Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tom Lendacky | 13674 | 99.20% | 21 | 87.50% |
Andrew Lunn | 110 | 0.80% | 3 | 12.50% |
Total | 13784 | 24 |
/* * AMD 10Gb Ethernet driver * * This file is available to you under your choice of the following two * licenses: * * License 1: GPLv2 * * Copyright (c) 2016 Advanced Micro Devices, Inc. * * This file is free software; you may copy, redistribute and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or (at * your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * * This file incorporates work covered by the following copyright and * permission notice: * The Synopsys DWC ETHER XGMAC Software Driver and documentation * (hereinafter "Software") is an unsupported proprietary work of Synopsys, * Inc. unless otherwise expressly agreed to in writing between Synopsys * and you. * * The Software IS NOT an item of Licensed Software or Licensed Product * under any End User Software License Agreement or Agreement for Licensed * Product with Synopsys or any supplement thereto. Permission is hereby * granted, free of charge, to any person obtaining a copy of this software * annotated with this license and the Software, to deal in the Software * without restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished * to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * * License 2: Modified BSD * * Copyright (c) 2016 Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Advanced Micro Devices, Inc. nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * This file incorporates work covered by the following copyright and * permission notice: * The Synopsys DWC ETHER XGMAC Software Driver and documentation * (hereinafter "Software") is an unsupported proprietary work of Synopsys, * Inc. unless otherwise expressly agreed to in writing between Synopsys * and you. * * The Software IS NOT an item of Licensed Software or Licensed Product * under any End User Software License Agreement or Agreement for Licensed * Product with Synopsys or any supplement thereto. Permission is hereby * granted, free of charge, to any person obtaining a copy of this software * annotated with this license and the Software, to deal in the Software * without restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished * to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include <linux/module.h> #include <linux/device.h> #include <linux/kmod.h> #include <linux/mdio.h> #include <linux/phy.h> #include <linux/ethtool.h> #include "xgbe.h" #include "xgbe-common.h" #define XGBE_PHY_PORT_SPEED_100 BIT(0) #define XGBE_PHY_PORT_SPEED_1000 BIT(1) #define XGBE_PHY_PORT_SPEED_2500 BIT(2) #define XGBE_PHY_PORT_SPEED_10000 BIT(3) #define XGBE_MUTEX_RELEASE 0x80000000 #define XGBE_SFP_DIRECT 7 /* I2C target addresses */ #define XGBE_SFP_SERIAL_ID_ADDRESS 0x50 #define XGBE_SFP_DIAG_INFO_ADDRESS 0x51 #define XGBE_SFP_PHY_ADDRESS 0x56 #define XGBE_GPIO_ADDRESS_PCA9555 0x20 /* SFP sideband signal indicators */ #define XGBE_GPIO_NO_TX_FAULT BIT(0) #define XGBE_GPIO_NO_RATE_SELECT BIT(1) #define XGBE_GPIO_NO_MOD_ABSENT BIT(2) #define XGBE_GPIO_NO_RX_LOS BIT(3) /* Rate-change complete wait/retry count */ #define XGBE_RATECHANGE_COUNT 500 /* CDR delay values for KR support (in usec) */ #define XGBE_CDR_DELAY_INIT 10000 #define XGBE_CDR_DELAY_INC 10000 #define XGBE_CDR_DELAY_MAX 100000 /* RRC frequency during link status check */ #define XGBE_RRC_FREQUENCY 10 enum xgbe_port_mode { XGBE_PORT_MODE_RSVD = 0, XGBE_PORT_MODE_BACKPLANE, XGBE_PORT_MODE_BACKPLANE_2500, XGBE_PORT_MODE_1000BASE_T, XGBE_PORT_MODE_1000BASE_X, XGBE_PORT_MODE_NBASE_T, XGBE_PORT_MODE_10GBASE_T, XGBE_PORT_MODE_10GBASE_R, XGBE_PORT_MODE_SFP, XGBE_PORT_MODE_MAX, }; enum xgbe_conn_type { XGBE_CONN_TYPE_NONE = 0, XGBE_CONN_TYPE_SFP, XGBE_CONN_TYPE_MDIO, XGBE_CONN_TYPE_RSVD1, XGBE_CONN_TYPE_BACKPLANE, XGBE_CONN_TYPE_MAX, }; /* SFP/SFP+ related definitions */ enum xgbe_sfp_comm { XGBE_SFP_COMM_DIRECT = 0, XGBE_SFP_COMM_PCA9545, }; enum xgbe_sfp_cable { XGBE_SFP_CABLE_UNKNOWN = 0, XGBE_SFP_CABLE_ACTIVE, XGBE_SFP_CABLE_PASSIVE, }; enum xgbe_sfp_base { XGBE_SFP_BASE_UNKNOWN = 0, XGBE_SFP_BASE_1000_T, XGBE_SFP_BASE_1000_SX, XGBE_SFP_BASE_1000_LX, XGBE_SFP_BASE_1000_CX, XGBE_SFP_BASE_10000_SR, XGBE_SFP_BASE_10000_LR, XGBE_SFP_BASE_10000_LRM, XGBE_SFP_BASE_10000_ER, XGBE_SFP_BASE_10000_CR, }; enum xgbe_sfp_speed { XGBE_SFP_SPEED_UNKNOWN = 0, XGBE_SFP_SPEED_100_1000, XGBE_SFP_SPEED_1000, XGBE_SFP_SPEED_10000, }; /* SFP Serial ID Base ID values relative to an offset of 0 */ #define XGBE_SFP_BASE_ID 0 #define XGBE_SFP_ID_SFP 0x03 #define XGBE_SFP_BASE_EXT_ID 1 #define XGBE_SFP_EXT_ID_SFP 0x04 #define XGBE_SFP_BASE_10GBE_CC 3 #define XGBE_SFP_BASE_10GBE_CC_SR BIT(4) #define XGBE_SFP_BASE_10GBE_CC_LR BIT(5) #define XGBE_SFP_BASE_10GBE_CC_LRM BIT(6) #define XGBE_SFP_BASE_10GBE_CC_ER BIT(7) #define XGBE_SFP_BASE_1GBE_CC 6 #define XGBE_SFP_BASE_1GBE_CC_SX BIT(0) #define XGBE_SFP_BASE_1GBE_CC_LX BIT(1) #define XGBE_SFP_BASE_1GBE_CC_CX BIT(2) #define XGBE_SFP_BASE_1GBE_CC_T BIT(3) #define XGBE_SFP_BASE_CABLE 8 #define XGBE_SFP_BASE_CABLE_PASSIVE BIT(2) #define XGBE_SFP_BASE_CABLE_ACTIVE BIT(3) #define XGBE_SFP_BASE_BR 12 #define XGBE_SFP_BASE_BR_1GBE_MIN 0x0a #define XGBE_SFP_BASE_BR_1GBE_MAX 0x0d #define XGBE_SFP_BASE_BR_10GBE_MIN 0x64 #define XGBE_SFP_BASE_BR_10GBE_MAX 0x68 #define XGBE_SFP_BASE_CU_CABLE_LEN 18 #define XGBE_SFP_BASE_VENDOR_NAME 20 #define XGBE_SFP_BASE_VENDOR_NAME_LEN 16 #define XGBE_SFP_BASE_VENDOR_PN 40 #define XGBE_SFP_BASE_VENDOR_PN_LEN 16 #define XGBE_SFP_BASE_VENDOR_REV 56 #define XGBE_SFP_BASE_VENDOR_REV_LEN 4 #define XGBE_SFP_BASE_CC 63 /* SFP Serial ID Extended ID values relative to an offset of 64 */ #define XGBE_SFP_BASE_VENDOR_SN 4 #define XGBE_SFP_BASE_VENDOR_SN_LEN 16 #define XGBE_SFP_EXTD_OPT1 1 #define XGBE_SFP_EXTD_OPT1_RX_LOS BIT(1) #define XGBE_SFP_EXTD_OPT1_TX_FAULT BIT(3) #define XGBE_SFP_EXTD_DIAG 28 #define XGBE_SFP_EXTD_DIAG_ADDR_CHANGE BIT(2) #define XGBE_SFP_EXTD_SFF_8472 30 #define XGBE_SFP_EXTD_CC 31 struct xgbe_sfp_eeprom { u8 base[64]; u8 extd[32]; u8 vendor[32]; }; #define XGBE_SFP_DIAGS_SUPPORTED(_x) \ ((_x)->extd[XGBE_SFP_EXTD_SFF_8472] && \ !((_x)->extd[XGBE_SFP_EXTD_DIAG] & XGBE_SFP_EXTD_DIAG_ADDR_CHANGE)) #define XGBE_SFP_EEPROM_BASE_LEN 256 #define XGBE_SFP_EEPROM_DIAG_LEN 256 #define XGBE_SFP_EEPROM_MAX (XGBE_SFP_EEPROM_BASE_LEN + \ XGBE_SFP_EEPROM_DIAG_LEN) #define XGBE_BEL_FUSE_VENDOR "BEL-FUSE " #define XGBE_BEL_FUSE_PARTNO "1GBT-SFP06 " struct xgbe_sfp_ascii { union { char vendor[XGBE_SFP_BASE_VENDOR_NAME_LEN + 1]; char partno[XGBE_SFP_BASE_VENDOR_PN_LEN + 1]; char rev[XGBE_SFP_BASE_VENDOR_REV_LEN + 1]; char serno[XGBE_SFP_BASE_VENDOR_SN_LEN + 1]; } u; }; /* MDIO PHY reset types */ enum xgbe_mdio_reset { XGBE_MDIO_RESET_NONE = 0, XGBE_MDIO_RESET_I2C_GPIO, XGBE_MDIO_RESET_INT_GPIO, XGBE_MDIO_RESET_MAX, }; /* Re-driver related definitions */ enum xgbe_phy_redrv_if { XGBE_PHY_REDRV_IF_MDIO = 0, XGBE_PHY_REDRV_IF_I2C, XGBE_PHY_REDRV_IF_MAX, }; enum xgbe_phy_redrv_model { XGBE_PHY_REDRV_MODEL_4223 = 0, XGBE_PHY_REDRV_MODEL_4227, XGBE_PHY_REDRV_MODEL_MAX, }; enum xgbe_phy_redrv_mode { XGBE_PHY_REDRV_MODE_CX = 5, XGBE_PHY_REDRV_MODE_SR = 9, }; #define XGBE_PHY_REDRV_MODE_REG 0x12b0 /* PHY related configuration information */ struct xgbe_phy_data { enum xgbe_port_mode port_mode; unsigned int port_id; unsigned int port_speeds; enum xgbe_conn_type conn_type; enum xgbe_mode cur_mode; enum xgbe_mode start_mode; unsigned int rrc_count; unsigned int mdio_addr; /* SFP Support */ enum xgbe_sfp_comm sfp_comm; unsigned int sfp_mux_address; unsigned int sfp_mux_channel; unsigned int sfp_gpio_address; unsigned int sfp_gpio_mask; unsigned int sfp_gpio_inputs; unsigned int sfp_gpio_rx_los; unsigned int sfp_gpio_tx_fault; unsigned int sfp_gpio_mod_absent; unsigned int sfp_gpio_rate_select; unsigned int sfp_rx_los; unsigned int sfp_tx_fault; unsigned int sfp_mod_absent; unsigned int sfp_changed; unsigned int sfp_phy_avail; unsigned int sfp_cable_len; enum xgbe_sfp_base sfp_base; enum xgbe_sfp_cable sfp_cable; enum xgbe_sfp_speed sfp_speed; struct xgbe_sfp_eeprom sfp_eeprom; /* External PHY support */ enum xgbe_mdio_mode phydev_mode; struct mii_bus *mii; struct phy_device *phydev; enum xgbe_mdio_reset mdio_reset; unsigned int mdio_reset_addr; unsigned int mdio_reset_gpio; /* Re-driver support */ unsigned int redrv; unsigned int redrv_if; unsigned int redrv_addr; unsigned int redrv_lane; unsigned int redrv_model; /* KR AN support */ unsigned int phy_cdr_notrack; unsigned int phy_cdr_delay; }; /* I2C, MDIO and GPIO lines are muxed, so only one device at a time */ static DEFINE_MUTEX(xgbe_phy_comm_lock); static enum xgbe_an_mode xgbe_phy_an_mode(struct xgbe_prv_data *pdata); static int xgbe_phy_i2c_xfer(struct xgbe_prv_data *pdata, struct xgbe_i2c_op *i2c_op) { return pdata->i2c_if.i2c_xfer(pdata, i2c_op); } static int xgbe_phy_redrv_write(struct xgbe_prv_data *pdata, unsigned int reg, unsigned int val) { struct xgbe_phy_data *phy_data = pdata->phy_data; struct xgbe_i2c_op i2c_op; __be16 *redrv_val; u8 redrv_data[5], csum; unsigned int i, retry; int ret; /* High byte of register contains read/write indicator */ redrv_data[0] = ((reg >> 8) & 0xff) << 1; redrv_data[1] = reg & 0xff; redrv_val = (__be16 *)&redrv_data[2]; *redrv_val = cpu_to_be16(val); /* Calculate 1 byte checksum */ csum = 0; for (i = 0; i < 4; i++) { csum += redrv_data[i]; if (redrv_data[i] > csum) csum++; } redrv_data[4] = ~csum; retry = 1; again1: i2c_op.cmd = XGBE_I2C_CMD_WRITE; i2c_op.target = phy_data->redrv_addr; i2c_op.len = sizeof(redrv_data); i2c_op.buf = redrv_data; ret = xgbe_phy_i2c_xfer(pdata, &i2c_op); if (ret) { if ((ret == -EAGAIN) && retry--) goto again1; return ret; } retry = 1; again2: i2c_op.cmd = XGBE_I2C_CMD_READ; i2c_op.target = phy_data->redrv_addr; i2c_op.len = 1; i2c_op.buf = redrv_data; ret = xgbe_phy_i2c_xfer(pdata, &i2c_op); if (ret) { if ((ret == -EAGAIN) && retry--) goto again2; return ret; } if (redrv_data[0] != 