Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anirudh Venkataramanan | 2728 | 83.84% | 3 | 21.43% |
Maciej Fijalkowski | 218 | 6.70% | 3 | 21.43% |
Krzysztof Kazimierczak | 191 | 5.87% | 3 | 21.43% |
Brett Creeley | 99 | 3.04% | 3 | 21.43% |
Michal Swiatkowski | 17 | 0.52% | 1 | 7.14% |
Jesse Brandeburg | 1 | 0.03% | 1 | 7.14% |
Total | 3254 | 14 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019, Intel Corporation. */ #include "ice_base.h" #include "ice_dcb_lib.h" /** * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI * @qs_cfg: gathered variables needed for PF->VSI queues assignment * * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap */ static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg) { int offset, i; mutex_lock(qs_cfg->qs_mutex); offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size, 0, qs_cfg->q_count, 0); if (offset >= qs_cfg->pf_map_size) { mutex_unlock(qs_cfg->qs_mutex); return -ENOMEM; } bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count); for (i = 0; i < qs_cfg->q_count; i++) qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset; mutex_unlock(qs_cfg->qs_mutex); return 0; } /** * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI * @qs_cfg: gathered variables needed for pf->vsi queues assignment * * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap */ static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg) { int i, index = 0; mutex_lock(qs_cfg->qs_mutex); for (i = 0; i < qs_cfg->q_count; i++) { index = find_next_zero_bit(qs_cfg->pf_map, qs_cfg->pf_map_size, index); if (index >= qs_cfg->pf_map_size) goto err_scatter; set_bit(index, qs_cfg->pf_map); qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index; } mutex_unlock(qs_cfg->qs_mutex); return 0; err_scatter: for (index = 0; index < i; index++) { clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map); qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0; } mutex_unlock(qs_cfg->qs_mutex); return -ENOMEM; } /** * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled * @pf: the PF being configured * @pf_q: the PF queue * @ena: enable or disable state of the queue * * This routine will wait for the given Rx queue of the PF to reach the * enabled or disabled state. * Returns -ETIMEDOUT in case of failing to reach the requested state after * multiple retries; else will return 0 in case of success. */ static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena) { int i; for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) { if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) & QRX_CTRL_QENA_STAT_M)) return 0; usleep_range(20, 40); } return -ETIMEDOUT; } /** * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector * @vsi: the VSI being configured * @v_idx: index of the vector in the VSI struct * * We allocate one q_vector and set default value for ITR setting associated * with this q_vector. If allocation fails we return -ENOMEM. */ static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx) { struct ice_pf *pf = vsi->back; struct ice_q_vector *q_vector; /* allocate q_vector */ q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector), GFP_KERNEL); if (!q_vector) return -ENOMEM; q_vector->vsi = vsi; q_vector->v_idx = v_idx; q_vector->tx.itr_setting = ICE_DFLT_TX_ITR; q_vector->rx.itr_setting = ICE_DFLT_RX_ITR; if (vsi->type == ICE_VSI_VF) goto out; /* only set affinity_mask if the CPU is online */ if (cpu_online(v_idx)) cpumask_set_cpu(v_idx, &q_vector->affinity_mask); /* This will not be called in the driver load path because the netdev * will not be created yet. All other cases with register the NAPI * handler here (i.e. resume, reset/rebuild, etc.) */ if (vsi->netdev) netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll, NAPI_POLL_WEIGHT); out: /* tie q_vector and VSI together */ vsi->q_vectors[v_idx] = q_vector; return 0; } /** * ice_free_q_vector - Free memory allocated for a specific interrupt vector * @vsi: VSI having the memory freed * @v_idx: index of the vector to be freed */ static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx) { struct ice_q_vector *q_vector; struct ice_pf *pf = vsi->back; struct ice_ring *ring; struct device *dev; dev = ice_pf_to_dev(pf); if (!vsi->q_vectors[v_idx]) { dev_dbg(dev, "Queue vector at index %d not found\n", v_idx); return; } q_vector = vsi->q_vectors[v_idx]; ice_for_each_ring(ring, q_vector->tx) ring->q_vector = NULL; ice_for_each_ring(ring, q_vector->rx) ring->q_vector = NULL; /* only VSI with an associated netdev is set up with NAPI */ if (vsi->netdev) netif_napi_del(&q_vector->napi); devm_kfree(dev, q_vector); vsi->q_vectors[v_idx] = NULL; } /** * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set * @hw: board specific structure */ static void ice_cfg_itr_gran(struct ice_hw *hw) { u32 regval = rd32(hw, GLINT_CTL); /* no need to update global register if ITR gran is already set */ if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) && (((regval & GLINT_CTL_ITR_GRAN_200_M) >> GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) && (((regval & GLINT_CTL_ITR_GRAN_100_M) >> GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) && (((regval & GLINT_CTL_ITR_GRAN_50_M) >> GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) && (((regval & GLINT_CTL_ITR_GRAN_25_M) >> GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US)) return; regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) & GLINT_CTL_ITR_GRAN_200_M) | ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) & GLINT_CTL_ITR_GRAN_100_M) | ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) & GLINT_CTL_ITR_GRAN_50_M) | ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) & GLINT_CTL_ITR_GRAN_25_M); wr32(hw, GLINT_CTL, regval); } /** * ice_calc_q_handle - calculate the queue handle * @vsi: VSI that ring belongs to * @ring: ring to get the absolute queue index * @tc: traffic class number */ static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc) { WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n"); /* Idea here for calculation is that we subtract the number of queue * count from TC that ring belongs to from it's absolute queue index * and as a result we get the queue's index within TC. */ return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset; } /** * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance * @ring: The Tx ring to configure * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized * @pf_q: queue index in the PF space * * Configure the Tx descriptor ring in TLAN context. */ static void ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q) { struct ice_vsi *vsi = ring->vsi; struct ice_hw *hw = &vsi->back->hw; tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S; tlan_ctx->port_num = vsi->port_info->lport; /* Transmit Queue Length */ tlan_ctx->qlen = ring->count; ice_set_cgd_num(tlan_ctx, ring); /* PF number */ tlan_ctx->pf_num = hw->pf_id; /* queue belongs to a specific VSI type * VF / VM index should be programmed per vmvf_type setting: * for vmvf_type = VF, it is VF number between 0-256 * for vmvf_type = VM, it is VM number between 0-767 * for PF or EMP this field should be set to zero */ switch (vsi->type) { case ICE_VSI_LB: case ICE_VSI_PF: tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF; break; case ICE_VSI_VF: /* Firmware expects vmvf_num to be absolute VF ID */ tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id; tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF; break; default: return; } /* make sure the context is associated with the right VSI */ tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx); tlan_ctx->tso_ena = ICE_TX_LEGACY; tlan_ctx->tso_qnum = pf_q; /* Legacy or Advanced Host Interface: * 0: Advanced Host Interface * 1: Legacy Host Interface */ tlan_ctx->legacy_int = ICE_TX_LEGACY; } /** * ice_setup_rx_ctx - Configure a receive ring context * @ring: The Rx ring to configure * * Configure the Rx descriptor ring in RLAN context. */ int ice_setup_rx_ctx(struct ice_ring *ring) { int chain_len = ICE_MAX_CHAINED_RX_BUFS; struct ice_vsi *vsi = ring->vsi; u32 rxdid = ICE_RXDID_FLEX_NIC; struct ice_rlan_ctx rlan_ctx; struct ice_hw *hw; u32 regval; u16 pf_q; int err; hw = &vsi->back->hw; /* what is Rx queue number in global space of 2K Rx queues */ pf_q = vsi->rxq_map[ring->q_index]; /* clear the context structure first */ memset(&rlan_ctx, 0, sizeof(rlan_ctx)); ring->rx_buf_len = vsi->rx_buf_len; if (ring->vsi->type == ICE_VSI_PF) { if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) /* coverity[check_return] */ xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, ring->q_index); ring->xsk_umem = ice_xsk_umem(ring); if (ring->xsk_umem) { xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq); ring->rx_buf_len = ring->xsk_umem->chunk_size_nohr - XDP_PACKET_HEADROOM; /* For AF_XDP ZC, we disallow packets to span on * multiple buffers, thus letting us skip that * handling in the fast-path. */ chain_len = 1; ring->zca.free = ice_zca_free; err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, MEM_TYPE_ZERO_COPY, &ring->zca); if (err) return err; dev_info(ice_pf_to_dev(vsi->back), "Registered XDP mem model MEM_TYPE_ZERO_COPY on Rx ring %d\n", ring->q_index); } else { ring->zca.free = NULL; if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) /* coverity[check_return] */ xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev, ring->q_index); err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq, MEM_TYPE_PAGE_SHARED, NULL); if (err) return err; } } /* Receive Queue Base Address. * Indicates the starting address of the descriptor queue defined in * 128 Byte units. */ rlan_ctx.base = ring->dma >> 7; rlan_ctx.qlen = ring->count; /* Receive Packet Data Buffer Size. * The Packet Data Buffer Size is defined in 128 byte units. */ rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S; /* use 32 byte descriptors */ rlan_ctx.dsize = 1; /* Strip the Ethernet CRC bytes before the packet is posted to host * memory. */ rlan_ctx.crcstrip = 1; /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */ rlan_ctx.l2tsel = 1; rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT; rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT; rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT; /* This controls whether VLAN is stripped from inner headers * The VLAN in the inner L2 header is stripped to the receive * descriptor if enabled by this flag. */ rlan_ctx.showiv = 0; /* Max packet size for this queue - must not be set to a larger value * than 5 x DBUF */ rlan_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len); /* Rx queue threshold in units of 64 */ rlan_ctx.lrxqthresh = 1; /* Enable Flexible Descriptors in the queue context which * allows this driver to select a specific receive descriptor format */ regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); if (vsi->type != ICE_VSI_VF) { regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & QRXFLXP_CNTXT_RXDID_IDX_M; /* increasing context priority to pick up profile ID; * default is 0x01; setting to 0x03 to ensure profile * is programming if prev context is of same priority */ regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) & QRXFLXP_CNTXT_RXDID_PRIO_M; } else { regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | QRXFLXP_CNTXT_RXDID_PRIO_M | QRXFLXP_CNTXT_TS_M); } wr32(hw, QRXFLXP_CNTXT(pf_q), regval); /* Absolute queue number out of 2K needs to be passed */ err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q); if (err) { dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n", pf_q, err); return -EIO; } if (vsi->type == ICE_VSI_VF) return 0; /* configure Rx buffer alignment */ if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) ice_clear_ring_build_skb_ena(ring); else ice_set_ring_build_skb_ena(ring); /* init queue specific tail register */ ring->tail = hw->hw_addr + QRX_TAIL(pf_q); writel(0, ring->tail); err = ring->xsk_umem ? ice_alloc_rx_bufs_slow_zc(ring, ICE_DESC_UNUSED(ring)) : ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring)); if (err) dev_info(ice_pf_to_dev(vsi->back), "Failed allocate some buffers on %sRx ring %d (pf_q %d)\n", ring->xsk_umem ? "UMEM enabled " : "", ring->q_index, pf_q); return 0; } /** * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI * @qs_cfg: gathered variables needed for pf->vsi queues assignment * * This function first tries to find contiguous space. If it is not successful, * it tries with the scatter approach. * * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap */ int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg) { int ret = 0; ret = __ice_vsi_get_qs_contig(qs_cfg); if (ret) { /* contig failed, so try with scatter approach */ qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER; qs_cfg->q_count = min_t(u16, qs_cfg->q_count, qs_cfg->scatter_count); ret = __ice_vsi_get_qs_sc(qs_cfg); } return ret; } /** * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait * @vsi: the VSI being configured * @ena: start or stop the Rx ring * @rxq_idx: 0-based Rx queue index for the VSI passed in * @wait: wait or don't wait for configuration to finish in hardware * * Return 0 on success and negative on error. */ int ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait) { int pf_q = vsi->rxq_map[rxq_idx]; struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; u32 rx_reg; rx_reg = rd32(hw, QRX_CTRL(pf_q)); /* Skip if the queue is already in the requested state */ if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M)) return 0; /* turn on/off the queue */ if (ena) rx_reg |= QRX_CTRL_QENA_REQ_M; else rx_reg &= ~QRX_CTRL_QENA_REQ_M; wr32(hw, QRX_CTRL(pf_q), rx_reg); if (!wait) return 0; ice_flush(hw); return ice_pf_rxq_wait(pf, pf_q, ena); } /** * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started * @vsi: the VSI being configured * @ena: true/false to verify Rx ring has been enabled/disabled respectively * @rxq_idx: 0-based Rx queue index for the VSI passed in * * This routine will wait for the given Rx