Contributors: 75
Author Tokens Token Proportion Commits Commit Proportion
Ayaz Abdulla 23126 66.69% 96 33.45%
Manfred Spraul 4736 13.66% 20 6.97%
Joe Perches 976 2.81% 9 3.14%
Sanjay Hortikar 877 2.53% 1 0.35%
Zhu Yanjun 775 2.23% 14 4.88%
David Decotigny 540 1.56% 9 3.14%
Stephen Hemminger 430 1.24% 9 3.14%
Jeff Garzik 415 1.20% 8 2.79%
Neil Horman 259 0.75% 2 0.70%
Tobias Diedrich 215 0.62% 6 2.09%
Eric Dumazet 180 0.52% 5 1.74%
Jiri Pirko 172 0.50% 9 3.14%
Larry Finger 152 0.44% 1 0.35%
Yinghai Lu 141 0.41% 4 1.39%
Al Viro 124 0.36% 5 1.74%
Philippe Reynes 117 0.34% 1 0.35%
François Romieu 104 0.30% 2 0.70%
Tom Herbert 99 0.29% 3 1.05%
Ed Swierk 97 0.28% 3 1.05%
Carl-Daniel Hailfinger 95 0.27% 1 0.35%
Mike Ditto 87 0.25% 3 1.05%
David S. Miller 85 0.25% 3 1.05%
Kees Cook 76 0.22% 2 0.70%
Rafael J. Wysocki 71 0.20% 2 0.70%
Michał Mirosław 70 0.20% 2 0.70%
Andrew Morton 56 0.16% 1 0.35%
Sameer Nanda 45 0.13% 1 0.35%
Peter Zijlstra 45 0.13% 1 0.35%
Alexander Gordeev 44 0.13% 3 1.05%
Ingo Molnar 40 0.12% 3 1.05%
Arnaldo Carvalho de Melo 40 0.12% 2 0.70%
Timo Jantunen 30 0.09% 1 0.35%
Rick Jones 24 0.07% 1 0.35%
Mandeep Singh Baines 21 0.06% 1 0.35%
Patrick McHardy 18 0.05% 3 1.05%
Herbert Xu 17 0.05% 4 1.39%
Björn Steinbrink 17 0.05% 1 0.35%
Jarod Wilson 17 0.05% 1 0.35%
Ivan Vecera 16 0.05% 1 0.35%
John Stultz 16 0.05% 1 0.35%
Szymon Janc 16 0.05% 4 1.39%
Jesper Juhl 16 0.05% 1 0.35%
Michel Lespinasse 13 0.04% 1 0.35%
Tim Mann 13 0.04% 1 0.35%
Igor Maravić 11 0.03% 1 0.35%
Willem de Bruijn 10 0.03% 1 0.35%
Ian Campbell 10 0.03% 2 0.70%
Yoann Padioleau 10 0.03% 1 0.35%
Pradeep A. Dalvi 9 0.03% 1 0.35%
Eric W. Biedermann 8 0.02% 2 0.70%
Amitoj Kaur Chawla 8 0.02% 1 0.35%
Yang Hongyang 8 0.02% 1 0.35%
Lucas De Marchi 7 0.02% 1 0.35%
Denis Efremov 6 0.02% 1 0.35%
Benoit Taine 6 0.02% 1 0.35%
Daniel Drake 6 0.02% 1 0.35%
Peter Hüwe 6 0.02% 1 0.35%
Michal Schmidt 6 0.02% 1 0.35%
Richard Cochran 5 0.01% 1 0.35%
Antonio Ospite 5 0.01% 1 0.35%
Michael S. Tsirkin 4 0.01% 1 0.35%
Wilfried Klaebe 3 0.01% 1 0.35%
Alexey Dobriyan 3 0.01% 1 0.35%
Auke-Jan H Kok 3 0.01% 1 0.35%
Matthias Gehre 3 0.01% 1 0.35%
Ben Hutchings 3 0.01% 3 1.05%
Paul Gortmaker 3 0.01% 1 0.35%
Tejun Heo 3 0.01% 1 0.35%
Chuhong Yuan 2 0.01% 1 0.35%
Thomas Gleixner 2 0.01% 1 0.35%
Jia-Ju Bai 2 0.01% 1 0.35%
Linus Torvalds 1 0.00% 1 0.35%
Willy Tarreau 1 0.00% 1 0.35%
Julia Lawall 1 0.00% 1 0.35%
Danny Kukawka 1 0.00% 1 0.35%
Total 34679 287


// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
 *
 * Note: This driver is a cleanroom reimplementation based on reverse
 *      engineered documentation written by Carl-Daniel Hailfinger
 *      and Andrew de Quincey.
 *
 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
 * trademarks of NVIDIA Corporation in the United States and other
 * countries.
 *
 * Copyright (C) 2003,4,5 Manfred Spraul
 * Copyright (C) 2004 Andrew de Quincey (wol support)
 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
 *		IRQ rate fixes, bigendian fixes, cleanups, verification)
 * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
 *
 * Known bugs:
 * We suspect that on some hardware no TX done interrupts are generated.
 * This means recovery from netif_stop_queue only happens if the hw timer
 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
 * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
 * If your hardware reliably generates tx done interrupts, then you can remove
 * DEV_NEED_TIMERIRQ from the driver_data flags.
 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
 * superfluous timer interrupts from the nic.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#define FORCEDETH_VERSION		"0.64"
#define DRV_NAME			"forcedeth"

#include <linux/module.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/ethtool.h>
#include <linux/timer.h>
#include <linux/skbuff.h>
#include <linux/mii.h>
#include <linux/random.h>
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/prefetch.h>
#include <linux/u64_stats_sync.h>
#include <linux/io.h>

#include <asm/irq.h>

#define TX_WORK_PER_LOOP  64
#define RX_WORK_PER_LOOP  64

/*
 * Hardware access:
 */

#define DEV_NEED_TIMERIRQ          0x0000001  /* set the timer irq flag in the irq mask */
#define DEV_NEED_LINKTIMER         0x0000002  /* poll link settings. Relies on the timer irq */
#define DEV_HAS_LARGEDESC          0x0000004  /* device supports jumbo frames and needs packet format 2 */
#define DEV_HAS_HIGH_DMA           0x0000008  /* device supports 64bit dma */
#define DEV_HAS_CHECKSUM           0x0000010  /* device supports tx and rx checksum offloads */
#define DEV_HAS_VLAN               0x0000020  /* device supports vlan tagging and striping */
#define DEV_HAS_MSI                0x0000040  /* device supports MSI */
#define DEV_HAS_MSI_X              0x0000080  /* device supports MSI-X */
#define DEV_HAS_POWER_CNTRL        0x0000100  /* device supports power savings */
#define DEV_HAS_STATISTICS_V1      0x0000200  /* device supports hw statistics version 1 */
#define DEV_HAS_STATISTICS_V2      0x0000400  /* device supports hw statistics version 2 */
#define DEV_HAS_STATISTICS_V3      0x0000800  /* device supports hw statistics version 3 */
#define DEV_HAS_STATISTICS_V12     0x0000600  /* device supports hw statistics version 1 and 2 */
#define DEV_HAS_STATISTICS_V123    0x0000e00  /* device supports hw statistics version 1, 2, and 3 */
#define DEV_HAS_TEST_EXTENDED      0x0001000  /* device supports extended diagnostic test */
#define DEV_HAS_MGMT_UNIT          0x0002000  /* device supports management unit */
#define DEV_HAS_CORRECT_MACADDR    0x0004000  /* device supports correct mac address order */
#define DEV_HAS_COLLISION_FIX      0x0008000  /* device supports tx collision fix */
#define DEV_HAS_PAUSEFRAME_TX_V1   0x0010000  /* device supports tx pause frames version 1 */
#define DEV_HAS_PAUSEFRAME_TX_V2   0x0020000  /* device supports tx pause frames version 2 */
#define DEV_HAS_PAUSEFRAME_TX_V3   0x0040000  /* device supports tx pause frames version 3 */
#define DEV_NEED_TX_LIMIT          0x0080000  /* device needs to limit tx */
#define DEV_NEED_TX_LIMIT2         0x0180000  /* device needs to limit tx, expect for some revs */
#define DEV_HAS_GEAR_MODE          0x0200000  /* device supports gear mode */
#define DEV_NEED_PHY_INIT_FIX      0x0400000  /* device needs specific phy workaround */
#define DEV_NEED_LOW_POWER_FIX     0x0800000  /* device needs special power up workaround */
#define DEV_NEED_MSI_FIX           0x1000000  /* device needs msi workaround */

enum {
	NvRegIrqStatus = 0x000,
#define NVREG_IRQSTAT_MIIEVENT	0x040
#define NVREG_IRQSTAT_MASK		0x83ff
	NvRegIrqMask = 0x004,
#define NVREG_IRQ_RX_ERROR		0x0001
#define NVREG_IRQ_RX			0x0002
#define NVREG_IRQ_RX_NOBUF		0x0004
#define NVREG_IRQ_TX_ERR		0x0008
#define NVREG_IRQ_TX_OK			0x0010
#define NVREG_IRQ_TIMER			0x0020
#define NVREG_IRQ_LINK			0x0040
#define NVREG_IRQ_RX_FORCED		0x0080
#define NVREG_IRQ_TX_FORCED		0x0100
#define NVREG_IRQ_RECOVER_ERROR		0x8200
#define NVREG_IRQMASK_THROUGHPUT	0x00df
#define NVREG_IRQMASK_CPU		0x0060
#define NVREG_IRQ_TX_ALL		(NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
#define NVREG_IRQ_RX_ALL		(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
#define NVREG_IRQ_OTHER			(NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)

	NvRegUnknownSetupReg6 = 0x008,
#define NVREG_UNKSETUP6_VAL		3

/*
 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
 */
	NvRegPollingInterval = 0x00c,
#define NVREG_POLL_DEFAULT_THROUGHPUT	65535 /* backup tx cleanup if loop max reached */
#define NVREG_POLL_DEFAULT_CPU	13
	NvRegMSIMap0 = 0x020,
	NvRegMSIMap1 = 0x024,
	NvRegMSIIrqMask = 0x030,
#define NVREG_MSI_VECTOR_0_ENABLED 0x01
	NvRegMisc1 = 0x080,
#define NVREG_MISC1_PAUSE_TX	0x01
#define NVREG_MISC1_HD		0x02
#define NVREG_MISC1_FORCE	0x3b0f3c

	NvRegMacReset = 0x34,
#define NVREG_MAC_RESET_ASSERT	0x0F3
	NvRegTransmitterControl = 0x084,
#define NVREG_XMITCTL_START	0x01
#define NVREG_XMITCTL_MGMT_ST	0x40000000
#define NVREG_XMITCTL_SYNC_MASK		0x000f0000
#define NVREG_XMITCTL_SYNC_NOT_READY	0x0
#define NVREG_XMITCTL_SYNC_PHY_INIT	0x00040000
#define NVREG_XMITCTL_MGMT_SEMA_MASK	0x00000f00
#define NVREG_XMITCTL_MGMT_SEMA_FREE	0x0
#define NVREG_XMITCTL_HOST_SEMA_MASK	0x0000f000
#define NVREG_XMITCTL_HOST_SEMA_ACQ	0x0000f000
#define NVREG_XMITCTL_HOST_LOADED	0x00004000
#define NVREG_XMITCTL_TX_PATH_EN	0x01000000
#define NVREG_XMITCTL_DATA_START	0x00100000
#define NVREG_XMITCTL_DATA_READY	0x00010000
#define NVREG_XMITCTL_DATA_ERROR	0x00020000
	NvRegTransmitterStatus = 0x088,
#define NVREG_XMITSTAT_BUSY	0x01

	NvRegPacketFilterFlags = 0x8c,
#define NVREG_PFF_PAUSE_RX	0x08
#define NVREG_PFF_ALWAYS	0x7F0000
#define NVREG_PFF_PROMISC	0x80
#define NVREG_PFF_MYADDR	0x20
#define NVREG_PFF_LOOPBACK	0x10

	NvRegOffloadConfig = 0x90,
#define NVREG_OFFLOAD_HOMEPHY	0x601
#define NVREG_OFFLOAD_NORMAL	RX_NIC_BUFSIZE
	NvRegReceiverControl = 0x094,
#define NVREG_RCVCTL_START	0x01
#define NVREG_RCVCTL_RX_PATH_EN	0x01000000
	NvRegReceiverStatus = 0x98,
#define NVREG_RCVSTAT_BUSY	0x01

	NvRegSlotTime = 0x9c,
#define NVREG_SLOTTIME_LEGBF_ENABLED	0x80000000
#define NVREG_SLOTTIME_10_100_FULL	0x00007f00
#define NVREG_SLOTTIME_1000_FULL	0x0003ff00
#define NVREG_SLOTTIME_HALF		0x0000ff00
#define NVREG_SLOTTIME_DEFAULT		0x00007f00
#define NVREG_SLOTTIME_MASK		0x000000ff

	NvRegTxDeferral = 0xA0,
#define NVREG_TX_DEFERRAL_DEFAULT		0x15050f
#define NVREG_TX_DEFERRAL_RGMII_10_100		0x16070f
#define NVREG_TX_DEFERRAL_RGMII_1000		0x14050f
#define NVREG_TX_DEFERRAL_RGMII_STRETCH_10	0x16190f
#define NVREG_TX_DEFERRAL_RGMII_STRETCH_100	0x16300f
#define NVREG_TX_DEFERRAL_MII_STRETCH		0x152000
	NvRegRxDeferral = 0xA4,
#define NVREG_RX_DEFERRAL_DEFAULT	0x16
	NvRegMacAddrA = 0xA8,
	NvRegMacAddrB = 0xAC,
	NvRegMulticastAddrA = 0xB0,
#define NVREG_MCASTADDRA_FORCE	0x01
	NvRegMulticastAddrB = 0xB4,
	NvRegMulticastMaskA = 0xB8,
#define NVREG_MCASTMASKA_NONE		0xffffffff
	NvRegMulticastMaskB = 0xBC,
#define NVREG_MCASTMASKB_NONE		0xffff

	NvRegPhyInterface = 0xC0,
#define PHY_RGMII		0x10000000
	NvRegBackOffControl = 0xC4,
#define NVREG_BKOFFCTRL_DEFAULT			0x70000000
#define NVREG_BKOFFCTRL_SEED_MASK		0x000003ff
#define NVREG_BKOFFCTRL_SELECT			24
#define NVREG_BKOFFCTRL_GEAR			12

	NvRegTxRingPhysAddr = 0x100,
	NvRegRxRingPhysAddr = 0x104,
	NvRegRingSizes = 0x108,
#define NVREG_RINGSZ_TXSHIFT 0
#define NVREG_RINGSZ_RXSHIFT 16
	NvRegTransmitPoll = 0x10c,
#define NVREG_TRANSMITPOLL_MAC_ADDR_REV	0x00008000
	NvRegLinkSpeed = 0x110,
#define NVREG_LINKSPEED_FORCE 0x10000
#define NVREG_LINKSPEED_10	1000
#define NVREG_LINKSPEED_100	100
#define NVREG_LINKSPEED_1000	50
#define NVREG_LINKSPEED_MASK	(0xFFF)
	NvRegUnknownSetupReg5 = 0x130,
#define NVREG_UNKSETUP5_BIT31	(1<<31)
	NvRegTxWatermark = 0x13c,
#define NVREG_TX_WM_DESC1_DEFAULT	0x0200010
#define NVREG_TX_WM_DESC2_3_DEFAULT	0x1e08000
#define NVREG_TX_WM_DESC2_3_1000	0xfe08000
	NvRegTxRxControl = 0x144,
#define NVREG_TXRXCTL_KICK	0x0001
#define NVREG_TXRXCTL_BIT1	0x0002
#define NVREG_TXRXCTL_BIT2	0x0004
#define NVREG_TXRXCTL_IDLE	0x0008
#define NVREG_TXRXCTL_RESET	0x0010
#define NVREG_TXRXCTL_RXCHECK	0x0400
#define NVREG_TXRXCTL_DESC_1	0
#define NVREG_TXRXCTL_DESC_2	0x002100
#define NVREG_TXRXCTL_DESC_3	0xc02200
#define NVREG_TXRXCTL_VLANSTRIP 0x00040
#define NVREG_TXRXCTL_VLANINS	0x00080
	NvRegTxRingPhysAddrHigh = 0x148,
	NvRegRxRingPhysAddrHigh = 0x14C,
	NvRegTxPauseFrame = 0x170,
#define NVREG_TX_PAUSEFRAME_DISABLE	0x0fff0080
#define NVREG_TX_PAUSEFRAME_ENABLE_V1	0x01800010
#define NVREG_TX_PAUSEFRAME_ENABLE_V2	0x056003f0
#define NVREG_TX_PAUSEFRAME_ENABLE_V3	0x09f00880
	NvRegTxPauseFrameLimit = 0x174,
#define NVREG_TX_PAUSEFRAMELIMIT_ENABLE	0x00010000
	NvRegMIIStatus = 0x180,
#define NVREG_MIISTAT_ERROR		0x0001
#define NVREG_MIISTAT_LINKCHANGE	0x0008
#define NVREG_MIISTAT_MASK_RW		0x0007
#define NVREG_MIISTAT_MASK_ALL		0x000f
	NvRegMIIMask = 0x184,
#define NVREG_MII_LINKCHANGE		0x0008

	NvRegAdapterControl = 0x188,
#define NVREG_ADAPTCTL_START	0x02
#define NVREG_ADAPTCTL_LINKUP	0x04
#define NVREG_ADAPTCTL_PHYVALID	0x40000
#define NVREG_ADAPTCTL_RUNNING	0x100000
#define NVREG_ADAPTCTL_PHYSHIFT	24
	NvRegMIISpeed = 0x18c,
#define NVREG_MIISPEED_BIT8	(1<<8)
#define NVREG_MIIDELAY	5
	NvRegMIIControl = 0x190,
#define NVREG_MIICTL_INUSE	0x08000
#define NVREG_MIICTL_WRITE	0x00400
#define NVREG_MIICTL_ADDRSHIFT	5
	NvRegMIIData = 0x194,
	NvRegTxUnicast = 0x1a0,
	NvRegTxMulticast = 0x1a4,
	NvRegTxBroadcast = 0x1a8,
	NvRegWakeUpFlags = 0x200,
#define NVREG_WAKEUPFLAGS_VAL		0x7770
#define NVREG_WAKEUPFLAGS_BUSYSHIFT	24
#define NVREG_WAKEUPFLAGS_ENABLESHIFT	16
#define NVREG_WAKEUPFLAGS_D3SHIFT	12
#define NVREG_WAKEUPFLAGS_D2SHIFT	8
#define NVREG_WAKEUPFLAGS_D1SHIFT	4
#define NVREG_WAKEUPFLAGS_D0SHIFT	0
#define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT		0x01
#define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT	0x02
#define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE	0x04
#define NVREG_WAKEUPFLAGS_ENABLE	0x1111

	NvRegMgmtUnitGetVersion = 0x204,
#define NVREG_MGMTUNITGETVERSION	0x01
	NvRegMgmtUnitVersion = 0x208,
#define NVREG_MGMTUNITVERSION		0x08
	NvRegPowerCap = 0x268,
#define NVREG_POWERCAP_D3SUPP	(1<<30)
#define NVREG_POWERCAP_D2SUPP	(1<<26)
#define NVREG_POWERCAP_D1SUPP	(1<<25)
	NvRegPowerState = 0x26c,
#define NVREG_POWERSTATE_POWEREDUP	0x8000
#define NVREG_POWERSTATE_VALID		0x0100
#define NVREG_POWERSTATE_MASK		0x0003
#define NVREG_POWERSTATE_D0		0x0000
#define NVREG_POWERSTATE_D1		0x0001
#define NVREG_POWERSTATE_D2		0x0002
#define NVREG_POWERSTATE_D3		0x0003
	NvRegMgmtUnitControl = 0x278,
#define NVREG_MGMTUNITCONTROL_INUSE	0x20000
	NvRegTxCnt = 0x280,
	NvRegTxZeroReXmt = 0x284,
	NvRegTxOneReXmt = 0x288,
	NvRegTxManyReXmt = 0x28c,
	NvRegTxLateCol = 0x290,
	NvRegTxUnderflow = 0x294,
	NvRegTxLossCarrier = 0x298,
	NvRegTxExcessDef = 0x29c,
	NvRegTxRetryErr = 0x2a0,
	NvRegRxFrameErr = 0x2a4,
	NvRegRxExtraByte = 0x2a8,
	NvRegRxLateCol = 0x2ac,
	NvRegRxRunt = 0x2b0,
	NvRegRxFrameTooLong = 0x2b4,
	NvRegRxOverflow = 0x2b8,
	NvRegRxFCSErr = 0x2bc,
	NvRegRxFrameAlignErr = 0x2c0,
	NvRegRxLenErr = 0x2c4,
	NvRegRxUnicast = 0x2c8,
	NvRegRxMulticast = 0x2cc,
	NvRegRxBroadcast = 0x2d0,
	NvRegTxDef = 0x2d4,
	NvRegTxFrame = 0x2d8,
	NvRegRxCnt = 0x2dc,
	NvRegTxPause = 0x2e0,
	NvRegRxPause = 0x2e4,
	NvRegRxDropFrame = 0x2e8,
	NvRegVlanControl = 0x300,
#define NVREG_VLANCONTROL_ENABLE	0x2000
	NvRegMSIXMap0 = 0x3e0,
	NvRegMSIXMap1 = 0x3e4,
	NvRegMSIXIrqStatus = 0x3f0,

