx; bd_flags = retdesc->flags; desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI); switch(desc_type) { /* * Normal frames do not have any flags set * * Mini and normal frames arrive frequently, * so use a local counter to avoid doing * atomic operations for each packet arriving. */ case 0: rip = &ap->skb->rx_std_skbuff[skbidx]; mapsize = ACE_STD_BUFSIZE; std_count++; break; case BD_FLG_JUMBO: rip = &ap->skb->rx_jumbo_skbuff[skbidx]; mapsize = ACE_JUMBO_BUFSIZE; atomic_dec(&ap->cur_jumbo_bufs); break; case BD_FLG_MINI: rip = &ap->skb->rx_mini_skbuff[skbidx]; mapsize = ACE_MINI_BUFSIZE; mini_count++; break; default: printk(KERN_INFO "%s: unknown frame type (0x%02x) " "returned by NIC\n", dev->name, retdesc->flags); goto error; } skb = rip->skb; rip->skb = NULL; pci_unmap_page(ap->pdev, dma_unmap_addr(rip, mapping), mapsize, PCI_DMA_FROMDEVICE); skb_put(skb, retdesc->size); /* * Fly baby, fly! */ csum = retdesc->tcp_udp_csum; skb->protocol = eth_type_trans(skb, dev); /* * Instead of forcing the poor tigon mips cpu to calculate * pseudo hdr checksum, we do this ourselves. */ if (bd_flags & BD_FLG_TCP_UDP_SUM) { skb->csum = htons(csum); skb->ip_summed = CHECKSUM_COMPLETE; } else { skb_checksum_none_assert(skb); } /* send it up */ if ((bd_flags & BD_FLG_VLAN_TAG)) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), retdesc->vlan); netif_rx(skb); dev->stats.rx_packets++; dev->stats.rx_bytes += retdesc->size; idx = (idx + 1) % RX_RETURN_RING_ENTRIES; } atomic_sub(std_count, &ap->cur_rx_bufs); if (!ACE_IS_TIGON_I(ap)) atomic_sub(mini_count, &ap->cur_mini_bufs); out: /* * According to the documentation RxRetCsm is obsolete with * the 12.3.x Firmware - my Tigon I NICs seem to disagree! */ if (ACE_IS_TIGON_I(ap)) { writel(idx, &ap->regs->RxRetCsm); } ap->cur_rx = idx; return; error: idx = rxretprd; goto out; } static inline void ace_tx_int(struct net_device *dev, u32 txcsm, u32 idx) { struct ace_private *ap = netdev_priv(dev); do { struct sk_buff *skb; struct tx_ring_info *info; info = ap->skb->tx_skbuff + idx; skb = info->skb; if (dma_unmap_len(info, maplen)) { pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping), dma_unmap_len(info, maplen), PCI_DMA_TODEVICE); dma_unmap_len_set(info, maplen, 0); } if (skb) { dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; dev_consume_skb_irq(skb); info->skb = NULL; } idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); } while (idx != txcsm); if (netif_queue_stopped(dev)) netif_wake_queue(dev); wmb(); ap->tx_ret_csm = txcsm; /* So... tx_ret_csm is advanced _after_ check for device wakeup. * * We could try to make it before. In this case we would get * the following race condition: hard_start_xmit on other cpu * enters after we advanced tx_ret_csm and fills space, * which we have just freed, so that we make illegal device wakeup. * There is no good way to workaround this (at entry * to ace_start_xmit detects this condition and prevents * ring corruption, but it is not a good workaround.) * * When tx_ret_csm is advanced after, we wake up device _only_ * if we really have some space in ring (though the core doing * hard_start_xmit can see full ring for some period and has to * synchronize.) Superb. * BUT! We get another subtle race condition. hard_start_xmit * may think that ring is full between wakeup and advancing * tx_ret_csm and will stop device instantly! It is not so bad. * We are guaranteed that there is something in ring, so that * the next irq will resume transmission. To speedup this we could * mark descriptor, which closes ring with BD_FLG_COAL_NOW * (see ace_start_xmit). * * Well, this dilemma exists in all lock-free devices. * We, following scheme used in drivers by Donald Becker, * select the least dangerous. * --ANK */ } static irqreturn_t ace_interrupt(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; u32 idx; u32 txcsm, rxretcsm, rxretprd; u32 evtcsm, evtprd; /* * In case of PCI shared interrupts or spurious interrupts, * we want to make sure it is actually our interrupt before * spending any time in here. */ if (!