0xff) { netif_dbg(pdata, drv, pdata->netdev, "Redriver write checksum error\n"); ret = -EIO; } return ret; } static int xgbe_phy_i2c_write(struct xgbe_prv_data *pdata, unsigned int target, void *val, unsigned int val_len) { struct xgbe_i2c_op i2c_op; int retry, ret; retry = 1; again: /* Write the specfied register */ i2c_op.cmd = XGBE_I2C_CMD_WRITE; i2c_op.target = target; i2c_op.len = val_len; i2c_op.buf = val; ret = xgbe_phy_i2c_xfer(pdata, &i2c_op); if ((ret == -EAGAIN) && retry--) goto again; return ret; } static int xgbe_phy_i2c_read(struct xgbe_prv_data *pdata, unsigned int target, void *reg, unsigned int reg_len, void *val, unsigned int val_len) { struct xgbe_i2c_op i2c_op; int retry, ret; retry = 1; again1: /* Set the specified register to read */ i2c_op.cmd = XGBE_I2C_CMD_WRITE; i2c_op.target = target; i2c_op.len = reg_len; i2c_op.buf = reg; ret = xgbe_phy_i2c_xfer(pdata, &i2c_op); if (ret) { if ((ret == -EAGAIN) && retry--) goto again1; return ret; } retry = 1; again2: /* Read the specfied register */ i2c_op.cmd = XGBE_I2C_CMD_READ; i2c_op.target = target; i2c_op.len = val_len; i2c_op.buf = val; ret = xgbe_phy_i2c_xfer(pdata, &i2c_op); if ((ret == -EAGAIN) && retry--) goto again2; return ret; } static int xgbe_phy_sfp_put_mux(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; struct xgbe_i2c_op i2c_op; u8 mux_channel; if (phy_data->sfp_comm == XGBE_SFP_COMM_DIRECT) return 0; /* Select no mux channels */ mux_channel = 0; i2c_op.cmd = XGBE_I2C_CMD_WRITE; i2c_op.target = phy_data->sfp_mux_address; i2c_op.len = sizeof(mux_channel); i2c_op.buf = &mux_channel; return xgbe_phy_i2c_xfer(pdata, &i2c_op); } static int xgbe_phy_sfp_get_mux(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; struct xgbe_i2c_op i2c_op; u8 mux_channel; if (phy_data->sfp_comm == XGBE_SFP_COMM_DIRECT) return 0; /* Select desired mux channel */ mux_channel = 1 << phy_data->sfp_mux_channel; i2c_op.cmd = XGBE_I2C_CMD_WRITE; i2c_op.target = phy_data->sfp_mux_address; i2c_op.len = sizeof(mux_channel); i2c_op.buf = &mux_channel; return xgbe_phy_i2c_xfer(pdata, &i2c_op); } static void xgbe_phy_put_comm_ownership(struct xgbe_prv_data *pdata) { mutex_unlock(&xgbe_phy_comm_lock); } static int xgbe_phy_get_comm_ownership(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; unsigned long timeout; unsigned int mutex_id; /* The I2C and MDIO/GPIO bus is multiplexed between multiple devices, * the driver needs to take the software mutex and then the hardware * mutexes before being able to use the busses. */ mutex_lock(&xgbe_phy_comm_lock); /* Clear the mutexes */ XP_IOWRITE(pdata, XP_I2C_MUTEX, XGBE_MUTEX_RELEASE); XP_IOWRITE(pdata, XP_MDIO_MUTEX, XGBE_MUTEX_RELEASE); /* Mutex formats are the same for I2C and MDIO/GPIO */ mutex_id = 0; XP_SET_BITS(mutex_id, XP_I2C_MUTEX, ID, phy_data->port_id); XP_SET_BITS(mutex_id, XP_I2C_MUTEX, ACTIVE, 1); timeout = jiffies + (5 * HZ); while (time_before(jiffies, timeout)) { /* Must be all zeroes in order to obtain the mutex */ if (XP_IOREAD(pdata, XP_I2C_MUTEX) || XP_IOREAD(pdata, XP_MDIO_MUTEX)) { usleep_range(100, 200); continue; } /* Obtain the mutex */ XP_IOWRITE(pdata, XP_I2C_MUTEX, mutex_id); XP_IOWRITE(pdata, XP_MDIO_MUTEX, mutex_id); return 0; } mutex_unlock(&xgbe_phy_comm_lock); netdev_err(pdata->netdev, "unable to obtain hardware mutexes\n"); return -ETIMEDOUT; } static int xgbe_phy_mdio_mii_write(struct xgbe_prv_data *pdata, int addr, int reg, u16 val) { struct xgbe_phy_data *phy_data = pdata->phy_data; if (reg & MII_ADDR_C45) { if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL45) return -ENOTSUPP; } else { if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL22) return -ENOTSUPP; } return pdata->hw_if.write_ext_mii_regs(pdata, addr, reg, val); } static int xgbe_phy_i2c_mii_write(struct xgbe_prv_data *pdata, int reg, u16 val) { __be16 *mii_val; u8 mii_data[3]; int ret; ret = xgbe_phy_sfp_get_mux(pdata); if (ret) return ret; mii_data[0] = reg & 0xff; mii_val = (__be16 *)&mii_data[1]; *mii_val = cpu_to_be16(val); ret = xgbe_phy_i2c_write(pdata, XGBE_SFP_PHY_ADDRESS, mii_data, sizeof(mii_data)); xgbe_phy_sfp_put_mux(pdata); return ret; } static int xgbe_phy_mii_write(struct mii_bus *mii, int addr, int reg, u16 val) { struct xgbe_prv_data *pdata = mii->priv; struct xgbe_phy_data *phy_data = pdata->phy_data; int ret; ret = xgbe_phy_get_comm_ownership(pdata); if (ret) return ret; if (phy_data->conn_type == XGBE_CONN_TYPE_SFP) ret = xgbe_phy_i2c_mii_write(pdata, reg, val); else if (phy_data->conn_type & XGBE_CONN_TYPE_MDIO) ret = xgbe_phy_mdio_mii_write(pdata, addr, reg, val); else ret = -ENOTSUPP; xgbe_phy_put_comm_ownership(pdata); return ret; } static int xgbe_phy_mdio_mii_read(struct xgbe_prv_data *pdata, int addr, int reg) { struct xgbe_phy_data *phy_data = pdata->phy_data; if (reg & MII_ADDR_C45) { if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL45) return -ENOTSUPP; } else { if (phy_data->phydev_mode != XGBE_MDIO_MODE_CL22) return -ENOTSUPP; } return pdata->hw_if.read_ext_mii_regs(pdata, addr, reg); } static int xgbe_phy_i2c_mii_read(struct xgbe_prv_data *pdata, int reg) { __be16 mii_val; u8 mii_reg; int ret; ret = xgbe_phy_sfp_get_mux(pdata); if (ret) return ret; mii_reg = reg; ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_PHY_ADDRESS, &mii_reg, sizeof(mii_reg), &mii_val, sizeof(mii_val)); if (!ret) ret = be16_to_cpu(mii_val); xgbe_phy_sfp_put_mux(pdata); return ret; } static int xgbe_phy_mii_read(struct mii_bus *mii, int addr, int reg) { struct xgbe_prv_data *pdata = mii->priv; struct xgbe_phy_data *phy_data = pdata->phy_data; int ret; ret = xgbe_phy_get_comm_ownership(pdata); if (ret) return ret; if (phy_data->conn_type == XGBE_CONN_TYPE_SFP) ret = xgbe_phy_i2c_mii_read(pdata, reg); else if (phy_data->conn_type & XGBE_CONN_TYPE_MDIO) ret = xgbe_phy_mdio_mii_read(pdata, addr, reg); else ret = -ENOTSUPP; xgbe_phy_put_comm_ownership(pdata); return ret; } static void xgbe_phy_sfp_phy_settings(struct xgbe_prv_data *pdata) { struct ethtool_link_ksettings *lks = &pdata->phy.lks; struct xgbe_phy_data *phy_data = pdata->phy_data; if (!phy_data->sfp_mod_absent && !phy_data->sfp_changed) return; XGBE_ZERO_SUP(lks); if (phy_data->sfp_mod_absent) { pdata->phy.speed = SPEED_UNKNOWN; pdata->phy.duplex = DUPLEX_UNKNOWN; pdata->phy.autoneg = AUTONEG_ENABLE; pdata->phy.pause_autoneg = AUTONEG_ENABLE; XGBE_SET_SUP(lks, Autoneg); XGBE_SET_SUP(lks, Pause); XGBE_SET_SUP(lks, Asym_Pause); XGBE_SET_SUP(lks, TP); XGBE_SET_SUP(lks, FIBRE); XGBE_LM_COPY(lks, advertising, lks, supported); return; } switch (phy_data->sfp_base) { case XGBE_SFP_BASE_1000_T: case XGBE_SFP_BASE_1000_SX: case XGBE_SFP_BASE_1000_LX: case XGBE_SFP_BASE_1000_CX: pdata->phy.speed = SPEED_UNKNOWN; pdata->phy.duplex = DUPLEX_UNKNOWN; pdata->phy.autoneg = AUTONEG_ENABLE; pdata->phy.pause_autoneg = AUTONEG_ENABLE; XGBE_SET_SUP(lks, Autoneg); XGBE_SET_SUP(lks, Pause); XGBE_SET_SUP(lks, Asym_Pause); if (phy_data->sfp_base == XGBE_SFP_BASE_1000_T) { if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) XGBE_SET_SUP(lks, 100baseT_Full); if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) XGBE_SET_SUP(lks, 1000baseT_Full); } else { if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) XGBE_SET_SUP(lks, 1000baseX_Full); } break; case XGBE_SFP_BASE_10000_SR: case XGBE_SFP_BASE_10000_LR: case XGBE_SFP_BASE_10000_LRM: case XGBE_SFP_BASE_10000_ER: case XGBE_SFP_BASE_10000_CR: pdata->phy.speed = SPEED_10000; pdata->phy.duplex = DUPLEX_FULL; pdata->phy.autoneg = AUTONEG_DISABLE; pdata->phy.pause_autoneg = AUTONEG_DISABLE; if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) { switch (phy_data->sfp_base) { case XGBE_SFP_BASE_10000_SR: XGBE_SET_SUP(lks, 10000baseSR_Full); break; case XGBE_SFP_BASE_10000_LR: XGBE_SET_SUP(lks, 10000baseLR_Full); break; case XGBE_SFP_BASE_10000_LRM: XGBE_SET_SUP(lks, 10000baseLRM_Full); break; case XGBE_SFP_BASE_10000_ER: XGBE_SET_SUP(lks, 10000baseER_Full); break; case XGBE_SFP_BASE_10000_CR: XGBE_SET_SUP(lks, 10000baseCR_Full); break; default: break; } } break; default: pdata->phy.speed = SPEED_UNKNOWN; pdata->phy.duplex = DUPLEX_UNKNOWN; pdata->phy.autoneg = AUTONEG_DISABLE; pdata->phy.pause_autoneg = AUTONEG_DISABLE; break; } switch (phy_data->sfp_base) { case XGBE_SFP_BASE_1000_T: case XGBE_SFP_BASE_1000_CX: case XGBE_SFP_BASE_10000_CR: XGBE_SET_SUP(lks, TP); break; default: XGBE_SET_SUP(lks, FIBRE); break; } XGBE_LM_COPY(lks, advertising, lks, supported); } static bool xgbe_phy_sfp_bit_rate(struct xgbe_sfp_eeprom *sfp_eeprom, enum xgbe_sfp_speed sfp_speed) { u8 *sfp_base, min, max; sfp_base = sfp_eeprom->base; switch (sfp_speed) { case XGBE_SFP_SPEED_1000: min = XGBE_SFP_BASE_BR_1GBE_MIN; max = XGBE_SFP_BASE_BR_1GBE_MAX; break; case XGBE_SFP_SPEED_10000: min = XGBE_SFP_BASE_BR_10GBE_MIN; max = XGBE_SFP_BASE_BR_10GBE_MAX; break; default: return false; } return ((sfp_base[XGBE_SFP_BASE_BR] >= min) && (sfp_base[XGBE_SFP_BASE_BR] <= max)); } static void xgbe_phy_free_phy_device(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; if (phy_data->phydev) { phy_detach(phy_data->phydev); phy_device_remove(phy_data->phydev); phy_device_free(phy_data->phydev); phy_data->phydev = NULL; } } static bool xgbe_phy_finisar_phy_quirks(struct xgbe_prv_data *pdata) { __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, }; struct xgbe_phy_data *phy_data = pdata->phy_data; unsigned int phy_id = phy_data->phydev->phy_id; if (phy_data->port_mode != XGBE_PORT_MODE_SFP) return false; if ((phy_id & 0xfffffff0) != 0x01ff0cc0) return false; /* Enable Base-T AN */ phy_write(phy_data->phydev, 0x16, 0x0001); phy_write(phy_data->phydev, 0x00, 0x9140); phy_write(phy_data->phydev, 0x16, 0x0000); /* Enable SGMII at 100Base-T/1000Base-T Full Duplex */ phy_write(phy_data->phydev, 0x1b, 0x9084); phy_write(phy_data->phydev, 0x09, 0x0e00); phy_write(phy_data->phydev, 0x00, 0x8140); phy_write(phy_data->phydev, 0x04, 0x0d01); phy_write(phy_data->phydev, 0x00, 