	NvRegPowerState2 = 0x600,
#define NVREG_POWERSTATE2_POWERUP_MASK		0x0F15
#define NVREG_POWERSTATE2_POWERUP_REV_A3	0x0001
#define NVREG_POWERSTATE2_PHY_RESET		0x0004
#define NVREG_POWERSTATE2_GATE_CLOCKS		0x0F00
};

/* Big endian: should work, but is untested */
struct ring_desc {
	__le32 buf;
	__le32 flaglen;
};

struct ring_desc_ex {
	__le32 bufhigh;
	__le32 buflow;
	__le32 txvlan;
	__le32 flaglen;
};

union ring_type {
	struct ring_desc *orig;
	struct ring_desc_ex *ex;
};

#define FLAG_MASK_V1 0xffff0000
#define FLAG_MASK_V2 0xffffc000
#define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
#define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)

#define NV_TX_LASTPACKET	(1<<16)
#define NV_TX_RETRYERROR	(1<<19)
#define NV_TX_RETRYCOUNT_MASK	(0xF<<20)
#define NV_TX_FORCED_INTERRUPT	(1<<24)
#define NV_TX_DEFERRED		(1<<26)
#define NV_TX_CARRIERLOST	(1<<27)
#define NV_TX_LATECOLLISION	(1<<28)
#define NV_TX_UNDERFLOW		(1<<29)
#define NV_TX_ERROR		(1<<30)
#define NV_TX_VALID		(1<<31)

#define NV_TX2_LASTPACKET	(1<<29)
#define NV_TX2_RETRYERROR	(1<<18)
#define NV_TX2_RETRYCOUNT_MASK	(0xF<<19)
#define NV_TX2_FORCED_INTERRUPT	(1<<30)
#define NV_TX2_DEFERRED		(1<<25)
#define NV_TX2_CARRIERLOST	(1<<26)
#define NV_TX2_LATECOLLISION	(1<<27)
#define NV_TX2_UNDERFLOW	(1<<28)
/* error and valid are the same for both */
#define NV_TX2_ERROR		(1<<30)
#define NV_TX2_VALID		(1<<31)
#define NV_TX2_TSO		(1<<28)
#define NV_TX2_TSO_SHIFT	14
#define NV_TX2_TSO_MAX_SHIFT	14
#define NV_TX2_TSO_MAX_SIZE	(1<<NV_TX2_TSO_MAX_SHIFT)
#define NV_TX2_CHECKSUM_L3	(1<<27)
#define NV_TX2_CHECKSUM_L4	(1<<26)

#define NV_TX3_VLAN_TAG_PRESENT (1<<18)

#define NV_RX_DESCRIPTORVALID	(1<<16)
#define NV_RX_MISSEDFRAME	(1<<17)
#define NV_RX_SUBTRACT1		(1<<18)
#define NV_RX_ERROR1		(1<<23)
#define NV_RX_ERROR2		(1<<24)
#define NV_RX_ERROR3		(1<<25)
#define NV_RX_ERROR4		(1<<26)
#define NV_RX_CRCERR		(1<<27)
#define NV_RX_OVERFLOW		(1<<28)
#define NV_RX_FRAMINGERR	(1<<29)
#define NV_RX_ERROR		(1<<30)
#define NV_RX_AVAIL		(1<<31)
#define NV_RX_ERROR_MASK	(NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)

#define NV_RX2_CHECKSUMMASK	(0x1C000000)
#define NV_RX2_CHECKSUM_IP	(0x10000000)
#define NV_RX2_CHECKSUM_IP_TCP	(0x14000000)
#define NV_RX2_CHECKSUM_IP_UDP	(0x18000000)
#define NV_RX2_DESCRIPTORVALID	(1<<29)
#define NV_RX2_SUBTRACT1	(1<<25)
#define NV_RX2_ERROR1		(1<<18)
#define NV_RX2_ERROR2		(1<<19)
#define NV_RX2_ERROR3		(1<<20)
#define NV_RX2_ERROR4		(1<<21)
#define NV_RX2_CRCERR		(1<<22)
#define NV_RX2_OVERFLOW		(1<<23)
#define NV_RX2_FRAMINGERR	(1<<24)
/* error and avail are the same for both */
#define NV_RX2_ERROR		(1<<30)
#define NV_RX2_AVAIL		(1<<31)
#define NV_RX2_ERROR_MASK	(NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)

#define NV_RX3_VLAN_TAG_PRESENT (1<<16)
#define NV_RX3_VLAN_TAG_MASK	(0x0000FFFF)

/* Miscellaneous hardware related defines: */
#define NV_PCI_REGSZ_VER1	0x270
#define NV_PCI_REGSZ_VER2	0x2d4
#define NV_PCI_REGSZ_VER3	0x604
#define NV_PCI_REGSZ_MAX	0x604

/* various timeout delays: all in usec */
#define NV_TXRX_RESET_DELAY	4
#define NV_TXSTOP_DELAY1	10
#define NV_TXSTOP_DELAY1MAX	500000
#define NV_TXSTOP_DELAY2	100
#define NV_RXSTOP_DELAY1	10
#define NV_RXSTOP_DELAY1MAX	500000
#define NV_RXSTOP_DELAY2	100
#define NV_SETUP5_DELAY		5
#define NV_SETUP5_DELAYMAX	50000
#define NV_POWERUP_DELAY	5
#define NV_POWERUP_DELAYMAX	5000
#define NV_MIIBUSY_DELAY	50
#define NV_MIIPHY_DELAY	10
#define NV_MIIPHY_DELAYMAX	10000
#define NV_MAC_RESET_DELAY	64

#define NV_WAKEUPPATTERNS	5
#define NV_WAKEUPMASKENTRIES	4

/* General driver defaults */
#define NV_WATCHDOG_TIMEO	(5*HZ)

#define RX_RING_DEFAULT		512
#define TX_RING_DEFAULT		256
#define RX_RING_MIN		128
#define TX_RING_MIN		64
#define RING_MAX_DESC_VER_1	1024
#define RING_MAX_DESC_VER_2_3	16384

/* rx/tx mac addr + type + vlan + align + slack*/
#define NV_RX_HEADERS		(64)
/* even more slack. */
#define NV_RX_ALLOC_PAD		(64)

/* maximum mtu size */
#define NV_PKTLIMIT_1	ETH_DATA_LEN	/* hard limit not known */
#define NV_PKTLIMIT_2	9100	/* Actual limit according to NVidia: 9202 */

#define OOM_REFILL	(1+HZ/20)
#define POLL_WAIT	(1+HZ/100)
#define LINK_TIMEOUT	(3*HZ)
#define STATS_INTERVAL	(10*HZ)

/*
 * desc_ver values:
 * The nic supports three different descriptor types:
 * - DESC_VER_1: Original
 * - DESC_VER_2: support for jumbo frames.
 * - DESC_VER_3: 64-bit format.
 */
#define DESC_VER_1	1
#define DESC_VER_2	2
#define DESC_VER_3	3

/* PHY defines */
#define PHY_OUI_MARVELL		0x5043
#define PHY_OUI_CICADA		0x03f1
#define PHY_OUI_VITESSE		0x01c1
#define PHY_OUI_REALTEK		0x0732
#define PHY_OUI_REALTEK2	0x0020
#define PHYID1_OUI_MASK	0x03ff
#define PHYID1_OUI_SHFT	6
#define PHYID2_OUI_MASK	0xfc00
#define PHYID2_OUI_SHFT	10
#define PHYID2_MODEL_MASK		0x03f0
#define PHY_MODEL_REALTEK_8211		0x0110
#define PHY_REV_MASK			0x0001
#define PHY_REV_REALTEK_8211B		0x0000
#define PHY_REV_REALTEK_8211C		0x0001
#define PHY_MODEL_REALTEK_8201		0x0200
#define PHY_MODEL_MARVELL_E3016		0x0220
#define PHY_MARVELL_E3016_INITMASK	0x0300
#define PHY_CICADA_INIT1	0x0f000
#define PHY_CICADA_INIT2	0x0e00
#define PHY_CICADA_INIT3	0x01000
#define PHY_CICADA_INIT4	0x0200
#define PHY_CICADA_INIT5	0x0004
#define PHY_CICADA_INIT6	0x02000
#define PHY_VITESSE_INIT_REG1	0x1f
#define PHY_VITESSE_INIT_REG2	0x10
#define PHY_VITESSE_INIT_REG3	0x11
#define PHY_VITESSE_INIT_REG4	0x12
#define PHY_VITESSE_INIT_MSK1	0xc
#define PHY_VITESSE_INIT_MSK2	0x0180
#define PHY_VITESSE_INIT1	0x52b5
#define PHY_VITESSE_INIT2	0xaf8a
#define PHY_VITESSE_INIT3	0x8
#define PHY_VITESSE_INIT4	0x8f8a
#define PHY_VITESSE_INIT5	0xaf86
#define PHY_VITESSE_INIT6	0x8f86
#define PHY_VITESSE_INIT7	0xaf82
#define PHY_VITESSE_INIT8	0x0100
#define PHY_VITESSE_INIT9	0x8f82
#define PHY_VITESSE_INIT10	0x0
#define PHY_REALTEK_INIT_REG1	0x1f
#define PHY_REALTEK_INIT_REG2	0x19
#define PHY_REALTEK_INIT_REG3	0x13
#define PHY_REALTEK_INIT_REG4	0x14
#define PHY_REALTEK_INIT_REG5	0x18
#define PHY_REALTEK_INIT_REG6	0x11
#define PHY_REALTEK_INIT_REG7	0x01
#define PHY_REALTEK_INIT1	0x0000
#define PHY_REALTEK_INIT2	0x8e00
#define PHY_REALTEK_INIT3	0x0001
#define PHY_REALTEK_INIT4	0xad17
#define PHY_REALTEK_INIT5	0xfb54
#define PHY_REALTEK_INIT6	0xf5c7
#define PHY_REALTEK_INIT7	0x1000
#define PHY_REALTEK_INIT8	0x0003
#define PHY_REALTEK_INIT9	0x0008
#define PHY_REALTEK_INIT10	0x0005
#define PHY_REALTEK_INIT11	0x0200
#define PHY_REALTEK_INIT_MSK1	0x0003

#define PHY_GIGABIT	0x0100

#define PHY_TIMEOUT	0x1
#define PHY_ERROR	0x2

#define PHY_100	0x1
#define PHY_1000	0x2
#define PHY_HALF	0x100

#define NV_PAUSEFRAME_RX_CAPABLE 0x0001
#define NV_PAUSEFRAME_TX_CAPABLE 0x0002
#define NV_PAUSEFRAME_RX_ENABLE  0x0004
#define NV_PAUSEFRAME_TX_ENABLE  0x0008
#define NV_PAUSEFRAME_RX_REQ     0x0010
#define NV_PAUSEFRAME_TX_REQ     0x0020
#define NV_PAUSEFRAME_AUTONEG    0x0040

/* MSI/MSI-X defines */
#define NV_MSI_X_MAX_VECTORS  8
#define NV_MSI_X_VECTORS_MASK 0x000f
#define NV_MSI_CAPABLE        0x0010
#define NV_MSI_X_CAPABLE      0x0020
#define NV_MSI_ENABLED        0x0040
#define NV_MSI_X_ENABLED      0x0080

#define NV_MSI_X_VECTOR_ALL   0x0
#define NV_MSI_X_VECTOR_RX    0x0
#define NV_MSI_X_VECTOR_TX    0x1
#define NV_MSI_X_VECTOR_OTHER 0x2

#define NV_MSI_PRIV_OFFSET 0x68
#define NV_MSI_PRIV_VALUE  0xffffffff

#define NV_RESTART_TX         0x1
#define NV_RESTART_RX         0x2

#define NV_TX_LIMIT_COUNT     16

#define NV_DYNAMIC_THRESHOLD        4
#define NV_DYNAMIC_MAX_QUIET_COUNT  2048

/* statistics */
struct nv_ethtool_str {
	char name[ETH_GSTRING_LEN];
};

static const struct nv_ethtool_str nv_estats_str[] = {
	{ "tx_bytes" }, /* includes Ethernet FCS CRC */
	{ "tx_zero_rexmt" },
	{ "tx_one_rexmt" },
	{ "tx_many_rexmt" },
	{ "tx_late_collision" },
	{ "tx_fifo_errors" },
	{ "tx_carrier_errors" },
	{ "tx_excess_deferral" },
	{ "tx_retry_error" },
	{ "rx_frame_error" },
	{ "rx_extra_byte" },
	{ "rx_late_collision" },
	{ "rx_runt" },
	{ "rx_frame_too_long" },
	{ "rx_over_errors" },
	{ "rx_crc_errors" },
	{ "rx_frame_align_error" },
	{ "rx_length_error" },
	{ "rx_unicast" },
	{ "rx_multicast" },
	{ "rx_broadcast" },
	{ "rx_packets" },
	{ "rx_errors_total" },
	{ "tx_errors_total" },

	/* version 2 stats */
	{ "tx_deferral" },
	{ "tx_packets" },
	{ "rx_bytes" }, /* includes Ethernet FCS CRC */
	{ "tx_pause" },
	{ "rx_pause" },
	{ "rx_drop_frame" },

	/* version 3 stats */
	{ "tx_unicast" },
	{ "tx_multicast" },
	{ "tx_broadcast" }
};

struct nv_ethtool_stats {
	u64 tx_bytes; /* should be ifconfig->tx_bytes + 4*tx_packets */
	u64 tx_zero_rexmt;
	u64 tx_one_rexmt;
	u64 tx_many_rexmt;
	u64 tx_late_collision;
	u64 tx_fifo_errors;
	u64 tx_carrier_errors;
	u64 tx_excess_deferral;
	u64 tx_retry_error;
	u64 rx_frame_error;
	u64 rx_extra_byte;
	u64 rx_late_collision;
	u64 rx_runt;
	u64 rx_frame_too_long;
	u64 rx_over_errors;
	u64 rx_crc_errors;
	u64 rx_frame_align_error;
	u64 rx_length_error;
	u64 rx_unicast;
	u64 rx_multicast;
	u64 rx_broadcast;
	u64 rx_packets; /* should be ifconfig->rx_packets */
	u64 rx_errors_total;
	u64 tx_errors_total;

	/* version 2 stats */
	u64 tx_deferral;
	u64 tx_packets; /* should be ifconfig->tx_packets */
	u64 rx_bytes;   /* should be ifconfig->rx_bytes + 4*rx_packets */
	u64 tx_pause;
	u64 rx_pause;
	u64 rx_drop_frame;

	/* version 3 stats */
	u64 tx_unicast;
	u64 tx_multicast;
	u64 tx_broadcast;
};

#define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
#define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
#define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)

/* diagnostics */
#define NV_TEST_COUNT_BASE 3
#define NV_TEST_COUNT_EXTENDED 4

static const struct nv_ethtool_str nv_etests_str[] = {
	{ "link      (online/offline)" },
	{ "register  (offline)       " },
	{ "interrupt (offline)       " },
	{ "loopback  (offline)       " }
};

struct register_test {
	__u32 reg;
	__u32 mask;
};

static const struct register_test nv_registers_test[] = {
	{ NvRegUnknownSetupReg6, 0x01 },
	{ NvRegMisc1, 0x03c },
	{ NvRegOffloadConfig, 0x03ff },
	{ NvRegMulticastAddrA, 0xffffffff },
	{ NvRegTxWatermark, 0x0ff },
	{ NvRegWakeUpFlags, 0x07777 },
	{ 0, 0 }
};

struct nv_skb_map {
	struct sk_buff *skb;
	dma_addr_t dma;
	unsigned int dma_len:31;
	unsigned int dma_single:1;
	struct ring_desc_ex *first_tx_desc;
	struct nv_skb_map *next_tx_ctx;
};

struct nv_txrx_stats {
	u64 stat_rx_packets;
	u64 stat_rx_bytes; /* not always available in HW */
	u64 stat_rx_missed_errors;
	u64 stat_rx_dropped;
	u64 stat_tx_packets; /* not always available in HW */
	u64 stat_tx_bytes;
	u64 stat_tx_dropped;
};

#define nv_txrx_stats_inc(member) \
		__this_cpu_inc(np->txrx_stats->member)
#define nv_txrx_stats_add(member, count) \
		__this_cpu_add(np->txrx_stats->member, (count))

/*
 * SMP locking:
 * All hardware access under netdev_priv(dev)->lock, except the performance
 * critical parts:
 * - rx is (pseudo-) lockless: it relies on the single-threading provided
 *	by the arch code for interrupts.
 * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
 *	needs netdev_priv(dev)->lock :-(
 * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
 *
 * Hardware stats updates are protected by hwstats_lock:
 * - updated by nv_do_stats_poll (timer). This is meant to avoid
 *   integer wraparound in the NIC stats registers, at low frequency
 *   (0.1 Hz)
 * - updated by nv_get_ethtool_stats + nv_get_stats64
 *
 * Software stats are accessed only through 64b synchronization points
 * and are not subject to other synchronization techniques (single
 * update thread on the TX or RX paths).
 */

/* in dev: base, irq */
struct fe_priv {
	spinlock_t lock;

	struct net_device *dev;
	struct napi_struct napi;

	/* hardware stats are updated in syscall and timer */
	spinlock_t hwstats_lock;
	struct nv_ethtool_stats estats;

	int in_shutdown;
	u32 linkspeed;
	int duplex;
	int autoneg;
	int fixed_mode;
	int phyaddr;
	int wolenabled;
	unsigned int phy_oui;
	unsigned int phy_model;
	unsigned int phy_rev;
	u16 gigabit;
	int intr_test;
	int recover_error;
	int quiet_count;

	/* General data: RO fields */
	dma_addr_t ring_addr;
	struct pci_dev *pci_dev;
	u32 orig_mac[2];
	u32 events;
	u32 irqmask;
	u32 desc_ver;
	u32 txrxctl_bits;
	u32 vlanctl_bits;
	u32 driver_data;
	u32 device_id;
	u32 register_size;
	u32 mac_in_use;
	int mgmt_version;
	int mgmt_sema;

	void __iomem *base;

	/* rx specific fields.
	 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
	 */
	union ring_type get_rx, put_rx, last_rx;
	struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
	struct nv_skb_map *last_rx_ctx;
	struct nv_skb_map *rx_skb;

	union ring_type rx_ring;
	unsigned int rx_buf_sz;
	unsigned int pkt_limit;
	struct timer_list oom_kick;
	struct timer_list nic_poll;
	struct timer_list stats_poll;
	u32 nic_poll_irq;
	int rx_ring_size;

	/* RX software stats */
	struct u64_stats_sync swstats_rx_syncp;
	struct nv_txrx_stats __percpu *txrx_stats;

	/* media detection workaround.
	 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
	 */
	int need_linktimer;
	unsigned long link_timeout;
	/*
	 * tx specific fields.
	 */
	union ring_type get_tx, put_tx, last_tx;
	struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
	struct nv_skb_map *last_tx_ctx;
	struct nv_skb_map *tx_skb;

	union ring_type tx_ring;
	u32 tx_flags;
	int tx_ring_size;
	int tx_limit;
	u32 tx_pkts_in_progress;
	struct nv_skb_map *tx_change_owner;
	struct nv_skb_map *tx_end_flip;
	int tx_stop;

	/* TX software stats */
	struct u64_stats_sync swstats_tx_syncp;

	/* msi/msi-x fields */
	u32 msi_flags;
	struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];

	/* flow control */
	u32 pause_flags;

	/* power saved state */
	u32 saved_config_space[NV_PCI_REGSZ_MAX/4];

	/* for different msi-x irq type */
	char name_rx[IFNAMSIZ + 3];       /* -rx    */
	char name_tx[IFNAMSIZ + 3];       /* -tx    */
	char name_other[IFNAMSIZ + 6];    /* -other */
};

/*
 * Maximum number of loops until we assume that a bit in the irq mask
 * is stuck. Overridable with module param.
 */
static int max_interrupt_work = 4;

/*
 * Optimization can be either throuput mode or cpu mode
 *
 * Throughput Mode: Every tx and rx packet will generate an interrupt.
 * CPU Mode: Interrupts are controlled by a timer.
 */
enum {
	NV_OPTIMIZATION_MODE_THROUGHPUT,
	NV_OPTIMIZATION_MODE_CPU,
	NV_OPTIMIZATION_MODE_DYNAMIC
};
static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;

/*
 * Poll interval for timer irq
 *
 * This interval determines how frequent an interrupt is generated.
 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
 * Min = 0, and Max = 65535
 */
static int poll_interval = -1;

/*
 * MSI interrupts
 */
enum {
	NV_MSI_INT_DISABLED,
	NV_MSI_INT_ENABLED
};
static int msi = NV_MSI_INT_ENABLED;

