Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Auke-Jan H Kok | 3699 | 71.92% | 3 | 4.76% |
Bruce W Allan | 1235 | 24.01% | 44 | 69.84% |
Jeff Kirsher | 69 | 1.34% | 4 | 6.35% |
Jesse Brandeburg | 55 | 1.07% | 2 | 3.17% |
Joe Perches | 26 | 0.51% | 1 | 1.59% |
Benjamin Poirier | 25 | 0.49% | 2 | 3.17% |
Dave Ertman | 21 | 0.41% | 1 | 1.59% |
Jacob E Keller | 3 | 0.06% | 1 | 1.59% |
Tobias Klauser | 3 | 0.06% | 1 | 1.59% |
Jon Mason | 2 | 0.04% | 1 | 1.59% |
Jia-Ju Bai | 2 | 0.04% | 1 | 1.59% |
Alexander Chiang | 2 | 0.04% | 1 | 1.59% |
Arjan van de Ven | 1 | 0.02% | 1 | 1.59% |
Total | 5143 | 63 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 1999 - 2018 Intel Corporation. */ #include "e1000.h" /** * e1000e_get_bus_info_pcie - Get PCIe bus information * @hw: pointer to the HW structure * * Determines and stores the system bus information for a particular * network interface. The following bus information is determined and stored: * bus speed, bus width, type (PCIe), and PCIe function. **/ s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; struct e1000_bus_info *bus = &hw->bus; struct e1000_adapter *adapter = hw->adapter; u16 pcie_link_status, cap_offset; cap_offset = adapter->pdev->pcie_cap; if (!cap_offset) { bus->width = e1000_bus_width_unknown; } else { pci_read_config_word(adapter->pdev, cap_offset + PCIE_LINK_STATUS, &pcie_link_status); bus->width = (enum e1000_bus_width)((pcie_link_status & PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT); } mac->ops.set_lan_id(hw); return 0; } /** * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices * * @hw: pointer to the HW structure * * Determines the LAN function id by reading memory-mapped registers * and swaps the port value if requested. **/ void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) { struct e1000_bus_info *bus = &hw->bus; u32 reg; /* The status register reports the correct function number * for the device regardless of function swap state. */ reg = er32(STATUS); bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; } /** * e1000_set_lan_id_single_port - Set LAN id for a single port device * @hw: pointer to the HW structure * * Sets the LAN function id to zero for a single port device. **/ void e1000_set_lan_id_single_port(struct e1000_hw *hw) { struct e1000_bus_info *bus = &hw->bus; bus->func = 0; } /** * e1000_clear_vfta_generic - Clear VLAN filter table * @hw: pointer to the HW structure * * Clears the register array which contains the VLAN filter table by * setting all the values to 0. **/ void e1000_clear_vfta_generic(struct e1000_hw *hw) { u32 offset; for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); e1e_flush(); } } /** * e1000_write_vfta_generic - Write value to VLAN filter table * @hw: pointer to the HW structure * @offset: register offset in VLAN filter table * @value: register value written to VLAN filter table * * Writes value at the given offset in the register array which stores * the VLAN filter table. **/ void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) { E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); e1e_flush(); } /** * e1000e_init_rx_addrs - Initialize receive address's * @hw: pointer to the HW structure * @rar_count: receive address registers * * Setup the receive address registers by setting the base receive address * register to the devices MAC address and clearing all the other receive * address registers to 0. **/ void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) { u32 i; u8 mac_addr[ETH_ALEN] = { 0 }; /* Setup the receive address */ e_dbg("Programming MAC Address into RAR[0]\n"); hw->mac.ops.rar_set(hw, hw->mac.addr, 0); /* Zero out the other (rar_entry_count - 1) receive addresses */ e_dbg("Clearing RAR[1-%u]\n", rar_count - 1); for (i = 1; i < rar_count; i++) hw->mac.ops.rar_set(hw, mac_addr, i); } /** * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr * @hw: pointer to the HW structure * * Checks the nvm for an alternate MAC address. An alternate MAC address * can be setup by pre-boot software and must be treated like a permanent * address and must override the actual permanent MAC address. If an * alternate MAC address is found it is programmed into RAR0, replacing * the permanent address that was installed into RAR0 by the Si on reset. * This function will return SUCCESS unless it encounters an error while * reading the EEPROM. **/ s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) { u32 i; s32 ret_val; u16 offset, nvm_alt_mac_addr_offset, nvm_data; u8 alt_mac_addr[ETH_ALEN]; ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data); if (ret_val) return ret_val; /* not supported on 82573 */ if (hw->mac.type == e1000_82573) return 0; ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, &nvm_alt_mac_addr_offset); if (ret_val) { e_dbg("NVM Read Error\n"); return ret_val; } if ((nvm_alt_mac_addr_offset == 0xFFFF) || (nvm_alt_mac_addr_offset == 0x0000)) /* There is no Alternate MAC Address */ return 0; if (hw->bus.func == E1000_FUNC_1) nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; for (i = 0; i < ETH_ALEN; i += 2) { offset = nvm_alt_mac_addr_offset + (i >> 1); ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); if (ret_val) { e_dbg("NVM Read Error\n"); return ret_val; } alt_mac_addr[i] = (u8)(nvm_data & 0xFF); alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); } /* if multicast bit is set, the alternate address will not be used */ if (is_multicast_ether_addr(alt_mac_addr)) { e_dbg("Ignoring Alternate Mac Address with MC bit set\n"); return 0; } /* We have a valid alternate MAC address, and we want to treat it the * same as the normal permanent MAC address stored by the HW into the * RAR. Do this by mapping this address into RAR0. */ hw->mac.ops.rar_set(hw, alt_mac_addr, 0); return 0; } u32 e1000e_rar_get_count_generic(struct e1000_hw *hw) { return hw->mac.rar_entry_count; } /** * e1000e_rar_set_generic - Set receive address register * @hw: pointer to the HW structure * @addr: pointer to the receive address * @index: receive address array register * * Sets the receive address array register at index to the address passed * in by addr. **/ int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index) { u32 rar_low, rar_high; /* HW expects these in little endian so we reverse the byte order * from network order (big endian) to little endian */ rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); /* If MAC address zero, no need to set the AV bit */ if (rar_low || rar_high) rar_high |= E1000_RAH_AV; /* Some bridges will combine consecutive 32-bit writes into * a single burst write, which will malfunction on some parts. * The flushes avoid this. */ ew32(RAL(index), rar_low); e1e_flush(); ew32(RAH(index), rar_high); e1e_flush(); return 0; } /** * e1000_hash_mc_addr - Generate a multicast hash value * @hw: pointer to the HW structure * @mc_addr: pointer to a multicast address * * Generates a multicast address hash value which is used to determine * the multicast filter table array address and new table value. **/ static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) { u32 hash_value, hash_mask; u8 bit_shift = 0; /* Register count multiplied by bits per register */ hash_mask = (hw->mac.mta_reg_count * 32) - 1; /* For a mc_filter_type of 0, bit_shift is the number of left-shifts * where 0xFF would still fall within the hash mask. */ while (hash_mask >> bit_shift != 0xFF) bit_shift++; /* The portion of the address that is used for the hash table * is determined by the mc_filter_type setting. * The algorithm is such that there is a total of 8 bits of shifting. * The bit_shift for a mc_filter_type of 0 represents the number of * left-shifts where the MSB of mc_addr[5] would still fall within * the hash_mask. Case 0 does this exactly. Since there are a total * of 8 bits of shifting, then mc_addr[4] will shift right the * remaining number of bits. Thus 8 - bit_shift. The rest of the * cases are a variation of this algorithm...essentially raising the * number of bits to shift mc_addr[5] left, while still keeping the * 8-bit shifting total. * * For example, given the following Destination MAC Address and an * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), * we can see that the bit_shift for case 0 is 4. These are the hash * values resulting from each mc_filter_type... * [0] [1] [2] [3] [4] [5] * 01 AA 00 12 34 56 * LSB MSB * * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 */ switch (hw->mac.mc_filter_type) { default: case 0: break; case 1: bit_shift += 1; break; case 2: bit_shift += 2; break; case 3: bit_shift += 4; break; } hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | (((u16)mc_addr[5]) << bit_shift))); return hash_value; } /** * e1000e_update_mc_addr_list_generic - Update Multicast addresses * @hw: pointer to the HW structure * @mc_addr_list: array of multicast addresses to program * @mc_addr_count: number of multicast addresses to program * * Updates entire Multicast Table Array. * The caller must have a packed mc_addr_list of multicast addresses. **/ void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, u8 *mc_addr_list, u32 mc_addr_count) { u32 hash_value, hash_bit, hash_reg; int i; /* clear mta_shadow */ memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); /* update mta_shadow from mc_addr_list */ for (i = 0; (u32)i < mc_addr_count; i++) { hash_value = e1000_hash_mc_addr(hw, mc_addr_list); hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); hash_bit = hash_value & 0x1F; hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit); mc_addr_list += (ETH_ALEN); } /* replace the entire MTA table */ for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); e1e_flush(); } /** * e1000e_clear_hw_cntrs_base - Clear base hardware counters * @hw: pointer to the HW structure * * Clears the base hardware counters by reading the counter registers. **/ void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) { er32(CRCERRS); er32(SYMERRS); er32(MPC); er32(SCC); er32(ECOL); er32(MCC); er32(LATECOL); er32(COLC); er32(DC); er32(SEC); er32(RLEC); er32(XONRXC); er32(XONTXC); er32(XOFFRXC); er32(XOFFTXC); er32(FCRUC); er32(GPRC); er32(BPRC); er32(MPRC); er32(GPTC); er32(GORCL); er32(GORCH); er32(GOTCL); er32(GOTCH); er32(RNBC); er32(RUC); er32(RFC); er32(ROC); er32(RJC); er32(TORL); er32(TORH); er32(TOTL); er32(TOTH); er32(TPR); er32(TPT); er32(MPTC); er32(BPTC); } /** * e1000e_check_for_copper_link - Check for link (Copper) * @hw: pointer to the HW structure * * Checks to see of the link status of the hardware has changed. If a * change in link status has been detected, then we read the PHY registers * to get the current speed/duplex if link exists. **/ s32 e1000e_check_for_copper_link(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; bool link; /* We only want to go out to the PHY registers to see if Auto-Neg * has completed and/or if our link status has changed. The * get_link_status flag is set upon receiving a Link Status * Change or Rx Sequence Error interrupt. */ if (!mac->get_link_status) return 0; mac->get_link_status = false; /* First we want to see if the MII Status Register reports * link. If so, then we want to get the current speed/duplex * of the PHY. */ ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); if (ret_val || !link) goto out; /* Check if there was DownShift, must be checked * immediately after link-up */ e1000e_check_downshift(hw); /* If we are forcing speed/duplex, then we simply return since * we have already determined whether we have link or not. */ if (!mac->autoneg) return -E1000_ERR_CONFIG; /* Auto-Neg is enabled. Auto Speed Detection takes care * of MAC speed/duplex configuration. So we only need to * configure Collision Distance in the MAC. */ mac->ops.config_collision_dist(hw); /* Configure Flow