0x9140); linkmode_set_bit_array(phy_10_100_features_array, ARRAY_SIZE(phy_10_100_features_array), supported); linkmode_set_bit_array(phy_gbit_features_array, ARRAY_SIZE(phy_gbit_features_array), supported); linkmode_copy(phy_data->phydev->supported, supported); phy_support_asym_pause(phy_data->phydev); netif_dbg(pdata, drv, pdata->netdev, "Finisar PHY quirk in place\n"); return true; } static bool xgbe_phy_belfuse_phy_quirks(struct xgbe_prv_data *pdata) { __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, }; struct xgbe_phy_data *phy_data = pdata->phy_data; struct xgbe_sfp_eeprom *sfp_eeprom = &phy_data->sfp_eeprom; unsigned int phy_id = phy_data->phydev->phy_id; int reg; if (phy_data->port_mode != XGBE_PORT_MODE_SFP) return false; if (memcmp(&sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_NAME], XGBE_BEL_FUSE_VENDOR, XGBE_SFP_BASE_VENDOR_NAME_LEN)) return false; /* For Bel-Fuse, use the extra AN flag */ pdata->an_again = 1; if (memcmp(&sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_PN], XGBE_BEL_FUSE_PARTNO, XGBE_SFP_BASE_VENDOR_PN_LEN)) return false; if ((phy_id & 0xfffffff0) != 0x03625d10) return false; /* Disable RGMII mode */ phy_write(phy_data->phydev, 0x18, 0x7007); reg = phy_read(phy_data->phydev, 0x18); phy_write(phy_data->phydev, 0x18, reg & ~0x0080); /* Enable fiber register bank */ phy_write(phy_data->phydev, 0x1c, 0x7c00); reg = phy_read(phy_data->phydev, 0x1c); reg &= 0x03ff; reg &= ~0x0001; phy_write(phy_data->phydev, 0x1c, 0x8000 | 0x7c00 | reg | 0x0001); /* Power down SerDes */ reg = phy_read(phy_data->phydev, 0x00); phy_write(phy_data->phydev, 0x00, reg | 0x00800); /* Configure SGMII-to-Copper mode */ phy_write(phy_data->phydev, 0x1c, 0x7c00); reg = phy_read(phy_data->phydev, 0x1c); reg &= 0x03ff; reg &= ~0x0006; phy_write(phy_data->phydev, 0x1c, 0x8000 | 0x7c00 | reg | 0x0004); /* Power up SerDes */ reg = phy_read(phy_data->phydev, 0x00); phy_write(phy_data->phydev, 0x00, reg & ~0x00800); /* Enable copper register bank */ phy_write(phy_data->phydev, 0x1c, 0x7c00); reg = phy_read(phy_data->phydev, 0x1c); reg &= 0x03ff; reg &= ~0x0001; phy_write(phy_data->phydev, 0x1c, 0x8000 | 0x7c00 | reg); /* Power up SerDes */ reg = phy_read(phy_data->phydev, 0x00); phy_write(phy_data->phydev, 0x00, reg & ~0x00800); linkmode_set_bit_array(phy_10_100_features_array, ARRAY_SIZE(phy_10_100_features_array), supported); linkmode_set_bit_array(phy_gbit_features_array, ARRAY_SIZE(phy_gbit_features_array), supported); linkmode_copy(phy_data->phydev->supported, supported); phy_support_asym_pause(phy_data->phydev); netif_dbg(pdata, drv, pdata->netdev, "BelFuse PHY quirk in place\n"); return true; } static void xgbe_phy_external_phy_quirks(struct xgbe_prv_data *pdata) { if (xgbe_phy_belfuse_phy_quirks(pdata)) return; if (xgbe_phy_finisar_phy_quirks(pdata)) return; } static int xgbe_phy_find_phy_device(struct xgbe_prv_data *pdata) { struct ethtool_link_ksettings *lks = &pdata->phy.lks; struct xgbe_phy_data *phy_data = pdata->phy_data; struct phy_device *phydev; int ret; /* If we already have a PHY, just return */ if (phy_data->phydev) return 0; /* Clear the extra AN flag */ pdata->an_again = 0; /* Check for the use of an external PHY */ if (phy_data->phydev_mode == XGBE_MDIO_MODE_NONE) return 0; /* For SFP, only use an external PHY if available */ if ((phy_data->port_mode == XGBE_PORT_MODE_SFP) && !phy_data->sfp_phy_avail) return 0; /* Set the proper MDIO mode for the PHY */ ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->mdio_addr, phy_data->phydev_mode); if (ret) { netdev_err(pdata->netdev, "mdio port/clause not compatible (%u/%u)\n", phy_data->mdio_addr, phy_data->phydev_mode); return ret; } /* Create and connect to the PHY device */ phydev = get_phy_device(phy_data->mii, phy_data->mdio_addr, (phy_data->phydev_mode == XGBE_MDIO_MODE_CL45)); if (IS_ERR(phydev)) { netdev_err(pdata->netdev, "get_phy_device failed\n"); return -ENODEV; } netif_dbg(pdata, drv, pdata->netdev, "external PHY id is %#010x\n", phydev->phy_id); /*TODO: If c45, add request_module based on one of the MMD ids? */ ret = phy_device_register(phydev); if (ret) { netdev_err(pdata->netdev, "phy_device_register failed\n"); phy_device_free(phydev); return ret; } ret = phy_attach_direct(pdata->netdev, phydev, phydev->dev_flags, PHY_INTERFACE_MODE_SGMII); if (ret) { netdev_err(pdata->netdev, "phy_attach_direct failed\n"); phy_device_remove(phydev); phy_device_free(phydev); return ret; } phy_data->phydev = phydev; xgbe_phy_external_phy_quirks(pdata); linkmode_and(phydev->advertising, phydev->advertising, lks->link_modes.advertising); phy_start_aneg(phy_data->phydev); return 0; } static void xgbe_phy_sfp_external_phy(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; int ret; if (!phy_data->sfp_changed) return; phy_data->sfp_phy_avail = 0; if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T) return; /* Check access to the PHY by reading CTRL1 */ ret = xgbe_phy_i2c_mii_read(pdata, MII_BMCR); if (ret < 0) return; /* Successfully accessed the PHY */ phy_data->sfp_phy_avail = 1; } static bool xgbe_phy_check_sfp_rx_los(struct xgbe_phy_data *phy_data) { u8 *sfp_extd = phy_data->sfp_eeprom.extd; if (!(sfp_extd[XGBE_SFP_EXTD_OPT1] & XGBE_SFP_EXTD_OPT1_RX_LOS)) return false; if (phy_data->sfp_gpio_mask & XGBE_GPIO_NO_RX_LOS) return false; if (phy_data->sfp_gpio_inputs & (1 << phy_data->sfp_gpio_rx_los)) return true; return false; } static bool xgbe_phy_check_sfp_tx_fault(struct xgbe_phy_data *phy_data) { u8 *sfp_extd = phy_data->sfp_eeprom.extd; if (!(sfp_extd[XGBE_SFP_EXTD_OPT1] & XGBE_SFP_EXTD_OPT1_TX_FAULT)) return false; if (phy_data->sfp_gpio_mask & XGBE_GPIO_NO_TX_FAULT) return false; if (phy_data->sfp_gpio_inputs & (1 << phy_data->sfp_gpio_tx_fault)) return true; return false; } static bool xgbe_phy_check_sfp_mod_absent(struct xgbe_phy_data *phy_data) { if (phy_data->sfp_gpio_mask & XGBE_GPIO_NO_MOD_ABSENT) return false; if (phy_data->sfp_gpio_inputs & (1 << phy_data->sfp_gpio_mod_absent)) return true; return false; } static void xgbe_phy_sfp_parse_eeprom(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; struct xgbe_sfp_eeprom *sfp_eeprom = &phy_data->sfp_eeprom; u8 *sfp_base; sfp_base = sfp_eeprom->base; if (sfp_base[XGBE_SFP_BASE_ID] != XGBE_SFP_ID_SFP) return; if (sfp_base[XGBE_SFP_BASE_EXT_ID] != XGBE_SFP_EXT_ID_SFP) return; /* Update transceiver signals (eeprom extd/options) */ phy_data->sfp_tx_fault = xgbe_phy_check_sfp_tx_fault(phy_data); phy_data->sfp_rx_los = xgbe_phy_check_sfp_rx_los(phy_data); /* Assume ACTIVE cable unless told it is PASSIVE */ if (sfp_base[XGBE_SFP_BASE_CABLE] & XGBE_SFP_BASE_CABLE_PASSIVE) { phy_data->sfp_cable = XGBE_SFP_CABLE_PASSIVE; phy_data->sfp_cable_len = sfp_base[XGBE_SFP_BASE_CU_CABLE_LEN]; } else { phy_data->sfp_cable = XGBE_SFP_CABLE_ACTIVE; } /* Determine the type of SFP */ if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_SR) phy_data->sfp_base = XGBE_SFP_BASE_10000_SR; else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_LR) phy_data->sfp_base = XGBE_SFP_BASE_10000_LR; else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_LRM) phy_data->sfp_base = XGBE_SFP_BASE_10000_LRM; else if (sfp_base[XGBE_SFP_BASE_10GBE_CC] & XGBE_SFP_BASE_10GBE_CC_ER) phy_data->sfp_base = XGBE_SFP_BASE_10000_ER; else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_SX) phy_data->sfp_base = XGBE_SFP_BASE_1000_SX; else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_LX) phy_data->sfp_base = XGBE_SFP_BASE_1000_LX; else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_CX) phy_data->sfp_base = XGBE_SFP_BASE_1000_CX; else if (sfp_base[XGBE_SFP_BASE_1GBE_CC] & XGBE_SFP_BASE_1GBE_CC_T) phy_data->sfp_base = XGBE_SFP_BASE_1000_T; else if ((phy_data->sfp_cable == XGBE_SFP_CABLE_PASSIVE) && xgbe_phy_sfp_bit_rate(sfp_eeprom, XGBE_SFP_SPEED_10000)) phy_data->sfp_base = XGBE_SFP_BASE_10000_CR; switch (phy_data->sfp_base) { case XGBE_SFP_BASE_1000_T: phy_data->sfp_speed = XGBE_SFP_SPEED_100_1000; break; case XGBE_SFP_BASE_1000_SX: case XGBE_SFP_BASE_1000_LX: case XGBE_SFP_BASE_1000_CX: phy_data->sfp_speed = XGBE_SFP_SPEED_1000; break; case XGBE_SFP_BASE_10000_SR: case XGBE_SFP_BASE_10000_LR: case XGBE_SFP_BASE_10000_LRM: case XGBE_SFP_BASE_10000_ER: case XGBE_SFP_BASE_10000_CR: phy_data->sfp_speed = XGBE_SFP_SPEED_10000; break; default: break; } } static void xgbe_phy_sfp_eeprom_info(struct xgbe_prv_data *pdata, struct xgbe_sfp_eeprom *sfp_eeprom) { struct xgbe_sfp_ascii sfp_ascii; char *sfp_data = (char *)&sfp_ascii; netif_dbg(pdata, drv, pdata->netdev, "SFP detected:\n"); memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_NAME], XGBE_SFP_BASE_VENDOR_NAME_LEN); sfp_data[XGBE_SFP_BASE_VENDOR_NAME_LEN] = '\0'; netif_dbg(pdata, drv, pdata->netdev, " vendor: %s\n", sfp_data); memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_PN], XGBE_SFP_BASE_VENDOR_PN_LEN); sfp_data[XGBE_SFP_BASE_VENDOR_PN_LEN] = '\0'; netif_dbg(pdata, drv, pdata->netdev, " part number: %s\n", sfp_data); memcpy(sfp_data, &sfp_eeprom->base[XGBE_SFP_BASE_VENDOR_REV], XGBE_SFP_BASE_VENDOR_REV_LEN); sfp_data[XGBE_SFP_BASE_VENDOR_REV_LEN] = '\0'; netif_dbg(pdata, drv, pdata->netdev, " revision level: %s\n", sfp_data); memcpy(sfp_data, &sfp_eeprom->extd[XGBE_SFP_BASE_VENDOR_SN], XGBE_SFP_BASE_VENDOR_SN_LEN); sfp_data[XGBE_SFP_BASE_VENDOR_SN_LEN] = '\0'; netif_dbg(pdata, drv, pdata->netdev, " serial number: %s\n", sfp_data); } static bool xgbe_phy_sfp_verify_eeprom(u8 cc_in, u8 *buf, unsigned int len) { u8 cc; for (cc = 0; len; buf++, len--) cc += *buf; return cc == cc_in; } static int xgbe_phy_sfp_read_eeprom(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; struct xgbe_sfp_eeprom sfp_eeprom; u8 eeprom_addr; int ret; ret = xgbe_phy_sfp_get_mux(pdata); if (ret) { dev_err_once(pdata->dev, "%s: I2C error setting SFP MUX\n", netdev_name(pdata->netdev)); return ret; } /* Read the SFP serial ID eeprom */ eeprom_addr = 0; ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_SERIAL_ID_ADDRESS, &eeprom_addr, sizeof(eeprom_addr), &sfp_eeprom, sizeof(sfp_eeprom)); if (ret) { dev_err_once(pdata->dev, "%s: I2C error reading SFP EEPROM\n", netdev_name(pdata->netdev)); goto put; } /* Validate the contents read */ if (!xgbe_phy_sfp_verify_eeprom(sfp_eeprom.base[XGBE_SFP_BASE_CC], sfp_eeprom.base, sizeof(sfp_eeprom.base) - 1)) { ret = -EINVAL; goto put; } if (!xgbe_phy_sfp_verify_eeprom(sfp_eeprom.extd[XGBE_SFP_EXTD_CC], sfp_eeprom.extd, sizeof(sfp_eeprom.extd) - 1)) { ret = -EINVAL; goto put; } /* Check for an added or changed SFP */ if (memcmp(&phy_data->sfp_eeprom, &sfp_eeprom, sizeof(sfp_eeprom))) { phy_data->sfp_changed = 1; if (netif_msg_drv(pdata)) xgbe_phy_sfp_eeprom_info(pdata, &sfp_eeprom); memcpy(&phy_data->sfp_eeprom, &sfp_eeprom, sizeof(sfp_eeprom)); xgbe_phy_free_phy_device(pdata); } else { phy_data->sfp_changed = 0; } put: xgbe_phy_sfp_put_mux(pdata); return ret; } static void xgbe_phy_sfp_signals(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; u8 gpio_reg, gpio_ports[2]; int ret; /* Read the input port registers */ gpio_reg = 0; ret = xgbe_phy_i2c_read(pdata, phy_data->sfp_gpio_address, &gpio_reg, sizeof(gpio_reg), gpio_ports, sizeof(gpio_ports)); if (ret) { dev_err_once(pdata->dev, "%s: I2C error reading SFP GPIOs\n", netdev_name(pdata->netdev)); return; } phy_data->sfp_gpio_inputs = (gpio_ports[1] << 8) | gpio_ports[0]; phy_data->sfp_mod_absent = xgbe_phy_check_sfp_mod_absent(phy_data); } static void xgbe_phy_sfp_mod_absent(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; xgbe_phy_free_phy_device(pdata); phy_data->sfp_mod_absent = 1; phy_data->sfp_phy_avail = 0; memset(&phy_data->sfp_eeprom, 0, sizeof(phy_data->sfp_eeprom)); } static void xgbe_phy_sfp_reset(struct xgbe_phy_data *phy_data) { phy_data->sfp_rx_los = 0; phy_data->sfp_tx_fault = 0; phy_data->sfp_mod_absent = 1; phy_data->sfp_base = XGBE_SFP_BASE_UNKNOWN; phy_data->sfp_cable = XGBE_SFP_CABLE_UNKNOWN; phy_data->sfp_speed = XGBE_SFP_SPEED_UNKNOWN; } static void xgbe_phy_sfp_detect(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; int ret; /* Reset the SFP signals and info */ xgbe_phy_sfp_reset(phy_data); ret = xgbe_phy_get_comm_ownership(pdata); if (ret) return; /* Read the SFP signals and check for module presence */ xgbe_phy_sfp_signals(pdata); if (phy_data->sfp_mod_absent) { xgbe_phy_sfp_mod_absent(pdata); goto put; } ret = xgbe_phy_sfp_read_eeprom(pdata); if (ret) { /* Treat any error as if there isn't an SFP plugged in */ xgbe_phy_sfp_reset(phy_data); xgbe_phy_sfp_mod_absent(pdata); goto put; } xgbe_phy_sfp_parse_eeprom(pdata); xgbe_phy_sfp_external_phy(pdata); put: xgbe_phy_sfp_phy_settings(pdata); xgbe_phy_put_comm_ownership(pdata); } static int xgbe_phy_module_eeprom(struct xgbe_prv_data *pdata, struct ethtool_eeprom *eeprom, u8 *data) { struct xgbe_phy_data *phy_data = pdata->phy_data; u8 eeprom_addr, eeprom_data[XGBE_SFP_EEPROM_MAX]; struct xgbe_sfp_eeprom *sfp_eeprom; unsigned int i, j, rem; int ret; rem = eeprom->len; if (!eeprom->len) { ret = -EINVAL; goto done; } if ((eeprom->offset + eeprom->len) > XGBE_SFP_EEPROM_MAX) { ret = -EINVAL; goto done; } if (phy_data->port_mode != XGBE_PORT_MODE_SFP) { ret = -ENXIO; goto done; } if (!netif_running(pdata->netdev)) { ret = -EIO; goto done; } if (phy_data->sfp_mod_absent) { ret = -EIO; goto done; } ret = xgbe_phy_get_comm_ownership(pdata); if (ret) { ret = -EIO; goto done; } ret = xgbe_phy_sfp_get_mux(pdata); if (ret) { netdev_err(pdata->netdev, "I2C error setting SFP MUX\n"); ret = -EIO; goto put_own; } /* Read the SFP serial ID eeprom */ eeprom_addr = 0; ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_SERIAL_ID_ADDRESS, &eeprom_addr, sizeof(eeprom_addr), eeprom_data, XGBE_SFP_EEPROM_BASE_LEN); if (ret) { netdev_err(pdata->netdev, "I2C error reading SFP EEPROM\n"); ret = -EIO; goto put_mux; } sfp_eeprom = (struct xgbe_sfp_eeprom *)eeprom_data; if (XGBE_SFP_DIAGS_SUPPORTED(sfp_eeprom)) { /* Read the SFP diagnostic eeprom */ eeprom_addr = 0; ret = xgbe_phy_i2c_read(pdata, XGBE_SFP_DIAG_INFO_ADDRESS, &eeprom_addr, sizeof(eeprom_addr), eeprom_data + XGBE_SFP_EEPROM_BASE_LEN, XGBE_SFP_EEPROM_DIAG_LEN); if (ret) { netdev_err(pdata->netdev, "I2C error reading SFP DIAGS\n"); ret = -EIO; goto put_mux; } } for (i = 0, j = eeprom->offset; i < eeprom->len; i++, j++) { if ((j >= XGBE_SFP_EEPROM_BASE_LEN) && !XGBE_SFP_DIAGS_SUPPORTED(sfp_eeprom)) break; data[i] = eeprom_data[j]; rem--; } put_mux: xgbe_phy_sfp_put_mux(pdata); put_own: xgbe_phy_put_comm_ownership(pdata); done: eeprom->len -= rem; return ret; } static int xgbe_phy_module_info(struct xgbe_prv_data *pdata, struct ethtool_modinfo *modinfo) { struct xgbe_phy_data *phy_data = pdata->phy_data; if (phy_data->port_mode != XGBE_PORT_MODE_SFP) return -ENXIO; if (!netif_running(pdata->netdev)) return -EIO; if (phy_data->sfp_mod_absent) return -EIO; if (XGBE_SFP_DIAGS_SUPPORTED(&phy_data->sfp_eeprom)) { modinfo->type = ETH_MODULE_SFF_8472; modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; } else { modinfo->type = ETH_MODULE_SFF_8079; modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; } return 0; } static void xgbe_phy_phydev_flowctrl(struct xgbe_prv_data *pdata) { struct ethtool_link_ksettings *lks = &pdata->phy.lks; struct xgbe_phy_data *phy_data = pdata->phy_data; u16 lcl_adv = 0, rmt_adv = 0; u8 fc; pdata->phy.tx_pause = 0; pdata->phy.rx_pause = 0; if (!phy_data->phydev) return; lcl_adv = linkmode_adv_to_lcl_adv_t(phy_data->phydev->advertising); if (phy_data->phydev->pause) { XGBE_SET_LP_ADV(lks, Pause); rmt_adv |= LPA_PAUSE_CAP; } if (phy_data->phydev->asym_pause) { XGBE_SET_LP_ADV(lks, Asym_Pause); rmt_adv |= LPA_PAUSE_ASYM; } fc = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); if (fc & FLOW_CTRL_TX) pdata->phy.tx_pause = 1; if (fc & FLOW_CTRL_RX) pdata->phy.rx_pause = 1; } static enum xgbe_mode xgbe_phy_an37_sgmii_outcome(struct xgbe_prv_data *pdata) { struct ethtool_link_ksettings *lks = &pdata->phy.lks; enum xgbe_mode mode; XGBE_SET_LP_ADV(lks, Autoneg); XGBE_SET_LP_ADV(lks, TP); /* Use external PHY to determine flow control */ if (pdata->phy.pause_autoneg) xgbe_phy_phydev_flowctrl(pdata); switch (pdata->an_status & XGBE_SGMII_AN_LINK_SPEED) { case XGBE_SGMII_AN_LINK_SPEED_100: if (pdata->an_status & XGBE_SGMII_AN_LINK_DUPLEX) { XGBE_SET_LP_ADV(lks, 100baseT_Full); mode = XGBE_MODE_SGMII_100; } else { /* Half-duplex not supported */ XGBE_SET_LP_ADV(lks, 100baseT_Half); mode = XGBE_MODE_UNKNOWN; } break; case XGBE_SGMII_AN_LINK_SPEED_1000: if (pdata->an_status & XGBE_SGMII_AN_LINK_DUPLEX) { XGBE_SET_LP_ADV(lks, 1000baseT_Full); mode = XGBE_MODE_SGMII_1000; } else { /* Half-duplex not supported */ XGBE_SET_LP_ADV(lks, 1000baseT_Half); mode = XGBE_MODE_UNKNOWN; } break; default: mode = XGBE_MODE_UNKNOWN; } return mode; } static enum xgbe_mode xgbe_phy_an37_outcome(struct xgbe_prv_data *pdata) { struct ethtool_link_ksettings *lks = &pdata->phy.lks; enum xgbe_mode mode; unsigned int ad_reg, lp_reg; XGBE_SET_LP_ADV(lks, Autoneg); XGBE_SET_LP_ADV(lks, FIBRE); /* Compare Advertisement and Link Partner register */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_VEND2, MDIO_VEND2_AN_ADVERTISE); lp_reg = XMDIO_READ(pdata, MDIO_MMD_VEND2, MDIO_VEND2_AN_LP_ABILITY); if (lp_reg & 0x100) XGBE_SET_LP_ADV(lks, Pause); if (lp_reg & 0x80) XGBE_SET_LP_ADV(lks, Asym_Pause); if (pdata->phy.pause_autoneg) { /* Set flow control based on auto-negotiation result */ pdata->phy.tx_pause = 0; pdata->phy.rx_pause = 0; if (ad_reg & lp_reg & 0x100) { pdata->phy.tx_pause = 1; pdata->phy.rx_pause = 1; } else if (ad_reg & lp_reg & 0x80) { if (ad_reg & 0x100) pdata->phy.rx_pause = 1; else if (lp_reg & 0x100) pdata->phy.tx_pause = 1; } } if (lp_reg & 0x20) XGBE_SET_LP_ADV(lks, 1000baseX_Full); /* Half duplex is not supported */ ad_reg &= lp_reg; mode = (ad_reg & 0x20) ? XGBE_MODE_X : XGBE_MODE_UNKNOWN; return mode; } static enum xgbe_mode xgbe_phy_an73_redrv_outcome(struct xgbe_prv_data *pdata) { struct ethtool_link_ksettings *lks = &pdata->phy.lks; struct xgbe_phy_data *phy_data = pdata->phy_data; enum xgbe_mode mode; unsigned int ad_reg, lp_reg; XGBE_SET_LP_ADV(lks, Autoneg); XGBE_SET_LP_ADV(lks, Backplane); /* Use external PHY to determine flow control */ if (pdata->phy.pause_autoneg) xgbe_phy_phydev_flowctrl(pdata); /* Compare Advertisement and Link Partner register 2 */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1); lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1); if (lp_reg & 0x80) XGBE_SET_LP_ADV(lks, 10000baseKR_Full); if (lp_reg & 0x20) XGBE_SET_LP_ADV(lks, 1000baseKX_Full); ad_reg &= lp_reg; if (ad_reg & 0x80) { switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: mode = XGBE_MODE_KR; break; default: mode = XGBE_MODE_SFI; break; } } else if (ad_reg & 0x20) { switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: mode = XGBE_MODE_KX_1000; break; case XGBE_PORT_MODE_1000BASE_X: mode = XGBE_MODE_X; break; case XGBE_PORT_MODE_SFP: switch (phy_data->sfp_base) { case XGBE_SFP_BASE_1000_T: if (phy_data->phydev && (phy_data->phydev->speed == SPEED_100)) mode = XGBE_MODE_SGMII_100; else mode = XGBE_MODE_SGMII_1000; break; case XGBE_SFP_BASE_1000_SX: case XGBE_SFP_BASE_1000_LX: case XGBE_SFP_BASE_1000_CX: default: mode = XGBE_MODE_X; break; } break; default: if (phy_data->phydev && (phy_data->phydev->speed == SPEED_100)) mode = XGBE_MODE_SGMII_100; else mode = XGBE_MODE_SGMII_1000; break; } } else { mode = XGBE_MODE_UNKNOWN; } /* Compare Advertisement and Link Partner register 3 */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2); lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2); if (lp_reg & 0xc000) XGBE_SET_LP_ADV(lks, 10000baseR_FEC); return mode; } static enum xgbe_mode xgbe_phy_an73_outcome(struct xgbe_prv_data *pdata) { struct ethtool_link_ksettings *lks = &pdata->phy.lks; enum xgbe_mode mode; unsigned int ad_reg, lp_reg; XGBE_SET_LP_ADV(lks, Autoneg); XGBE_SET_LP_ADV(lks, Backplane); /* Compare Advertisement and Link Partner register 1 */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE); lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA); if (lp_reg & 0x400) XGBE_SET_LP_ADV(lks, Pause); if (lp_reg & 0x800) XGBE_SET_LP_ADV(lks, Asym_Pause); if (pdata->phy.pause_autoneg) { /* Set flow control based on auto-negotiation result */ pdata->phy.tx_pause = 0; pdata->phy.rx_pause = 0; if (ad_reg & lp_reg & 0x400) { pdata->phy.tx_pause = 1; pdata->phy.rx_pause = 1; } else if (ad_reg & lp_reg & 0x800) { if (ad_reg & 0x400) pdata->phy.rx_pause = 1; else if (lp_reg & 0x400) pdata->phy.tx_pause = 1; } } /* Compare Advertisement and Link Partner register 2 */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 1); lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 1); if (lp_reg & 0x80) XGBE_SET_LP_ADV(lks, 10000baseKR_Full); if (lp_reg & 0x20) XGBE_SET_LP_ADV(lks, 1000baseKX_Full); ad_reg &= lp_reg; if (ad_reg & 0x80) mode = XGBE_MODE_KR; else if (ad_reg & 0x20) mode = XGBE_MODE_KX_1000; else mode = XGBE_MODE_UNKNOWN; /* Compare Advertisement and Link Partner register 3 */ ad_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_ADVERTISE + 2); lp_reg = XMDIO_READ(pdata, MDIO_MMD_AN, MDIO_AN_LPA + 2); if (lp_reg & 0xc000) XGBE_SET_LP_ADV(lks, 10000baseR_FEC); return mode; } static enum xgbe_mode xgbe_phy_an_outcome(struct xgbe_prv_data *pdata) { switch (pdata->an_mode) { case XGBE_AN_MODE_CL73: return xgbe_phy_an73_outcome(pdata); case XGBE_AN_MODE_CL73_REDRV: return xgbe_phy_an73_redrv_outcome(pdata); case XGBE_AN_MODE_CL37: return xgbe_phy_an37_outcome(pdata); case XGBE_AN_MODE_CL37_SGMII: return xgbe_phy_an37_sgmii_outcome(pdata); default: return XGBE_MODE_UNKNOWN; } } static void xgbe_phy_an_advertising(struct xgbe_prv_data *pdata, struct ethtool_link_ksettings *dlks) { struct ethtool_link_ksettings *slks = &pdata->phy.lks; struct xgbe_phy_data *phy_data = pdata->phy_data; XGBE_LM_COPY(dlks, advertising, slks, advertising); /* Without a re-driver, just return current advertising */ if (!phy_data->redrv) return; /* With the KR re-driver we need to advertise a single speed */ XGBE_CLR_ADV(dlks, 1000baseKX_Full); XGBE_CLR_ADV(dlks, 10000baseKR_Full); /* Advertise FEC support is present */ if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE) XGBE_SET_ADV(dlks, 10000baseR_FEC); switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: XGBE_SET_ADV(dlks, 10000baseKR_Full); break; case XGBE_PORT_MODE_BACKPLANE_2500: XGBE_SET_ADV(dlks, 1000baseKX_Full); break; case XGBE_PORT_MODE_1000BASE_T: case XGBE_PORT_MODE_1000BASE_X: case XGBE_PORT_MODE_NBASE_T: XGBE_SET_ADV(dlks, 1000baseKX_Full); break; case XGBE_PORT_MODE_10GBASE_T: if (phy_data->phydev && (phy_data->phydev->speed == SPEED_10000)) XGBE_SET_ADV(dlks, 10000baseKR_Full); else XGBE_SET_ADV(dlks, 1000baseKX_Full); break; case XGBE_PORT_MODE_10GBASE_R: XGBE_SET_ADV(dlks, 10000baseKR_Full); break; case XGBE_PORT_MODE_SFP: switch (phy_data->sfp_base) { case XGBE_SFP_BASE_1000_T: case XGBE_SFP_BASE_1000_SX: case XGBE_SFP_BASE_1000_LX: case XGBE_SFP_BASE_1000_CX: XGBE_SET_ADV(dlks, 1000baseKX_Full); break; default: XGBE_SET_ADV(dlks, 10000baseKR_Full); break; } break; default: XGBE_SET_ADV(dlks, 10000baseKR_Full); break; } } static int xgbe_phy_an_config(struct xgbe_prv_data *pdata) { struct ethtool_link_ksettings *lks = &pdata->phy.lks; struct xgbe_phy_data *phy_data = pdata->phy_data; int ret; ret = xgbe_phy_find_phy_device(pdata); if (ret) return ret; if (!phy_data->phydev) return 0; phy_data->phydev->autoneg = pdata->phy.autoneg; linkmode_and(phy_data->phydev->advertising, phy_data->phydev->supported, lks->link_modes.advertising); if (pdata->phy.autoneg != AUTONEG_ENABLE) { phy_data->phydev->speed = pdata->phy.speed; phy_data->phydev->duplex = pdata->phy.duplex; } ret = phy_start_aneg(phy_data->phydev); return ret; } static enum xgbe_an_mode xgbe_phy_an_sfp_mode(struct xgbe_phy_data *phy_data) { switch (phy_data->sfp_base) { case XGBE_SFP_BASE_1000_T: return XGBE_AN_MODE_CL37_SGMII; case XGBE_SFP_BASE_1000_SX: case XGBE_SFP_BASE_1000_LX: case XGBE_SFP_BASE_1000_CX: return XGBE_AN_MODE_CL37; default: return XGBE_AN_MODE_NONE; } } static enum xgbe_an_mode xgbe_phy_an_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; /* A KR re-driver will always require CL73 AN */ if (phy_data->redrv) return XGBE_AN_MODE_CL73_REDRV; switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: return XGBE_AN_MODE_CL73; case XGBE_PORT_MODE_BACKPLANE_2500: return XGBE_AN_MODE_NONE; case XGBE_PORT_MODE_1000BASE_T: return XGBE_AN_MODE_CL37_SGMII; case XGBE_PORT_MODE_1000BASE_X: return XGBE_AN_MODE_CL37; case XGBE_PORT_MODE_NBASE_T: return XGBE_AN_MODE_CL37_SGMII; case XGBE_PORT_MODE_10GBASE_T: return XGBE_AN_MODE_CL73; case XGBE_PORT_MODE_10GBASE_R: return XGBE_AN_MODE_NONE; case XGBE_PORT_MODE_SFP: return xgbe_phy_an_sfp_mode(phy_data); default: return XGBE_AN_MODE_NONE; } } static int xgbe_phy_set_redrv_mode_mdio(struct xgbe_prv_data *pdata, enum xgbe_phy_redrv_mode mode) { struct xgbe_phy_data *phy_data = pdata->phy_data; u16 redrv_reg, redrv_val; redrv_reg = XGBE_PHY_REDRV_MODE_REG + (phy_data->redrv_lane * 0x1000); redrv_val = (u16)mode; return pdata->hw_if.write_ext_mii_regs(pdata, phy_data->redrv_addr, redrv_reg, redrv_val); } static int xgbe_phy_set_redrv_mode_i2c(struct xgbe_prv_data *pdata, enum xgbe_phy_redrv_mode mode) { struct xgbe_phy_data *phy_data = pdata->phy_data; unsigned int redrv_reg; int ret; /* Calculate the register to write */ redrv_reg = XGBE_PHY_REDRV_MODE_REG + (phy_data->redrv_lane * 0x1000); ret = xgbe_phy_redrv_write(pdata, redrv_reg, mode); return ret; } static void xgbe_phy_set_redrv_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; enum xgbe_phy_redrv_mode mode; int ret; if (!phy_data->redrv) return; mode = XGBE_PHY_REDRV_MODE_CX; if ((phy_data->port_mode == XGBE_PORT_MODE_SFP) && (phy_data->sfp_base != XGBE_SFP_BASE_1000_CX) && (phy_data->sfp_base != XGBE_SFP_BASE_10000_CR)) mode = XGBE_PHY_REDRV_MODE_SR; ret = xgbe_phy_get_comm_ownership(pdata); if (ret) return; if (phy_data->redrv_if) xgbe_phy_set_redrv_mode_i2c(pdata, mode); else xgbe_phy_set_redrv_mode_mdio(pdata, mode); xgbe_phy_put_comm_ownership(pdata); } static void xgbe_phy_perform_ratechange(struct xgbe_prv_data *pdata, unsigned int cmd, unsigned int sub_cmd) { unsigned int s0 = 0; unsigned int wait; /* Log if a previous command did not complete */ if (XP_IOREAD_BITS(pdata, XP_DRIVER_INT_RO, STATUS)) netif_dbg(pdata, link, pdata->netdev, "firmware mailbox not ready for command\n"); /* Construct the command */ XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, COMMAND, cmd); XP_SET_BITS(s0, XP_DRIVER_SCRATCH_0, SUB_COMMAND, sub_cmd); /* Issue the command */ XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_0, s0); XP_IOWRITE(pdata, XP_DRIVER_SCRATCH_1, 0); XP_IOWRITE_BITS(pdata, XP_DRIVER_INT_REQ, REQUEST, 1); /* Wait for command to complete */ wait = XGBE_RATECHANGE_COUNT; while (wait--) { if (!XP_IOREAD_BITS(pdata, XP_DRIVER_INT_RO, STATUS)) return; usleep_range(1000, 2000); } netif_dbg(pdata, link, pdata->netdev, "firmware mailbox command did not complete\n"); } static void xgbe_phy_rrc(struct xgbe_prv_data *pdata) { /* Receiver Reset Cycle */ xgbe_phy_perform_ratechange(pdata, 5, 0); netif_dbg(pdata, link, pdata->netdev, "receiver reset complete\n"); } static void xgbe_phy_power_off(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; /* Power off */ xgbe_phy_perform_ratechange(pdata, 0, 0); phy_data->cur_mode = XGBE_MODE_UNKNOWN; netif_dbg(pdata, link, pdata->netdev, "phy powered off\n"); } static void xgbe_phy_sfi_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; xgbe_phy_set_redrv_mode(pdata); /* 10G/SFI */ if (phy_data->sfp_cable != XGBE_SFP_CABLE_PASSIVE) { xgbe_phy_perform_ratechange(pdata, 3, 0); } else { if (phy_data->sfp_cable_len <= 1) xgbe_phy_perform_ratechange(pdata, 3, 1); else if (phy_data->sfp_cable_len <= 3) xgbe_phy_perform_ratechange(pdata, 3, 2); else xgbe_phy_perform_ratechange(pdata, 3, 3); } phy_data->cur_mode = XGBE_MODE_SFI; netif_dbg(pdata, link, pdata->netdev, "10GbE SFI mode set\n"); } static void xgbe_phy_x_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; xgbe_phy_set_redrv_mode(pdata); /* 1G/X */ xgbe_phy_perform_ratechange(pdata, 1, 3); phy_data->cur_mode = XGBE_MODE_X; netif_dbg(pdata, link, pdata->netdev, "1GbE X mode set\n"); } static void xgbe_phy_sgmii_1000_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; xgbe_phy_set_redrv_mode(pdata); /* 1G/SGMII */ xgbe_phy_perform_ratechange(pdata, 1, 2); phy_data->cur_mode = XGBE_MODE_SGMII_1000; netif_dbg(pdata, link, pdata->netdev, "1GbE SGMII mode set\n"); } static void xgbe_phy_sgmii_100_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; xgbe_phy_set_redrv_mode(pdata); /* 100M/SGMII */ xgbe_phy_perform_ratechange(pdata, 1, 1); phy_data->cur_mode = XGBE_MODE_SGMII_100; netif_dbg(pdata, link, pdata->netdev, "100MbE SGMII mode set\n"); } static void xgbe_phy_kr_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; xgbe_phy_set_redrv_mode(pdata); /* 10G/KR */ xgbe_phy_perform_ratechange(pdata, 4, 0); phy_data->cur_mode = XGBE_MODE_KR; netif_dbg(pdata, link, pdata->netdev, "10GbE KR mode set\n"); } static void xgbe_phy_kx_2500_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; xgbe_phy_set_redrv_mode(pdata); /* 2.5G/KX */ xgbe_phy_perform_ratechange(pdata, 2, 0); phy_data->cur_mode = XGBE_MODE_KX_2500; netif_dbg(pdata, link, pdata->netdev, "2.5GbE KX mode set\n"); } static void xgbe_phy_kx_1000_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; xgbe_phy_set_redrv_mode(pdata); /* 1G/KX */ xgbe_phy_perform_ratechange(pdata, 1, 3); phy_data->cur_mode = XGBE_MODE_KX_1000; netif_dbg(pdata, link, pdata->netdev, "1GbE KX mode set\n"); } static enum xgbe_mode xgbe_phy_cur_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; return phy_data->cur_mode; } static enum xgbe_mode xgbe_phy_switch_baset_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; /* No switching if not 10GBase-T */ if (phy_data->port_mode != XGBE_PORT_MODE_10GBASE_T) return xgbe_phy_cur_mode(pdata); switch (xgbe_phy_cur_mode(pdata)) { case