queue of the VSI to reach the * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach * the requested state after multiple retries; else will return 0 in case of * success. */ int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx) { int pf_q = vsi->rxq_map[rxq_idx]; struct ice_pf *pf = vsi->back; return ice_pf_rxq_wait(pf, pf_q, ena); } /** * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors * @vsi: the VSI being configured * * We allocate one q_vector per queue interrupt. If allocation fails we * return -ENOMEM. */ int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi) { struct device *dev = ice_pf_to_dev(vsi->back); int v_idx, err; if (vsi->q_vectors[0]) { dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num); return -EEXIST; } for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) { err = ice_vsi_alloc_q_vector(vsi, v_idx); if (err) goto err_out; } return 0; err_out: while (v_idx--) ice_free_q_vector(vsi, v_idx); dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n", vsi->num_q_vectors, vsi->vsi_num, err); vsi->num_q_vectors = 0; return err; } /** * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors * @vsi: the VSI being configured * * This function maps descriptor rings to the queue-specific vectors allotted * through the MSI-X enabling code. On a constrained vector budget, we map Tx * and Rx rings to the vector as "efficiently" as possible. */ void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi) { int q_vectors = vsi->num_q_vectors; int tx_rings_rem, rx_rings_rem; int v_id; /* initially assigning remaining rings count to VSIs num queue value */ tx_rings_rem = vsi->num_txq; rx_rings_rem = vsi->num_rxq; for (v_id = 0; v_id < q_vectors; v_id++) { struct ice_q_vector *q_vector = vsi->q_vectors[v_id]; int tx_rings_per_v, rx_rings_per_v, q_id, q_base; /* Tx rings mapping to vector */ tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id); q_vector->num_ring_tx = tx_rings_per_v; q_vector->tx.ring = NULL; q_vector->tx.itr_idx = ICE_TX_ITR; q_base = vsi->num_txq - tx_rings_rem; for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) { struct ice_ring *tx_ring = vsi->tx_rings[q_id]; tx_ring->q_vector = q_vector; tx_ring->next = q_vector->tx.ring; q_vector->tx.ring = tx_ring; } tx_rings_rem -= tx_rings_per_v; /* Rx rings mapping to vector */ rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id); q_vector->num_ring_rx = rx_rings_per_v; q_vector->rx.ring = NULL; q_vector->rx.itr_idx = ICE_RX_ITR; q_base = vsi->num_rxq - rx_rings_rem; for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) { struct ice_ring *rx_ring = vsi->rx_rings[q_id]; rx_ring->q_vector = q_vector; rx_ring->next = q_vector->rx.ring; q_vector->rx.ring = rx_ring; } rx_rings_rem -= rx_rings_per_v; } } /** * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors * @vsi: the VSI having memory freed */ void ice_vsi_free_q_vectors(struct ice_vsi *vsi) { int v_idx; ice_for_each_q_vector(vsi, v_idx) ice_free_q_vector(vsi, v_idx); } /** * ice_vsi_cfg_txq - Configure single Tx queue * @vsi: the VSI that queue belongs to * @ring: Tx ring to be configured * @qg_buf: queue group buffer */ int ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring, struct ice_aqc_add_tx_qgrp *qg_buf) { struct ice_tlan_ctx tlan_ctx = { 0 }; struct ice_aqc_add_txqs_perq *txq; struct ice_pf *pf = vsi->back; u8 buf_len = sizeof(*qg_buf); enum ice_status status; u16 pf_q; u8 tc; pf_q = ring->reg_idx; ice_setup_tx_ctx(ring, &tlan_ctx, pf_q); /* copy context contents into the qg_buf */ qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q); ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx, ice_tlan_ctx_info); /* init queue specific tail reg. It is referred as * transmit comm scheduler queue doorbell. */ ring->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q); if (IS_ENABLED(CONFIG_DCB)) tc = ring->dcb_tc; else tc = 0; /* Add unique software queue handle of the Tx queue per * TC into the VSI Tx ring */ ring->q_handle = ice_calc_q_handle(vsi, ring, tc); status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle, 1, qg_buf, buf_len, NULL); if (status) { dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n", status); return -ENODEV; } /* Add Tx Queue TEID into the VSI Tx ring from the * response. This will complete configuring and * enabling the queue. */ txq = &qg_buf->txqs[0]; if (pf_q == le16_to_cpu(txq->txq_id)) ring->txq_teid = le32_to_cpu(txq->q_teid); return 0; } /** * ice_cfg_itr - configure the initial interrupt throttle values * @hw: pointer to the HW structure * @q_vector: interrupt vector that's being configured * * Configure interrupt throttling values for the ring containers