Control now that Auto-Neg has completed. * First, we need to restore the desired flow control * settings because we may have had to re-autoneg with a * different link partner. */ ret_val = e1000e_config_fc_after_link_up(hw); if (ret_val) e_dbg("Error configuring flow control\n"); return ret_val; out: mac->get_link_status = true; return ret_val; } /** * e1000e_check_for_fiber_link - Check for link (Fiber) * @hw: pointer to the HW structure * * Checks for link up on the hardware. If link is not up and we have * a signal, then we need to force link up. **/ s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 rxcw; u32 ctrl; u32 status; s32 ret_val; ctrl = er32(CTRL); status = er32(STATUS); rxcw = er32(RXCW); /* If we don't have link (auto-negotiation failed or link partner * cannot auto-negotiate), the cable is plugged in (we have signal), * and our link partner is not trying to auto-negotiate with us (we * are receiving idles or data), we need to force link up. We also * need to give auto-negotiation time to complete, in case the cable * was just plugged in. The autoneg_failed flag does this. */ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { if (!mac->autoneg_failed) { mac->autoneg_failed = true; return 0; } e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); /* Disable auto-negotiation in the TXCW register */ ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); /* Force link-up and also force full-duplex. */ ctrl = er32(CTRL); ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); ew32(CTRL, ctrl); /* Configure Flow Control after forcing link up. */ ret_val = e1000e_config_fc_after_link_up(hw); if (ret_val) { e_dbg("Error configuring flow control\n"); return ret_val; } } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { /* If we are forcing link and we are receiving /C/ ordered * sets, re-enable auto-negotiation in the TXCW register * and disable forced link in the Device Control register * in an attempt to auto-negotiate with our link partner. */ e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); ew32(TXCW, mac->txcw); ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); mac->serdes_has_link = true; } return 0; } /** * e1000e_check_for_serdes_link - Check for link (Serdes) * @hw: pointer to the HW structure * * Checks for link up on the hardware. If link is not up and we have * a signal, then we need to force link up. **/ s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 rxcw; u32 ctrl; u32 status; s32 ret_val; ctrl = er32(CTRL); status = er32(STATUS); rxcw = er32(RXCW); /* If we don't have link (auto-negotiation failed or link partner * cannot auto-negotiate), and our link partner is not trying to * auto-negotiate with us (we are receiving idles or data), * we need to force link up. We also need to give auto-negotiation * time to complete. */ /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { if (!mac->autoneg_failed) { mac->autoneg_failed = true; return 0; } e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); /* Disable auto-negotiation in the TXCW register */ ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); /* Force link-up and also force full-duplex. */ ctrl = er32(CTRL); ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); ew32(CTRL, ctrl); /* Configure Flow Control after forcing link up. */ ret_val = e1000e_config_fc_after_link_up(hw); if (ret_val) { e_dbg("Error configuring flow control\n"); return ret_val; } } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { /* If we are forcing link and we are receiving /C/ ordered * sets, re-enable auto-negotiation in the TXCW register * and disable forced link in the Device Control register * in an attempt to auto-negotiate with our link partner. */ e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); ew32(TXCW, mac->txcw); ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); mac->serdes_has_link = true; } else if (!(E1000_TXCW_ANE & er32(TXCW))) { /* If we force link for non-auto-negotiation switch, check * link status based on MAC synchronization for internal * serdes media type. */ /* SYNCH bit and IV bit are sticky. */ usleep_range(10, 20); rxcw = er32(RXCW); if (rxcw & E1000_RXCW_SYNCH) { if (!(rxcw & E1000_RXCW_IV)) { mac->serdes_has_link = true; e_dbg("SERDES: Link up - forced.\n"); } } else { mac->serdes_has_link = false; e_dbg("SERDES: Link down - force failed.\n"); } } if (E1000_TXCW_ANE & er32(TXCW)) { status = er32(STATUS); if (status & E1000_STATUS_LU) { /* SYNCH bit and IV bit are sticky, so reread rxcw. */ usleep_range(10, 20); rxcw = er32(RXCW); if (rxcw & E1000_RXCW_SYNCH) { if (!(rxcw & E1000_RXCW_IV)) { mac->serdes_has_link = true; e_dbg("SERDES: Link up - autoneg completed successfully.\n"); } else { mac->serdes_has_link = false; e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n"); } } else { mac->serdes_has_link = false; e_dbg("SERDES: Link down - no sync.\n"); } } else { mac->serdes_has_link = false; e_dbg("SERDES: Link down - autoneg failed\n"); } } return 0; } /** * e1000_set_default_fc_generic - Set flow control default values * @hw: pointer to the HW structure * * Read the EEPROM for the default values for flow control and store the * values. **/ static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) { s32 ret_val; u16 nvm_data; /* Read and store word 0x0F of the EEPROM. This word contains bits * that determine the hardware's default PAUSE (flow control) mode, * a bit that determines whether the HW defaults to enabling or * disabling auto-negotiation, and the direction of the * SW defined pins. If there is no SW over-ride of the flow * control setting, then the variable hw->fc will * be initialized based on a value in the EEPROM. */ ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); if (ret_val) { e_dbg("NVM Read Error\n"); return ret_val; } if (!