XGBE_MODE_SGMII_100: case XGBE_MODE_SGMII_1000: return XGBE_MODE_KR; case XGBE_MODE_KR: default: return XGBE_MODE_SGMII_1000; } } static enum xgbe_mode xgbe_phy_switch_bp_2500_mode(struct xgbe_prv_data *pdata) { return XGBE_MODE_KX_2500; } static enum xgbe_mode xgbe_phy_switch_bp_mode(struct xgbe_prv_data *pdata) { /* If we are in KR switch to KX, and vice-versa */ switch (xgbe_phy_cur_mode(pdata)) { case XGBE_MODE_KX_1000: return XGBE_MODE_KR; case XGBE_MODE_KR: default: return XGBE_MODE_KX_1000; } } static enum xgbe_mode xgbe_phy_switch_mode(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: return xgbe_phy_switch_bp_mode(pdata); case XGBE_PORT_MODE_BACKPLANE_2500: return xgbe_phy_switch_bp_2500_mode(pdata); case XGBE_PORT_MODE_1000BASE_T: case XGBE_PORT_MODE_NBASE_T: case XGBE_PORT_MODE_10GBASE_T: return xgbe_phy_switch_baset_mode(pdata); case XGBE_PORT_MODE_1000BASE_X: case XGBE_PORT_MODE_10GBASE_R: case XGBE_PORT_MODE_SFP: /* No switching, so just return current mode */ return xgbe_phy_cur_mode(pdata); default: return XGBE_MODE_UNKNOWN; } } static enum xgbe_mode xgbe_phy_get_basex_mode(struct xgbe_phy_data *phy_data, int speed) { switch (speed) { case SPEED_1000: return XGBE_MODE_X; case SPEED_10000: return XGBE_MODE_KR; default: return XGBE_MODE_UNKNOWN; } } static enum xgbe_mode xgbe_phy_get_baset_mode(struct xgbe_phy_data *phy_data, int speed) { switch (speed) { case SPEED_100: return XGBE_MODE_SGMII_100; case SPEED_1000: return XGBE_MODE_SGMII_1000; case SPEED_2500: return XGBE_MODE_KX_2500; case SPEED_10000: return XGBE_MODE_KR; default: return XGBE_MODE_UNKNOWN; } } static enum xgbe_mode xgbe_phy_get_sfp_mode(struct xgbe_phy_data *phy_data, int speed) { switch (speed) { case SPEED_100: return XGBE_MODE_SGMII_100; case SPEED_1000: if (phy_data->sfp_base == XGBE_SFP_BASE_1000_T) return XGBE_MODE_SGMII_1000; else return XGBE_MODE_X; case SPEED_10000: case SPEED_UNKNOWN: return XGBE_MODE_SFI; default: return XGBE_MODE_UNKNOWN; } } static enum xgbe_mode xgbe_phy_get_bp_2500_mode(int speed) { switch (speed) { case SPEED_2500: return XGBE_MODE_KX_2500; default: return XGBE_MODE_UNKNOWN; } } static enum xgbe_mode xgbe_phy_get_bp_mode(int speed) { switch (speed) { case SPEED_1000: return XGBE_MODE_KX_1000; case SPEED_10000: return XGBE_MODE_KR; default: return XGBE_MODE_UNKNOWN; } } static enum xgbe_mode xgbe_phy_get_mode(struct xgbe_prv_data *pdata, int speed) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: return xgbe_phy_get_bp_mode(speed); case XGBE_PORT_MODE_BACKPLANE_2500: return xgbe_phy_get_bp_2500_mode(speed); case XGBE_PORT_MODE_1000BASE_T: case XGBE_PORT_MODE_NBASE_T: case XGBE_PORT_MODE_10GBASE_T: return xgbe_phy_get_baset_mode(phy_data, speed); case XGBE_PORT_MODE_1000BASE_X: case XGBE_PORT_MODE_10GBASE_R: return xgbe_phy_get_basex_mode(phy_data, speed); case XGBE_PORT_MODE_SFP: return xgbe_phy_get_sfp_mode(phy_data, speed); default: return XGBE_MODE_UNKNOWN; } } static void xgbe_phy_set_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode) { switch (mode) { case XGBE_MODE_KX_1000: xgbe_phy_kx_1000_mode(pdata); break; case XGBE_MODE_KX_2500: xgbe_phy_kx_2500_mode(pdata); break; case XGBE_MODE_KR: xgbe_phy_kr_mode(pdata); break; case XGBE_MODE_SGMII_100: xgbe_phy_sgmii_100_mode(pdata); break; case XGBE_MODE_SGMII_1000: xgbe_phy_sgmii_1000_mode(pdata); break; case XGBE_MODE_X: xgbe_phy_x_mode(pdata); break; case XGBE_MODE_SFI: xgbe_phy_sfi_mode(pdata); break; default: break; } } static bool xgbe_phy_check_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode, bool advert) { if (pdata->phy.autoneg == AUTONEG_ENABLE) { return advert; } else { enum xgbe_mode cur_mode; cur_mode = xgbe_phy_get_mode(pdata, pdata->phy.speed); if (cur_mode == mode) return true; } return false; } static bool xgbe_phy_use_basex_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode) { struct ethtool_link_ksettings *lks = &pdata->phy.lks; switch (mode) { case XGBE_MODE_X: return xgbe_phy_check_mode(pdata, mode, XGBE_ADV(lks, 1000baseX_Full)); case XGBE_MODE_KR: return xgbe_phy_check_mode(pdata, mode, XGBE_ADV(lks, 10000baseKR_Full)); default: return false; } } static bool xgbe_phy_use_baset_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode) { struct ethtool_link_ksettings *lks = &pdata->phy.lks; switch (mode) { case XGBE_MODE_SGMII_100: return xgbe_phy_check_mode(pdata, mode, XGBE_ADV(lks, 100baseT_Full)); case XGBE_MODE_SGMII_1000: return xgbe_phy_check_mode(pdata, mode, XGBE_ADV(lks, 1000baseT_Full)); case XGBE_MODE_KX_2500: return xgbe_phy_check_mode(pdata, mode, XGBE_ADV(lks, 2500baseT_Full)); case XGBE_MODE_KR: return xgbe_phy_check_mode(pdata, mode, XGBE_ADV(lks, 10000baseT_Full)); default: return false; } } static bool xgbe_phy_use_sfp_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode) { struct ethtool_link_ksettings *lks = &pdata->phy.lks; struct xgbe_phy_data *phy_data = pdata->phy_data; switch (mode) { case XGBE_MODE_X: if (phy_data->sfp_base == XGBE_SFP_BASE_1000_T) return false; return xgbe_phy_check_mode(pdata, mode, XGBE_ADV(lks, 1000baseX_Full)); case XGBE_MODE_SGMII_100: if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T) return false; return xgbe_phy_check_mode(pdata, mode, XGBE_ADV(lks, 100baseT_Full)); case XGBE_MODE_SGMII_1000: if (phy_data->sfp_base != XGBE_SFP_BASE_1000_T) return false; return xgbe_phy_check_mode(pdata, mode, XGBE_ADV(lks, 1000baseT_Full)); case XGBE_MODE_SFI: if (phy_data->sfp_mod_absent) return true; return xgbe_phy_check_mode(pdata, mode, XGBE_ADV(lks, 10000baseSR_Full) || XGBE_ADV(lks, 10000baseLR_Full) || XGBE_ADV(lks, 10000baseLRM_Full) || XGBE_ADV(lks, 10000baseER_Full) || XGBE_ADV(lks, 10000baseCR_Full)); default: return false; } } static bool xgbe_phy_use_bp_2500_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode) { struct ethtool_link_ksettings *lks = &pdata->phy.lks; switch (mode) { case XGBE_MODE_KX_2500: return xgbe_phy_check_mode(pdata, mode, XGBE_ADV(lks, 2500baseX_Full)); default: return false; } } static bool xgbe_phy_use_bp_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode) { struct ethtool_link_ksettings *lks = &pdata->phy.lks; switch (mode) { case XGBE_MODE_KX_1000: return xgbe_phy_check_mode(pdata, mode, XGBE_ADV(lks, 1000baseKX_Full)); case XGBE_MODE_KR: return xgbe_phy_check_mode(pdata, mode, XGBE_ADV(lks, 10000baseKR_Full)); default: return false; } } static bool xgbe_phy_use_mode(struct xgbe_prv_data *pdata, enum xgbe_mode mode) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: return xgbe_phy_use_bp_mode(pdata, mode); case XGBE_PORT_MODE_BACKPLANE_2500: return xgbe_phy_use_bp_2500_mode(pdata, mode); case XGBE_PORT_MODE_1000BASE_T: case XGBE_PORT_MODE_NBASE_T: case XGBE_PORT_MODE_10GBASE_T: return xgbe_phy_use_baset_mode(pdata, mode); case XGBE_PORT_MODE_1000BASE_X: case XGBE_PORT_MODE_10GBASE_R: return xgbe_phy_use_basex_mode(pdata, mode); case XGBE_PORT_MODE_SFP: return xgbe_phy_use_sfp_mode(pdata, mode); default: return false; } } static bool xgbe_phy_valid_speed_basex_mode(struct xgbe_phy_data *phy_data, int speed) { switch (speed) { case SPEED_1000: return (phy_data->port_mode == XGBE_PORT_MODE_1000BASE_X); case SPEED_10000: return (phy_data->port_mode == XGBE_PORT_MODE_10GBASE_R); default: return false; } } static bool xgbe_phy_valid_speed_baset_mode(struct xgbe_phy_data *phy_data, int speed) { switch (speed) { case SPEED_100: case SPEED_1000: return true; case SPEED_2500: return (phy_data->port_mode == XGBE_PORT_MODE_NBASE_T); case SPEED_10000: return (phy_data->port_mode == XGBE_PORT_MODE_10GBASE_T); default: return false; } } static bool xgbe_phy_valid_speed_sfp_mode(struct xgbe_phy_data *phy_data, int speed) { switch (speed) { case SPEED_100: return (phy_data->sfp_speed == XGBE_SFP_SPEED_100_1000); case SPEED_1000: return ((phy_data->sfp_speed == XGBE_SFP_SPEED_100_1000) || (phy_data->sfp_speed == XGBE_SFP_SPEED_1000)); case SPEED_10000: return (phy_data->sfp_speed == XGBE_SFP_SPEED_10000); default: return false; } } static bool xgbe_phy_valid_speed_bp_2500_mode(int speed) { switch (speed) { case SPEED_2500: return true; default: return false; } } static bool xgbe_phy_valid_speed_bp_mode(int speed) { switch (speed) { case SPEED_1000: case SPEED_10000: return true; default: return false; } } static bool xgbe_phy_valid_speed(struct xgbe_prv_data *pdata, int speed) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: return xgbe_phy_valid_speed_bp_mode(speed); case XGBE_PORT_MODE_BACKPLANE_2500: return xgbe_phy_valid_speed_bp_2500_mode(speed); case XGBE_PORT_MODE_1000BASE_T: case XGBE_PORT_MODE_NBASE_T: case XGBE_PORT_MODE_10GBASE_T: return xgbe_phy_valid_speed_baset_mode(phy_data, speed); case XGBE_PORT_MODE_1000BASE_X: case XGBE_PORT_MODE_10GBASE_R: return xgbe_phy_valid_speed_basex_mode(phy_data, speed); case XGBE_PORT_MODE_SFP: return xgbe_phy_valid_speed_sfp_mode(phy_data, speed); default: return false; } } static int xgbe_phy_link_status(struct xgbe_prv_data *pdata, int *an_restart) { struct xgbe_phy_data *phy_data = pdata->phy_data; unsigned int reg; int ret; *an_restart = 0; if (phy_data->port_mode == XGBE_PORT_MODE_SFP) { /* Check SFP signals */ xgbe_phy_sfp_detect(pdata); if (phy_data->sfp_changed) { *an_restart = 1; return 0; } if (phy_data->sfp_mod_absent || phy_data->sfp_rx_los) return 0; } if (phy_data->phydev) { /* Check external PHY */ ret = phy_read_status(phy_data->phydev); if (ret < 0) return 0; if ((pdata->phy.autoneg == AUTONEG_ENABLE) && !phy_aneg_done(phy_data->phydev)) return 0; if (!phy_data->phydev->link) return 0; } /* Link status is latched low, so read once to clear * and then read again to get current state */ reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1); reg = XMDIO_READ(pdata, MDIO_MMD_PCS, MDIO_STAT1); if (reg & MDIO_STAT1_LSTATUS) return 1; /* No link, attempt a receiver reset cycle */ if (phy_data->rrc_count++ > XGBE_RRC_FREQUENCY) { phy_data->rrc_count = 0; xgbe_phy_rrc(pdata); } return 0; } static void