/*
 * MSIX interrupts
 */
enum {
	NV_MSIX_INT_DISABLED,
	NV_MSIX_INT_ENABLED
};
static int msix = NV_MSIX_INT_ENABLED;

/*
 * DMA 64bit
 */
enum {
	NV_DMA_64BIT_DISABLED,
	NV_DMA_64BIT_ENABLED
};
static int dma_64bit = NV_DMA_64BIT_ENABLED;

/*
 * Debug output control for tx_timeout
 */
static bool debug_tx_timeout = false;

/*
 * Crossover Detection
 * Realtek 8201 phy + some OEM boards do not work properly.
 */
enum {
	NV_CROSSOVER_DETECTION_DISABLED,
	NV_CROSSOVER_DETECTION_ENABLED
};
static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;

/*
 * Power down phy when interface is down (persists through reboot;
 * older Linux and other OSes may not power it up again)
 */
static int phy_power_down;

static inline struct fe_priv *get_nvpriv(struct net_device *dev)
{
	return netdev_priv(dev);
}

static inline u8 __iomem *get_hwbase(struct net_device *dev)
{
	return ((struct fe_priv *)netdev_priv(dev))->base;
}

static inline void pci_push(u8 __iomem *base)
{
	/* force out pending posted writes */
	readl(base);
}

static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
{
	return le32_to_cpu(prd->flaglen)
		& ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
}

static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
{
	return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
}

static bool nv_optimized(struct fe_priv *np)
{
	if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
		return false;
	return true;
}

static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
		     int delay, int delaymax)
{
	u8 __iomem *base = get_hwbase(dev);

	pci_push(base);
	do {
		udelay(delay);
		delaymax -= delay;
		if (delaymax < 0)
			return 1;
	} while ((readl(base + offset) & mask) != target);
	return 0;
}

#define NV_SETUP_RX_RING 0x01
#define NV_SETUP_TX_RING 0x02

static inline u32 dma_low(dma_addr_t addr)
{
	return addr;
}

static inline u32 dma_high(dma_addr_t addr)
{
	return addr>>31>>1;	/* 0 if 32bit, shift down by 32 if 64bit */
}

static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
{
	struct fe_priv *np = get_nvpriv(dev);
	u8 __iomem *base = get_hwbase(dev);

	if (!nv_optimized(np)) {
		if (rxtx_flags & NV_SETUP_RX_RING)
			writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
		if (rxtx_flags & NV_SETUP_TX_RING)
			writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
	} else {
		if (rxtx_flags & NV_SETUP_RX_RING) {
			writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
			writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
		}
		if (rxtx_flags & NV_SETUP_TX_RING) {
			writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
			writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
		}
	}
}

static void free_rings(struct net_device *dev)
{
	struct fe_priv *np = get_nvpriv(dev);

	if (!nv_optimized(np)) {
		if (np->rx_ring.orig)
			dma_free_coherent(&np->pci_dev->dev,
					  sizeof(struct ring_desc) *
					  (np->rx_ring_size +
					  np->tx_ring_size),
					  np->rx_ring.orig, np->ring_addr);
	} else {
		if (np->rx_ring.ex)
			dma_free_coherent(&np->pci_dev->dev,
					  sizeof(struct ring_desc_ex) *
					  (np->rx_ring_size +
					  np->tx_ring_size),
					  np->rx_ring.ex, np->ring_addr);
	}
	kfree(np->rx_skb);
	kfree(np->tx_skb);
}

static int using_multi_irqs(struct net_device *dev)
{
	struct fe_priv *np = get_nvpriv(dev);

	if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
	    ((np->msi_flags & NV_MSI_X_ENABLED) &&
	     ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
		return 0;
	else
		return 1;
}

static void nv_txrx_gate(struct net_device *dev, bool gate)
{
	struct fe_priv *np = get_nvpriv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 powerstate;

	if (!np->mac_in_use &&
	    (np->driver_data & DEV_HAS_POWER_CNTRL)) {
		powerstate = readl(base + NvRegPowerState2);
		if (gate)
			powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
		else
			powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
		writel(powerstate, base + NvRegPowerState2);
	}
}

static void nv_enable_irq(struct net_device *dev)
{
	struct fe_priv *np = get_nvpriv(dev);

	if (!using_multi_irqs(dev)) {
		if (np->msi_flags & NV_MSI_X_ENABLED)
			enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
		else
			enable_irq(np->pci_dev->irq);
	} else {
		enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
		enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
		enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
	}
}

static void nv_disable_irq(struct net_device *dev)
{
	struct fe_priv *np = get_nvpriv(dev);

	if (!using_multi_irqs(dev)) {
		if (np->msi_flags & NV_MSI_X_ENABLED)
			disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
		else
			disable_irq(np->pci_dev->irq);
	} else {
		disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
		disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
		disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
	}
}

/* In MSIX mode, a write to irqmask behaves as XOR */
static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
{
	u8 __iomem *base = get_hwbase(dev);

	writel(mask, base + NvRegIrqMask);
}

static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
{
	struct fe_priv *np = get_nvpriv(dev);
	u8 __iomem *base = get_hwbase(dev);

	if (np->msi_flags & NV_MSI_X_ENABLED) {
		writel(mask, base + NvRegIrqMask);
	} else {
		if (np->msi_flags & NV_MSI_ENABLED)
			writel(0, base + NvRegMSIIrqMask);
		writel(0, base + NvRegIrqMask);
	}
}

static void nv_napi_enable(struct net_device *dev)
{
	struct fe_priv *np = get_nvpriv(dev);

	napi_enable(&np->napi);
}

static void nv_napi_disable(struct net_device *dev)
{
	struct fe_priv *np = get_nvpriv(dev);

	napi_disable(&np->napi);
}

#define MII_READ	(-1)
/* mii_rw: read/write a register on the PHY.
 *
 * Caller must guarantee serialization
 */
static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
{
	u8 __iomem *base = get_hwbase(dev);
	u32 reg;
	int retval;

	writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);

	reg = readl(base + NvRegMIIControl);
	if (reg & NVREG_MIICTL_INUSE) {
		writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
		udelay(NV_MIIBUSY_DELAY);
	}

	reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
	if (value != MII_READ) {
		writel(value, base + NvRegMIIData);
		reg |= NVREG_MIICTL_WRITE;
	}
	writel(reg, base + NvRegMIIControl);

	if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
			NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX)) {
		retval = -1;
	} else if (value != MII_READ) {
		/* it was a write operation - fewer failures are detectable */
		retval = 0;
	} else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
		retval = -1;
	} else {
		retval = readl(base + NvRegMIIData);
	}

	return retval;
}

static int phy_reset(struct net_device *dev, u32 bmcr_setup)
{
	struct fe_priv *np = netdev_priv(dev);
	u32 miicontrol;
	unsigned int tries = 0;

	miicontrol = BMCR_RESET | bmcr_setup;
	if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol))
		return -1;

	/* wait for 500ms */
	msleep(500);

	/* must wait till reset is deasserted */
	while (miicontrol & BMCR_RESET) {
		usleep_range(10000, 20000);
		miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
		/* FIXME: 100 tries seem excessive */
		if (tries++ > 100)
			return -1;
	}
	return 0;
}

static int init_realtek_8211b(struct net_device *dev, struct fe_priv *np)
{
	static const struct {
		int reg;
		int init;
	} ri[] = {
		{ PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
		{ PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2 },
		{ PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3 },
		{ PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4 },
		{ PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5 },
		{ PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6 },
		{ PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1 },
	};
	int i;

	for (i = 0; i < ARRAY_SIZE(ri); i++) {
		if (mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init))
			return PHY_ERROR;
	}

	return 0;
}

static int init_realtek_8211c(struct net_device *dev, struct fe_priv *np)
{
	u32 reg;
	u8 __iomem *base = get_hwbase(dev);
	u32 powerstate = readl(base + NvRegPowerState2);

	/* need to perform hw phy reset */
	powerstate |= NVREG_POWERSTATE2_PHY_RESET;
	writel(powerstate, base + NvRegPowerState2);
	msleep(25);

	powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
	writel(powerstate, base + NvRegPowerState2);
	msleep(25);

	reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
	reg |= PHY_REALTEK_INIT9;
	if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg))
		return PHY_ERROR;
	if (mii_rw(dev, np->phyaddr,
		   PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10))
		return PHY_ERROR;
	reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
	if (!(reg & PHY_REALTEK_INIT11)) {
		reg |= PHY_REALTEK_INIT11;
		if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg))
			return PHY_ERROR;
	}
	if (mii_rw(dev, np->phyaddr,
		   PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
		return PHY_ERROR;

	return 0;
}

static int init_realtek_8201(struct net_device *dev, struct fe_priv *np)
{
	u32 phy_reserved;

	if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
		phy_reserved = mii_rw(dev, np->phyaddr,
				      PHY_REALTEK_INIT_REG6, MII_READ);
		phy_reserved |= PHY_REALTEK_INIT7;
		if (mii_rw(dev, np->phyaddr,
			   PHY_REALTEK_INIT_REG6, phy_reserved))
			return PHY_ERROR;
	}

	return 0;
}

static int init_realtek_8201_cross(struct net_device *dev, struct fe_priv *np)
{
	u32 phy_reserved;

	if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
		if (mii_rw(dev, np->phyaddr,
			   PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3))
			return PHY_ERROR;
		phy_reserved = mii_rw(dev, np->phyaddr,
				      PHY_REALTEK_INIT_REG2, MII_READ);
		phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
		phy_reserved |= PHY_REALTEK_INIT3;
		if (mii_rw(dev, np->phyaddr,
			   PHY_REALTEK_INIT_REG2, phy_reserved))
			return PHY_ERROR;
		if (mii_rw(dev, np->phyaddr,
			   PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1))
			return PHY_ERROR;
	}

	return 0;
}

static int init_cicada(struct net_device *dev, struct fe_priv *np,
		       u32 phyinterface)
{
	u32 phy_reserved;

	if (phyinterface & PHY_RGMII) {
		phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
		phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
		phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
		if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved))
			return PHY_ERROR;
		phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
		phy_reserved |= PHY_CICADA_INIT5;
		if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved))
			return PHY_ERROR;
	}
	phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
	phy_reserved |= PHY_CICADA_INIT6;
	if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved))
		return PHY_ERROR;

	return 0;
}

static int init_vitesse(struct net_device *dev, struct fe_priv *np)
{
	u32 phy_reserved;

	if (mii_rw(dev, np->phyaddr,
		   PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1))
		return PHY_ERROR;
	if (mii_rw(dev, np->phyaddr,
		   PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2))
		return PHY_ERROR;
	phy_reserved = mii_rw(dev, np->phyaddr,
			      PHY_VITESSE_INIT_REG4, MII_READ);
	if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
		return PHY_ERROR;
	phy_reserved = mii_rw(dev, np->phyaddr,
			      PHY_VITESSE_INIT_REG3, MII_READ);
	phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
	phy_reserved |= PHY_VITESSE_INIT3;
	if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
		return PHY_ERROR;
	if (mii_rw(dev, np->phyaddr,
		   PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4))
		return PHY_ERROR;
	if (mii_rw(dev, np->phyaddr,
		   PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5))
		return PHY_ERROR;
	phy_reserved = mii_rw(dev, np->phyaddr,
			      PHY_VITESSE_INIT_REG4, MII_READ);
	phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
	phy_reserved |= PHY_VITESSE_INIT3;
	if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
		return PHY_ERROR;
	phy_reserved = mii_rw(dev, np->phyaddr,
			      PHY_VITESSE_INIT_REG3, MII_READ);
	if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
		return PHY_ERROR;
	if (mii_rw(dev, np->phyaddr,
		   PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6))
		return PHY_ERROR;
	if (mii_rw(dev, np->phyaddr,
		   PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7))
		return PHY_ERROR;
	phy_reserved = mii_rw(dev, np->phyaddr,
			      PHY_VITESSE_INIT_REG4, MII_READ);
	if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved))
		return PHY_ERROR;
	phy_reserved = mii_rw(dev, np->phyaddr,
			      PHY_VITESSE_INIT_REG3, MII_READ);
	phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
	phy_reserved |= PHY_VITESSE_INIT8;
	if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved))
		return PHY_ERROR;
	if (mii_rw(dev, np->phyaddr,
		   PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9))
		return PHY_ERROR;
	if (mii_rw(dev, np->phyaddr,
		   PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10))
		return PHY_ERROR;

	return 0;
}

static int phy_init(struct net_device *dev)
{
	struct fe_priv *np = get_nvpriv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 phyinterface;
	u32 mii_status, mii_control, mii_control_1000, reg;

	/* phy errata for E3016 phy */
	if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
		reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
		reg &= ~PHY_MARVELL_E3016_INITMASK;
		if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
			netdev_info(dev, "%s: phy write to errata reg failed\n",
				    pci_name(np->pci_dev));
			return PHY_ERROR;
		}
	}
	if (np->phy_oui == PHY_OUI_REALTEK) {
		if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
		    np->phy_rev == PHY_REV_REALTEK_8211B) {
			if (init_realtek_8211b(dev, np)) {
				netdev_info(dev, "%s: phy init failed\n",
					    pci_name(np->pci_dev));
				return PHY_ERROR;
			}
		} else if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
			   np->phy_rev == PHY_REV_REALTEK_8211C) {
			if (init_realtek_8211c(dev, np)) {
				netdev_info(dev, "%s: phy init failed\n",
					    pci_name(np->pci_dev));
				return PHY_ERROR;
			}
		} else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
			if (init_realtek_8201(dev, np)) {
				netdev_info(dev, "%s: phy init failed\n",
					    pci_name(np->pci_dev));
				return PHY_ERROR;
			}
		}
	}

	/* set advertise register */
	reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
	reg |= (ADVERTISE_10HALF | ADVERTISE_10FULL |
		ADVERTISE_100HALF | ADVERTISE_100FULL |
		ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
	if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
		netdev_info(dev, "%s: phy write to advertise failed\n",
			    pci_name(np->pci_dev));
		return PHY_ERROR;
	}

	/* get phy interface type */
	phyinterface = readl(base + NvRegPhyInterface);

	/* see if gigabit phy */
	mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
	if (mii_status & PHY_GIGABIT) {
		np->gigabit = PHY_GIGABIT;
		mii_control_1000 = mii_rw(dev, np->phyaddr,
					  MII_CTRL1000, MII_READ);
		mii_control_1000 &= ~ADVERTISE_1000HALF;
		if (phyinterface & PHY_RGMII)
			mii_control_1000 |= ADVERTISE_1000FULL;
		else
			mii_control_1000 &= ~ADVERTISE_1000FULL;

		if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
			netdev_info(dev, "%s: phy init failed\n",
				    pci_name(np->pci_dev));
			return PHY_ERROR;
		}
	} else
		np->gigabit = 0;

	mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
	mii_control |= BMCR_ANENABLE;

	if (np->phy_oui == PHY_OUI_REALTEK &&
	    np->phy_model == PHY_MODEL_REALTEK_8211 &&
	    np->phy_rev == PHY_REV_REALTEK_8211C) {
		/* start autoneg since we already performed hw reset above */
		mii_control |= BMCR_ANRESTART;
		if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
			netdev_info(dev, "%s: phy init failed\n",
				    pci_name(np->pci_dev));
			return PHY_ERROR;
		}
	} else {
		/* reset the phy
		 * (certain phys need bmcr to be setup with reset)
		 */
		if (phy_reset(dev, mii_control)) {
			netdev_info(dev, "%s: phy reset failed\n",
				    pci_name(np->pci_dev));
			return PHY_ERROR;
		}
	}

	/* phy vendor specific configuration */
	if (np->phy_oui == PHY_OUI_CICADA) {
		if (init_cicada(dev, np, phyinterface)) {
			netdev_info(dev, "%s: phy init failed\n",
				    pci_name(np->pci_dev));
			return PHY_ERROR;
		}
	} else if (np->phy_oui == PHY_OUI_VITESSE) {
		if (init_vitesse(dev, np)) {
			netdev_info(dev, "%s: phy init failed\n",
				    pci_name(np->pci_dev));
			return PHY_ERROR;
		}
	} else if (np->phy_oui == PHY_OUI_REALTEK) {
		if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
		    np->phy_rev == PHY_REV_REALTEK_8211B) {
			/* reset could have cleared these out, set them back */
			if (init_realtek_8211b(dev, np)) {
				netdev_info(dev, "%s: phy init failed\n",
					    pci_name(np->pci_dev));
				return PHY_ERROR;
			}
		} else if (np->phy_model == PHY_MODEL_REALTEK_8201) {
			if (init_realtek_8201(dev, np) ||
			    init_realtek_8201_cross(dev, np)) {
				netdev_info(dev, "%s: phy init failed\n",
					    pci_name(np->pci_dev));
				return PHY_ERROR;
			}
		}
	}

	/* some phys clear out pause advertisement on reset, set it back */
	mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);

	/* restart auto negotiation, power down phy */
	mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
	mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
	if (phy_power_down)
		mii_control |= BMCR_PDOWN;
	if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control))
		return PHY_ERROR;

	return 0;
}

static void nv_start_rx(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 rx_ctrl = readl(base + NvRegReceiverControl);

	/* Already running? Stop it. */
	if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
		rx_ctrl &= ~NVREG_RCVCTL_START;
		writel(rx_ctrl, base + NvRegReceiverControl);
		pci_push(base);
	}
	writel(np->linkspeed, base + NvRegLinkSpeed);
	pci_push(base);
	rx_ctrl |= NVREG_RCVCTL_START;
	if (np->mac_in_use)
		rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
	writel(rx_ctrl, base + NvRegReceiverControl);
	pci_push(base);
}

static void nv_stop_rx(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 rx_ctrl = readl(base + NvRegReceiverControl);

	if (!np->mac_in_use)
		rx_ctrl &= ~NVREG_RCVCTL_START;
	else
		rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
	writel(rx_ctrl, base + NvRegReceiverControl);
	if (reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
		      NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX))
		netdev_info(dev, "%s: ReceiverStatus remained busy\n",
			    __func__);

	udelay(NV_RXSTOP_DELAY2);
	if (!np->mac_in_use)
		writel(0, base + NvRegLinkSpeed);
}

static void nv_start_tx(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 tx_ctrl = readl(base + NvRegTransmitterControl);

	tx_ctrl |= NVREG_XMITCTL_START;
	if (np->mac_in_use)
		tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
	writel(tx_ctrl, base + NvRegTransmitterControl);
	pci_push(base);
}

static void nv_stop_tx(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 tx_ctrl = readl(base + NvRegTransmitterControl);

	if (!np->mac_in_use)
		tx_ctrl &= ~NVREG_XMITCTL_START;
	else
		tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
	writel(tx_ctrl, base + NvRegTransmitterControl);
	if (reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
		      NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX))
		netdev_info(dev, "%s: TransmitterStatus remained busy\n",
			    __func__);

	udelay(NV_TXSTOP_DELAY2);
	if (!np->mac_in_use)
		writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
		       base + NvRegTransmitPoll);
}

static void nv_start_rxtx(struct net_device *dev)
{
	nv_start_rx(dev);
	nv_start_tx(dev);
}

static void nv_stop_rxtx(struct net_device *dev)
{
	nv_stop_rx(dev);
	nv_stop_tx(dev);
}

static void nv_txrx_reset(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);

	writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
	pci_push(base);
	udelay(NV_TXRX_RESET_DELAY);
	writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
	pci_push(base);
}

static void nv_mac_reset(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 temp1, temp2, temp3;

	writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
	pci_push(base);

	/* save registers since they will be cleared on reset */
	temp1 = readl(base + NvRegMacAddrA);
	temp2 = readl(base + NvRegMacAddrB);
	temp3 = readl(base + NvRegTransmitPoll);

	writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
	pci_push(base);
	udelay(NV_MAC_RESET_DELAY);
	writel(0, base + NvRegMacReset);
	pci_push(base);
	udelay(NV_MAC_RESET_DELAY);

	/* restore saved registers */
	writel(temp1, base + NvRegMacAddrA);
	writel(temp2, base + NvRegMacAddrB);
	writel(temp3, base + NvRegTransmitPoll);

	writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
	pci_push(base);
}

/* Caller must appropriately lock netdev_priv(dev)->hwstats_lock */
static void nv_update_stats(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);

	/* If it happens that this is run in top-half context, then
	 * replace the spin_lock of hwstats_lock with
	 * spin_lock_irqsave() in calling functions. */
	WARN_ONCE(in_irq(), "forcedeth: estats spin_lock(_bh) from top-half");
	assert_spin_locked(&np->hwstats_lock);

