Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stephen Hemminger | 1664 | 98.93% | 2 | 28.57% |
Divy Le Ray | 14 | 0.83% | 1 | 14.29% |
Greg Kroah-Hartman | 1 | 0.06% | 1 | 14.29% |
François Romieu | 1 | 0.06% | 1 | 14.29% |
Lucas De Marchi | 1 | 0.06% | 1 | 14.29% |
Julia Lawall | 1 | 0.06% | 1 | 14.29% |
Total | 1682 | 7 |
// SPDX-License-Identifier: GPL-2.0 /* $Date: 2005/10/24 23:18:13 $ $RCSfile: mv88e1xxx.c,v $ $Revision: 1.49 $ */ #include "common.h" #include "mv88e1xxx.h" #include "cphy.h" #include "elmer0.h" /* MV88E1XXX MDI crossover register values */ #define CROSSOVER_MDI 0 #define CROSSOVER_MDIX 1 #define CROSSOVER_AUTO 3 #define INTR_ENABLE_MASK 0x6CA0 /* * Set the bits given by 'bitval' in PHY register 'reg'. */ static void mdio_set_bit(struct cphy *cphy, int reg, u32 bitval) { u32 val; (void) simple_mdio_read(cphy, reg, &val); (void) simple_mdio_write(cphy, reg, val | bitval); } /* * Clear the bits given by 'bitval' in PHY register 'reg'. */ static void mdio_clear_bit(struct cphy *cphy, int reg, u32 bitval) { u32 val; (void) simple_mdio_read(cphy, reg, &val); (void) simple_mdio_write(cphy, reg, val & ~bitval); } /* * NAME: phy_reset * * DESC: Reset the given PHY's port. NOTE: This is not a global * chip reset. * * PARAMS: cphy - Pointer to PHY instance data. * * RETURN: 0 - Successful reset. * -1 - Timeout. */ static int mv88e1xxx_reset(struct cphy *cphy, int wait) { u32 ctl; int time_out = 1000; mdio_set_bit(cphy, MII_BMCR, BMCR_RESET); do { (void) simple_mdio_read(cphy, MII_BMCR, &ctl); ctl &= BMCR_RESET; if (ctl) udelay(1); } while (ctl && --time_out); return ctl ? -1 : 0; } static int mv88e1xxx_interrupt_enable(struct cphy *cphy) { /* Enable PHY interrupts. */ (void) simple_mdio_write(cphy, MV88E1XXX_INTERRUPT_ENABLE_REGISTER, INTR_ENABLE_MASK); /* Enable Marvell interrupts through Elmer0. */ if (t1_is_asic(cphy->adapter)) { u32 elmer; t1_tpi_read(cphy->adapter, A_ELMER0_INT_ENABLE, &elmer); elmer |= ELMER0_GP_BIT1; if (is_T2(cphy->adapter)) elmer |= ELMER0_GP_BIT2 | ELMER0_GP_BIT3 | ELMER0_GP_BIT4; t1_tpi_write(cphy->adapter, A_ELMER0_INT_ENABLE, elmer); } return 0; } static int mv88e1xxx_interrupt_disable(struct cphy *cphy) { /* Disable all phy interrupts. */ (void) simple_mdio_write(cphy, MV88E1XXX_INTERRUPT_ENABLE_REGISTER, 0); /* Disable Marvell interrupts through Elmer0. */ if (t1_is_asic(cphy->adapter)) { u32 elmer; t1_tpi_read(cphy->adapter, A_ELMER0_INT_ENABLE, &elmer); elmer &= ~ELMER0_GP_BIT1; if (is_T2(cphy->adapter)) elmer &= ~(ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4); t1_tpi_write(cphy->adapter, A_ELMER0_INT_ENABLE, elmer); } return 0; } static int mv88e1xxx_interrupt_clear(struct cphy *cphy) { u32 elmer; /* Clear PHY interrupts by reading the register. */ (void) simple_mdio_read(cphy, MV88E1XXX_INTERRUPT_STATUS_REGISTER, &elmer); /* Clear Marvell interrupts through Elmer0. */ if (t1_is_asic(cphy->adapter)) { t1_tpi_read(cphy->adapter, A_ELMER0_INT_CAUSE, &elmer); elmer |= ELMER0_GP_BIT1; if (is_T2(cphy->adapter)) elmer |= ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4; t1_tpi_write(cphy->adapter, A_ELMER0_INT_CAUSE, elmer); } return 0; } /* * Set the PHY speed and duplex. This also disables auto-negotiation, except * for 1Gb/s, where auto-negotiation is mandatory. */ static int mv88e1xxx_set_speed_duplex(struct cphy *phy, int