(nvm_data & NVM_WORD0F_PAUSE_MASK)) hw->fc.requested_mode = e1000_fc_none; else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR) hw->fc.requested_mode = e1000_fc_tx_pause; else hw->fc.requested_mode = e1000_fc_full; return 0; } /** * e1000e_setup_link_generic - Setup flow control and link settings * @hw: pointer to the HW structure * * Determines which flow control settings to use, then configures flow * control. Calls the appropriate media-specific link configuration * function. Assuming the adapter has a valid link partner, a valid link * should be established. Assumes the hardware has previously been reset * and the transmitter and receiver are not enabled. **/ s32 e1000e_setup_link_generic(struct e1000_hw *hw) { s32 ret_val; /* In the case of the phy reset being blocked, we already have a link. * We do not need to set it up again. */ if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) return 0; /* If requested flow control is set to default, set flow control * based on the EEPROM flow control settings. */ if (hw->fc.requested_mode == e1000_fc_default) { ret_val = e1000_set_default_fc_generic(hw); if (ret_val) return ret_val; } /* Save off the requested flow control mode for use later. Depending * on the link partner's capabilities, we may or may not use this mode. */ hw->fc.current_mode = hw->fc.requested_mode; e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); /* Call the necessary media_type subroutine to configure the link. */ ret_val = hw->mac.ops.setup_physical_interface(hw); if (ret_val) return ret_val; /* Initialize the flow control address, type, and PAUSE timer * registers to their default values. This is done even if flow * control is disabled, because it does not hurt anything to * initialize these registers. */ e_dbg("Initializing the Flow Control address, type and timer regs\n"); ew32(FCT, FLOW_CONTROL_TYPE); ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); ew32(FCTTV, hw->fc.pause_time); return e1000e_set_fc_watermarks(hw); } /** * e1000_commit_fc_settings_generic - Configure flow control * @hw: pointer to the HW structure * * Write the flow control settings to the Transmit Config Word Register (TXCW) * base on the flow control settings in e1000_mac_info. **/ static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 txcw; /* Check for a software override of the flow control settings, and * setup the device accordingly. If auto-negotiation is enabled, then * software will have to set the "PAUSE" bits to the correct value in * the Transmit Config Word Register (TXCW) and re-start auto- * negotiation. However, if auto-negotiation is disabled, then * software will have to manually configure the two flow control enable * bits in the CTRL register. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames, * but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames but we * do not support receiving pause frames). * 3: Both Rx and Tx flow control (symmetric) are enabled. */ switch (hw->fc.current_mode) { case e1000_fc_none: /* Flow control completely disabled by a software over-ride. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); break; case e1000_fc_rx_pause: /* Rx Flow control is enabled and Tx Flow control is disabled * by a software over-ride. Since there really isn't a way to * advertise that we are capable of Rx Pause ONLY, we will * advertise that we support both symmetric and asymmetric Rx * PAUSE. Later, we will disable the adapter's ability to send * PAUSE frames. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); break; case e1000_fc_tx_pause: /* Tx Flow control is enabled, and Rx Flow control is disabled, * by a software over-ride. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); break; case e1000_fc_full: /* Flow control (both Rx and Tx) is enabled by a software * over-ride. */ txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); break; default: e_dbg("Flow control param set incorrectly\n"); return -E1000_ERR_CONFIG; } ew32(TXCW, txcw); mac->txcw = txcw; return 0; } /** * e1000_poll_fiber_serdes_link_generic - Poll for link up * @hw: pointer to the HW structure * * Polls for link up by reading the status register, if link fails to come * up with auto-negotiation, then the link is forced if a signal is detected. **/ static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; u32 i, status; s32 ret_val; /* If we have a signal (the cable is plugged in, or assumed true for * serdes media) then poll for a "Link-Up" indication in the Device * Status Register. Time-out if a link isn't seen in 500 milliseconds * seconds (Auto-negotiation should complete in less than 500 * milliseconds even if the other end is doing it in SW). */ for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { usleep_range(10000, 11000); status = er32(STATUS); if (status & E1000_STATUS_LU) break; } if (i == FIBER_LINK_UP_LIMIT) { e_dbg("Never got a valid link from auto-neg!!!\n"); mac->autoneg_failed = true; /* AutoNeg failed to achieve a link, so we'll call * mac->check_for_link. This routine will force the * link up if we detect a signal. This will allow us to * communicate with non-autonegotiating link partners. */ ret_val = mac->ops.check_for_link(hw); if (ret_val) { e_dbg("Error while checking for link\n"); return ret_val; } mac->autoneg_failed = false; } else { mac->autoneg_failed = false; e_dbg("Valid Link Found\n"); } return 0; } /** * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes * @hw: pointer to the HW structure * * Configures collision distance and flow control for fiber and serdes * links. Upon successful setup, poll for link. **/ s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; ctrl = er32(CTRL); /* Take the link out of reset */ ctrl &= ~E1000_CTRL_LRST; hw->mac.ops.config_collision_dist(hw); ret_val = e1000_commit_fc_settings_generic(hw); if (ret_val) return ret_val; /* Since auto-negotiation is enabled, take the link out of reset (the * link will be in reset, because we previously reset