	/* query hardware */
	np->estats.tx_bytes += readl(base + NvRegTxCnt);
	np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
	np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
	np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
	np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
	np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
	np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
	np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
	np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
	np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
	np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
	np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
	np->estats.rx_runt += readl(base + NvRegRxRunt);
	np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
	np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
	np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
	np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
	np->estats.rx_length_error += readl(base + NvRegRxLenErr);
	np->estats.rx_unicast += readl(base + NvRegRxUnicast);
	np->estats.rx_multicast += readl(base + NvRegRxMulticast);
	np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
	np->estats.rx_packets =
		np->estats.rx_unicast +
		np->estats.rx_multicast +
		np->estats.rx_broadcast;
	np->estats.rx_errors_total =
		np->estats.rx_crc_errors +
		np->estats.rx_over_errors +
		np->estats.rx_frame_error +
		(np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
		np->estats.rx_late_collision +
		np->estats.rx_runt +
		np->estats.rx_frame_too_long;
	np->estats.tx_errors_total =
		np->estats.tx_late_collision +
		np->estats.tx_fifo_errors +
		np->estats.tx_carrier_errors +
		np->estats.tx_excess_deferral +
		np->estats.tx_retry_error;

	if (np->driver_data & DEV_HAS_STATISTICS_V2) {
		np->estats.tx_deferral += readl(base + NvRegTxDef);
		np->estats.tx_packets += readl(base + NvRegTxFrame);
		np->estats.rx_bytes += readl(base + NvRegRxCnt);
		np->estats.tx_pause += readl(base + NvRegTxPause);
		np->estats.rx_pause += readl(base + NvRegRxPause);
		np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
		np->estats.rx_errors_total += np->estats.rx_drop_frame;
	}

	if (np->driver_data & DEV_HAS_STATISTICS_V3) {
		np->estats.tx_unicast += readl(base + NvRegTxUnicast);
		np->estats.tx_multicast += readl(base + NvRegTxMulticast);
		np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
	}
}

static void nv_get_stats(int cpu, struct fe_priv *np,
			 struct rtnl_link_stats64 *storage)
{
	struct nv_txrx_stats *src = per_cpu_ptr(np->txrx_stats, cpu);
	unsigned int syncp_start;
	u64 rx_packets, rx_bytes, rx_dropped, rx_missed_errors;
	u64 tx_packets, tx_bytes, tx_dropped;

	do {
		syncp_start = u64_stats_fetch_begin_irq(&np->swstats_rx_syncp);
		rx_packets       = src->stat_rx_packets;
		rx_bytes         = src->stat_rx_bytes;
		rx_dropped       = src->stat_rx_dropped;
		rx_missed_errors = src->stat_rx_missed_errors;
	} while (u64_stats_fetch_retry_irq(&np->swstats_rx_syncp, syncp_start));

	storage->rx_packets       += rx_packets;
	storage->rx_bytes         += rx_bytes;
	storage->rx_dropped       += rx_dropped;
	storage->rx_missed_errors += rx_missed_errors;

	do {
		syncp_start = u64_stats_fetch_begin_irq(&np->swstats_tx_syncp);
		tx_packets  = src->stat_tx_packets;
		tx_bytes    = src->stat_tx_bytes;
		tx_dropped  = src->stat_tx_dropped;
	} while (u64_stats_fetch_retry_irq(&np->swstats_tx_syncp, syncp_start));

	storage->tx_packets += tx_packets;
	storage->tx_bytes   += tx_bytes;
	storage->tx_dropped += tx_dropped;
}

/*
 * nv_get_stats64: dev->ndo_get_stats64 function
 * Get latest stats value from the nic.
 * Called with read_lock(&dev_base_lock) held for read -
 * only synchronized against unregister_netdevice.
 */
static void
nv_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage)
	__acquires(&netdev_priv(dev)->hwstats_lock)
	__releases(&netdev_priv(dev)->hwstats_lock)
{
	struct fe_priv *np = netdev_priv(dev);
	int cpu;

	/*
	 * Note: because HW stats are not always available and for
	 * consistency reasons, the following ifconfig stats are
	 * managed by software: rx_bytes, tx_bytes, rx_packets and
	 * tx_packets. The related hardware stats reported by ethtool
	 * should be equivalent to these ifconfig stats, with 4
	 * additional bytes per packet (Ethernet FCS CRC), except for
	 * tx_packets when TSO kicks in.
	 */

	/* software stats */
	for_each_online_cpu(cpu)
		nv_get_stats(cpu, np, storage);

	/* If the nic supports hw counters then retrieve latest values */
	if (np->driver_data & DEV_HAS_STATISTICS_V123) {
		spin_lock_bh(&np->hwstats_lock);

		nv_update_stats(dev);

		/* generic stats */
		storage->rx_errors = np->estats.rx_errors_total;
		storage->tx_errors = np->estats.tx_errors_total;

		/* meaningful only when NIC supports stats v3 */
		storage->multicast = np->estats.rx_multicast;

		/* detailed rx_errors */
		storage->rx_length_errors = np->estats.rx_length_error;
		storage->rx_over_errors   = np->estats.rx_over_errors;
		storage->rx_crc_errors    = np->estats.rx_crc_errors;
		storage->rx_frame_errors  = np->estats.rx_frame_align_error;
		storage->rx_fifo_errors   = np->estats.rx_drop_frame;

		/* detailed tx_errors */
		storage->tx_carrier_errors = np->estats.tx_carrier_errors;
		storage->tx_fifo_errors    = np->estats.tx_fifo_errors;

		spin_unlock_bh(&np->hwstats_lock);
	}
}

/*
 * nv_alloc_rx: fill rx ring entries.
 * Return 1 if the allocations for the skbs failed and the
 * rx engine is without Available descriptors
 */
static int nv_alloc_rx(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	struct ring_desc *less_rx;

	less_rx = np->get_rx.orig;
	if (less_rx-- == np->rx_ring.orig)
		less_rx = np->last_rx.orig;

	while (np->put_rx.orig != less_rx) {
		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
		if (likely(skb)) {
			np->put_rx_ctx->skb = skb;
			np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev,
							     skb->data,
							     skb_tailroom(skb),
							     DMA_FROM_DEVICE);
			if (unlikely(dma_mapping_error(&np->pci_dev->dev,
						       np->put_rx_ctx->dma))) {
				kfree_skb(skb);
				goto packet_dropped;
			}
			np->put_rx_ctx->dma_len = skb_tailroom(skb);
			np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
			wmb();
			np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
			if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
				np->put_rx.orig = np->rx_ring.orig;
			if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
				np->put_rx_ctx = np->rx_skb;
		} else {
packet_dropped:
			u64_stats_update_begin(&np->swstats_rx_syncp);
			nv_txrx_stats_inc(stat_rx_dropped);
			u64_stats_update_end(&np->swstats_rx_syncp);
			return 1;
		}
	}
	return 0;
}

static int nv_alloc_rx_optimized(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	struct ring_desc_ex *less_rx;

	less_rx = np->get_rx.ex;
	if (less_rx-- == np->rx_ring.ex)
		less_rx = np->last_rx.ex;

	while (np->put_rx.ex != less_rx) {
		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz + NV_RX_ALLOC_PAD);
		if (likely(skb)) {
			np->put_rx_ctx->skb = skb;
			np->put_rx_ctx->dma = dma_map_single(&np->pci_dev->dev,
							     skb->data,
							     skb_tailroom(skb),
							     DMA_FROM_DEVICE);
			if (unlikely(dma_mapping_error(&np->pci_dev->dev,
						       np->put_rx_ctx->dma))) {
				kfree_skb(skb);
				goto packet_dropped;
			}
			np->put_rx_ctx->dma_len = skb_tailroom(skb);
			np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
			np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
			wmb();
			np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
			if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
				np->put_rx.ex = np->rx_ring.ex;
			if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
				np->put_rx_ctx = np->rx_skb;
		} else {
packet_dropped:
			u64_stats_update_begin(&np->swstats_rx_syncp);
			nv_txrx_stats_inc(stat_rx_dropped);
			u64_stats_update_end(&np->swstats_rx_syncp);
			return 1;
		}
	}
	return 0;
}

/* If rx bufs are exhausted called after 50ms to attempt to refresh */
static void nv_do_rx_refill(struct timer_list *t)
{
	struct fe_priv *np = from_timer(np, t, oom_kick);

	/* Just reschedule NAPI rx processing */
	napi_schedule(&np->napi);
}

static void nv_init_rx(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	int i;

	np->get_rx = np->rx_ring;
	np->put_rx = np->rx_ring;

	if (!nv_optimized(np))
		np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
	else
		np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
	np->get_rx_ctx = np->rx_skb;
	np->put_rx_ctx = np->rx_skb;
	np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];

	for (i = 0; i < np->rx_ring_size; i++) {
		if (!nv_optimized(np)) {
			np->rx_ring.orig[i].flaglen = 0;
			np->rx_ring.orig[i].buf = 0;
		} else {
			np->rx_ring.ex[i].flaglen = 0;
			np->rx_ring.ex[i].txvlan = 0;
			np->rx_ring.ex[i].bufhigh = 0;
			np->rx_ring.ex[i].buflow = 0;
		}
		np->rx_skb[i].skb = NULL;
		np->rx_skb[i].dma = 0;
	}
}

static void nv_init_tx(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	int i;

	np->get_tx = np->tx_ring;
	np->put_tx = np->tx_ring;

	if (!nv_optimized(np))
		np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
	else
		np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
	np->get_tx_ctx = np->tx_skb;
	np->put_tx_ctx = np->tx_skb;
	np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
	netdev_reset_queue(np->dev);
	np->tx_pkts_in_progress = 0;
	np->tx_change_owner = NULL;
	np->tx_end_flip = NULL;
	np->tx_stop = 0;

	for (i = 0; i < np->tx_ring_size; i++) {
		if (!nv_optimized(np)) {
			np->tx_ring.orig[i].flaglen = 0;
			np->tx_ring.orig[i].buf = 0;
		} else {
			np->tx_ring.ex[i].flaglen = 0;
			np->tx_ring.ex[i].txvlan = 0;
			np->tx_ring.ex[i].bufhigh = 0;
			np->tx_ring.ex[i].buflow = 0;
		}
		np->tx_skb[i].skb = NULL;
		np->tx_skb[i].dma = 0;
		np->tx_skb[i].dma_len = 0;
		np->tx_skb[i].dma_single = 0;
		np->tx_skb[i].first_tx_desc = NULL;
		np->tx_skb[i].next_tx_ctx = NULL;
	}
}

static int nv_init_ring(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);

	nv_init_tx(dev);
	nv_init_rx(dev);

	if (!nv_optimized(np))
		return nv_alloc_rx(dev);
	else
		return nv_alloc_rx_optimized(dev);
}

static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
{
	if (tx_skb->dma) {
		if (tx_skb->dma_single)
			dma_unmap_single(&np->pci_dev->dev, tx_skb->dma,
					 tx_skb->dma_len,
					 DMA_TO_DEVICE);
		else
			dma_unmap_page(&np->pci_dev->dev, tx_skb->dma,
				       tx_skb->dma_len,
				       DMA_TO_DEVICE);
		tx_skb->dma = 0;
	}
}

static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
{
	nv_unmap_txskb(np, tx_skb);
	if (tx_skb->skb) {
		dev_kfree_skb_any(tx_skb->skb);
		tx_skb->skb = NULL;
		return 1;
	}
	return 0;
}

static void nv_drain_tx(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	unsigned int i;

	for (i = 0; i < np->tx_ring_size; i++) {
		if (!nv_optimized(np)) {
			np->tx_ring.orig[i].flaglen = 0;
			np->tx_ring.orig[i].buf = 0;
		} else {
			np->tx_ring.ex[i].flaglen = 0;
			np->tx_ring.ex[i].txvlan = 0;
			np->tx_ring.ex[i].bufhigh = 0;
			np->tx_ring.ex[i].buflow = 0;
		}
		if (nv_release_txskb(np, &np->tx_skb[i])) {
			u64_stats_update_begin(&np->swstats_tx_syncp);
			nv_txrx_stats_inc(stat_tx_dropped);
			u64_stats_update_end(&np->swstats_tx_syncp);
		}
		np->tx_skb[i].dma = 0;
		np->tx_skb[i].dma_len = 0;
		np->tx_skb[i].dma_single = 0;
		np->tx_skb[i].first_tx_desc = NULL;
		np->tx_skb[i].next_tx_ctx = NULL;
	}
	np->tx_pkts_in_progress = 0;
	np->tx_change_owner = NULL;
	np->tx_end_flip = NULL;
}

static void nv_drain_rx(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	int i;

	for (i = 0; i < np->rx_ring_size; i++) {
		if (!nv_optimized(np)) {
			np->rx_ring.orig[i].flaglen = 0;
			np->rx_ring.orig[i].buf = 0;
		} else {
			np->rx_ring.ex[i].flaglen = 0;
			np->rx_ring.ex[i].txvlan = 0;
			np->rx_ring.ex[i].bufhigh = 0;
			np->rx_ring.ex[i].buflow = 0;
		}
		wmb();
		if (np->rx_skb[i].skb) {
			dma_unmap_single(&np->pci_dev->dev, np->rx_skb[i].dma,
					 (skb_end_pointer(np->rx_skb[i].skb) -
					 np->rx_skb[i].skb->data),
					 DMA_FROM_DEVICE);
			dev_kfree_skb(np->rx_skb[i].skb);
			np->rx_skb[i].skb = NULL;
		}
	}
}

static void nv_drain_rxtx(struct net_device *dev)
{
	nv_drain_tx(dev);
	nv_drain_rx(dev);
}

static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
{
	return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
}

static void nv_legacybackoff_reseed(struct net_device *dev)
{
	u8 __iomem *base = get_hwbase(dev);
	u32 reg;
	u32 low;
	int tx_status = 0;

	reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
	get_random_bytes(&low, sizeof(low));
	reg |= low & NVREG_SLOTTIME_MASK;

	/* Need to stop tx before change takes effect.
	 * Caller has already gained np->lock.
	 */
	tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
	if (tx_status)
		nv_stop_tx(dev);
	nv_stop_rx(dev);
	writel(reg, base + NvRegSlotTime);
	if (tx_status)
		nv_start_tx(dev);
	nv_start_rx(dev);
}

/* Gear Backoff Seeds */
#define BACKOFF_SEEDSET_ROWS	8
#define BACKOFF_SEEDSET_LFSRS	15

/* Known Good seed sets */
static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
	{145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
	{245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
	{145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
	{245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
	{266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
	{266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
	{366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800,  84},
	{466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184} };

static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
	{251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375,  30, 295},
	{351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
	{351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
	{251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375,  30, 295},
	{251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375,  30, 295},
	{351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
	{351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
	{351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395} };

static void nv_gear_backoff_reseed(struct net_device *dev)
{
	u8 __iomem *base = get_hwbase(dev);
	u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
	u32 temp, seedset, combinedSeed;
	int i;

	/* Setup seed for free running LFSR */
	/* We are going to read the time stamp counter 3 times
	   and swizzle bits around to increase randomness */
	get_random_bytes(&miniseed1, sizeof(miniseed1));
	miniseed1 &= 0x0fff;
	if (miniseed1 == 0)
		miniseed1 = 0xabc;

	get_random_bytes(&miniseed2, sizeof(miniseed2));
	miniseed2 &= 0x0fff;
	if (miniseed2 == 0)
		miniseed2 = 0xabc;
	miniseed2_reversed =
		((miniseed2 & 0xF00) >> 8) |
		 (miniseed2 & 0x0F0) |
		 ((miniseed2 & 0x00F) << 8);

	get_random_bytes(&miniseed3, sizeof(miniseed3));
	miniseed3 &= 0x0fff;
	if (miniseed3 == 0)
		miniseed3 = 0xabc;
	miniseed3_reversed =
		((miniseed3 & 0xF00) >> 8) |
		 (miniseed3 & 0x0F0) |
		 ((miniseed3 & 0x00F) << 8);

	combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
		       (miniseed2 ^ miniseed3_reversed);

	/* Seeds can not be zero */
	if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
		combinedSeed |= 0x08;
	if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
		combinedSeed |= 0x8000;

	/* No need to disable tx here */
	temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
	temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
	temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
	writel(temp, base + NvRegBackOffControl);

	/* Setup seeds for all gear LFSRs. */
	get_random_bytes(&seedset, sizeof(seedset));
	seedset = seedset % BACKOFF_SEEDSET_ROWS;
	for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) {
		temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
		temp |= main_seedset[seedset][i-1] & 0x3ff;
		temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
		writel(temp, base + NvRegBackOffControl);
	}
}

/*
 * nv_start_xmit: dev->hard_start_xmit function
 * Called with netif_tx_lock held.
 */
static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u32 tx_flags = 0;
	u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
	unsigned int fragments = skb_shinfo(skb)->nr_frags;
	unsigned int i;
	u32 offset = 0;
	u32 bcnt;
	u32 size = skb_headlen(skb);
	u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
	u32 empty_slots;
	struct ring_desc *put_tx;
	struct ring_desc *start_tx;
	struct ring_desc *prev_tx;
	struct nv_skb_map *prev_tx_ctx;
	struct nv_skb_map *tmp_tx_ctx = NULL, *start_tx_ctx = NULL;
	unsigned long flags;
	netdev_tx_t ret = NETDEV_TX_OK;

	/* add fragments to entries count */
	for (i = 0; i < fragments; i++) {
		u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);

		entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
			   ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
	}

	spin_lock_irqsave(&np->lock, flags);
	empty_slots = nv_get_empty_tx_slots(np);
	if (unlikely(empty_slots <= entries)) {
		netif_stop_queue(dev);
		np->tx_stop = 1;
		spin_unlock_irqrestore(&np->lock, flags);

		/* When normal packets and/or xmit_more packets fill up
		 * tx_desc, it is necessary to trigger NIC tx reg.
		 */
		ret = NETDEV_TX_BUSY;
		goto txkick;
	}
	spin_unlock_irqrestore(&np->lock, flags);

	start_tx = put_tx = np->put_tx.orig;

	/* setup the header buffer */
	do {
		bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
		np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev,
						     skb->data + offset, bcnt,
						     DMA_TO_DEVICE);
		if (unlikely(dma_mapping_error(&np->pci_dev->dev,
					       np->put_tx_ctx->dma))) {
			/* on DMA mapping error - drop the packet */
			dev_kfree_skb_any(skb);
			u64_stats_update_begin(&np->swstats_tx_syncp);
			nv_txrx_stats_inc(stat_tx_dropped);
			u64_stats_update_end(&np->swstats_tx_syncp);

			ret = NETDEV_TX_OK;

			goto dma_error;
		}
		np->put_tx_ctx->dma_len = bcnt;
		np->put_tx_ctx->dma_single = 1;
		put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
		put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);

		tx_flags = np->tx_flags;
		offset += bcnt;
		size -= bcnt;
		if (unlikely(put_tx++ == np->last_tx.orig))
			put_tx = np->tx_ring.orig;
		if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
			np->put_tx_ctx = np->tx_skb;
	} while (size);

	/* setup the fragments */
	for (i = 0; i < fragments; i++) {
		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		u32 frag_size = skb_frag_size(frag);
		offset = 0;

		do {
			if (!start_tx_ctx)
				start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx;

			bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
			np->put_tx_ctx->dma = skb_frag_dma_map(
							&np->pci_dev->dev,
							frag, offset,
							bcnt,
							DMA_TO_DEVICE);
			if (unlikely(dma_mapping_error(&np->pci_dev->dev,
						       np->put_tx_ctx->dma))) {

				/* Unwind the mapped fragments */
				do {
					nv_unmap_txskb(np, start_tx_ctx);
					if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx))
						tmp_tx_ctx = np->tx_skb;
				} while (tmp_tx_ctx != np->put_tx_ctx);
				dev_kfree_skb_any(skb);
				np->put_tx_ctx = start_tx_ctx;
				u64_stats_update_begin(&np->swstats_tx_syncp);
				nv_txrx_stats_inc(stat_tx_dropped);
				u64_stats_update_end(&np->swstats_tx_syncp);

				ret = NETDEV_TX_OK;

				goto dma_error;
			}

			np->put_tx_ctx->dma_len = bcnt;
			np->put_tx_ctx->dma_single = 0;
			put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
			put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);

			offset += bcnt;
			frag_size -= bcnt;
			if (unlikely(put_tx++ == np->last_tx.orig))
				put_tx = np->tx_ring.orig;
			if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
				np->put_tx_ctx = np->tx_skb;
		} while (frag_size);
	}

	if (unlikely(put_tx == np->tx_ring.orig))
		prev_tx = np->last_tx.orig;
	else
		prev_tx = put_tx - 1;

	if (unlikely(np->put_tx_ctx == np->tx_skb))
		prev_tx_ctx = np->last_tx_ctx;
	else
		prev_tx_ctx = np->put_tx_ctx - 1;

	/* set last fragment flag  */
	prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);

	/* save skb in this slot's context area */
	prev_tx_ctx->skb = skb;

	if (skb_is_gso(skb))
		tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
	else
		tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
			 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;

	spin_lock_irqsave(&np->lock, flags);