speed, int duplex) { u32 ctl; (void) simple_mdio_read(phy, MII_BMCR, &ctl); if (speed >= 0) { ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE); if (speed == SPEED_100) ctl |= BMCR_SPEED100; else if (speed == SPEED_1000) ctl |= BMCR_SPEED1000; } if (duplex >= 0) { ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE); if (duplex == DUPLEX_FULL) ctl |= BMCR_FULLDPLX; } if (ctl & BMCR_SPEED1000) /* auto-negotiation required for 1Gb/s */ ctl |= BMCR_ANENABLE; (void) simple_mdio_write(phy, MII_BMCR, ctl); return 0; } static int mv88e1xxx_crossover_set(struct cphy *cphy, int crossover) { u32 data32; (void) simple_mdio_read(cphy, MV88E1XXX_SPECIFIC_CNTRL_REGISTER, &data32); data32 &= ~V_PSCR_MDI_XOVER_MODE(M_PSCR_MDI_XOVER_MODE); data32 |= V_PSCR_MDI_XOVER_MODE(crossover); (void) simple_mdio_write(cphy, MV88E1XXX_SPECIFIC_CNTRL_REGISTER, data32); return 0; } static int mv88e1xxx_autoneg_enable(struct cphy *cphy) { u32 ctl; (void) mv88e1xxx_crossover_set(cphy, CROSSOVER_AUTO); (void) simple_mdio_read(cphy, MII_BMCR, &ctl); /* restart autoneg for change to take effect */ ctl |= BMCR_ANENABLE | BMCR_ANRESTART; (void) simple_mdio_write(cphy, MII_BMCR, ctl); return 0; } static int mv88e1xxx_autoneg_disable(struct cphy *cphy) { u32 ctl; /* * Crossover *must* be set to manual in order to disable auto-neg. * The Alaska FAQs document highlights this point. */ (void) mv88e1xxx_crossover_set(cphy, CROSSOVER_MDI); /* * Must include autoneg reset when disabling auto-neg. This * is described in the Alaska FAQ document. */ (void) simple_mdio_read(cphy, MII_BMCR, &ctl); ctl &= ~BMCR_ANENABLE; (void) simple_mdio_write(cphy, MII_BMCR, ctl | BMCR_ANRESTART); return 0; } static int mv88e1xxx_autoneg_restart(struct cphy *cphy) { mdio_set_bit(cphy, MII_BMCR, BMCR_ANRESTART); return 0; } static int mv88e1xxx_advertise(struct cphy *phy, unsigned int advertise_map) { u32 val = 0; if (advertise_map & (ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full)) { (void) simple_mdio_read(phy, MII_GBCR, &val); val &= ~(GBCR_ADV_1000HALF | GBCR_ADV_1000FULL); if (advertise_map & ADVERTISED_1000baseT_Half) val |= GBCR_ADV_1000HALF; if (advertise_map & ADVERTISED_1000baseT_Full) val |= GBCR_ADV_1000FULL; } (void) simple_mdio_write(phy, MII_GBCR, val); val = 1; if (advertise_map & ADVERTISED_10baseT_Half) val |= ADVERTISE_10HALF; if (advertise_map & ADVERTISED_10baseT_Full) val |= ADVERTISE_10FULL; if (advertise_map & ADVERTISED_100baseT_Half) val |= ADVERTISE_100HALF; if (advertise_map & ADVERTISED_100baseT_Full) val |= ADVERTISE_100FULL; if (advertise_map & ADVERTISED_PAUSE) val |= ADVERTISE_PAUSE; if (advertise_map & ADVERTISED_ASYM_PAUSE) val |= ADVERTISE_PAUSE_ASYM; (void) simple_mdio_write(phy, MII_ADVERTISE, val); return 0; } static int mv88e1xxx_set_loopback(struct cphy *cphy, int on) { if (on) mdio_set_bit(cphy, MII_BMCR, BMCR_LOOPBACK); else mdio_clear_bit(cphy, MII_BMCR, BMCR_LOOPBACK); return 0; } static int mv88e1xxx_get_link_status(struct cphy *cphy, int *link_ok, int *speed, int *duplex, int *fc) { u32 status; int sp = -1, dplx = -1, pause = 0; (void) simple_mdio_read(cphy, MV88E1XXX_SPECIFIC_STATUS_REGISTER, &status); if ((status & V_PSSR_STATUS_RESOLVED) != 0) { if (status & V_PSSR_RX_PAUSE) pause |= PAUSE_RX; if (status & V_PSSR_TX_PAUSE) pause |= PAUSE_TX; dplx = (status & V_PSSR_DUPLEX) ? DUPLEX_FULL : DUPLEX_HALF; sp = G_PSSR_SPEED(status); if (sp == 0) sp = SPEED_10; else if (sp == 1) sp = SPEED_100; else sp = SPEED_1000; } if (link_ok) *link_ok = (status & V_PSSR_LINK) != 0; if (speed) *speed = sp; if (duplex) *duplex = dplx; if (fc) *fc = pause; return 0; } static int mv88e1xxx_downshift_set(struct cphy *cphy, int downshift_enable) { u32 val; (void) simple_mdio_read(cphy, MV88E1XXX_EXT_PHY_SPECIFIC_CNTRL_REGISTER, &val); /* * Set the downshift counter to 2 so we try to establish Gb link * twice before downshifting. */ val &= ~(V_DOWNSHIFT_ENABLE | V_DOWNSHIFT_CNT(M_DOWNSHIFT_CNT)); if (downshift_enable) val |= V_DOWNSHIFT_ENABLE | V_DOWNSHIFT_CNT(2); (void) simple_mdio_write(cphy, MV88E1XXX_EXT_PHY_SPECIFIC_CNTRL_REGISTER, val); return 0; } static int mv88e1xxx_interrupt_handler(struct cphy *cphy) { int cphy_cause = 0; u32 status; /* * Loop until cause reads zero. Need to handle bouncing interrupts. */ while (1) { u32 cause; (void) simple_mdio_read(cphy, MV88E1XXX_INTERRUPT_STATUS_REGISTER, &cause); cause &= INTR_ENABLE_MASK; if (!cause) break; if (cause & MV88E1XXX_INTR_LINK_CHNG) { (void) simple_mdio_read(cphy, MV88E1XXX_SPECIFIC_STATUS_REGISTER, &status); if (status & MV88E1XXX_INTR_LINK_CHNG) cphy->state |= PHY_LINK_UP; else { cphy->state &= ~PHY_LINK_UP; if (cphy->state & PHY_AUTONEG_EN) cphy->state &= ~PHY_AUTONEG_RDY; cphy_cause |= cphy_cause_link_change; } } if (cause & MV88E1XXX_INTR_AUTONEG_DONE) cphy->state |= PHY_AUTONEG_RDY; if ((cphy->state & (PHY_LINK_UP | PHY_AUTONEG_RDY)) == (PHY_LINK_UP | PHY_AUTONEG_RDY)) cphy_cause |= cphy_cause_link_change; } return cphy_cause; } static void mv88e1xxx_destroy(struct cphy *cphy) { kfree(cphy); } static const struct cphy_ops mv88e1xxx_ops = { .destroy = mv88e1xxx_destroy, .reset = mv88e1xxx_reset, .interrupt_enable = mv88e1xxx_interrupt_enable, .interrupt_disable = mv88e1xxx_interrupt_disable, .interrupt_clear = mv88e1xxx_interrupt_clear, .interrupt_handler = mv88e1xxx_interrupt_handler, .autoneg_enable = mv88e1xxx_autoneg_enable, .autoneg_disable = mv88e1xxx_autoneg_disable, .autoneg_restart = mv88e1xxx_autoneg_restart, .advertise = mv88e1xxx_advertise, .set_loopback = mv88e1xxx_set_loopback, .set_speed_duplex = mv88e1xxx_set_speed_duplex, .get_link_status = mv88e1xxx_get_link_status, }; static struct cphy *mv88e1xxx_phy_create(struct net_device *dev, int phy_addr, const struct mdio_ops *mdio_ops) { struct adapter *adapter = netdev_priv(dev); struct cphy *cphy = kzalloc(sizeof(*cphy), GFP_KERNEL); if (!cphy) return NULL; cphy_init(cphy, dev, phy_addr, &mv88e1xxx_ops, mdio_ops); /* Configure particular PHY's to run in a different mode. */ if ((board_info(adapter)->caps & SUPPORTED_TP) && board_info(adapter)->chip_phy == CHBT_PHY_88E1111) { /* * Configure the PHY transmitter as class A to reduce EMI. */ (void) simple_mdio_write(cphy, MV88E1XXX_EXTENDED_ADDR_REGISTER, 0xB); (void) simple_mdio_write(cphy, MV88E1XXX_EXTENDED_REGISTER, 0x8004); } (void) mv88e1xxx_downshift_set(cphy, 1); /* Enable downshift */ /* LED */ if (is_T2(adapter)) { (void) simple_mdio_write(cphy, MV88E1XXX_LED_CONTROL_REGISTER, 0x1); } return cphy; } static int mv88e1xxx_phy_reset(adapter_t* adapter) { return 0; } const struct gphy t1_mv88e1xxx_ops = { .create = mv88e1xxx_phy_create, .reset = mv88e1xxx_phy_reset };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1