the chip). This * will restart auto-negotiation. If auto-negotiation is successful * then the link-up status bit will be set and the flow control enable * bits (RFCE and TFCE) will be set according to their negotiated value. */ e_dbg("Auto-negotiation enabled\n"); ew32(CTRL, ctrl); e1e_flush(); usleep_range(1000, 2000); /* For these adapters, the SW definable pin 1 is set when the optics * detect a signal. If we have a signal, then poll for a "Link-Up" * indication. */ if (hw->phy.media_type == e1000_media_type_internal_serdes || (er32(CTRL) & E1000_CTRL_SWDPIN1)) { ret_val = e1000_poll_fiber_serdes_link_generic(hw); } else { e_dbg("No signal detected\n"); } return ret_val; } /** * e1000e_config_collision_dist_generic - Configure collision distance * @hw: pointer to the HW structure * * Configures the collision distance to the default value and is used * during link setup. **/ void e1000e_config_collision_dist_generic(struct e1000_hw *hw) { u32 tctl; tctl = er32(TCTL); tctl &= ~E1000_TCTL_COLD; tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; ew32(TCTL, tctl); e1e_flush(); } /** * e1000e_set_fc_watermarks - Set flow control high/low watermarks * @hw: pointer to the HW structure * * Sets the flow control high/low threshold (watermark) registers. If * flow control XON frame transmission is enabled, then set XON frame * transmission as well. **/ s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) { u32 fcrtl = 0, fcrth = 0; /* Set the flow control receive threshold registers. Normally, * these registers will be set to a default threshold that may be * adjusted later by the driver's runtime code. However, if the * ability to transmit pause frames is not enabled, then these * registers will be set to 0. */ if (hw->fc.current_mode & e1000_fc_tx_pause) { /* We need to set up the Receive Threshold high and low water * marks as well as (optionally) enabling the transmission of * XON frames. */ fcrtl = hw->fc.low_water; if (hw->fc.send_xon) fcrtl |= E1000_FCRTL_XONE; fcrth = hw->fc.high_water; } ew32(FCRTL, fcrtl); ew32(FCRTH, fcrth); return 0; } /** * e1000e_force_mac_fc - Force the MAC's flow control settings * @hw: pointer to the HW structure * * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the * device control register to reflect the adapter settings. TFCE and RFCE * need to be explicitly set by software when a copper PHY is used because * autonegotiation is managed by the PHY rather than the MAC. Software must * also configure these bits when link is forced on a fiber connection. **/ s32 e1000e_force_mac_fc(struct e1000_hw *hw) { u32 ctrl; ctrl = er32(CTRL); /* Because we didn't get link via the internal auto-negotiation * mechanism (we either forced link or we got link via PHY * auto-neg), we have to manually enable/disable transmit an * receive flow control. * * The "Case" statement below enables/disable flow control * according to the "hw->fc.current_mode" parameter. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause * frames but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * frames but we do not receive pause frames). * 3: Both Rx and Tx flow control (symmetric) is enabled. * other: No other values should be possible at this point. */ e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); switch (hw->fc.current_mode) { case e1000_fc_none: ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); break; case e1000_fc_rx_pause: ctrl &= (~E1000_CTRL_TFCE); ctrl |= E1000_CTRL_RFCE; break; case e1000_fc_tx_pause: ctrl &= (~E1000_CTRL_RFCE); ctrl |= E1000_CTRL_TFCE; break; case e1000_fc_full: ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); break; default: e_dbg("Flow control param set incorrectly\n"); return -E1000_ERR_CONFIG; } ew32(CTRL, ctrl); return 0; } /** * e1000e_config_fc_after_link_up - Configures flow control after link * @hw: pointer to the HW structure * * Checks the status of auto-negotiation after link up to ensure that the * speed and duplex were not forced. If the link needed to be forced, then * flow control needs to be forced also. If auto-negotiation is enabled * and did not fail, then we configure flow control based on our link * partner. **/ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val = 0; u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg; u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; u16 speed, duplex; /* Check for the case where we have fiber media and auto-neg failed * so we had to force link. In this case, we need to force the * configuration of the MAC to match the "fc" parameter. */ if (mac->autoneg_failed) { if (hw->phy.media_type == e1000_media_type_fiber || hw->phy.media_type == e1000_media_type_internal_serdes) ret_val = e1000e_force_mac_fc(hw); } else { if (hw->phy.media_type == e1000_media_type_copper) ret_val = e1000e_force_mac_fc(hw); } if (ret_val) { e_dbg("Error forcing flow control settings\n"); return ret_val; } /* Check for the case where we have copper media and auto-neg is * enabled. In this case, we need to check and see if Auto-Neg * has completed, and if so, how the PHY and link partner has * flow control configured. */ if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { /* Read the MII Status Register and check to see if AutoNeg * has completed. We read this twice because this reg has * some "sticky" (latched) bits. */ ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg); if (ret_val) return ret_val; ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg); if (ret_val) return ret_val; if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) { e_dbg("Copper PHY and Auto Neg has not completed.