	/* set tx flags */
	start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);

	netdev_sent_queue(np->dev, skb->len);

	skb_tx_timestamp(skb);

	np->put_tx.orig = put_tx;

	spin_unlock_irqrestore(&np->lock, flags);

txkick:
	if (netif_queue_stopped(dev) || !netdev_xmit_more()) {
		u32 txrxctl_kick;
dma_error:
		txrxctl_kick = NVREG_TXRXCTL_KICK | np->txrxctl_bits;
		writel(txrxctl_kick, get_hwbase(dev) + NvRegTxRxControl);
	}

	return ret;
}

static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
					   struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u32 tx_flags = 0;
	u32 tx_flags_extra;
	unsigned int fragments = skb_shinfo(skb)->nr_frags;
	unsigned int i;
	u32 offset = 0;
	u32 bcnt;
	u32 size = skb_headlen(skb);
	u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
	u32 empty_slots;
	struct ring_desc_ex *put_tx;
	struct ring_desc_ex *start_tx;
	struct ring_desc_ex *prev_tx;
	struct nv_skb_map *prev_tx_ctx;
	struct nv_skb_map *start_tx_ctx = NULL;
	struct nv_skb_map *tmp_tx_ctx = NULL;
	unsigned long flags;
	netdev_tx_t ret = NETDEV_TX_OK;

	/* add fragments to entries count */
	for (i = 0; i < fragments; i++) {
		u32 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[i]);

		entries += (frag_size >> NV_TX2_TSO_MAX_SHIFT) +
			   ((frag_size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
	}

	spin_lock_irqsave(&np->lock, flags);
	empty_slots = nv_get_empty_tx_slots(np);
	if (unlikely(empty_slots <= entries)) {
		netif_stop_queue(dev);
		np->tx_stop = 1;
		spin_unlock_irqrestore(&np->lock, flags);

		/* When normal packets and/or xmit_more packets fill up
		 * tx_desc, it is necessary to trigger NIC tx reg.
		 */
		ret = NETDEV_TX_BUSY;

		goto txkick;
	}
	spin_unlock_irqrestore(&np->lock, flags);

	start_tx = put_tx = np->put_tx.ex;
	start_tx_ctx = np->put_tx_ctx;

	/* setup the header buffer */
	do {
		bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
		np->put_tx_ctx->dma = dma_map_single(&np->pci_dev->dev,
						     skb->data + offset, bcnt,
						     DMA_TO_DEVICE);
		if (unlikely(dma_mapping_error(&np->pci_dev->dev,
					       np->put_tx_ctx->dma))) {
			/* on DMA mapping error - drop the packet */
			dev_kfree_skb_any(skb);
			u64_stats_update_begin(&np->swstats_tx_syncp);
			nv_txrx_stats_inc(stat_tx_dropped);
			u64_stats_update_end(&np->swstats_tx_syncp);

			ret = NETDEV_TX_OK;

			goto dma_error;
		}
		np->put_tx_ctx->dma_len = bcnt;
		np->put_tx_ctx->dma_single = 1;
		put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
		put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
		put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);

		tx_flags = NV_TX2_VALID;
		offset += bcnt;
		size -= bcnt;
		if (unlikely(put_tx++ == np->last_tx.ex))
			put_tx = np->tx_ring.ex;
		if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
			np->put_tx_ctx = np->tx_skb;
	} while (size);

	/* setup the fragments */
	for (i = 0; i < fragments; i++) {
		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
		u32 frag_size = skb_frag_size(frag);
		offset = 0;

		do {
			bcnt = (frag_size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : frag_size;
			if (!start_tx_ctx)
				start_tx_ctx = tmp_tx_ctx = np->put_tx_ctx;
			np->put_tx_ctx->dma = skb_frag_dma_map(
							&np->pci_dev->dev,
							frag, offset,
							bcnt,
							DMA_TO_DEVICE);

			if (unlikely(dma_mapping_error(&np->pci_dev->dev,
						       np->put_tx_ctx->dma))) {

				/* Unwind the mapped fragments */
				do {
					nv_unmap_txskb(np, start_tx_ctx);
					if (unlikely(tmp_tx_ctx++ == np->last_tx_ctx))
						tmp_tx_ctx = np->tx_skb;
				} while (tmp_tx_ctx != np->put_tx_ctx);
				dev_kfree_skb_any(skb);
				np->put_tx_ctx = start_tx_ctx;
				u64_stats_update_begin(&np->swstats_tx_syncp);
				nv_txrx_stats_inc(stat_tx_dropped);
				u64_stats_update_end(&np->swstats_tx_syncp);

				ret = NETDEV_TX_OK;

				goto dma_error;
			}
			np->put_tx_ctx->dma_len = bcnt;
			np->put_tx_ctx->dma_single = 0;
			put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
			put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
			put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);

			offset += bcnt;
			frag_size -= bcnt;
			if (unlikely(put_tx++ == np->last_tx.ex))
				put_tx = np->tx_ring.ex;
			if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
				np->put_tx_ctx = np->tx_skb;
		} while (frag_size);
	}

	if (unlikely(put_tx == np->tx_ring.ex))
		prev_tx = np->last_tx.ex;
	else
		prev_tx = put_tx - 1;

	if (unlikely(np->put_tx_ctx == np->tx_skb))
		prev_tx_ctx = np->last_tx_ctx;
	else
		prev_tx_ctx = np->put_tx_ctx - 1;

	/* set last fragment flag  */
	prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);

	/* save skb in this slot's context area */
	prev_tx_ctx->skb = skb;

	if (skb_is_gso(skb))
		tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
	else
		tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
			 NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;

	/* vlan tag */
	if (skb_vlan_tag_present(skb))
		start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT |
					skb_vlan_tag_get(skb));
	else
		start_tx->txvlan = 0;

	spin_lock_irqsave(&np->lock, flags);

	if (np->tx_limit) {
		/* Limit the number of outstanding tx. Setup all fragments, but
		 * do not set the VALID bit on the first descriptor. Save a pointer
		 * to that descriptor and also for next skb_map element.
		 */

		if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
			if (!np->tx_change_owner)
				np->tx_change_owner = start_tx_ctx;

			/* remove VALID bit */
			tx_flags &= ~NV_TX2_VALID;
			start_tx_ctx->first_tx_desc = start_tx;
			start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
			np->tx_end_flip = np->put_tx_ctx;
		} else {
			np->tx_pkts_in_progress++;
		}
	}

	/* set tx flags */
	start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);

	netdev_sent_queue(np->dev, skb->len);

	skb_tx_timestamp(skb);

	np->put_tx.ex = put_tx;

	spin_unlock_irqrestore(&np->lock, flags);

txkick:
	if (netif_queue_stopped(dev) || !netdev_xmit_more()) {
		u32 txrxctl_kick;
dma_error:
		txrxctl_kick = NVREG_TXRXCTL_KICK | np->txrxctl_bits;
		writel(txrxctl_kick, get_hwbase(dev) + NvRegTxRxControl);
	}

	return ret;
}

static inline void nv_tx_flip_ownership(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);

	np->tx_pkts_in_progress--;
	if (np->tx_change_owner) {
		np->tx_change_owner->first_tx_desc->flaglen |=
			cpu_to_le32(NV_TX2_VALID);
		np->tx_pkts_in_progress++;

		np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
		if (np->tx_change_owner == np->tx_end_flip)
			np->tx_change_owner = NULL;

		writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
	}
}

/*
 * nv_tx_done: check for completed packets, release the skbs.
 *
 * Caller must own np->lock.
 */
static int nv_tx_done(struct net_device *dev, int limit)
{
	struct fe_priv *np = netdev_priv(dev);
	u32 flags;
	int tx_work = 0;
	struct ring_desc *orig_get_tx = np->get_tx.orig;
	unsigned int bytes_compl = 0;

	while ((np->get_tx.orig != np->put_tx.orig) &&
	       !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
	       (tx_work < limit)) {

		nv_unmap_txskb(np, np->get_tx_ctx);

		if (np->desc_ver == DESC_VER_1) {
			if (flags & NV_TX_LASTPACKET) {
				if (unlikely(flags & NV_TX_ERROR)) {
					if ((flags & NV_TX_RETRYERROR)
					    && !(flags & NV_TX_RETRYCOUNT_MASK))
						nv_legacybackoff_reseed(dev);
				} else {
					unsigned int len;

					u64_stats_update_begin(&np->swstats_tx_syncp);
					nv_txrx_stats_inc(stat_tx_packets);
					len = np->get_tx_ctx->skb->len;
					nv_txrx_stats_add(stat_tx_bytes, len);
					u64_stats_update_end(&np->swstats_tx_syncp);
				}
				bytes_compl += np->get_tx_ctx->skb->len;
				dev_kfree_skb_any(np->get_tx_ctx->skb);
				np->get_tx_ctx->skb = NULL;
				tx_work++;
			}
		} else {
			if (flags & NV_TX2_LASTPACKET) {
				if (unlikely(flags & NV_TX2_ERROR)) {
					if ((flags & NV_TX2_RETRYERROR)
					    && !(flags & NV_TX2_RETRYCOUNT_MASK))
						nv_legacybackoff_reseed(dev);
				} else {
					unsigned int len;

					u64_stats_update_begin(&np->swstats_tx_syncp);
					nv_txrx_stats_inc(stat_tx_packets);
					len = np->get_tx_ctx->skb->len;
					nv_txrx_stats_add(stat_tx_bytes, len);
					u64_stats_update_end(&np->swstats_tx_syncp);
				}
				bytes_compl += np->get_tx_ctx->skb->len;
				dev_kfree_skb_any(np->get_tx_ctx->skb);
				np->get_tx_ctx->skb = NULL;
				tx_work++;
			}
		}
		if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
			np->get_tx.orig = np->tx_ring.orig;
		if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
			np->get_tx_ctx = np->tx_skb;
	}

	netdev_completed_queue(np->dev, tx_work, bytes_compl);

	if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
		np->tx_stop = 0;
		netif_wake_queue(dev);
	}
	return tx_work;
}

static int nv_tx_done_optimized(struct net_device *dev, int limit)
{
	struct fe_priv *np = netdev_priv(dev);
	u32 flags;
	int tx_work = 0;
	struct ring_desc_ex *orig_get_tx = np->get_tx.ex;
	unsigned long bytes_cleaned = 0;

	while ((np->get_tx.ex != np->put_tx.ex) &&
	       !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX2_VALID) &&
	       (tx_work < limit)) {

		nv_unmap_txskb(np, np->get_tx_ctx);

		if (flags & NV_TX2_LASTPACKET) {
			if (unlikely(flags & NV_TX2_ERROR)) {
				if ((flags & NV_TX2_RETRYERROR)
				    && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
					if (np->driver_data & DEV_HAS_GEAR_MODE)
						nv_gear_backoff_reseed(dev);
					else
						nv_legacybackoff_reseed(dev);
				}
			} else {
				unsigned int len;

				u64_stats_update_begin(&np->swstats_tx_syncp);
				nv_txrx_stats_inc(stat_tx_packets);
				len = np->get_tx_ctx->skb->len;
				nv_txrx_stats_add(stat_tx_bytes, len);
				u64_stats_update_end(&np->swstats_tx_syncp);
			}

			bytes_cleaned += np->get_tx_ctx->skb->len;
			dev_kfree_skb_any(np->get_tx_ctx->skb);
			np->get_tx_ctx->skb = NULL;
			tx_work++;

			if (np->tx_limit)
				nv_tx_flip_ownership(dev);
		}

		if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
			np->get_tx.ex = np->tx_ring.ex;
		if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
			np->get_tx_ctx = np->tx_skb;
	}

	netdev_completed_queue(np->dev, tx_work, bytes_cleaned);

	if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
		np->tx_stop = 0;
		netif_wake_queue(dev);
	}
	return tx_work;
}

/*
 * nv_tx_timeout: dev->tx_timeout function
 * Called with netif_tx_lock held.
 */
static void nv_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 status;
	union ring_type put_tx;
	int saved_tx_limit;

	if (np->msi_flags & NV_MSI_X_ENABLED)
		status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
	else
		status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;

	netdev_warn(dev, "Got tx_timeout. irq status: %08x\n", status);

	if (unlikely(debug_tx_timeout)) {
		int i;

		netdev_info(dev, "Ring at %lx\n", (unsigned long)np->ring_addr);
		netdev_info(dev, "Dumping tx registers\n");
		for (i = 0; i <= np->register_size; i += 32) {
			netdev_info(dev,
				    "%3x: %08x %08x %08x %08x "
				    "%08x %08x %08x %08x\n",
				    i,
				    readl(base + i + 0), readl(base + i + 4),
				    readl(base + i + 8), readl(base + i + 12),
				    readl(base + i + 16), readl(base + i + 20),
				    readl(base + i + 24), readl(base + i + 28));
		}
		netdev_info(dev, "Dumping tx ring\n");
		for (i = 0; i < np->tx_ring_size; i += 4) {
			if (!nv_optimized(np)) {
				netdev_info(dev,
					    "%03x: %08x %08x // %08x %08x "
					    "// %08x %08x // %08x %08x\n",
					    i,
					    le32_to_cpu(np->tx_ring.orig[i].buf),
					    le32_to_cpu(np->tx_ring.orig[i].flaglen),
					    le32_to_cpu(np->tx_ring.orig[i+1].buf),
					    le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
					    le32_to_cpu(np->tx_ring.orig[i+2].buf),
					    le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
					    le32_to_cpu(np->tx_ring.orig[i+3].buf),
					    le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
			} else {
				netdev_info(dev,
					    "%03x: %08x %08x %08x "
					    "// %08x %08x %08x "
					    "// %08x %08x %08x "
					    "// %08x %08x %08x\n",
					    i,
					    le32_to_cpu(np->tx_ring.ex[i].bufhigh),
					    le32_to_cpu(np->tx_ring.ex[i].buflow),
					    le32_to_cpu(np->tx_ring.ex[i].flaglen),
					    le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
					    le32_to_cpu(np->tx_ring.ex[i+1].buflow),
					    le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
					    le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
					    le32_to_cpu(np->tx_ring.ex[i+2].buflow),
					    le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
					    le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
					    le32_to_cpu(np->tx_ring.ex[i+3].buflow),
					    le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
			}
		}
	}

	spin_lock_irq(&np->lock);

	/* 1) stop tx engine */
	nv_stop_tx(dev);

	/* 2) complete any outstanding tx and do not give HW any limited tx pkts */
	saved_tx_limit = np->tx_limit;
	np->tx_limit = 0; /* prevent giving HW any limited pkts */
	np->tx_stop = 0;  /* prevent waking tx queue */
	if (!nv_optimized(np))
		nv_tx_done(dev, np->tx_ring_size);
	else
		nv_tx_done_optimized(dev, np->tx_ring_size);

	/* save current HW position */
	if (np->tx_change_owner)
		put_tx.ex = np->tx_change_owner->first_tx_desc;
	else
		put_tx = np->put_tx;

	/* 3) clear all tx state */
	nv_drain_tx(dev);
	nv_init_tx(dev);

	/* 4) restore state to current HW position */
	np->get_tx = np->put_tx = put_tx;
	np->tx_limit = saved_tx_limit;

	/* 5) restart tx engine */
	nv_start_tx(dev);
	netif_wake_queue(dev);
	spin_unlock_irq(&np->lock);
}

/*
 * Called when the nic notices a mismatch between the actual data len on the
 * wire and the len indicated in the 802 header
 */
static int nv_getlen(struct net_device *dev, void *packet, int datalen)
{
	int hdrlen;	/* length of the 802 header */
	int protolen;	/* length as stored in the proto field */

	/* 1) calculate len according to header */
	if (((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
		protolen = ntohs(((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto);
		hdrlen = VLAN_HLEN;
	} else {
		protolen = ntohs(((struct ethhdr *)packet)->h_proto);
		hdrlen = ETH_HLEN;
	}
	if (protolen > ETH_DATA_LEN)
		return datalen; /* Value in proto field not a len, no checks possible */

	protolen += hdrlen;
	/* consistency checks: */
	if (datalen > ETH_ZLEN) {
		if (datalen >= protolen) {
			/* more data on wire than in 802 header, trim of
			 * additional data.
			 */
			return protolen;
		} else {
			/* less data on wire than mentioned in header.
			 * Discard the packet.
			 */
			return -1;
		}
	} else {
		/* short packet. Accept only if 802 values are also short */
		if (protolen > ETH_ZLEN) {
			return -1;
		}
		return datalen;
	}
}

static void rx_missing_handler(u32 flags, struct fe_priv *np)
{
	if (flags & NV_RX_MISSEDFRAME) {
		u64_stats_update_begin(&np->swstats_rx_syncp);
		nv_txrx_stats_inc(stat_rx_missed_errors);
		u64_stats_update_end(&np->swstats_rx_syncp);
	}
}

static int nv_rx_process(struct net_device *dev, int limit)
{
	struct fe_priv *np = netdev_priv(dev);
	u32 flags;
	int rx_work = 0;
	struct sk_buff *skb;
	int len;

	while ((np->get_rx.orig != np->put_rx.orig) &&
	      !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
		(rx_work < limit)) {

		/*
		 * the packet is for us - immediately tear down the pci mapping.
		 * TODO: check if a prefetch of the first cacheline improves
		 * the performance.
		 */
		dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma,
				 np->get_rx_ctx->dma_len,
				 DMA_FROM_DEVICE);
		skb = np->get_rx_ctx->skb;
		np->get_rx_ctx->skb = NULL;

		/* look at what we actually got: */
		if (np->desc_ver == DESC_VER_1) {
			if (likely(flags & NV_RX_DESCRIPTORVALID)) {
				len = flags & LEN_MASK_V1;
				if (unlikely(flags & NV_RX_ERROR)) {
					if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
						len = nv_getlen(dev, skb->data, len);
						if (len < 0) {
							dev_kfree_skb(skb);
							goto next_pkt;
						}
					}
					/* framing errors are soft errors */
					else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
						if (flags & NV_RX_SUBTRACT1)
							len--;
					}
					/* the rest are hard errors */
					else {
						rx_missing_handler(flags, np);
						dev_kfree_skb(skb);
						goto next_pkt;
					}
				}
			} else {
				dev_kfree_skb(skb);
				goto next_pkt;
			}
		} else {
			if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
				len = flags & LEN_MASK_V2;
				if (unlikely(flags & NV_RX2_ERROR)) {
					if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
						len = nv_getlen(dev, skb->data, len);
						if (len < 0) {
							dev_kfree_skb(skb);
							goto next_pkt;
						}
					}
					/* framing errors are soft errors */
					else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
						if (flags & NV_RX2_SUBTRACT1)
							len--;
					}
					/* the rest are hard errors */
					else {
						dev_kfree_skb(skb);
						goto next_pkt;
					}
				}
				if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
				    ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP))   /*ip and udp */
					skb->ip_summed = CHECKSUM_UNNECESSARY;
			} else {
				dev_kfree_skb(skb);
				goto next_pkt;
			}
		}
		/* got a valid packet - forward it to the network core */
		skb_put(skb, len);
		skb->protocol = eth_type_trans(skb, dev);
		napi_gro_receive(&np->napi, skb);
		u64_stats_update_begin(&np->swstats_rx_syncp);
		nv_txrx_stats_inc(stat_rx_packets);
		nv_txrx_stats_add(stat_rx_bytes, len);
		u64_stats_update_end(&np->swstats_rx_syncp);
next_pkt:
		if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
			np->get_rx.orig = np->rx_ring.orig;
		if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
			np->get_rx_ctx = np->rx_skb;

		rx_work++;
	}

	return rx_work;
}

static int nv_rx_process_optimized(struct net_device *dev, int limit)
{
	struct fe_priv *np = netdev_priv(dev);
	u32 flags;
	u32 vlanflags = 0;
	int rx_work = 0;
	struct sk_buff *skb;
	int len;

	while ((np->get_rx.ex != np->put_rx.ex) &&
	      !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
	      (rx_work < limit)) {

		/*
		 * the packet is for us - immediately tear down the pci mapping.
		 * TODO: check if a prefetch of the first cacheline improves
		 * the performance.
		 */
		dma_unmap_single(&np->pci_dev->dev, np->get_rx_ctx->dma,
				 np->get_rx_ctx->dma_len,
				 DMA_FROM_DEVICE);
		skb = np->get_rx_ctx->skb;
		np->get_rx_ctx->skb = NULL;

		/* look at what we actually got: */
		if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
			len = flags & LEN_MASK_V2;
			if (unlikely(flags & NV_RX2_ERROR)) {
				if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
					len = nv_getlen(dev, skb->data, len);
					if (len < 0) {
						dev_kfree_skb(skb);
						goto next_pkt;
					}
				}
				/* framing errors are soft errors */
				else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
					if (flags & NV_RX2_SUBTRACT1)
						len--;
				}
				/* the rest are hard errors */
				else {
					dev_kfree_skb(skb);
					goto next_pkt;
				}
			}

			if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
			    ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP))   /*ip and udp */
				skb->ip_summed = CHECKSUM_UNNECESSARY;

			/* got a valid packet - forward it to the network core */
			skb_put(skb, len);
			skb->protocol = eth_type_trans(skb, dev);
			prefetch(skb->data);

			vlanflags = le32_to_cpu(np->get_rx.ex->buflow);

			/*
			 * There's need to check for NETIF_F_HW_VLAN_CTAG_RX
			 * here. Even if vlan rx accel is disabled,
			 * NV_RX3_VLAN_TAG_PRESENT is pseudo randomly set.
			 */
			if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
			    vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
				u16 vid = vlanflags & NV_RX3_VLAN_TAG_MASK;