xgbe_phy_sfp_gpio_setup(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; phy_data->sfp_gpio_address = XGBE_GPIO_ADDRESS_PCA9555 + XP_GET_BITS(pdata->pp3, XP_PROP_3, GPIO_ADDR); phy_data->sfp_gpio_mask = XP_GET_BITS(pdata->pp3, XP_PROP_3, GPIO_MASK); phy_data->sfp_gpio_rx_los = XP_GET_BITS(pdata->pp3, XP_PROP_3, GPIO_RX_LOS); phy_data->sfp_gpio_tx_fault = XP_GET_BITS(pdata->pp3, XP_PROP_3, GPIO_TX_FAULT); phy_data->sfp_gpio_mod_absent = XP_GET_BITS(pdata->pp3, XP_PROP_3, GPIO_MOD_ABS); phy_data->sfp_gpio_rate_select = XP_GET_BITS(pdata->pp3, XP_PROP_3, GPIO_RATE_SELECT); if (netif_msg_probe(pdata)) { dev_dbg(pdata->dev, "SFP: gpio_address=%#x\n", phy_data->sfp_gpio_address); dev_dbg(pdata->dev, "SFP: gpio_mask=%#x\n", phy_data->sfp_gpio_mask); dev_dbg(pdata->dev, "SFP: gpio_rx_los=%u\n", phy_data->sfp_gpio_rx_los); dev_dbg(pdata->dev, "SFP: gpio_tx_fault=%u\n", phy_data->sfp_gpio_tx_fault); dev_dbg(pdata->dev, "SFP: gpio_mod_absent=%u\n", phy_data->sfp_gpio_mod_absent); dev_dbg(pdata->dev, "SFP: gpio_rate_select=%u\n", phy_data->sfp_gpio_rate_select); } } static void xgbe_phy_sfp_comm_setup(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; unsigned int mux_addr_hi, mux_addr_lo; mux_addr_hi = XP_GET_BITS(pdata->pp4, XP_PROP_4, MUX_ADDR_HI); mux_addr_lo = XP_GET_BITS(pdata->pp4, XP_PROP_4, MUX_ADDR_LO); if (mux_addr_lo == XGBE_SFP_DIRECT) return; phy_data->sfp_comm = XGBE_SFP_COMM_PCA9545; phy_data->sfp_mux_address = (mux_addr_hi << 2) + mux_addr_lo; phy_data->sfp_mux_channel = XP_GET_BITS(pdata->pp4, XP_PROP_4, MUX_CHAN); if (netif_msg_probe(pdata)) { dev_dbg(pdata->dev, "SFP: mux_address=%#x\n", phy_data->sfp_mux_address); dev_dbg(pdata->dev, "SFP: mux_channel=%u\n", phy_data->sfp_mux_channel); } } static void xgbe_phy_sfp_setup(struct xgbe_prv_data *pdata) { xgbe_phy_sfp_comm_setup(pdata); xgbe_phy_sfp_gpio_setup(pdata); } static int xgbe_phy_int_mdio_reset(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; unsigned int ret; ret = pdata->hw_if.set_gpio(pdata, phy_data->mdio_reset_gpio); if (ret) return ret; ret = pdata->hw_if.clr_gpio(pdata, phy_data->mdio_reset_gpio); return ret; } static int xgbe_phy_i2c_mdio_reset(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; u8 gpio_reg, gpio_ports[2], gpio_data[3]; int ret; /* Read the output port registers */ gpio_reg = 2; ret = xgbe_phy_i2c_read(pdata, phy_data->mdio_reset_addr, &gpio_reg, sizeof(gpio_reg), gpio_ports, sizeof(gpio_ports)); if (ret) return ret; /* Prepare to write the GPIO data */ gpio_data[0] = 2; gpio_data[1] = gpio_ports[0]; gpio_data[2] = gpio_ports[1]; /* Set the GPIO pin */ if (phy_data->mdio_reset_gpio < 8) gpio_data[1] |= (1 << (phy_data->mdio_reset_gpio % 8)); else gpio_data[2] |= (1 << (phy_data->mdio_reset_gpio % 8)); /* Write the output port registers */ ret = xgbe_phy_i2c_write(pdata, phy_data->mdio_reset_addr, gpio_data, sizeof(gpio_data)); if (ret) return ret; /* Clear the GPIO pin */ if (phy_data->mdio_reset_gpio < 8) gpio_data[1] &= ~(1 << (phy_data->mdio_reset_gpio % 8)); else gpio_data[2] &= ~(1 << (phy_data->mdio_reset_gpio % 8)); /* Write the output port registers */ ret = xgbe_phy_i2c_write(pdata, phy_data->mdio_reset_addr, gpio_data, sizeof(gpio_data)); return ret; } static int xgbe_phy_mdio_reset(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; int ret; if (phy_data->conn_type != XGBE_CONN_TYPE_MDIO) return 0; ret = xgbe_phy_get_comm_ownership(pdata); if (ret) return ret; if (phy_data->mdio_reset == XGBE_MDIO_RESET_I2C_GPIO) ret = xgbe_phy_i2c_mdio_reset(pdata); else if (phy_data->mdio_reset == XGBE_MDIO_RESET_INT_GPIO) ret = xgbe_phy_int_mdio_reset(pdata); xgbe_phy_put_comm_ownership(pdata); return ret; } static bool xgbe_phy_redrv_error(struct xgbe_phy_data *phy_data) { if (!phy_data->redrv) return false; if (phy_data->redrv_if >= XGBE_PHY_REDRV_IF_MAX) return true; switch (phy_data->redrv_model) { case XGBE_PHY_REDRV_MODEL_4223: if (phy_data->redrv_lane > 3) return true; break; case XGBE_PHY_REDRV_MODEL_4227: if (phy_data->redrv_lane > 1) return true; break; default: return true; } return false; } static int xgbe_phy_mdio_reset_setup(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; if (phy_data->conn_type != XGBE_CONN_TYPE_MDIO) return 0; phy_data->mdio_reset = XP_GET_BITS(pdata->pp3, XP_PROP_3, MDIO_RESET); switch (phy_data->mdio_reset) { case XGBE_MDIO_RESET_NONE: case XGBE_MDIO_RESET_I2C_GPIO: case XGBE_MDIO_RESET_INT_GPIO: break; default: dev_err(pdata->dev, "unsupported MDIO reset (%#x)\n", phy_data->mdio_reset); return -EINVAL; } if (phy_data->mdio_reset == XGBE_MDIO_RESET_I2C_GPIO) { phy_data->mdio_reset_addr = XGBE_GPIO_ADDRESS_PCA9555 + XP_GET_BITS(pdata->pp3, XP_PROP_3, MDIO_RESET_I2C_ADDR); phy_data->mdio_reset_gpio = XP_GET_BITS(pdata->pp3, XP_PROP_3, MDIO_RESET_I2C_GPIO); } else if (phy_data->mdio_reset == XGBE_MDIO_RESET_INT_GPIO) { phy_data->mdio_reset_gpio = XP_GET_BITS(pdata->pp3, XP_PROP_3, MDIO_RESET_INT_GPIO); } return 0; } static bool xgbe_phy_port_mode_mismatch(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) || (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)) return false; break; case XGBE_PORT_MODE_BACKPLANE_2500: if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500) return false; break; case XGBE_PORT_MODE_1000BASE_T: if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) || (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000)) return false; break; case XGBE_PORT_MODE_1000BASE_X: if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) return false; break; case XGBE_PORT_MODE_NBASE_T: if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) || (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) || (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500)) return false; break; case XGBE_PORT_MODE_10GBASE_T: if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) || (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) || (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)) return false; break; case XGBE_PORT_MODE_10GBASE_R: if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) return false; break; case XGBE_PORT_MODE_SFP: if ((phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) || (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) || (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000)) return false; break; default: break; } return true; } static bool xgbe_phy_conn_type_mismatch(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (phy_data->port_mode) { case XGBE_PORT_MODE_BACKPLANE: case XGBE_PORT_MODE_BACKPLANE_2500: if (phy_data->conn_type == XGBE_CONN_TYPE_BACKPLANE) return false; break; case XGBE_PORT_MODE_1000BASE_T: case XGBE_PORT_MODE_1000BASE_X: case XGBE_PORT_MODE_NBASE_T: case XGBE_PORT_MODE_10GBASE_T: case XGBE_PORT_MODE_10GBASE_R: if (phy_data->conn_type == XGBE_CONN_TYPE_MDIO) return false; break; case XGBE_PORT_MODE_SFP: if (phy_data->conn_type == XGBE_CONN_TYPE_SFP) return false; break; default: break; } return true; } static bool xgbe_phy_port_enabled(struct xgbe_prv_data *pdata) { if (!XP_GET_BITS(pdata->pp0, XP_PROP_0, PORT_SPEEDS)) return false; if (!XP_GET_BITS(pdata->pp0, XP_PROP_0, CONN_TYPE)) return false; return true; } static void xgbe_phy_cdr_track(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; if (!pdata->debugfs_an_cdr_workaround) return; if (!phy_data->phy_cdr_notrack) return; usleep_range(phy_data->phy_cdr_delay, phy_data->phy_cdr_delay + 500); XMDIO_WRITE_BITS(pdata, MDIO_MMD_PMAPMD, MDIO_VEND2_PMA_CDR_CONTROL, XGBE_PMA_CDR_TRACK_EN_MASK, XGBE_PMA_CDR_TRACK_EN_ON); phy_data->phy_cdr_notrack = 0; } static void xgbe_phy_cdr_notrack(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; if (!pdata->debugfs_an_cdr_workaround) return; if (phy_data->phy_cdr_notrack) return; XMDIO_WRITE_BITS(pdata, MDIO_MMD_PMAPMD, MDIO_VEND2_PMA_CDR_CONTROL, XGBE_PMA_CDR_TRACK_EN_MASK, XGBE_PMA_CDR_TRACK_EN_OFF); xgbe_phy_rrc(pdata); phy_data->phy_cdr_notrack = 1; } static void xgbe_phy_kr_training_post(struct xgbe_prv_data *pdata) { if (!pdata->debugfs_an_cdr_track_early) xgbe_phy_cdr_track(pdata); } static void xgbe_phy_kr_training_pre(struct xgbe_prv_data *pdata) { if (pdata->debugfs_an_cdr_track_early) xgbe_phy_cdr_track(pdata); } static void xgbe_phy_an_post(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (pdata->an_mode) { case XGBE_AN_MODE_CL73: case XGBE_AN_MODE_CL73_REDRV: if (phy_data->cur_mode != XGBE_MODE_KR) break; xgbe_phy_cdr_track(pdata); switch (pdata->an_result) { case XGBE_AN_READY: case XGBE_AN_COMPLETE: break; default: if (phy_data->phy_cdr_delay < XGBE_CDR_DELAY_MAX) phy_data->phy_cdr_delay += XGBE_CDR_DELAY_INC; else phy_data->phy_cdr_delay = XGBE_CDR_DELAY_INIT; break; } break; default: break; } } static void xgbe_phy_an_pre(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; switch (pdata->an_mode) { case XGBE_AN_MODE_CL73: case XGBE_AN_MODE_CL73_REDRV: if (phy_data->cur_mode != XGBE_MODE_KR) break; xgbe_phy_cdr_notrack(pdata); break; default: break; } } static void xgbe_phy_stop(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; /* If we have an external PHY, free it */ xgbe_phy_free_phy_device(pdata); /* Reset SFP data */ xgbe_phy_sfp_reset(phy_data); xgbe_phy_sfp_mod_absent(pdata); /* Reset CDR support */ xgbe_phy_cdr_track(pdata); /* Power off the PHY */ xgbe_phy_power_off(pdata); /* Stop the I2C controller */ pdata->i2c_if.i2c_stop(pdata); } static int xgbe_phy_start(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; int ret; /* Start the I2C controller */ ret = pdata->i2c_if.i2c_start(pdata); if (ret) return ret; /* Set the proper MDIO mode for the re-driver */ if (phy_data->redrv && !phy_data->redrv_if) { ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->redrv_addr, XGBE_MDIO_MODE_CL22); if (ret) { netdev_err(pdata->netdev, "redriver mdio port not compatible (%u)\n", phy_data->redrv_addr); return ret; } } /* Start in highest supported mode */ xgbe_phy_set_mode(pdata, phy_data->start_mode); /* Reset CDR support */ xgbe_phy_cdr_track(pdata); /* After starting the I2C controller, we can