(readl(®s->HostCtrl) & IN_INT)) return IRQ_NONE; /* * ACK intr now. Otherwise we will lose updates to rx_ret_prd, * which happened _after_ rxretprd = *ap->rx_ret_prd; but before * writel(0, ®s->Mb0Lo). * * "IRQ avoidance" recommended in docs applies to IRQs served * threads and it is wrong even for that case. */ writel(0, ®s->Mb0Lo); readl(®s->Mb0Lo); /* * There is no conflict between transmit handling in * start_xmit and receive processing, thus there is no reason * to take a spin lock for RX handling. Wait until we start * working on the other stuff - hey we don't need a spin lock * anymore. */ rxretprd = *ap->rx_ret_prd; rxretcsm = ap->cur_rx; if (rxretprd != rxretcsm) ace_rx_int(dev, rxretprd, rxretcsm); txcsm = *ap->tx_csm; idx = ap->tx_ret_csm; if (txcsm != idx) { /* * If each skb takes only one descriptor this check degenerates * to identity, because new space has just been opened. * But if skbs are fragmented we must check that this index * update releases enough of space, otherwise we just * wait for device to make more work. */ if (!tx_ring_full(ap, txcsm, ap->tx_prd)) ace_tx_int(dev, txcsm, idx); } evtcsm = readl(®s->EvtCsm); evtprd = *ap->evt_prd; if (evtcsm != evtprd) { evtcsm = ace_handle_event(dev, evtcsm, evtprd); writel(evtcsm, ®s->EvtCsm); } /* * This has to go last in the interrupt handler and run with * the spin lock released ... what lock? */ if (netif_running(dev)) { int cur_size; int run_tasklet = 0; cur_size = atomic_read(&ap->cur_rx_bufs); if (cur_size < RX_LOW_STD_THRES) { if ((cur_size < RX_PANIC_STD_THRES) && !test_and_set_bit(0, &ap->std_refill_busy)) { #ifdef DEBUG printk("low on std buffers %i\n", cur_size); #endif ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size); } else run_tasklet = 1; } if (!ACE_IS_TIGON_I(ap)) { cur_size = atomic_read(&ap->cur_mini_bufs); if (cur_size < RX_LOW_MINI_THRES) { if ((cur_size < RX_PANIC_MINI_THRES) && !test_and_set_bit(0, &ap->mini_refill_busy)) { #ifdef DEBUG printk("low on mini buffers %i\n", cur_size); #endif ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size); } else run_tasklet = 1; } } if (ap->jumbo) { cur_size = atomic_read(&ap->cur_jumbo_bufs); if (cur_size < RX_LOW_JUMBO_THRES) { if ((cur_size < RX_PANIC_JUMBO_THRES) && !test_and_set_bit(0, &ap->jumbo_refill_busy)){ #ifdef DEBUG printk("low on jumbo buffers %i\n", cur_size); #endif ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size); } else run_tasklet = 1; } } if (run_tasklet && !ap->tasklet_pending) { ap->tasklet_pending = 1; tasklet_schedule(&ap->ace_tasklet); } } return IRQ_HANDLED; } static int ace_open(struct net_device *dev) { struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; struct cmd cmd; if (!(ap->fw_running)) { printk(KERN_WARNING "%s: Firmware not running!\n", dev->name); return -EBUSY; } writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu); cmd.evt = C_CLEAR_STATS; cmd.code = 0; cmd.idx = 0; ace_issue_cmd(regs, &cmd); cmd.evt = C_HOST_STATE; cmd.code = C_C_STACK_UP; cmd.idx = 0; ace_issue_cmd(regs, &cmd); if (ap->jumbo && !test_and_set_bit(0, &ap->jumbo_refill_busy)) ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE); if (dev->flags & IFF_PROMISC) { cmd.evt = C_SET_PROMISC_MODE; cmd.code = C_C_PROMISC_ENABLE; cmd.idx = 0; ace_issue_cmd(regs, &cmd); ap->promisc = 1; }else ap->promisc = 0; ap->mcast_all = 0; #if 0 cmd.evt = C_LNK_NEGOTIATION; cmd.code = 0; cmd.idx = 0; ace_issue_cmd(regs, &cmd); #endif netif_start_queue(dev); /* * Setup the bottom half rx ring refill handler */ tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev); return 0; } static int ace_close(struct net_device *dev) { struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; struct cmd cmd; unsigned long flags; short i; /* * Without (or before) releasing irq and stopping hardware, this * is an absolute non-sense, by the way. It will be reset instantly * by the first irq. */ netif_stop_queue(dev); if (ap->promisc) { cmd.evt = C_SET_PROMISC_MODE; cmd.code = C_C_PROMISC_DISABLE; cmd.idx = 0; ace_issue_cmd(regs, &cmd); ap->promisc = 0; } cmd.evt = C_HOST_STATE; cmd.code = C_C_STACK_DOWN; cmd.idx = 0; ace_issue_cmd(regs, &cmd); tasklet_kill(&ap->ace_tasklet); /* * Make sure one CPU is not processing packets while * buffers are being released by another. */ local_irq_save(flags); ace_mask_irq(dev); for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) { struct sk_buff *skb; struct tx_ring_info *info; info = ap->skb->tx_skbuff + i; skb = info->skb; if (dma_unmap_len(info, maplen)) { if (ACE_IS_TIGON_I(ap)) { /* NB: TIGON_1 is special, tx_ring is in io space */ struct tx_desc __iomem *tx; tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i]; writel(0, &tx->addr.addrhi); writel(0, &tx->addr.addrlo); writel(0, &tx->flagsize); } else memset(ap->tx_ring + i, 0, sizeof(struct tx_desc)); pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping), dma_unmap_len(info, maplen), PCI_DMA_TODEVICE); dma_unmap_len_set(info, maplen, 0); } if (skb) { dev_kfree_skb(skb); info->skb = NULL; } } if (ap->jumbo) { cmd.evt = C_RESET_JUMBO_RNG; cmd.code = 0; cmd.idx = 0; ace_issue_cmd(regs, &cmd); } ace_unmask_irq(dev); local_irq_restore(flags); return 0; } static inline dma_addr_t ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb, struct sk_buff *tail, u32 idx) { dma_addr_t mapping; struct tx_ring_info *info; mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), offset_in_page(skb->data), skb->len, PCI_DMA_TODEVICE); info = ap->skb->tx_skbuff + idx; info->skb = tail; dma_unmap_addr_set(info, mapping, mapping); dma_unmap_len_set(info, maplen, skb->len); return mapping; } static inline void ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr, u32 flagsize, u32 vlan_tag) { #if !USE_TX_COAL_NOW flagsize &= ~BD_FLG_COAL_NOW; #endif if (ACE_IS_TIGON_I(ap)) { struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc; writel(addr >> 32, &io->addr.addrhi); writel(addr & 0xffffffff, &io->addr.addrlo); writel(flagsize, &io->flagsize); writel(vlan_tag, &io->vlanres); } else { desc->addr.addrhi = addr >> 32; desc->addr.addrlo = addr; desc->flagsize = flagsize; desc->vlanres = vlan_tag; } } static netdev_tx_t ace_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; struct tx_desc *desc; u32 idx, flagsize; unsigned long maxjiff = jiffies + 3*HZ; restart: idx = ap->tx_prd; if (tx_ring_full(ap, ap->tx_ret_csm, idx)) goto overflow; if (!skb_shinfo(skb)->nr_frags) { dma_addr_t mapping; u32 vlan_tag = 0; mapping = ace_map_tx_skb(ap, skb, skb, idx); flagsize = (skb->len << 16) | (BD_FLG_END); if (skb->ip_summed == CHECKSUM_PARTIAL) flagsize |= BD_FLG_TCP_UDP_SUM; if (skb_vlan_tag_present(skb)) { flagsize |= BD_FLG_VLAN_TAG; vlan_tag = skb_vlan_tag_get(skb); } desc = ap->tx_ring + idx; idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); /* Look at ace_tx_int for explanations. */ if (tx_ring_full(ap, ap->tx_ret_csm, idx)) flagsize |= BD_FLG_COAL_NOW; ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); } else { dma_addr_t mapping; u32 vlan_tag = 0; int i, len = 0; mapping = ace_map_tx_skb(ap, skb, NULL, idx); flagsize = (skb_headlen(skb) << 16); if (skb->ip_summed == CHECKSUM_PARTIAL) flagsize |= BD_FLG_TCP_UDP_SUM; if (skb_vlan_tag_present(skb)) { flagsize |= BD_FLG_VLAN_TAG; vlan_tag = skb_vlan_tag_get(skb); } ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag); idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; struct tx_ring_info *info; len += skb_frag_size(frag); info = ap->skb->tx_skbuff + idx; desc = ap->tx_ring + idx; mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); flagsize = skb_frag_size(frag) << 16; if (skb->ip_summed == CHECKSUM_PARTIAL) flagsize |= BD_FLG_TCP_UDP_SUM; idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); if (i == skb_shinfo(skb)->nr_frags - 1) { flagsize |= BD_FLG_END; if (tx_ring_full(ap, ap->tx_ret_csm, idx)) flagsize |= BD_FLG_COAL_NOW; /* * Only the last fragment frees * the skb! */ info->skb = skb; } else { info->skb = NULL; } dma_unmap_addr_set(info, mapping, mapping); dma_unmap_len_set(info, maplen, skb_frag_size(frag)); ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); } } wmb(); ap->tx_prd = idx; ace_set_txprd(regs, ap, idx); if (flagsize & BD_FLG_COAL_NOW) { netif_stop_queue(dev); /* * A TX-descriptor producer (an IRQ) might have gotten * between, making the ring free again. Since xmit is * serialized, this is the only situation we have to * re-test. */ if (!tx_ring_full(ap, ap->tx_ret_csm, idx)) netif_wake_queue(dev); } return NETDEV_TX_OK; overflow: /* * This race condition is unavoidable with lock-free drivers. * We wake up the queue _before_ tx_prd is advanced, so that we can * enter hard_start_xmit too early, while tx ring still looks closed. * This happens ~1-4 times per 100000 packets, so that we can allow * to loop syncing to other CPU. Probably, we need an additional * wmb() in ace_tx_intr as well. * * Note that this race is relieved by reserving one more entry * in tx ring than it is necessary (see original non-SG driver). * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which * is already overkill. * * Alternative is to return with 1 not throttling queue. In this * case loop becomes longer, no more useful effects. */ if (time_before(jiffies, maxjiff)) { barrier(); cpu_relax(); goto restart; } /* The ring is stuck full. */ printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name); return NETDEV_TX_BUSY; } static int ace_change_mtu(struct net_device *dev, int new_mtu) { struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu); dev->mtu = new_mtu; if (new_mtu > ACE_STD_MTU) { if (!(ap->jumbo)) { printk(KERN_INFO "%s: Enabling Jumbo frame " "support\n", dev->name); ap->jumbo = 1; if (!test_and_set_bit(0, &ap->jumbo_refill_busy)) ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE); ace_set_rxtx_parms(dev, 1); } } else { while (test_and_set_bit(0, &ap->jumbo_refill_busy)); ace_sync_irq(dev->irq); ace_set_rxtx_parms(dev, 0); if (ap->jumbo) { struct cmd cmd; cmd.evt = C_RESET_JUMBO_RNG; cmd.code = 0; cmd.idx = 0; ace_issue_cmd(regs, &cmd); } } return 0; } static int ace_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; u32 link; u32 supported; memset(cmd, 0, sizeof(struct ethtool_link_ksettings)); supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE); cmd->base.port = PORT_FIBRE; link = readl(®s->GigLnkState); if (link & LNK_1000MB) { cmd->base.speed = SPEED_1000; } else { link = readl(®s->FastLnkState); if (link & LNK_100MB) cmd->base.speed = SPEED_100; else if (link & LNK_10MB) cmd->base.speed = SPEED_10; else cmd->base.speed = 0; } if (link & LNK_FULL_DUPLEX) cmd->base.duplex = DUPLEX_FULL; else cmd->base.duplex = DUPLEX_HALF; if (link & LNK_NEGOTIATE) cmd->base.autoneg = AUTONEG_ENABLE; else cmd->base.autoneg = AUTONEG_DISABLE; #if 0 /* * Current struct ethtool_cmd is insufficient */ ecmd->trace = readl(®s->TuneTrace); ecmd->txcoal = readl(®s->TuneTxCoalTicks); ecmd->rxcoal = readl(®s->TuneRxCoalTicks); #endif ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, supported); return 0; } static int ace_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; u32 link, speed; link = readl(®s->GigLnkState); if (link & LNK_1000MB) speed = SPEED_1000; else { link = readl(®s->FastLnkState); if (link & LNK_100MB) speed = SPEED_100; else if (link & LNK_10MB) speed = SPEED_10; else speed = SPEED_100; } link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL; if (!ACE_IS_TIGON_I(ap)) link |= LNK_TX_FLOW_CTL_Y; if (cmd->base.autoneg == AUTONEG_ENABLE) link |= LNK_NEGOTIATE; if (cmd->base.speed != speed) { link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB); switch (cmd->base.speed) { case SPEED_1000: link |= LNK_1000MB; break; case SPEED_100: link |= LNK_100MB; break; case SPEED_10: link |= LNK_10MB; break; } } if (cmd->base.duplex == DUPLEX_FULL) link |= LNK_FULL_DUPLEX; if (link != ap->link) { struct cmd cmd; printk(KERN_INFO "%s: Renegotiating link state\n", dev->name); ap->link = link; writel(link, ®s->TuneLink); if (!ACE_IS_TIGON_I(ap)) writel(link, ®s->TuneFastLink); wmb(); cmd.evt = C_LNK_NEGOTIATION; cmd.code = 0; cmd.idx = 0; ace_issue_cmd(regs, &cmd); } return 0; } static void ace_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct ace_private *ap = netdev_priv(dev); strlcpy(info->driver, "acenic", sizeof(info->driver)); snprintf(info->fw_version, sizeof(info->version), "%i.%i.%i", ap->firmware_major, ap->firmware_minor, ap->firmware_fix); if (ap->pdev) strlcpy(info->bus_info, pci_name(ap->pdev), sizeof(info->bus_info)); } /* * Set the hardware MAC address. */ static int ace_set_mac_addr(struct net_device *dev, void *p) { struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; struct sockaddr *addr=p; u8 *da; struct cmd cmd; if(netif_running(dev)) return -EBUSY; memcpy(dev->dev_addr, addr->sa_data,dev->addr_len); da = (u8 *)dev->dev_addr; writel(da[0] << 8 | da[1], ®s->MacAddrHi); writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5], ®s->MacAddrLo); cmd.evt = C_SET_MAC_ADDR; cmd.code = 0; cmd.idx = 0; ace_issue_cmd(regs, &cmd); return 0; } static void ace_set_multicast_list(struct net_device *dev) { struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; struct cmd cmd; if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) { cmd.evt = C_SET_MULTICAST_MODE; cmd.code = C_C_MCAST_ENABLE; cmd.idx = 0; ace_issue_cmd(regs, &cmd); ap->mcast_all = 1; } else if (ap->mcast_all) { cmd.evt = C_SET_MULTICAST_MODE; cmd.code = C_C_MCAST_DISABLE; cmd.idx = 0; ace_issue_cmd(regs, &cmd); ap->mcast_all = 0; } if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) { cmd.evt = C_SET_PROMISC_MODE; cmd.code = C_C_PROMISC_ENABLE; cmd.idx = 0; ace_issue_cmd(regs, &cmd); ap->promisc = 1; }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) { cmd.evt = C_SET_PROMISC_MODE; cmd.code = C_C_PROMISC_DISABLE; cmd.idx = 0; ace_issue_cmd(regs, &cmd); ap->promisc = 0; } /* * For the time being multicast relies on the upper layers * filtering it properly. The Firmware does not allow one to * set the entire multicast list at a time and keeping track of * it here is going to be messy. */ if (!netdev_mc_empty(dev) && !ap->mcast_all) { cmd.evt = C_SET_MULTICAST_MODE; cmd.code = C_C_MCAST_ENABLE; cmd.idx = 0; ace_issue_cmd(regs, &cmd); }else if (!ap->mcast_all) { cmd.evt = C_SET_MULTICAST_MODE; cmd.code = C_C_MCAST_DISABLE; cmd.idx = 0; ace_issue_cmd(regs, &cmd); } } static struct net_device_stats *ace_get_stats(struct net_device *dev) { struct ace_private *ap = netdev_priv(dev); struct ace_mac_stats __iomem *mac_stats = (struct ace_mac_stats __iomem *)ap->regs->Stats; dev->stats.rx_missed_errors = readl(&mac_stats->drop_space); dev->stats.multicast = readl(&mac_stats->kept_mc); dev->stats.collisions = readl(&mac_stats->coll); return &dev->stats; } static void ace_copy(struct ace_regs __iomem *regs, const __be32 *src, u32 dest, int size) { void __iomem *tdest; short tsize, i; if (size <= 0) return; while (size > 0) { tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), min_t(u32, size, ACE_WINDOW_SIZE)); tdest = (void __iomem *) ®s->Window + (dest & (ACE_WINDOW_SIZE - 1)); writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); for (i = 0; i < (tsize / 4); i++) { /* Firmware is big-endian */ writel(be32_to_cpup(src), tdest); src++; tdest += 4; dest += 4; size -= 4; } } } static void ace_clear(struct ace_regs __iomem *regs, u32 dest, int size) { void __iomem *tdest; short tsize = 0, i; if (size <= 0) return; while (size > 0) { tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), min_t(u32, size, ACE_WINDOW_SIZE)); tdest = (void __iomem *) ®s->Window + (dest & (ACE_WINDOW_SIZE - 1)); writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); for (i = 0; i < (tsize / 4); i++) { writel(0, tdest + i*4); } dest += tsize; size -= tsize; } } /* * Download the firmware into the SRAM on the NIC * * This operation requires the NIC to be halted and is performed with * interrupts disabled and with the spinlock hold. */ static int ace_load_firmware(struct net_device *dev) { const struct firmware *fw; const char *fw_name = "acenic/tg2.bin"; struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; const __be32 *fw_data; u32 load_addr; int ret; if (!(readl(®s->CpuCtrl) & CPU_HALTED)) { printk(KERN_ERR "%s: trying to download firmware while the " "CPU is running!\n", ap->name); return -EFAULT; } if (ACE_IS_TIGON_I(ap)) fw_name = "acenic/tg1.bin"; ret = request_firmware(&fw, fw_name, &ap->pdev->dev); if (ret) { printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n", ap->name, fw_name); return ret; } fw_data = (void *)fw->data; /* Firmware blob starts with version numbers, followed by load and start address. Remainder is the blob to be loaded contiguously from load address. We don't bother to represent the BSS/SBSS sections any more, since we were clearing the whole thing anyway. */ ap->firmware_major = fw->data[0]; ap->firmware_minor = fw->data[1]; ap->firmware_fix = fw->data[2]; ap->firmware_start = be32_to_cpu(fw_data[1]); if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) { printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n", ap->name, ap->firmware_start, fw_name); ret = -EINVAL; goto out; } load_addr = be32_to_cpu(fw_data[2]); if (load_addr < 0x4000 || load_addr >= 0x80000) { printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n", ap->name, load_addr, fw_name); ret = -EINVAL; goto out; } /* * Do not try to clear more than 512KiB or we end up seeing * funny things on NICs with only 512KiB SRAM */ ace_clear(regs, 0x2000, 0x80000-0x2000); ace_copy(regs, &fw_data[3], load_addr, fw->size-12); out: release_firmware(fw); return ret; } /* * The eeprom on the AceNIC is an Atmel i2c EEPROM. * * Accessing the EEPROM is `interesting' to say the least - don't read * this code right after dinner. * * This is all about black magic and bit-banging the device .... I * wonder in what hospital they have put the guy who designed the i2c * specs. * * Oh yes, this is only the beginning! * * Thanks to Stevarino Webinski for helping tracking down the bugs in the * code i2c readout code by beta testing all my hacks. */ static void eeprom_start(struct ace_regs __iomem *regs) { u32 local; readl(®s->LocalCtrl); udelay(ACE_SHORT_DELAY); local = readl(®s->LocalCtrl); local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); udelay(ACE_SHORT_DELAY); local |= EEPROM_CLK_OUT; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); udelay(ACE_SHORT_DELAY); local &= ~EEPROM_DATA_OUT; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); udelay(ACE_SHORT_DELAY); local &= ~EEPROM_CLK_OUT; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); } static void eeprom_prep(struct ace_regs __iomem *regs, u8 magic) { short i; u32 local; udelay(ACE_SHORT_DELAY); local = readl(®s->LocalCtrl); local &= ~EEPROM_DATA_OUT; local |= EEPROM_WRITE_ENABLE; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); for (i = 0; i < 8; i++, magic <<= 1) { udelay(ACE_SHORT_DELAY); if (magic & 0x80) local |= EEPROM_DATA_OUT; else local &= ~EEPROM_DATA_OUT; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); udelay(ACE_SHORT_DELAY); local |= EEPROM_CLK_OUT; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); udelay(ACE_SHORT_DELAY); local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT); writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); } } static int eeprom_check_ack(struct ace_regs __iomem *regs) { int state; u32 local; local = readl(®s->LocalCtrl); local &= ~EEPROM_WRITE_ENABLE; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); udelay(ACE_LONG_DELAY); local |= EEPROM_CLK_OUT; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); udelay(ACE_SHORT_DELAY); /* sample data in middle of high clk */ state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0; udelay(ACE_SHORT_DELAY); mb(); writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); return state; } static void eeprom_stop(struct ace_regs __iomem *regs) { u32 local; udelay(ACE_SHORT_DELAY); local = readl(®s->LocalCtrl); local |= EEPROM_WRITE_ENABLE; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); udelay(ACE_SHORT_DELAY); local &= ~EEPROM_DATA_OUT; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); udelay(ACE_SHORT_DELAY); local |= EEPROM_CLK_OUT; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); udelay(ACE_SHORT_DELAY); local |= EEPROM_DATA_OUT; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); udelay(ACE_LONG_DELAY); local &= ~EEPROM_CLK_OUT; writel(local, ®s->LocalCtrl); mb(); } /* * Read a whole byte from the EEPROM. */ static int read_eeprom_byte(struct net_device *dev, unsigned long offset) { struct ace_private *ap = netdev_priv(dev); struct ace_regs __iomem *regs = ap->regs; unsigned long flags; u32 local; int result = 0; short i; /* * Don't take interrupts on this CPU will bit banging * the %#%#@$ I2C device */ local_irq_save(flags); eeprom_start(regs); eeprom_prep(regs, EEPROM_WRITE_SELECT); if (eeprom_check_ack(regs)) { local_irq_restore(flags); printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name); result = -EIO; goto eeprom_read_error; } eeprom_prep(regs, (offset >> 8) & 0xff); if (eeprom_check_ack(regs)) { local_irq_restore(flags); printk(KERN_ERR "%s: Unable to set address byte 0\n", ap->name); result = -EIO; goto eeprom_read_error; } eeprom_prep(regs, offset & 0xff); if (eeprom_check_ack(regs)) { local_irq_restore(flags); printk(KERN_ERR "%s: Unable to set address byte 1\n", ap->name); result = -EIO; goto eeprom_read_error; } eeprom_start(regs); eeprom_prep(regs, EEPROM_READ_SELECT); if (eeprom_check_ack(regs)) { local_irq_restore(flags); printk(KERN_ERR "%s: Unable to set READ_SELECT\n", ap->name); result = -EIO; goto eeprom_read_error; } for (i = 0; i < 8; i++) { local = readl(®s->LocalCtrl); local &= ~EEPROM_WRITE_ENABLE; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); udelay(ACE_LONG_DELAY); mb(); local |= EEPROM_CLK_OUT; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); udelay(ACE_SHORT_DELAY); /* sample data mid high clk */ result = (result << 1) | ((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0); udelay(ACE_SHORT_DELAY); mb(); local = readl(®s->LocalCtrl); local &= ~EEPROM_CLK_OUT; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); udelay(ACE_SHORT_DELAY); mb(); if (i == 7) { local |= EEPROM_WRITE_ENABLE; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); udelay(ACE_SHORT_DELAY); } } local |= EEPROM_DATA_OUT; writel(local, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); udelay(ACE_SHORT_DELAY); writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl); readl(®s->LocalCtrl); udelay(ACE_LONG_DELAY); writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); readl(®s->LocalCtrl); mb(); udelay(ACE_SHORT_DELAY); eeprom_stop(regs); local_irq_restore(flags); out: return result; eeprom_read_error: printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n", ap->name, offset); goto out; } module_pci_driver(acenic_pci_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1