				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
			}
			napi_gro_receive(&np->napi, skb);
			u64_stats_update_begin(&np->swstats_rx_syncp);
			nv_txrx_stats_inc(stat_rx_packets);
			nv_txrx_stats_add(stat_rx_bytes, len);
			u64_stats_update_end(&np->swstats_rx_syncp);
		} else {
			dev_kfree_skb(skb);
		}
next_pkt:
		if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
			np->get_rx.ex = np->rx_ring.ex;
		if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
			np->get_rx_ctx = np->rx_skb;

		rx_work++;
	}

	return rx_work;
}

static void set_bufsize(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);

	if (dev->mtu <= ETH_DATA_LEN)
		np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
	else
		np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
}

/*
 * nv_change_mtu: dev->change_mtu function
 * Called with dev_base_lock held for read.
 */
static int nv_change_mtu(struct net_device *dev, int new_mtu)
{
	struct fe_priv *np = netdev_priv(dev);
	int old_mtu;

	old_mtu = dev->mtu;
	dev->mtu = new_mtu;

	/* return early if the buffer sizes will not change */
	if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
		return 0;

	/* synchronized against open : rtnl_lock() held by caller */
	if (netif_running(dev)) {
		u8 __iomem *base = get_hwbase(dev);
		/*
		 * It seems that the nic preloads valid ring entries into an
		 * internal buffer. The procedure for flushing everything is
		 * guessed, there is probably a simpler approach.
		 * Changing the MTU is a rare event, it shouldn't matter.
		 */
		nv_disable_irq(dev);
		nv_napi_disable(dev);
		netif_tx_lock_bh(dev);
		netif_addr_lock(dev);
		spin_lock(&np->lock);
		/* stop engines */
		nv_stop_rxtx(dev);
		nv_txrx_reset(dev);
		/* drain rx queue */
		nv_drain_rxtx(dev);
		/* reinit driver view of the rx queue */
		set_bufsize(dev);
		if (nv_init_ring(dev)) {
			if (!np->in_shutdown)
				mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
		}
		/* reinit nic view of the rx queue */
		writel(np->rx_buf_sz, base + NvRegOffloadConfig);
		setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
		writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
			base + NvRegRingSizes);
		pci_push(base);
		writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
		pci_push(base);

		/* restart rx engine */
		nv_start_rxtx(dev);
		spin_unlock(&np->lock);
		netif_addr_unlock(dev);
		netif_tx_unlock_bh(dev);
		nv_napi_enable(dev);
		nv_enable_irq(dev);
	}
	return 0;
}

static void nv_copy_mac_to_hw(struct net_device *dev)
{
	u8 __iomem *base = get_hwbase(dev);
	u32 mac[2];

	mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
			(dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
	mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);

	writel(mac[0], base + NvRegMacAddrA);
	writel(mac[1], base + NvRegMacAddrB);
}

/*
 * nv_set_mac_address: dev->set_mac_address function
 * Called with rtnl_lock() held.
 */
static int nv_set_mac_address(struct net_device *dev, void *addr)
{
	struct fe_priv *np = netdev_priv(dev);
	struct sockaddr *macaddr = (struct sockaddr *)addr;

	if (!is_valid_ether_addr(macaddr->sa_data))
		return -EADDRNOTAVAIL;

	/* synchronized against open : rtnl_lock() held by caller */
	memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);

	if (netif_running(dev)) {
		netif_tx_lock_bh(dev);
		netif_addr_lock(dev);
		spin_lock_irq(&np->lock);

		/* stop rx engine */
		nv_stop_rx(dev);

		/* set mac address */
		nv_copy_mac_to_hw(dev);

		/* restart rx engine */
		nv_start_rx(dev);
		spin_unlock_irq(&np->lock);
		netif_addr_unlock(dev);
		netif_tx_unlock_bh(dev);
	} else {
		nv_copy_mac_to_hw(dev);
	}
	return 0;
}

/*
 * nv_set_multicast: dev->set_multicast function
 * Called with netif_tx_lock held.
 */
static void nv_set_multicast(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 addr[2];
	u32 mask[2];
	u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;

	memset(addr, 0, sizeof(addr));
	memset(mask, 0, sizeof(mask));

	if (dev->flags & IFF_PROMISC) {
		pff |= NVREG_PFF_PROMISC;
	} else {
		pff |= NVREG_PFF_MYADDR;

		if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
			u32 alwaysOff[2];
			u32 alwaysOn[2];

			alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
			if (dev->flags & IFF_ALLMULTI) {
				alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
			} else {
				struct netdev_hw_addr *ha;

				netdev_for_each_mc_addr(ha, dev) {
					unsigned char *hw_addr = ha->addr;
					u32 a, b;

					a = le32_to_cpu(*(__le32 *) hw_addr);
					b = le16_to_cpu(*(__le16 *) (&hw_addr[4]));
					alwaysOn[0] &= a;
					alwaysOff[0] &= ~a;
					alwaysOn[1] &= b;
					alwaysOff[1] &= ~b;
				}
			}
			addr[0] = alwaysOn[0];
			addr[1] = alwaysOn[1];
			mask[0] = alwaysOn[0] | alwaysOff[0];
			mask[1] = alwaysOn[1] | alwaysOff[1];
		} else {
			mask[0] = NVREG_MCASTMASKA_NONE;
			mask[1] = NVREG_MCASTMASKB_NONE;
		}
	}
	addr[0] |= NVREG_MCASTADDRA_FORCE;
	pff |= NVREG_PFF_ALWAYS;
	spin_lock_irq(&np->lock);
	nv_stop_rx(dev);
	writel(addr[0], base + NvRegMulticastAddrA);
	writel(addr[1], base + NvRegMulticastAddrB);
	writel(mask[0], base + NvRegMulticastMaskA);
	writel(mask[1], base + NvRegMulticastMaskB);
	writel(pff, base + NvRegPacketFilterFlags);
	nv_start_rx(dev);
	spin_unlock_irq(&np->lock);
}

static void nv_update_pause(struct net_device *dev, u32 pause_flags)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);

	np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);

	if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
		u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
		if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
			writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
			np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
		} else {
			writel(pff, base + NvRegPacketFilterFlags);
		}
	}
	if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
		u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
		if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
			u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
			if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
				pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
			if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
				pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
				/* limit the number of tx pause frames to a default of 8 */
				writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
			}
			writel(pause_enable,  base + NvRegTxPauseFrame);
			writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
			np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
		} else {
			writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);
			writel(regmisc, base + NvRegMisc1);
		}
	}
}

static void nv_force_linkspeed(struct net_device *dev, int speed, int duplex)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 phyreg, txreg;
	int mii_status;

	np->linkspeed = NVREG_LINKSPEED_FORCE|speed;
	np->duplex = duplex;

	/* see if gigabit phy */
	mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
	if (mii_status & PHY_GIGABIT) {
		np->gigabit = PHY_GIGABIT;
		phyreg = readl(base + NvRegSlotTime);
		phyreg &= ~(0x3FF00);
		if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
			phyreg |= NVREG_SLOTTIME_10_100_FULL;
		else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
			phyreg |= NVREG_SLOTTIME_10_100_FULL;
		else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
			phyreg |= NVREG_SLOTTIME_1000_FULL;
		writel(phyreg, base + NvRegSlotTime);
	}

	phyreg = readl(base + NvRegPhyInterface);
	phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
	if (np->duplex == 0)
		phyreg |= PHY_HALF;
	if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
		phyreg |= PHY_100;
	else if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
							NVREG_LINKSPEED_1000)
		phyreg |= PHY_1000;
	writel(phyreg, base + NvRegPhyInterface);

	if (phyreg & PHY_RGMII) {
		if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
							NVREG_LINKSPEED_1000)
			txreg = NVREG_TX_DEFERRAL_RGMII_1000;
		else
			txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
	} else {
		txreg = NVREG_TX_DEFERRAL_DEFAULT;
	}
	writel(txreg, base + NvRegTxDeferral);

	if (np->desc_ver == DESC_VER_1) {
		txreg = NVREG_TX_WM_DESC1_DEFAULT;
	} else {
		if ((np->linkspeed & NVREG_LINKSPEED_MASK) ==
					 NVREG_LINKSPEED_1000)
			txreg = NVREG_TX_WM_DESC2_3_1000;
		else
			txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
	}
	writel(txreg, base + NvRegTxWatermark);

	writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
			base + NvRegMisc1);
	pci_push(base);
	writel(np->linkspeed, base + NvRegLinkSpeed);
	pci_push(base);
}

/**
 * nv_update_linkspeed - Setup the MAC according to the link partner
 * @dev: Network device to be configured
 *
 * The function queries the PHY and checks if there is a link partner.
 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
 * set to 10 MBit HD.
 *
 * The function returns 0 if there is no link partner and 1 if there is
 * a good link partner.
 */
static int nv_update_linkspeed(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	int adv = 0;
	int lpa = 0;
	int adv_lpa, adv_pause, lpa_pause;
	int newls = np->linkspeed;
	int newdup = np->duplex;
	int mii_status;
	u32 bmcr;
	int retval = 0;
	u32 control_1000, status_1000, phyreg, pause_flags, txreg;
	u32 txrxFlags = 0;
	u32 phy_exp;

	/* If device loopback is enabled, set carrier on and enable max link
	 * speed.
	 */
	bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
	if (bmcr & BMCR_LOOPBACK) {
		if (netif_running(dev)) {
			nv_force_linkspeed(dev, NVREG_LINKSPEED_1000, 1);
			if (!netif_carrier_ok(dev))
				netif_carrier_on(dev);
		}
		return 1;
	}

	/* BMSR_LSTATUS is latched, read it twice:
	 * we want the current value.
	 */
	mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
	mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);

	if (!(mii_status & BMSR_LSTATUS)) {
		newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
		newdup = 0;
		retval = 0;
		goto set_speed;
	}

	if (np->autoneg == 0) {
		if (np->fixed_mode & LPA_100FULL) {
			newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
			newdup = 1;
		} else if (np->fixed_mode & LPA_100HALF) {
			newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
			newdup = 0;
		} else if (np->fixed_mode & LPA_10FULL) {
			newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
			newdup = 1;
		} else {
			newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
			newdup = 0;
		}
		retval = 1;
		goto set_speed;
	}
	/* check auto negotiation is complete */
	if (!(mii_status & BMSR_ANEGCOMPLETE)) {
		/* still in autonegotiation - configure nic for 10 MBit HD and wait. */
		newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
		newdup = 0;
		retval = 0;
		goto set_speed;
	}

	adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
	lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);

	retval = 1;
	if (np->gigabit == PHY_GIGABIT) {
		control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
		status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);

		if ((control_1000 & ADVERTISE_1000FULL) &&
			(status_1000 & LPA_1000FULL)) {
			newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
			newdup = 1;
			goto set_speed;
		}
	}

	/* FIXME: handle parallel detection properly */
	adv_lpa = lpa & adv;
	if (adv_lpa & LPA_100FULL) {
		newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
		newdup = 1;
	} else if (adv_lpa & LPA_100HALF) {
		newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
		newdup = 0;
	} else if (adv_lpa & LPA_10FULL) {
		newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
		newdup = 1;
	} else if (adv_lpa & LPA_10HALF) {
		newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
		newdup = 0;
	} else {
		newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
		newdup = 0;
	}

set_speed:
	if (np->duplex == newdup && np->linkspeed == newls)
		return retval;

	np->duplex = newdup;
	np->linkspeed = newls;

	/* The transmitter and receiver must be restarted for safe update */
	if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
		txrxFlags |= NV_RESTART_TX;
		nv_stop_tx(dev);
	}
	if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
		txrxFlags |= NV_RESTART_RX;
		nv_stop_rx(dev);
	}

	if (np->gigabit == PHY_GIGABIT) {
		phyreg = readl(base + NvRegSlotTime);
		phyreg &= ~(0x3FF00);
		if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
		    ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
			phyreg |= NVREG_SLOTTIME_10_100_FULL;
		else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
			phyreg |= NVREG_SLOTTIME_1000_FULL;
		writel(phyreg, base + NvRegSlotTime);
	}

	phyreg = readl(base + NvRegPhyInterface);
	phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
	if (np->duplex == 0)
		phyreg |= PHY_HALF;
	if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
		phyreg |= PHY_100;
	else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
		phyreg |= PHY_1000;
	writel(phyreg, base + NvRegPhyInterface);

	phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
	if (phyreg & PHY_RGMII) {
		if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
			txreg = NVREG_TX_DEFERRAL_RGMII_1000;
		} else {
			if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
				if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
					txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
				else
					txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
			} else {
				txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
			}
		}
	} else {
		if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
			txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
		else
			txreg = NVREG_TX_DEFERRAL_DEFAULT;
	}
	writel(txreg, base + NvRegTxDeferral);

	if (np->desc_ver == DESC_VER_1) {
		txreg = NVREG_TX_WM_DESC1_DEFAULT;
	} else {
		if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
			txreg = NVREG_TX_WM_DESC2_3_1000;
		else
			txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
	}
	writel(txreg, base + NvRegTxWatermark);

	writel(NVREG_MISC1_FORCE | (np->duplex ? 0 : NVREG_MISC1_HD),
		base + NvRegMisc1);
	pci_push(base);
	writel(np->linkspeed, base + NvRegLinkSpeed);
	pci_push(base);

	pause_flags = 0;
	/* setup pause frame */
	if (netif_running(dev) && (np->duplex != 0)) {
		if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
			adv_pause = adv & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
			lpa_pause = lpa & (LPA_PAUSE_CAP | LPA_PAUSE_ASYM);

			switch (adv_pause) {
			case ADVERTISE_PAUSE_CAP:
				if (lpa_pause & LPA_PAUSE_CAP) {
					pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
					if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
						pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
				}
				break;
			case ADVERTISE_PAUSE_ASYM:
				if (lpa_pause == (LPA_PAUSE_CAP | LPA_PAUSE_ASYM))
					pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
				break;
			case ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM:
				if (lpa_pause & LPA_PAUSE_CAP) {
					pause_flags |=  NV_PAUSEFRAME_RX_ENABLE;
					if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
						pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
				}
				if (lpa_pause == LPA_PAUSE_ASYM)
					pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
				break;
			}
		} else {
			pause_flags = np->pause_flags;
		}
	}
	nv_update_pause(dev, pause_flags);

	if (txrxFlags & NV_RESTART_TX)
		nv_start_tx(dev);
	if (txrxFlags & NV_RESTART_RX)
		nv_start_rx(dev);

	return retval;
}

static void nv_linkchange(struct net_device *dev)
{
	if (nv_update_linkspeed(dev)) {
		if (!netif_carrier_ok(dev)) {
			netif_carrier_on(dev);
			netdev_info(dev, "link up\n");
			nv_txrx_gate(dev, false);
			nv_start_rx(dev);
		}
	} else {
		if (netif_carrier_ok(dev)) {
			netif_carrier_off(dev);
			netdev_info(dev, "link down\n");
			nv_txrx_gate(dev, true);
			nv_stop_rx(dev);
		}
	}
}

static void nv_link_irq(struct net_device *dev)
{
	u8 __iomem *base = get_hwbase(dev);
	u32 miistat;

	miistat = readl(base + NvRegMIIStatus);
	writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);

	if (miistat & (NVREG_MIISTAT_LINKCHANGE))
		nv_linkchange(dev);
}

static void nv_msi_workaround(struct fe_priv *np)
{

	/* Need to toggle the msi irq mask within the ethernet device,
	 * otherwise, future interrupts will not be detected.
	 */
	if (np->msi_flags & NV_MSI_ENABLED) {
		u8 __iomem *base = np->base;

		writel(0, base + NvRegMSIIrqMask);
		writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
	}
}

static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
{
	struct fe_priv *np = netdev_priv(dev);

	if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
		if (total_work > NV_DYNAMIC_THRESHOLD) {
			/* transition to poll based interrupts */
			np->quiet_count = 0;
			if (np->irqmask != NVREG_IRQMASK_CPU) {
				np->irqmask = NVREG_IRQMASK_CPU;
				return 1;
			}
		} else {
			if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
				np->quiet_count++;
			} else {
				/* reached a period of low activity, switch
				   to per tx/rx packet interrupts */
				if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
					np->irqmask = NVREG_IRQMASK_THROUGHPUT;
					return 1;
				}
			}
		}
	}
	return 0;
}

static irqreturn_t nv_nic_irq(int foo, void *data)
{
	struct net_device *dev = (struct net_device *) data;
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);

	if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
		np->events = readl(base + NvRegIrqStatus);
		writel(np->events, base + NvRegIrqStatus);
	} else {
		np->events = readl(base + NvRegMSIXIrqStatus);
		writel(np->events, base + NvRegMSIXIrqStatus);
	}
	if (!(np->events & np->irqmask))
		return IRQ_NONE;

	nv_msi_workaround(np);

	if (napi_schedule_prep(&np->napi)) {
		/*
		 * Disable further irq's (msix not enabled with napi)
		 */
		writel(0, base + NvRegIrqMask);
		__napi_schedule(&np->napi);
	}

	return IRQ_HANDLED;
}

/* All _optimized functions are used to help increase performance
 * (reduce CPU and increase throughput). They use descripter version 3,
 * compiler directives, and reduce memory accesses.
 */
static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
{
	struct net_device *dev = (struct net_device *) data;
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);

	if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
		np->events = readl(base + NvRegIrqStatus);
		writel(np->events, base + NvRegIrqStatus);
	} else {
		np->events = readl(base + NvRegMSIXIrqStatus);
		writel(np->events, base + NvRegMSIXIrqStatus);
	}
	if (!(np->events & np->irqmask))
		return IRQ_NONE;

	nv_msi_workaround(np);

	if (napi_schedule_prep(&np->napi)) {
		/*
		 * Disable further irq's (msix not enabled with napi)
		 */
		writel(0, base + NvRegIrqMask);
		__napi_schedule(&np->napi);
	}

	return IRQ_HANDLED;
}

static irqreturn_t nv_nic_irq_tx(int foo, void *data)
{
	struct net_device *dev = (struct net_device *) data;
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 events;
	int i;
	unsigned long flags;

	for (i = 0;; i++) {
		events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
		writel(events, base + NvRegMSIXIrqStatus);
		netdev_dbg(dev, "tx irq events: %08x\n", events);
		if (!(events & np->irqmask))
			break;

		spin_lock_irqsave(&np->lock, flags);
		nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
		spin_unlock_irqrestore(&np->lock, flags);

		if (unlikely(i > max_interrupt_work)) {
			spin_lock_irqsave(&np->lock, flags);
			/* disable interrupts on the nic */
			writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
			pci_push(base);

			if (!np->in_shutdown) {
				np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
				mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
			}
			spin_unlock_irqrestore(&np->lock, flags);
			netdev_dbg(dev, "%s: too many iterations (%d)\n",
				   __func__, i);
			break;
		}

	}

	return IRQ_RETVAL(i);
}

static int nv_napi_poll(struct napi_struct *napi, int budget)
{
	struct fe_priv *np = container_of(napi, struct fe_priv, napi);
	struct net_device *dev = np->dev;
	u8 __iomem *base = get_hwbase(dev);
	unsigned long flags;
	int retcode;
	int rx_count, tx_work = 0, rx_work = 0;

	do {
		if (!nv_optimized(np)) {
			spin_lock_irqsave(&np->lock, flags);
			tx_work += nv_tx_done(dev, np->tx_ring_size);
			spin_unlock_irqrestore(&np->lock, flags);

			rx_count = nv_rx_process(dev, budget - rx_work);
			retcode = nv_alloc_rx(dev);
		} else {
			spin_lock_irqsave(&np->lock, flags);
			tx_work += nv_tx_done_optimized(dev, np->tx_ring_size);
			spin_unlock_irqrestore(&np->lock, flags);

			rx_count = nv_rx_process_optimized(dev,
			    budget - rx_work);
			retcode = nv_alloc_rx_optimized(dev);
		}
	} while (retcode == 0 &&
		 rx_count > 0 && (rx_work += rx_count) < budget);

	if (retcode) {
		spin_lock_irqsave(&np->lock, flags);
		if (!np->in_shutdown)
			mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
		spin_unlock_irqrestore(&np->lock, flags);
	}

	nv_change_interrupt_mode(dev, tx_work + rx_work);

	if (unlikely(np->events & NVREG_IRQ_LINK)) {
		spin_lock_irqsave(&np->lock, flags);
		nv_link_irq(dev);
		spin_unlock_irqrestore(&np->lock, flags);
	}
	if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
		spin_lock_irqsave(&np->lock, flags);
		nv_linkchange(dev);
		spin_unlock_irqrestore(&np->lock, flags);
		np->link_timeout = jiffies + LINK_TIMEOUT;
	}
	if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
		spin_lock_irqsave(&np->lock, flags);
		if (!np->in_shutdown) {
			np->nic_poll_irq = np->irqmask;
			np->recover_error = 1;
			mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
		}
		spin_unlock_irqrestore(&np->lock, flags);
		napi_complete(napi);
		return rx_work;
	}

	if (rx_work < budget) {
		/* re-enable interrupts
		   (msix not enabled in napi) */
		napi_complete_done(napi, rx_work);

		writel(np->irqmask, base + NvRegIrqMask);
	}
	return rx_work;
}

static irqreturn_t nv_nic_irq_rx(int foo, void *data)
{
	struct net_device *dev = (struct net_device *) data;
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 events;
	int i;
	unsigned long flags;

	for (i = 0;; i++) {
		events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
		writel(events, base + NvRegMSIXIrqStatus);
		netdev_dbg(dev, "rx irq events: %08x\n", events);
		if (!(events & np->irqmask))
			break;

		if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
			if (unlikely(nv_alloc_rx_optimized(dev))) {
				spin_lock_irqsave(&np->lock, flags);
				if (!np->in_shutdown)
					mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
				spin_unlock_irqrestore(&np->lock, flags);
			}
		}

		if (unlikely(i > max_interrupt_work)) {
			spin_lock_irqsave(&np->lock, flags);
			/* disable interrupts on the nic */
			writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
			pci_push(base);

			if (!np->in_shutdown) {
				np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
				mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
			}
			spin_unlock_irqrestore(&np->lock, flags);
			netdev_dbg(dev, "%s: too many iterations (%d)\n",
				   __func__, i);
			break;
		}
	}

	return IRQ_RETVAL(i);
}

static irqreturn_t nv_nic_irq_other(int foo, void *data)
{
	struct net_device *dev = (struct net_device *) data;
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 events;
	int i;
	unsigned long flags;

	for (i = 0;; i++) {
		events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
		writel(events, base + NvRegMSIXIrqStatus);
		netdev_dbg(dev, "irq events: %08x\n", events);
		if (!(events & np->irqmask))
			break;