\n"); return ret_val; } /* The AutoNeg process has completed, so we now need to * read both the Auto Negotiation Advertisement * Register (Address 4) and the Auto_Negotiation Base * Page Ability Register (Address 5) to determine how * flow control was negotiated. */ ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg); if (ret_val) return ret_val; ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg); if (ret_val) return ret_val; /* Two bits in the Auto Negotiation Advertisement Register * (Address 4) and two bits in the Auto Negotiation Base * Page Ability Register (Address 5) determine flow control * for both the PHY and the link partner. The following * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, * 1999, describes these PAUSE resolution bits and how flow * control is determined based upon these settings. * NOTE: DC = Don't Care * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution *-------|---------|-------|---------|-------------------- * 0 | 0 | DC | DC | e1000_fc_none * 0 | 1 | 0 | DC | e1000_fc_none * 0 | 1 | 1 | 0 | e1000_fc_none * 0 | 1 | 1 | 1 | e1000_fc_tx_pause * 1 | 0 | 0 | DC | e1000_fc_none * 1 | DC | 1 | DC | e1000_fc_full * 1 | 1 | 0 | 0 | e1000_fc_none * 1 | 1 | 0 | 1 | e1000_fc_rx_pause * * Are both PAUSE bits set to 1? If so, this implies * Symmetric Flow Control is enabled at both ends. The * ASM_DIR bits are irrelevant per the spec. * * For Symmetric Flow Control: * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | DC | 1 | DC | E1000_fc_full * */ if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) { /* Now we need to check if the user selected Rx ONLY * of pause frames. In this case, we had to advertise * FULL flow control because we could not advertise Rx * ONLY. Hence, we must now check to see if we need to * turn OFF the TRANSMISSION of PAUSE frames. */ if (hw->fc.requested_mode == e1000_fc_full) { hw->fc.current_mode = e1000_fc_full; e_dbg("Flow Control = FULL.\n"); } else { hw->fc.current_mode = e1000_fc_rx_pause; e_dbg("Flow Control = Rx PAUSE frames only.\n"); } } /* For receiving PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause */ else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) && (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) && (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) { hw->fc.current_mode = e1000_fc_tx_pause; e_dbg("Flow Control = Tx PAUSE frames only.\n"); } /* For transmitting PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause */ else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) && (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) && !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) && (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) { hw->fc.current_mode = e1000_fc_rx_pause; e_dbg("Flow Control = Rx PAUSE frames only.\n"); } else { /* Per the IEEE spec, at this point flow control * should be disabled. */ hw->fc.current_mode = e1000_fc_none; e_dbg("Flow Control = NONE.\n"); } /* Now we need to do one last check... If we auto- * negotiated to HALF DUPLEX, flow control should not be * enabled per IEEE 802.3 spec. */ ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); if (ret_val) { e_dbg("Error getting link speed and duplex\n"); return ret_val; } if (duplex == HALF_DUPLEX) hw->fc.current_mode = e1000_fc_none; /* Now we call a subroutine to actually force the MAC * controller to use the correct flow control settings. */ ret_val = e1000e_force_mac_fc(hw); if (ret_val) { e_dbg("Error forcing flow control settings\n"); return ret_val; } } /* Check for the case where we have SerDes media and auto-neg is * enabled. In this case, we need to check and see if Auto-Neg * has completed, and if so, how the PHY and link partner has * flow control configured. */ if ((hw->phy.media_type == e1000_media_type_internal_serdes) && mac->autoneg) { /* Read the PCS_LSTS and check to see if AutoNeg * has completed. */ pcs_status_reg = er32(PCS_LSTAT); if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) { e_dbg("PCS Auto Neg has not completed.\n"); return ret_val; } /* The AutoNeg process has completed, so we now need to * read both the Auto Negotiation Advertisement * Register (PCS_ANADV) and the Auto_Negotiation Base * Page Ability Register (PCS_LPAB) to determine how * flow control was negotiated. */ pcs_adv_reg = er32(PCS_ANADV); pcs_lp_ability_reg = er32(PCS_LPAB); /* Two bits in the Auto Negotiation Advertisement Register * (PCS_ANADV) and two bits in the Auto Negotiation Base * Page Ability Register (PCS_LPAB) determine flow control * for both the PHY and the link partner. The following * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, * 1999, describes these PAUSE resolution bits and how flow * control is determined based upon these settings. * NOTE: DC = Don't Care * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution *-------|---------|-------|---------|-------------------- * 0 | 0 | DC | DC | e1000_fc_none * 0 | 1 | 0 | DC | e1000_fc_none * 0 | 1 | 1 | 0 | e1000_fc_none * 0 | 1 | 1 | 1 | e1000_fc_tx_pause * 1 | 0 | 0 | DC | e1000_fc_none * 1 | DC | 1 | DC | e1000_fc_full * 1 | 1 | 0 | 0 | e1000_fc_none * 1 | 1 | 0 | 1 | e1000_fc_rx_pause * * Are both PAUSE bits set to 1? If so, this implies * Symmetric Flow Control is enabled at both ends. The * ASM_DIR bits are irrelevant per the spec. * * For Symmetric Flow Control: * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | DC | 1 | DC | e1000_fc_full * */ if ((pcs_adv_reg & E1000_TXCW_PAUSE) && (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) { /* Now we need to check if the user selected Rx ONLY * of pause frames. In this case, we had to advertise * FULL flow control because we could not advertise Rx * ONLY. Hence, we must now check to see if we need to * turn OFF the TRANSMISSION of PAUSE frames. */ if (hw->fc.requested_mode == e1000_fc_full) { hw->fc.current_mode = e1000_fc_full; e_dbg("Flow Control = FULL.\n"); } else { hw->fc.current_mode = e1000_fc_rx_pause; e_dbg("Flow Control = Rx PAUSE frames only.