check for an SFP */ switch (phy_data->port_mode) { case XGBE_PORT_MODE_SFP: xgbe_phy_sfp_detect(pdata); break; default: break; } /* If we have an external PHY, start it */ ret = xgbe_phy_find_phy_device(pdata); if (ret) goto err_i2c; return 0; err_i2c: pdata->i2c_if.i2c_stop(pdata); return ret; } static int xgbe_phy_reset(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; enum xgbe_mode cur_mode; int ret; /* Reset by power cycling the PHY */ cur_mode = phy_data->cur_mode; xgbe_phy_power_off(pdata); xgbe_phy_set_mode(pdata, cur_mode); if (!phy_data->phydev) return 0; /* Reset the external PHY */ ret = xgbe_phy_mdio_reset(pdata); if (ret) return ret; return phy_init_hw(phy_data->phydev); } static void xgbe_phy_exit(struct xgbe_prv_data *pdata) { struct xgbe_phy_data *phy_data = pdata->phy_data; /* Unregister for driving external PHYs */ mdiobus_unregister(phy_data->mii); } static int xgbe_phy_init(struct xgbe_prv_data *pdata) { struct ethtool_link_ksettings *lks = &pdata->phy.lks; struct xgbe_phy_data *phy_data; struct mii_bus *mii; int ret; /* Check if enabled */ if (!xgbe_phy_port_enabled(pdata)) { dev_info(pdata->dev, "device is not enabled\n"); return -ENODEV; } /* Initialize the I2C controller */ ret = pdata->i2c_if.i2c_init(pdata); if (ret) return ret; phy_data = devm_kzalloc(pdata->dev, sizeof(*phy_data), GFP_KERNEL); if (!phy_data) return -ENOMEM; pdata->phy_data = phy_data; phy_data->port_mode = XP_GET_BITS(pdata->pp0, XP_PROP_0, PORT_MODE); phy_data->port_id = XP_GET_BITS(pdata->pp0, XP_PROP_0, PORT_ID); phy_data->port_speeds = XP_GET_BITS(pdata->pp0, XP_PROP_0, PORT_SPEEDS); phy_data->conn_type = XP_GET_BITS(pdata->pp0, XP_PROP_0, CONN_TYPE); phy_data->mdio_addr = XP_GET_BITS(pdata->pp0, XP_PROP_0, MDIO_ADDR); if (netif_msg_probe(pdata)) { dev_dbg(pdata->dev, "port mode=%u\n", phy_data->port_mode); dev_dbg(pdata->dev, "port id=%u\n", phy_data->port_id); dev_dbg(pdata->dev, "port speeds=%#x\n", phy_data->port_speeds); dev_dbg(pdata->dev, "conn type=%u\n", phy_data->conn_type); dev_dbg(pdata->dev, "mdio addr=%u\n", phy_data->mdio_addr); } phy_data->redrv = XP_GET_BITS(pdata->pp4, XP_PROP_4, REDRV_PRESENT); phy_data->redrv_if = XP_GET_BITS(pdata->pp4, XP_PROP_4, REDRV_IF); phy_data->redrv_addr = XP_GET_BITS(pdata->pp4, XP_PROP_4, REDRV_ADDR); phy_data->redrv_lane = XP_GET_BITS(pdata->pp4, XP_PROP_4, REDRV_LANE); phy_data->redrv_model = XP_GET_BITS(pdata->pp4, XP_PROP_4, REDRV_MODEL); if (phy_data->redrv && netif_msg_probe(pdata)) { dev_dbg(pdata->dev, "redrv present\n"); dev_dbg(pdata->dev, "redrv i/f=%u\n", phy_data->redrv_if); dev_dbg(pdata->dev, "redrv addr=%#x\n", phy_data->redrv_addr); dev_dbg(pdata->dev, "redrv lane=%u\n", phy_data->redrv_lane); dev_dbg(pdata->dev, "redrv model=%u\n", phy_data->redrv_model); } /* Validate the connection requested */ if (xgbe_phy_conn_type_mismatch(pdata)) { dev_err(pdata->dev, "phy mode/connection mismatch (%#x/%#x)\n", phy_data->port_mode, phy_data->conn_type); return -EINVAL; } /* Validate the mode requested */ if (xgbe_phy_port_mode_mismatch(pdata)) { dev_err(pdata->dev, "phy mode/speed mismatch (%#x/%#x)\n", phy_data->port_mode, phy_data->port_speeds); return -EINVAL; } /* Check for and validate MDIO reset support */ ret = xgbe_phy_mdio_reset_setup(pdata); if (ret) return ret; /* Validate the re-driver information */ if (xgbe_phy_redrv_error(phy_data)) { dev_err(pdata->dev, "phy re-driver settings error\n"); return -EINVAL; } pdata->kr_redrv = phy_data->redrv; /* Indicate current mode is unknown */ phy_data->cur_mode = XGBE_MODE_UNKNOWN; /* Initialize supported features */ XGBE_ZERO_SUP(lks); switch (phy_data->port_mode) { /* Backplane support */ case XGBE_PORT_MODE_BACKPLANE: XGBE_SET_SUP(lks, Autoneg); XGBE_SET_SUP(lks, Pause); XGBE_SET_SUP(lks, Asym_Pause); XGBE_SET_SUP(lks, Backplane); if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) { XGBE_SET_SUP(lks, 1000baseKX_Full); phy_data->start_mode = XGBE_MODE_KX_1000; } if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) { XGBE_SET_SUP(lks, 10000baseKR_Full); if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE) XGBE_SET_SUP(lks, 10000baseR_FEC); phy_data->start_mode = XGBE_MODE_KR; } phy_data->phydev_mode = XGBE_MDIO_MODE_NONE; break; case XGBE_PORT_MODE_BACKPLANE_2500: XGBE_SET_SUP(lks, Pause); XGBE_SET_SUP(lks, Asym_Pause); XGBE_SET_SUP(lks, Backplane); XGBE_SET_SUP(lks, 2500baseX_Full); phy_data->start_mode = XGBE_MODE_KX_2500; phy_data->phydev_mode = XGBE_MDIO_MODE_NONE; break; /* MDIO 1GBase-T support */ case XGBE_PORT_MODE_1000BASE_T: XGBE_SET_SUP(lks, Autoneg); XGBE_SET_SUP(lks, Pause); XGBE_SET_SUP(lks, Asym_Pause); XGBE_SET_SUP(lks, TP); if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) { XGBE_SET_SUP(lks, 100baseT_Full); phy_data->start_mode = XGBE_MODE_SGMII_100; } if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) { XGBE_SET_SUP(lks, 1000baseT_Full); phy_data->start_mode = XGBE_MODE_SGMII_1000; } phy_data->phydev_mode = XGBE_MDIO_MODE_CL22; break; /* MDIO Base-X support */ case XGBE_PORT_MODE_1000BASE_X: XGBE_SET_SUP(lks, Autoneg); XGBE_SET_SUP(lks, Pause); XGBE_SET_SUP(lks, Asym_Pause); XGBE_SET_SUP(lks, FIBRE); XGBE_SET_SUP(lks, 1000baseX_Full); phy_data->start_mode = XGBE_MODE_X; phy_data->phydev_mode = XGBE_MDIO_MODE_CL22; break; /* MDIO NBase-T support */ case XGBE_PORT_MODE_NBASE_T: XGBE_SET_SUP(lks, Autoneg); XGBE_SET_SUP(lks, Pause); XGBE_SET_SUP(lks, Asym_Pause); XGBE_SET_SUP(lks, TP); if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) { XGBE_SET_SUP(lks, 100baseT_Full); phy_data->start_mode = XGBE_MODE_SGMII_100; } if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) { XGBE_SET_SUP(lks, 1000baseT_Full); phy_data->start_mode = XGBE_MODE_SGMII_1000; } if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_2500) { XGBE_SET_SUP(lks, 2500baseT_Full); phy_data->start_mode = XGBE_MODE_KX_2500; } phy_data->phydev_mode = XGBE_MDIO_MODE_CL45; break; /* 10GBase-T support */ case XGBE_PORT_MODE_10GBASE_T: XGBE_SET_SUP(lks, Autoneg); XGBE_SET_SUP(lks, Pause); XGBE_SET_SUP(lks, Asym_Pause); XGBE_SET_SUP(lks, TP); if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) { XGBE_SET_SUP(lks, 100baseT_Full); phy_data->start_mode = XGBE_MODE_SGMII_100; } if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) { XGBE_SET_SUP(lks, 1000baseT_Full); phy_data->start_mode = XGBE_MODE_SGMII_1000; } if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) { XGBE_SET_SUP(lks, 10000baseT_Full); phy_data->start_mode = XGBE_MODE_KR; } phy_data->phydev_mode = XGBE_MDIO_MODE_CL45; break; /* 10GBase-R support */ case XGBE_PORT_MODE_10GBASE_R: XGBE_SET_SUP(lks, Autoneg); XGBE_SET_SUP(lks, Pause); XGBE_SET_SUP(lks, Asym_Pause); XGBE_SET_SUP(lks, FIBRE); XGBE_SET_SUP(lks, 10000baseSR_Full); XGBE_SET_SUP(lks, 10000baseLR_Full); XGBE_SET_SUP(lks, 10000baseLRM_Full); XGBE_SET_SUP(lks, 10000baseER_Full); if (pdata->fec_ability & MDIO_PMA_10GBR_FECABLE_ABLE) XGBE_SET_SUP(lks, 10000baseR_FEC); phy_data->start_mode = XGBE_MODE_SFI; phy_data->phydev_mode = XGBE_MDIO_MODE_NONE; break; /* SFP support */ case XGBE_PORT_MODE_SFP: XGBE_SET_SUP(lks, Autoneg); XGBE_SET_SUP(lks, Pause); XGBE_SET_SUP(lks, Asym_Pause); XGBE_SET_SUP(lks, TP); XGBE_SET_SUP(lks, FIBRE); if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_100) phy_data->start_mode = XGBE_MODE_SGMII_100; if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_1000) phy_data->start_mode = XGBE_MODE_SGMII_1000; if (phy_data->port_speeds & XGBE_PHY_PORT_SPEED_10000) phy_data->start_mode = XGBE_MODE_SFI; phy_data->phydev_mode = XGBE_MDIO_MODE_CL22; xgbe_phy_sfp_setup(pdata); break; default: return -EINVAL; } if (netif_msg_probe(pdata)) dev_dbg(pdata->dev, "phy supported=0x%*pb\n", __ETHTOOL_LINK_MODE_MASK_NBITS, lks->link_modes.supported); if ((phy_data->conn_type & XGBE_CONN_TYPE_MDIO) && (phy_data->phydev_mode != XGBE_MDIO_MODE_NONE)) { ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->mdio_addr, phy_data->phydev_mode); if (ret) { dev_err(pdata->dev, "mdio port/clause not compatible (%d/%u)\n", phy_data->mdio_addr, phy_data->phydev_mode); return -EINVAL; } } if (phy_data->redrv && !phy_data->redrv_if) { ret = pdata->hw_if.set_ext_mii_mode(pdata, phy_data->redrv_addr, XGBE_MDIO_MODE_CL22); if (ret) { dev_err(pdata->dev, "redriver mdio port not compatible (%u)\n", phy_data->redrv_addr); return -EINVAL; } } phy_data->phy_cdr_delay = XGBE_CDR_DELAY_INIT; /* Register for driving external PHYs */ mii = devm_mdiobus_alloc(pdata->dev); if (!mii) { dev_err(pdata->dev, "mdiobus_alloc failed\n"); return -ENOMEM; } mii->priv = pdata; mii->name = "amd-xgbe-mii"; mii->read = xgbe_phy_mii_read; mii->write = xgbe_phy_mii_write; mii->parent = pdata->dev; mii->phy_mask = ~0; snprintf(mii->id, sizeof(mii->id), "%s", dev_name(pdata->dev)); ret = mdiobus_register(mii); if (ret) { dev_err(pdata->dev, "mdiobus_register failed\n"); return ret; } phy_data->mii = mii; return 0; } void xgbe_init_function_ptrs_phy_v2(struct xgbe_phy_if *phy_if) { struct xgbe_phy_impl_if *phy_impl = &phy_if->phy_impl; phy_impl->init = xgbe_phy_init; phy_impl->exit = xgbe_phy_exit; phy_impl->reset = xgbe_phy_reset; phy_impl->start = xgbe_phy_start; phy_impl->stop = xgbe_phy_stop; phy_impl->link_status = xgbe_phy_link_status; phy_impl->valid_speed = xgbe_phy_valid_speed; phy_impl->use_mode = xgbe_phy_use_mode; phy_impl->set_mode = xgbe_phy_set_mode; phy_impl->get_mode = xgbe_phy_get_mode; phy_impl->switch_mode = xgbe_phy_switch_mode; phy_impl->cur_mode = xgbe_phy_cur_mode; phy_impl->an_mode = xgbe_phy_an_mode; phy_impl->an_config = xgbe_phy_an_config; phy_impl->an_advertising = xgbe_phy_an_advertising; phy_impl->an_outcome = xgbe_phy_an_outcome; phy_impl->an_pre = xgbe_phy_an_pre; phy_impl->an_post = xgbe_phy_an_post; phy_impl->kr_training_pre = xgbe_phy_kr_training_pre; phy_impl->kr_training_post = xgbe_phy_kr_training_post; phy_impl->module_info = xgbe_phy_module_info; phy_impl->module_eeprom = xgbe_phy_module_eeprom; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1