that are * associated with the interrupt vector passed in. */ void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector) { ice_cfg_itr_gran(hw); if (q_vector->num_ring_rx) { struct ice_ring_container *rc = &q_vector->rx; rc->target_itr = ITR_TO_REG(rc->itr_setting); rc->next_update = jiffies + 1; rc->current_itr = rc->target_itr; wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S); } if (q_vector->num_ring_tx) { struct ice_ring_container *rc = &q_vector->tx; rc->target_itr = ITR_TO_REG(rc->itr_setting); rc->next_update = jiffies + 1; rc->current_itr = rc->target_itr; wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S); } } /** * ice_cfg_txq_interrupt - configure interrupt on Tx queue * @vsi: the VSI being configured * @txq: Tx queue being mapped to MSI-X vector * @msix_idx: MSI-X vector index within the function * @itr_idx: ITR index of the interrupt cause * * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector * within the function space. */ void ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; u32 val; itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M; val = QINT_TQCTL_CAUSE_ENA_M | itr_idx | ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M); wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val); if (ice_is_xdp_ena_vsi(vsi)) { u32 xdp_txq = txq + vsi->num_xdp_txq; wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), val); } ice_flush(hw); } /** * ice_cfg_rxq_interrupt - configure interrupt on Rx queue * @vsi: the VSI being configured * @rxq: Rx queue being mapped to MSI-X vector * @msix_idx: MSI-X vector index within the function * @itr_idx: ITR index of the interrupt cause * * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector * within the function space. */ void ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; u32 val; itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M; val = QINT_RQCTL_CAUSE_ENA_M | itr_idx | ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M); wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val); ice_flush(hw); } /** * ice_trigger_sw_intr - trigger a software interrupt * @hw: pointer to the HW structure * @q_vector: interrupt vector to trigger the software interrupt for */ void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector) { wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) | GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_M); } /** * ice_vsi_stop_tx_ring - Disable single Tx ring * @vsi: the VSI being configured * @rst_src: reset source * @rel_vmvf_num: Relative ID of VF/VM * @ring: Tx ring to be stopped * @txq_meta: Meta data of Tx ring to be stopped */ int ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, u16 rel_vmvf_num, struct ice_ring *ring, struct ice_txq_meta *txq_meta) { struct ice_pf *pf = vsi->back; struct ice_q_vector *q_vector; struct ice_hw *hw = &pf->hw; enum ice_status status; u32 val; /* clear cause_ena bit for disabled queues */ val = rd32(hw, QINT_TQCTL(ring->reg_idx)); val &= ~QINT_TQCTL_CAUSE_ENA_M; wr32(hw, QINT_TQCTL(ring->reg_idx), val); /* software is expected to wait for 100 ns */ ndelay(100); /* trigger a software interrupt for the vector * associated to the queue to schedule NAPI handler */ q_vector = ring->q_vector; if (q_vector) ice_trigger_sw_intr(hw, q_vector); status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx, txq_meta->tc, 1, &txq_meta->q_handle, &txq_meta->q_id, &txq_meta->q_teid, rst_src, rel_vmvf_num, NULL); /* if the disable queue command was exercised during an * active reset flow, ICE_ERR_RESET_ONGOING is returned. * This is not an error as the reset operation disables * queues at the hardware level anyway. */ if (status == ICE_ERR_RESET_ONGOING) { dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n"); } else if (status == ICE_ERR_DOES_NOT_EXIST) { dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n"); } else if (status) { dev_err(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n", status); return -ENODEV; } return 0; } /** * ice_fill_txq_meta - Prepare the Tx queue's meta data * @vsi: VSI that ring belongs to * @ring: ring that txq_meta will be based on * @txq_meta: a helper struct that wraps Tx queue's information * * Set up a helper struct that will contain all the necessary fields that * are needed for stopping Tx queue */ void ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring, struct ice_txq_meta *txq_meta) { u8 tc; if (IS_ENABLED(CONFIG_DCB)) tc = ring->dcb_tc; else tc = 0; txq_meta->q_id = ring->reg_idx; txq_meta->q_teid = ring->txq_teid; txq_meta->q_handle = ring->q_handle; txq_meta->vsi_idx = vsi->idx; txq_meta->tc = tc; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1