\n"); } } /* For receiving PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 0 | 1 | 1 | 1 | e1000_fc_tx_pause */ else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) && (pcs_adv_reg & E1000_TXCW_ASM_DIR) && (pcs_lp_ability_reg & E1000_TXCW_PAUSE) && (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { hw->fc.current_mode = e1000_fc_tx_pause; e_dbg("Flow Control = Tx PAUSE frames only.\n"); } /* For transmitting PAUSE frames ONLY. * * LOCAL DEVICE | LINK PARTNER * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result *-------|---------|-------|---------|-------------------- * 1 | 1 | 0 | 1 | e1000_fc_rx_pause */ else if ((pcs_adv_reg & E1000_TXCW_PAUSE) && (pcs_adv_reg & E1000_TXCW_ASM_DIR) && !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) && (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) { hw->fc.current_mode = e1000_fc_rx_pause; e_dbg("Flow Control = Rx PAUSE frames only.\n"); } else { /* Per the IEEE spec, at this point flow control * should be disabled. */ hw->fc.current_mode = e1000_fc_none; e_dbg("Flow Control = NONE.\n"); } /* Now we call a subroutine to actually force the MAC * controller to use the correct flow control settings. */ pcs_ctrl_reg = er32(PCS_LCTL); pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL; ew32(PCS_LCTL, pcs_ctrl_reg); ret_val = e1000e_force_mac_fc(hw); if (ret_val) { e_dbg("Error forcing flow control settings\n"); return ret_val; } } return 0; } /** * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex * @hw: pointer to the HW structure * @speed: stores the current speed * @duplex: stores the current duplex * * Read the status register for the current speed/duplex and store the current * speed and duplex for copper connections. **/ s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex) { u32 status; status = er32(STATUS); if (status & E1000_STATUS_SPEED_1000) *speed = SPEED_1000; else if (status & E1000_STATUS_SPEED_100) *speed = SPEED_100; else *speed = SPEED_10; if (status & E1000_STATUS_FD) *duplex = FULL_DUPLEX; else *duplex = HALF_DUPLEX; e_dbg("%u Mbps, %s Duplex\n", *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10, *duplex == FULL_DUPLEX ? "Full" : "Half"); return 0; } /** * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex * @hw: pointer to the HW structure * @speed: stores the current speed * @duplex: stores the current duplex * * Sets the speed and duplex to gigabit full duplex (the only possible option) * for fiber/serdes links. **/ s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused *hw, u16 *speed, u16 *duplex) { *speed = SPEED_1000; *duplex = FULL_DUPLEX; return 0; } /** * e1000e_get_hw_semaphore - Acquire hardware semaphore * @hw: pointer to the HW structure * * Acquire the HW semaphore to access the PHY or NVM **/ s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) { u32 swsm; s32 timeout = hw->nvm.word_size + 1; s32 i = 0; /* Get the SW semaphore */ while (i < timeout) { swsm = er32(SWSM); if (!(swsm & E1000_SWSM_SMBI)) break; udelay(100); i++; } if (i == timeout) { e_dbg("Driver can't access device - SMBI bit is set.\n"); return -E1000_ERR_NVM; } /* Get the FW semaphore. */ for (i = 0; i < timeout; i++) { swsm = er32(SWSM); ew32(SWSM, swsm | E1000_SWSM_SWESMBI); /* Semaphore acquired if bit latched */ if (er32(SWSM) & E1000_SWSM_SWESMBI) break; udelay(100); } if (i == timeout) { /* Release semaphores */ e1000e_put_hw_semaphore(hw); e_dbg("Driver can't access the NVM\n"); return -E1000_ERR_NVM; } return 0; } /** * e1000e_put_hw_semaphore - Release hardware semaphore * @hw: pointer to the HW structure * * Release hardware semaphore used to access the PHY or NVM **/ void e1000e_put_hw_semaphore(struct e1000_hw *hw) { u32 swsm; swsm = er32(SWSM); swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); ew32(SWSM, swsm); } /** * e1000e_get_auto_rd_done - Check for auto read completion * @hw: pointer to the HW structure * * Check EEPROM for Auto Read done bit. **/ s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) { s32 i = 0; while (i < AUTO_READ_DONE_TIMEOUT) { if (er32(EECD) & E1000_EECD_AUTO_RD) break; usleep_range(1000, 2000); i++; } if (i == AUTO_READ_DONE_TIMEOUT) { e_dbg("Auto read by HW from NVM has not completed.\n"); return -E1000_ERR_RESET; } return 0; } /** * e1000e_valid_led_default - Verify a valid default LED config * @hw: pointer to the HW structure * @data: pointer to the NVM (EEPROM) * * Read the EEPROM for the current default LED configuration. If the * LED configuration is not valid, set to a valid LED configuration. **/ s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) { s32 ret_val; ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); if (ret_val) { e_dbg("NVM Read Error\n"); return ret_val; } if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) *data = ID_LED_DEFAULT; return 0; } /** * e1000e_id_led_init_generic - * @hw: pointer to the HW structure * **/ s32 e1000e_id_led_init_generic(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; const u32 ledctl_mask = 0x000000FF; const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; u16 data, i, temp; const u16 led_mask = 0x0F; ret_val = hw->nvm.ops.valid_led_default(hw, &data); if (ret_val) return ret_val; mac->ledctl_default = er32(LEDCTL); mac->ledctl_mode1 = mac->ledctl_default; mac->ledctl_mode2 = mac->ledctl_default; for (i = 0; i < 4; i++) { temp = (data >> (i << 2)) & led_mask; switch (temp) { case ID_LED_ON1_DEF2: case ID_LED_ON1_ON2: case ID_LED_ON1_OFF2: mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); mac->ledctl_mode1 |= ledctl_on << (i << 3); break; case ID_LED_OFF1_DEF2: case ID_LED_OFF1_ON2: case ID_LED_OFF1_OFF2: mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); mac->ledctl_mode1 |= ledctl_off << (i << 3); break; default: /* Do nothing */ break; } switch (temp) { case ID_LED_DEF1_ON2: case ID_LED_ON1_ON2: case ID_LED_OFF1_ON2: mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); mac->ledctl_mode2 |= ledctl_on << (i << 3); break; case ID_LED_DEF1_OFF2: case ID_LED_ON1_OFF2: case ID_LED_OFF1_OFF2: mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); mac->ledctl_mode2 |= ledctl_off << (i << 3); break; default: /* Do nothing */ break; } } return 0; } /** * e1000e_setup_led_generic - Configures SW controllable LED * @hw: pointer to the HW structure * * This prepares the SW controllable LED for use and saves the current state * of the LED so it can be later restored. **/ s32 e1000e_setup_led_generic(struct e1000_hw *hw) { u32 ledctl; if (hw->mac.ops.setup_led != e1000e_setup_led_generic) return -E1000_ERR_CONFIG; if (hw->phy.media_type == e1000_media_type_fiber) { ledctl = er32(LEDCTL); hw->mac.ledctl_default = ledctl; /* Turn off LED0 */ ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED0_MODE_MASK); ledctl |= (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT); ew32(LEDCTL, ledctl); } else if (hw->phy.media_type == e1000_media_type_copper) { ew32(LEDCTL, hw->mac.ledctl_mode1); } return 0; } /** * e1000e_cleanup_led_generic - Set LED config to default operation * @hw: pointer to the HW structure * * Remove the current LED configuration and set the LED configuration * to the default value, saved from the EEPROM. **/ s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) { ew32(LEDCTL, hw->mac.ledctl_default); return 0; } /** * e1000e_blink_led_generic - Blink LED * @hw: pointer to the HW structure * * Blink the LEDs which are set to be on. **/ s32 e1000e_blink_led_generic(struct e1000_hw *hw) { u32 ledctl_blink = 0; u32 i; if (hw->phy.media_type == e1000_media_type_fiber) { /* always blink LED0 for PCI-E fiber */ ledctl_blink = E1000_LEDCTL_LED0_BLINK | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); } else { /* Set the blink bit for each LED that's "on" (0x0E) * (or "off" if inverted) in ledctl_mode2. The blink * logic in hardware only works when mode is set to "on" * so it must be changed accordingly when the mode is * "off" and inverted. */ ledctl_blink = hw->mac.ledctl_mode2; for (i = 0; i < 32; i += 8) { u32 mode = (hw->mac.ledctl_mode2 >> i) & E1000_LEDCTL_LED0_MODE_MASK; u32 led_default = hw->mac.ledctl_default >> i; if ((!(led_default & E1000_LEDCTL_LED0_IVRT) && (mode == E1000_LEDCTL_MODE_LED_ON)) || ((led_default & E1000_LEDCTL_LED0_IVRT) && (mode == E1000_LEDCTL_MODE_LED_OFF))) { ledctl_blink &= ~(E1000_LEDCTL_LED0_MODE_MASK << i); ledctl_blink |= (E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_MODE_LED_ON) << i; } } } ew32(LEDCTL, ledctl_blink); return 0; } /** * e1000e_led_on_generic - Turn LED on * @hw: pointer to the HW structure * * Turn LED on. **/ s32 e1000e_led_on_generic(struct e1000_hw *hw) { u32 ctrl; switch (hw->phy.media_type) { case e1000_media_type_fiber: ctrl = er32(CTRL); ctrl &= ~E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; ew32(CTRL, ctrl); break; case e1000_media_type_copper: ew32(LEDCTL, hw->mac.ledctl_mode2); break; default: break; } return 0; } /** * e1000e_led_off_generic - Turn LED off * @hw: pointer to the HW structure * * Turn LED off. **/ s32 e1000e_led_off_generic(struct e1000_hw *hw) { u32 ctrl; switch (hw->phy.media_type) { case e1000_media_type_fiber: ctrl = er32(CTRL); ctrl |= E1000_CTRL_SWDPIN0; ctrl |= E1000_CTRL_SWDPIO0; ew32(CTRL, ctrl); break; case e1000_media_type_copper: ew32(LEDCTL, hw->mac.ledctl_mode1); break; default: break; } return 0; } /** * e1000e_set_pcie_no_snoop - Set PCI-express capabilities * @hw: pointer to the HW structure * @no_snoop: bitmap of snoop events * * Set the PCI-express register to snoop for events enabled in 'no_snoop'. **/ void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) { u32 gcr; if (no_snoop) { gcr = er32(GCR); gcr &= ~(PCIE_NO_SNOOP_ALL); gcr |= no_snoop; ew32(GCR, gcr); } } /** * e1000e_disable_pcie_master - Disables PCI-express master access * @hw: pointer to the HW structure * * Returns 0 if successful, else returns -10 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused * the master requests to be disabled. * * Disables PCI-Express master access and verifies there are no pending * requests. **/ s32 e1000e_disable_pcie_master(struct e1000_hw *hw) { u32 ctrl; s32 timeout = MASTER_DISABLE_TIMEOUT; ctrl = er32(CTRL); ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; ew32(CTRL, ctrl); while (timeout) { if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) break; usleep_range(100, 200); timeout--; } if (!timeout) { e_dbg("Master requests are pending.\n"); return -E1000_ERR_MASTER_REQUESTS_PENDING; } return 0; } /** * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing * @hw: pointer to the HW structure * * Reset the Adaptive Interframe Spacing throttle to default values. **/ void e1000e_reset_adaptive(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; if (!mac->adaptive_ifs) { e_dbg("Not in Adaptive IFS mode!\n"); return; } mac->current_ifs_val = 0; mac->ifs_min_val = IFS_MIN; mac->ifs_max_val = IFS_MAX; mac->ifs_step_size = IFS_STEP; mac->ifs_ratio = IFS_RATIO; mac->in_ifs_mode = false; ew32(AIT, 0); } /** * e1000e_update_adaptive - Update Adaptive Interframe Spacing * @hw: pointer to the HW structure * * Update the Adaptive Interframe Spacing Throttle value based on the * time between transmitted packets and time between collisions. **/ void e1000e_update_adaptive(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; if (!mac->adaptive_ifs) { e_dbg("Not in Adaptive IFS mode!\n"); return; } if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { if (mac->tx_packet_delta > MIN_NUM_XMITS) { mac->in_ifs_mode = true; if (mac->current_ifs_val < mac->ifs_max_val) { if (!mac->current_ifs_val) mac->current_ifs_val = mac->ifs_min_val; else mac->current_ifs_val += mac->ifs_step_size; ew32(AIT, mac->current_ifs_val); } } } else { if (mac->in_ifs_mode && (mac->tx_packet_delta <= MIN_NUM_XMITS)) { mac->current_ifs_val = 0; mac->in_ifs_mode = false; ew32(AIT, 0); } } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1