		/* check tx in case we reached max loop limit in tx isr */
		spin_lock_irqsave(&np->lock, flags);
		nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
		spin_unlock_irqrestore(&np->lock, flags);

		if (events & NVREG_IRQ_LINK) {
			spin_lock_irqsave(&np->lock, flags);
			nv_link_irq(dev);
			spin_unlock_irqrestore(&np->lock, flags);
		}
		if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
			spin_lock_irqsave(&np->lock, flags);
			nv_linkchange(dev);
			spin_unlock_irqrestore(&np->lock, flags);
			np->link_timeout = jiffies + LINK_TIMEOUT;
		}
		if (events & NVREG_IRQ_RECOVER_ERROR) {
			spin_lock_irqsave(&np->lock, flags);
			/* disable interrupts on the nic */
			writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
			pci_push(base);

			if (!np->in_shutdown) {
				np->nic_poll_irq |= NVREG_IRQ_OTHER;
				np->recover_error = 1;
				mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
			}
			spin_unlock_irqrestore(&np->lock, flags);
			break;
		}
		if (unlikely(i > max_interrupt_work)) {
			spin_lock_irqsave(&np->lock, flags);
			/* disable interrupts on the nic */
			writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
			pci_push(base);

			if (!np->in_shutdown) {
				np->nic_poll_irq |= NVREG_IRQ_OTHER;
				mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
			}
			spin_unlock_irqrestore(&np->lock, flags);
			netdev_dbg(dev, "%s: too many iterations (%d)\n",
				   __func__, i);
			break;
		}

	}

	return IRQ_RETVAL(i);
}

static irqreturn_t nv_nic_irq_test(int foo, void *data)
{
	struct net_device *dev = (struct net_device *) data;
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 events;

	if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
		events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
		writel(events & NVREG_IRQ_TIMER, base + NvRegIrqStatus);
	} else {
		events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
		writel(events & NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
	}
	pci_push(base);
	if (!(events & NVREG_IRQ_TIMER))
		return IRQ_RETVAL(0);

	nv_msi_workaround(np);

	spin_lock(&np->lock);
	np->intr_test = 1;
	spin_unlock(&np->lock);

	return IRQ_RETVAL(1);
}

static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
{
	u8 __iomem *base = get_hwbase(dev);
	int i;
	u32 msixmap = 0;

	/* Each interrupt bit can be mapped to a MSIX vector (4 bits).
	 * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
	 * the remaining 8 interrupts.
	 */
	for (i = 0; i < 8; i++) {
		if ((irqmask >> i) & 0x1)
			msixmap |= vector << (i << 2);
	}
	writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);

	msixmap = 0;
	for (i = 0; i < 8; i++) {
		if ((irqmask >> (i + 8)) & 0x1)
			msixmap |= vector << (i << 2);
	}
	writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
}

static int nv_request_irq(struct net_device *dev, int intr_test)
{
	struct fe_priv *np = get_nvpriv(dev);
	u8 __iomem *base = get_hwbase(dev);
	int ret;
	int i;
	irqreturn_t (*handler)(int foo, void *data);

	if (intr_test) {
		handler = nv_nic_irq_test;
	} else {
		if (nv_optimized(np))
			handler = nv_nic_irq_optimized;
		else
			handler = nv_nic_irq;
	}

	if (np->msi_flags & NV_MSI_X_CAPABLE) {
		for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
			np->msi_x_entry[i].entry = i;
		ret = pci_enable_msix_range(np->pci_dev,
					    np->msi_x_entry,
					    np->msi_flags & NV_MSI_X_VECTORS_MASK,
					    np->msi_flags & NV_MSI_X_VECTORS_MASK);
		if (ret > 0) {
			np->msi_flags |= NV_MSI_X_ENABLED;
			if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
				/* Request irq for rx handling */
				sprintf(np->name_rx, "%s-rx", dev->name);
				ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
						  nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev);
				if (ret) {
					netdev_info(dev,
						    "request_irq failed for rx %d\n",
						    ret);
					pci_disable_msix(np->pci_dev);
					np->msi_flags &= ~NV_MSI_X_ENABLED;
					goto out_err;
				}
				/* Request irq for tx handling */
				sprintf(np->name_tx, "%s-tx", dev->name);
				ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
						  nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev);
				if (ret) {
					netdev_info(dev,
						    "request_irq failed for tx %d\n",
						    ret);
					pci_disable_msix(np->pci_dev);
					np->msi_flags &= ~NV_MSI_X_ENABLED;
					goto out_free_rx;
				}
				/* Request irq for link and timer handling */
				sprintf(np->name_other, "%s-other", dev->name);
				ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
						  nv_nic_irq_other, IRQF_SHARED, np->name_other, dev);
				if (ret) {
					netdev_info(dev,
						    "request_irq failed for link %d\n",
						    ret);
					pci_disable_msix(np->pci_dev);
					np->msi_flags &= ~NV_MSI_X_ENABLED;
					goto out_free_tx;
				}
				/* map interrupts to their respective vector */
				writel(0, base + NvRegMSIXMap0);
				writel(0, base + NvRegMSIXMap1);
				set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
				set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
				set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
			} else {
				/* Request irq for all interrupts */
				ret = request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector,
						  handler, IRQF_SHARED, dev->name, dev);
				if (ret) {
					netdev_info(dev,
						    "request_irq failed %d\n",
						    ret);
					pci_disable_msix(np->pci_dev);
					np->msi_flags &= ~NV_MSI_X_ENABLED;
					goto out_err;
				}

				/* map interrupts to vector 0 */
				writel(0, base + NvRegMSIXMap0);
				writel(0, base + NvRegMSIXMap1);
			}
			netdev_info(dev, "MSI-X enabled\n");
			return 0;
		}
	}
	if (np->msi_flags & NV_MSI_CAPABLE) {
		ret = pci_enable_msi(np->pci_dev);
		if (ret == 0) {
			np->msi_flags |= NV_MSI_ENABLED;
			ret = request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev);
			if (ret) {
				netdev_info(dev, "request_irq failed %d\n",
					    ret);
				pci_disable_msi(np->pci_dev);
				np->msi_flags &= ~NV_MSI_ENABLED;
				goto out_err;
			}

			/* map interrupts to vector 0 */
			writel(0, base + NvRegMSIMap0);
			writel(0, base + NvRegMSIMap1);
			/* enable msi vector 0 */
			writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
			netdev_info(dev, "MSI enabled\n");
			return 0;
		}
	}

	if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
		goto out_err;

	return 0;
out_free_tx:
	free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
out_free_rx:
	free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
out_err:
	return 1;
}

static void nv_free_irq(struct net_device *dev)
{
	struct fe_priv *np = get_nvpriv(dev);
	int i;

	if (np->msi_flags & NV_MSI_X_ENABLED) {
		for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++)
			free_irq(np->msi_x_entry[i].vector, dev);
		pci_disable_msix(np->pci_dev);
		np->msi_flags &= ~NV_MSI_X_ENABLED;
	} else {
		free_irq(np->pci_dev->irq, dev);
		if (np->msi_flags & NV_MSI_ENABLED) {
			pci_disable_msi(np->pci_dev);
			np->msi_flags &= ~NV_MSI_ENABLED;
		}
	}
}

static void nv_do_nic_poll(struct timer_list *t)
{
	struct fe_priv *np = from_timer(np, t, nic_poll);
	struct net_device *dev = np->dev;
	u8 __iomem *base = get_hwbase(dev);
	u32 mask = 0;
	unsigned long flags;
	unsigned int irq = 0;

	/*
	 * First disable irq(s) and then
	 * reenable interrupts on the nic, we have to do this before calling
	 * nv_nic_irq because that may decide to do otherwise
	 */

	if (!using_multi_irqs(dev)) {
		if (np->msi_flags & NV_MSI_X_ENABLED)
			irq = np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector;
		else
			irq = np->pci_dev->irq;
		mask = np->irqmask;
	} else {
		if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
			irq = np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector;
			mask |= NVREG_IRQ_RX_ALL;
		}
		if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
			irq = np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector;
			mask |= NVREG_IRQ_TX_ALL;
		}
		if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
			irq = np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector;
			mask |= NVREG_IRQ_OTHER;
		}
	}

	disable_irq_nosync_lockdep_irqsave(irq, &flags);
	synchronize_irq(irq);

	if (np->recover_error) {
		np->recover_error = 0;
		netdev_info(dev, "MAC in recoverable error state\n");
		if (netif_running(dev)) {
			netif_tx_lock_bh(dev);
			netif_addr_lock(dev);
			spin_lock(&np->lock);
			/* stop engines */
			nv_stop_rxtx(dev);
			if (np->driver_data & DEV_HAS_POWER_CNTRL)
				nv_mac_reset(dev);
			nv_txrx_reset(dev);
			/* drain rx queue */
			nv_drain_rxtx(dev);
			/* reinit driver view of the rx queue */
			set_bufsize(dev);
			if (nv_init_ring(dev)) {
				if (!np->in_shutdown)
					mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
			}
			/* reinit nic view of the rx queue */
			writel(np->rx_buf_sz, base + NvRegOffloadConfig);
			setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
			writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
				base + NvRegRingSizes);
			pci_push(base);
			writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
			pci_push(base);
			/* clear interrupts */
			if (!(np->msi_flags & NV_MSI_X_ENABLED))
				writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
			else
				writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);

			/* restart rx engine */
			nv_start_rxtx(dev);
			spin_unlock(&np->lock);
			netif_addr_unlock(dev);
			netif_tx_unlock_bh(dev);
		}
	}

	writel(mask, base + NvRegIrqMask);
	pci_push(base);

	if (!using_multi_irqs(dev)) {
		np->nic_poll_irq = 0;
		if (nv_optimized(np))
			nv_nic_irq_optimized(0, dev);
		else
			nv_nic_irq(0, dev);
	} else {
		if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
			np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
			nv_nic_irq_rx(0, dev);
		}
		if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
			np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
			nv_nic_irq_tx(0, dev);
		}
		if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
			np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
			nv_nic_irq_other(0, dev);
		}
	}

	enable_irq_lockdep_irqrestore(irq, &flags);
}

#ifdef CONFIG_NET_POLL_CONTROLLER
static void nv_poll_controller(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);

	nv_do_nic_poll(&np->nic_poll);
}
#endif

static void nv_do_stats_poll(struct timer_list *t)
	__acquires(&netdev_priv(dev)->hwstats_lock)
	__releases(&netdev_priv(dev)->hwstats_lock)
{
	struct fe_priv *np = from_timer(np, t, stats_poll);
	struct net_device *dev = np->dev;

	/* If lock is currently taken, the stats are being refreshed
	 * and hence fresh enough */
	if (spin_trylock(&np->hwstats_lock)) {
		nv_update_stats(dev);
		spin_unlock(&np->hwstats_lock);
	}

	if (!np->in_shutdown)
		mod_timer(&np->stats_poll,
			round_jiffies(jiffies + STATS_INTERVAL));
}

static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct fe_priv *np = netdev_priv(dev);
	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
	strlcpy(info->version, FORCEDETH_VERSION, sizeof(info->version));
	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
}

static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
{
	struct fe_priv *np = netdev_priv(dev);
	wolinfo->supported = WAKE_MAGIC;

	spin_lock_irq(&np->lock);
	if (np->wolenabled)
		wolinfo->wolopts = WAKE_MAGIC;
	spin_unlock_irq(&np->lock);
}

static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 flags = 0;

	if (wolinfo->wolopts == 0) {
		np->wolenabled = 0;
	} else if (wolinfo->wolopts & WAKE_MAGIC) {
		np->wolenabled = 1;
		flags = NVREG_WAKEUPFLAGS_ENABLE;
	}
	if (netif_running(dev)) {
		spin_lock_irq(&np->lock);
		writel(flags, base + NvRegWakeUpFlags);
		spin_unlock_irq(&np->lock);
	}
	device_set_wakeup_enable(&np->pci_dev->dev, np->wolenabled);
	return 0;
}

static int nv_get_link_ksettings(struct net_device *dev,
				 struct ethtool_link_ksettings *cmd)
{
	struct fe_priv *np = netdev_priv(dev);
	u32 speed, supported, advertising;
	int adv;

	spin_lock_irq(&np->lock);
	cmd->base.port = PORT_MII;
	if (!netif_running(dev)) {
		/* We do not track link speed / duplex setting if the
		 * interface is disabled. Force a link check */
		if (nv_update_linkspeed(dev)) {
			netif_carrier_on(dev);
		} else {
			netif_carrier_off(dev);
		}
	}

	if (netif_carrier_ok(dev)) {
		switch (np->linkspeed & (NVREG_LINKSPEED_MASK)) {
		case NVREG_LINKSPEED_10:
			speed = SPEED_10;
			break;
		case NVREG_LINKSPEED_100:
			speed = SPEED_100;
			break;
		case NVREG_LINKSPEED_1000:
			speed = SPEED_1000;
			break;
		default:
			speed = -1;
			break;
		}
		cmd->base.duplex = DUPLEX_HALF;
		if (np->duplex)
			cmd->base.duplex = DUPLEX_FULL;
	} else {
		speed = SPEED_UNKNOWN;
		cmd->base.duplex = DUPLEX_UNKNOWN;
	}
	cmd->base.speed = speed;
	cmd->base.autoneg = np->autoneg;

	advertising = ADVERTISED_MII;
	if (np->autoneg) {
		advertising |= ADVERTISED_Autoneg;
		adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
		if (adv & ADVERTISE_10HALF)
			advertising |= ADVERTISED_10baseT_Half;
		if (adv & ADVERTISE_10FULL)
			advertising |= ADVERTISED_10baseT_Full;
		if (adv & ADVERTISE_100HALF)
			advertising |= ADVERTISED_100baseT_Half;
		if (adv & ADVERTISE_100FULL)
			advertising |= ADVERTISED_100baseT_Full;
		if (np->gigabit == PHY_GIGABIT) {
			adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
			if (adv & ADVERTISE_1000FULL)
				advertising |= ADVERTISED_1000baseT_Full;
		}
	}
	supported = (SUPPORTED_Autoneg |
		SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
		SUPPORTED_MII);
	if (np->gigabit == PHY_GIGABIT)
		supported |= SUPPORTED_1000baseT_Full;

	cmd->base.phy_address = np->phyaddr;

	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
						supported);
	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
						advertising);

	/* ignore maxtxpkt, maxrxpkt for now */
	spin_unlock_irq(&np->lock);
	return 0;
}

static int nv_set_link_ksettings(struct net_device *dev,
				 const struct ethtool_link_ksettings *cmd)
{
	struct fe_priv *np = netdev_priv(dev);
	u32 speed = cmd->base.speed;
	u32 advertising;

	ethtool_convert_link_mode_to_legacy_u32(&advertising,
						cmd->link_modes.advertising);

	if (cmd->base.port != PORT_MII)
		return -EINVAL;
	if (cmd->base.phy_address != np->phyaddr) {
		/* TODO: support switching between multiple phys. Should be
		 * trivial, but not enabled due to lack of test hardware. */
		return -EINVAL;
	}
	if (cmd->base.autoneg == AUTONEG_ENABLE) {
		u32 mask;

		mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
			  ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
		if (np->gigabit == PHY_GIGABIT)
			mask |= ADVERTISED_1000baseT_Full;

		if ((advertising & mask) == 0)
			return -EINVAL;

	} else if (cmd->base.autoneg == AUTONEG_DISABLE) {
		/* Note: autonegotiation disable, speed 1000 intentionally
		 * forbidden - no one should need that. */

		if (speed != SPEED_10 && speed != SPEED_100)
			return -EINVAL;
		if (cmd->base.duplex != DUPLEX_HALF &&
		    cmd->base.duplex != DUPLEX_FULL)
			return -EINVAL;
	} else {
		return -EINVAL;
	}

	netif_carrier_off(dev);
	if (netif_running(dev)) {
		unsigned long flags;

		nv_disable_irq(dev);
		netif_tx_lock_bh(dev);
		netif_addr_lock(dev);
		/* with plain spinlock lockdep complains */
		spin_lock_irqsave(&np->lock, flags);
		/* stop engines */
		/* FIXME:
		 * this can take some time, and interrupts are disabled
		 * due to spin_lock_irqsave, but let's hope no daemon
		 * is going to change the settings very often...
		 * Worst case:
		 * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
		 * + some minor delays, which is up to a second approximately
		 */
		nv_stop_rxtx(dev);
		spin_unlock_irqrestore(&np->lock, flags);
		netif_addr_unlock(dev);
		netif_tx_unlock_bh(dev);
	}

	if (cmd->base.autoneg == AUTONEG_ENABLE) {
		int adv, bmcr;

		np->autoneg = 1;

		/* advertise only what has been requested */
		adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
		adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
		if (advertising & ADVERTISED_10baseT_Half)
			adv |= ADVERTISE_10HALF;
		if (advertising & ADVERTISED_10baseT_Full)
			adv |= ADVERTISE_10FULL;
		if (advertising & ADVERTISED_100baseT_Half)
			adv |= ADVERTISE_100HALF;
		if (advertising & ADVERTISED_100baseT_Full)
			adv |= ADVERTISE_100FULL;
		if (np->pause_flags & NV_PAUSEFRAME_RX_REQ)  /* for rx we set both advertisements but disable tx pause */
			adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
		if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
			adv |=  ADVERTISE_PAUSE_ASYM;
		mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);

		if (np->gigabit == PHY_GIGABIT) {
			adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
			adv &= ~ADVERTISE_1000FULL;
			if (advertising & ADVERTISED_1000baseT_Full)
				adv |= ADVERTISE_1000FULL;
			mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
		}

		if (netif_running(dev))
			netdev_info(dev, "link down\n");
		bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
		if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
			bmcr |= BMCR_ANENABLE;
			/* reset the phy in order for settings to stick,
			 * and cause autoneg to start */
			if (phy_reset(dev, bmcr)) {
				netdev_info(dev, "phy reset failed\n");
				return -EINVAL;
			}
		} else {
			bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
			mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
		}
	} else {
		int adv, bmcr;

		np->autoneg = 0;

		adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
		adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
		if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_HALF)
			adv |= ADVERTISE_10HALF;
		if (speed == SPEED_10 && cmd->base.duplex == DUPLEX_FULL)
			adv |= ADVERTISE_10FULL;
		if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_HALF)
			adv |= ADVERTISE_100HALF;
		if (speed == SPEED_100 && cmd->base.duplex == DUPLEX_FULL)
			adv |= ADVERTISE_100FULL;
		np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
		if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisements but disable tx pause */
			adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
			np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
		}
		if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
			adv |=  ADVERTISE_PAUSE_ASYM;
			np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
		}
		mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
		np->fixed_mode = adv;

		if (np->gigabit == PHY_GIGABIT) {
			adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
			adv &= ~ADVERTISE_1000FULL;
			mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
		}

		bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
		bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
		if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
			bmcr |= BMCR_FULLDPLX;
		if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
			bmcr |= BMCR_SPEED100;
		if (np->phy_oui == PHY_OUI_MARVELL) {
			/* reset the phy in order for forced mode settings to stick */
			if (phy_reset(dev, bmcr)) {
				netdev_info(dev, "phy reset failed\n");
				return -EINVAL;
			}
		} else {
			mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
			if (netif_running(dev)) {
				/* Wait a bit and then reconfigure the nic. */
				udelay(10);
				nv_linkchange(dev);
			}
		}
	}

	if (netif_running(dev)) {
		nv_start_rxtx(dev);
		nv_enable_irq(dev);
	}

	return 0;
}

#define FORCEDETH_REGS_VER	1

static int nv_get_regs_len(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	return np->register_size;
}

static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 *rbuf = buf;
	int i;

	regs->version = FORCEDETH_REGS_VER;
	spin_lock_irq(&np->lock);
	for (i = 0; i < np->register_size/sizeof(u32); i++)
		rbuf[i] = readl(base + i*sizeof(u32));
	spin_unlock_irq(&np->lock);
}

static int nv_nway_reset(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	int ret;

	if (np->autoneg) {
		int bmcr;

		netif_carrier_off(dev);
		if (netif_running(dev)) {
			nv_disable_irq(dev);
			netif_tx_lock_bh(dev);
			netif_addr_lock(dev);
			spin_lock(&np->lock);
			/* stop engines */
			nv_stop_rxtx(dev);
			spin_unlock(&np->lock);
			netif_addr_unlock(dev);
			netif_tx_unlock_bh(dev);
			netdev_info(dev, "link down\n");
		}

		bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
		if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
			bmcr |= BMCR_ANENABLE;
			/* reset the phy in order for settings to stick*/
			if (phy_reset(dev, bmcr)) {
				netdev_info(dev, "phy reset failed\n");
				return -EINVAL;
			}
		} else {
			bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
			mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
		}

		if (netif_running(dev)) {
			nv_start_rxtx(dev);
			nv_enable_irq(dev);
		}
		ret = 0;
	} else {
		ret = -EINVAL;
	}

	return ret;
}

static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
{
	struct fe_priv *np = netdev_priv(dev);

	ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
	ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;

	ring->rx_pending = np->rx_ring_size;
	ring->tx_pending = np->tx_ring_size;
}

static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
	dma_addr_t ring_addr;

	if (ring->rx_pending < RX_RING_MIN ||
	    ring->tx_pending < TX_RING_MIN ||
	    ring->rx_mini_pending != 0 ||
	    ring->rx_jumbo_pending != 0 ||
	    (np->desc_ver == DESC_VER_1 &&
	     (ring->rx_pending > RING_MAX_DESC_VER_1 ||
	      ring->tx_pending > RING_MAX_DESC_VER_1)) ||
	    (np->desc_ver != DESC_VER_1 &&
	     (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
	      ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
		return -EINVAL;
	}

	/* allocate new rings */
	if (!nv_optimized(np)) {
		rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev,
					       sizeof(struct ring_desc) *
					       (ring->rx_pending +
					       ring->tx_pending),
					       &ring_addr, GFP_ATOMIC);
	} else {
		rxtx_ring = dma_alloc_coherent(&np->pci_dev->dev,
					       sizeof(struct ring_desc_ex) *
					       (ring->rx_pending +
					       ring->tx_pending),
					       &ring_addr, GFP_ATOMIC);
	}
	rx_skbuff = kmalloc_array(ring->rx_pending, sizeof(struct nv_skb_map),
				  GFP_KERNEL);
	tx_skbuff = kmalloc_array(ring->tx_pending, sizeof(struct nv_skb_map),
				  GFP_KERNEL);
	if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
		/* fall back to old rings */
		if (!nv_optimized(np)) {
			if (rxtx_ring)
				dma_free_coherent(&np->pci_dev->dev,
						  sizeof(struct ring_desc) *
						  (ring->rx_pending +
						  ring->tx_pending),
						  rxtx_ring, ring_addr);
		} else {
			if (rxtx_ring)
				dma_free_coherent(&np->pci_dev->dev,
						  sizeof(struct ring_desc_ex) *
						  (ring->rx_pending +
						  ring->tx_pending),
						  rxtx_ring, ring_addr);
		}

		kfree(rx_skbuff);
		kfree(tx_skbuff);
		goto exit;
	}

	if (netif_running(dev)) {
		nv_disable_irq(dev);
		nv_napi_disable(dev);
		netif_tx_lock_bh(dev);
		netif_addr_lock(dev);
		spin_lock(&np->lock);
		/* stop engines */
		nv_stop_rxtx(dev);
		nv_txrx_reset(dev);
		/* drain queues */
		nv_drain_rxtx(dev);
		/* delete queues */
		free_rings(dev);
	}

	/* set new values */
	np->rx_ring_size = ring->rx_pending;
	np->tx_ring_size = ring->tx_pending;

	if (!nv_optimized(np)) {
		np->rx_ring.orig = (struct ring_desc *)rxtx_ring;
		np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
	} else {
		np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring;
		np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
	}
	np->rx_skb = (struct nv_skb_map *)rx_skbuff;
	np->tx_skb = (struct nv_skb_map *)tx_skbuff;
	np->ring_addr = ring_addr;

	memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
	memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);

	if (netif_running(dev)) {
		/* reinit driver view of the queues */
		set_bufsize(dev);
		if (nv_init_ring(dev)) {
			if (!np->in_shutdown)
				mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
		}

		/* reinit nic view of the queues */
		writel(np->rx_buf_sz, base + NvRegOffloadConfig);
		setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
		writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
			base + NvRegRingSizes);
		pci_push(base);
		writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
		pci_push(base);

		/* restart engines */
		nv_start_rxtx(dev);
		spin_unlock(&np->lock);
		netif_addr_unlock(dev);
		netif_tx_unlock_bh(dev);
		nv_napi_enable(dev);
		nv_enable_irq(dev);
	}
	return 0;
exit:
	return -ENOMEM;
}

static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
{
	struct fe_priv *np = netdev_priv(dev);

	pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
	pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
	pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
}

static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
{
	struct fe_priv *np = netdev_priv(dev);
	int adv, bmcr;

	if ((!np->autoneg && np->duplex == 0) ||
	    (np->autoneg && !pause->autoneg && np->duplex == 0)) {
		netdev_info(dev, "can not set pause settings when forced link is in half duplex\n");
		return -EINVAL;
	}
	if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
		netdev_info(dev, "hardware does not support tx pause frames\n");
		return -EINVAL;
	}

	netif_carrier_off(dev);
	if (netif_running(dev)) {
		nv_disable_irq(dev);
		netif_tx_lock_bh(dev);
		netif_addr_lock(dev);
		spin_lock(&np->lock);
		/* stop engines */
		nv_stop_rxtx(dev);
		spin_unlock(&np->lock);
		netif_addr_unlock(dev);
		netif_tx_unlock_bh(dev);
	}

	np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
	if (pause->rx_pause)
		np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
	if (pause->tx_pause)
		np->pause_flags |= NV_PAUSEFRAME_TX_REQ;

	if (np->autoneg && pause->autoneg) {
		np->pause_flags |= NV_PAUSEFRAME_AUTONEG;

		adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
		adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
		if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisements but disable tx pause */
			adv |=  ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
		if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
			adv |=  ADVERTISE_PAUSE_ASYM;
		mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);

		if (netif_running(dev))
			netdev_info(dev, "link down\n");
		bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
		bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
		mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
	} else {
		np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
		if (pause->rx_pause)
			np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
		if (pause->tx_pause)
			np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;

		if (!netif_running(dev))
			nv_update_linkspeed(dev);
		else
			nv_update_pause(dev, np->pause_flags);
	}

	if (netif_running(dev)) {
		nv_start_rxtx(dev);
		nv_enable_irq(dev);
	}
	return 0;
}

static int nv_set_loopback(struct net_device *dev, netdev_features_t features)
{
	struct fe_priv *np = netdev_priv(dev);
	unsigned long flags;
	u32 miicontrol;
	int err, retval = 0;

	spin_lock_irqsave(&np->lock, flags);
	miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
	if (features & NETIF_F_LOOPBACK) {
		if (miicontrol & BMCR_LOOPBACK) {
			spin_unlock_irqrestore(&np->lock, flags);
			netdev_info(dev, "Loopback already enabled\n");
			return 0;
		}
		nv_disable_irq(dev);
		/* Turn on loopback mode */
		miicontrol |= BMCR_LOOPBACK | BMCR_FULLDPLX | BMCR_SPEED1000;
		err = mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol);
		if (err) {
			retval = PHY_ERROR;
			spin_unlock_irqrestore(&np->lock, flags);
			phy_init(dev);
		} else {
			if (netif_running(dev)) {
				/* Force 1000 Mbps full-duplex */
				nv_force_linkspeed(dev, NVREG_LINKSPEED_1000,
									 1);
				/* Force link up */
				netif_carrier_on(dev);
			}
			spin_unlock_irqrestore(&np->lock, flags);
			netdev_info(dev,
				"Internal PHY loopback mode enabled.\n");
		}
	} else {
		if (!(miicontrol & BMCR_LOOPBACK)) {
			spin_unlock_irqrestore(&np->lock, flags);
			netdev_info(dev, "Loopback already disabled\n");
			return 0;
		}
		nv_disable_irq(dev);
		/* Turn off loopback */
		spin_unlock_irqrestore(&np->lock, flags);
		netdev_info(dev, "Internal PHY loopback mode disabled.\n");
		phy_init(dev);
	}
	msleep(500);
	spin_lock_irqsave(&np->lock, flags);
	nv_enable_irq(dev);
	spin_unlock_irqrestore(&np->lock, flags);

	return retval;
}

static netdev_features_t nv_fix_features(struct net_device *dev,
	netdev_features_t features)
{
	/* vlan is dependent on rx checksum offload */
	if (features & (NETIF_F_HW_VLAN_CTAG_TX|NETIF_F_HW_VLAN_CTAG_RX))
		features |= NETIF_F_RXCSUM;

	return features;
}

static void nv_vlan_mode(struct net_device *dev, netdev_features_t features)
{
	struct fe_priv *np = get_nvpriv(dev);

	spin_lock_irq(&np->lock);

	if (features & NETIF_F_HW_VLAN_CTAG_RX)
		np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP;
	else
		np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;

	if (features & NETIF_F_HW_VLAN_CTAG_TX)
		np->txrxctl_bits |= NVREG_TXRXCTL_VLANINS;
	else
		np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;

	writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);

	spin_unlock_irq(&np->lock);
}

static int nv_set_features(struct net_device *dev, netdev_features_t features)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	netdev_features_t changed = dev->features ^ features;
	int retval;

	if ((changed & NETIF_F_LOOPBACK) && netif_running(dev)) {
		retval = nv_set_loopback(dev, features);
		if (retval != 0)
			return retval;
	}

	if (changed & NETIF_F_RXCSUM) {
		spin_lock_irq(&np->lock);

		if (features & NETIF_F_RXCSUM)
			np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
		else
			np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;

		if (netif_running(dev))
			writel(np->txrxctl_bits, base + NvRegTxRxControl);

		spin_unlock_irq(&np->lock);
	}

	if (changed & (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX))
		nv_vlan_mode(dev, features);

	return 0;
}

static int nv_get_sset_count(struct net_device *dev, int sset)
{
	struct fe_priv *np = netdev_priv(dev);

	switch (sset) {
	case ETH_SS_TEST:
		if (np->driver_data & DEV_HAS_TEST_EXTENDED)
			return NV_TEST_COUNT_EXTENDED;
		else
			return NV_TEST_COUNT_BASE;
	case ETH_SS_STATS:
		if (np->driver_data & DEV_HAS_STATISTICS_V3)
			return NV_DEV_STATISTICS_V3_COUNT;
		else if (np->driver_data & DEV_HAS_STATISTICS_V2)
			return NV_DEV_STATISTICS_V2_COUNT;
		else if (np->driver_data & DEV_HAS_STATISTICS_V1)
			return NV_DEV_STATISTICS_V1_COUNT;
		else
			return 0;
	default:
		return -EOPNOTSUPP;
	}
}

static void nv_get_ethtool_stats(struct net_device *dev,
				 struct ethtool_stats *estats, u64 *buffer)
	__acquires(&netdev_priv(dev)->hwstats_lock)
	__releases(&netdev_priv(dev)->hwstats_lock)
{
	struct fe_priv *np = netdev_priv(dev);

	spin_lock_bh(&np->hwstats_lock);
	nv_update_stats(dev);
	memcpy(buffer, &np->estats,
	       nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
	spin_unlock_bh(&np->hwstats_lock);
}

static int nv_link_test(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	int mii_status;

	mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
	mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);

	/* check phy link status */
	if (!(mii_status & BMSR_LSTATUS))
		return 0;
	else
		return 1;
}

static int nv_register_test(struct net_device *dev)
{
	u8 __iomem *base = get_hwbase(dev);
	int i = 0;
	u32 orig_read, new_read;

	do {
		orig_read = readl(base + nv_registers_test[i].reg);

		/* xor with mask to toggle bits */
		orig_read ^= nv_registers_test[i].mask;

		writel(orig_read, base + nv_registers_test[i].reg);

		new_read = readl(base + nv_registers_test[i].reg);

		if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
			return 0;

		/* restore original value */
		orig_read ^= nv_registers_test[i].mask;
		writel(orig_read, base + nv_registers_test[i].reg);

	} while (nv_registers_test[++i].reg != 0);

	return 1;
}

static int nv_interrupt_test(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	int ret = 1;
	int testcnt;
	u32 save_msi_flags, save_poll_interval = 0;

	if (netif_running(dev)) {
		/* free current irq */
		nv_free_irq(dev);
		save_poll_interval = readl(base+NvRegPollingInterval);
	}

	/* flag to test interrupt handler */
	np->intr_test = 0;

	/* setup test irq */
	save_msi_flags = np->msi_flags;
	np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
	np->msi_flags |= 0x001; /* setup 1 vector */
	if (nv_request_irq(dev, 1))
		return 0;

	/* setup timer interrupt */
	writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
	writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);

	nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);

	/* wait for at least one interrupt */
	msleep(100);

	spin_lock_irq(&np->lock);

	/* flag should be set within ISR */
	testcnt = np->intr_test;
	if (!testcnt)
		ret = 2;

	nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
	if (!(np->msi_flags & NV_MSI_X_ENABLED))
		writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
	else
		writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);

	spin_unlock_irq(&np->lock);

	nv_free_irq(dev);

	np->msi_flags = save_msi_flags;

	if (netif_running(dev)) {
		writel(save_poll_interval, base + NvRegPollingInterval);
		writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
		/* restore original irq */
		if (nv_request_irq(dev, 0))
			return 0;
	}

	return ret;
}

static int nv_loopback_test(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	struct sk_buff *tx_skb, *rx_skb;
	dma_addr_t test_dma_addr;
	u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
	u32 flags;
	int len, i, pkt_len;
	u8 *pkt_data;
	u32 filter_flags = 0;
	u32 misc1_flags = 0;
	int ret = 1;

	if (netif_running(dev)) {
		nv_disable_irq(dev);
		filter_flags = readl(base + NvRegPacketFilterFlags);
		misc1_flags = readl(base + NvRegMisc1);
	} else {
		nv_txrx_reset(dev);
	}

	/* reinit driver view of the rx queue */
	set_bufsize(dev);
	nv_init_ring(dev);

	/* setup hardware for loopback */
	writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
	writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);

	/* reinit nic view of the rx queue */
	writel(np->rx_buf_sz, base + NvRegOffloadConfig);
	setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
	writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
		base + NvRegRingSizes);
	pci_push(base);

	/* restart rx engine */
	nv_start_rxtx(dev);

	/* setup packet for tx */
	pkt_len = ETH_DATA_LEN;
	tx_skb = netdev_alloc_skb(dev, pkt_len);
	if (!tx_skb) {
		ret = 0;
		goto out;
	}
	test_dma_addr = dma_map_single(&np->pci_dev->dev, tx_skb->data,
				       skb_tailroom(tx_skb),
				       DMA_FROM_DEVICE);
	if (unlikely(dma_mapping_error(&np->pci_dev->dev,
				       test_dma_addr))) {
		dev_kfree_skb_any(tx_skb);
		goto out;
	}
	pkt_data = skb_put(tx_skb, pkt_len);
	for (i = 0; i < pkt_len; i++)
		pkt_data[i] = (u8)(i & 0xff);

	if (!nv_optimized(np)) {
		np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
		np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
	} else {
		np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
		np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
		np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
	}
	writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
	pci_push(get_hwbase(dev));

	msleep(500);

	/* check for rx of the packet */
	if (!nv_optimized(np)) {
		flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
		len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);

	} else {
		flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
		len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
	}

	if (flags & NV_RX_AVAIL) {
		ret = 0;
	} else if (np->desc_ver == DESC_VER_1) {
		if (flags & NV_RX_ERROR)
			ret = 0;
	} else {
		if (flags & NV_RX2_ERROR)
			ret = 0;
	}

	if (ret) {
		if (len != pkt_len) {
			ret = 0;
		} else {
			rx_skb = np->rx_skb[0].skb;
			for (i = 0; i < pkt_len; i++) {
				if (rx_skb->data[i] != (u8)(i & 0xff)) {
					ret = 0;
					break;
				}
			}
		}
	}

	dma_unmap_single(&np->pci_dev->dev, test_dma_addr,
			 (skb_end_pointer(tx_skb) - tx_skb->data),
			 DMA_TO_DEVICE);
	dev_kfree_skb_any(tx_skb);
 out:
	/* stop engines */
	nv_stop_rxtx(dev);
	nv_txrx_reset(dev);
	/* drain rx queue */
	nv_drain_rxtx(dev);

	if (netif_running(dev)) {
		writel(misc1_flags, base + NvRegMisc1);
		writel(filter_flags, base + NvRegPacketFilterFlags);
		nv_enable_irq(dev);
	}

	return ret;
}

static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	int result, count;

	count = nv_get_sset_count(dev, ETH_SS_TEST);
	memset(buffer, 0, count * sizeof(u64));

	if (!nv_link_test(dev)) {
		test->flags |= ETH_TEST_FL_FAILED;
		buffer[0] = 1;
	}

	if (test->flags & ETH_TEST_FL_OFFLINE) {
		if (netif_running(dev)) {
			netif_stop_queue(dev);
			nv_napi_disable(dev);
			netif_tx_lock_bh(dev);
			netif_addr_lock(dev);
			spin_lock_irq(&np->lock);
			nv_disable_hw_interrupts(dev, np->irqmask);
			if (!(np->msi_flags & NV_MSI_X_ENABLED))
				writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
			else
				writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
			/* stop engines */
			nv_stop_rxtx(dev);
			nv_txrx_reset(dev);
			/* drain rx queue */
			nv_drain_rxtx(dev);
			spin_unlock_irq(&np->lock);
			netif_addr_unlock(dev);
			netif_tx_unlock_bh(dev);
		}

		if (!nv_register_test(dev)) {
			test->flags |= ETH_TEST_FL_FAILED;
			buffer[1] = 1;
		}

		result = nv_interrupt_test(dev);
		if (result != 1) {
			test->flags |= ETH_TEST_FL_FAILED;
			buffer[2] = 1;
		}
		if (result == 0) {
			/* bail out */
			return;
		}

		if (count > NV_TEST_COUNT_BASE && !nv_loopback_test(dev)) {
			test->flags |= ETH_TEST_FL_FAILED;
			buffer[3] = 1;
		}

		if (netif_running(dev)) {
			/* reinit driver view of the rx queue */
			set_bufsize(dev);
			if (nv_init_ring(dev)) {
				if (!np->in_shutdown)
					mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
			}
			/* reinit nic view of the rx queue */
			writel(np->rx_buf_sz, base + NvRegOffloadConfig);
			setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
			writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
				base + NvRegRingSizes);
			pci_push(base);
			writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
			pci_push(base);
			/* restart rx engine */
			nv_start_rxtx(dev);
			netif_start_queue(dev);
			nv_napi_enable(dev);
			nv_enable_hw_interrupts(dev, np->irqmask);
		}
	}
}

static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
{
	switch (stringset) {
	case ETH_SS_STATS:
		memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
		break;
	case ETH_SS_TEST:
		memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
		break;
	}
}

static const struct ethtool_ops ops = {
	.get_drvinfo = nv_get_drvinfo,
	.get_link = ethtool_op_get_link,
	.get_wol = nv_get_wol,
	.set_wol = nv_set_wol,
	.get_regs_len = nv_get_regs_len,
	.get_regs = nv_get_regs,
	.nway_reset = nv_nway_reset,
	.get_ringparam = nv_get_ringparam,
	.set_ringparam = nv_set_ringparam,
	.get_pauseparam = nv_get_pauseparam,
	.set_pauseparam = nv_set_pauseparam,
	.get_strings = nv_get_strings,
	.get_ethtool_stats = nv_get_ethtool_stats,
	.get_sset_count = nv_get_sset_count,
	.self_test = nv_self_test,
	.get_ts_info = ethtool_op_get_ts_info,
	.get_link_ksettings = nv_get_link_ksettings,
	.set_link_ksettings = nv_set_link_ksettings,
};

/* The mgmt unit and driver use a semaphore to access the phy during init */
static int nv_mgmt_acquire_sema(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	int i;
	u32 tx_ctrl, mgmt_sema;

	for (i = 0; i < 10; i++) {
		mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
		if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
			break;
		msleep(500);
	}

	if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
		return 0;

	for (i = 0; i < 2; i++) {
		tx_ctrl = readl(base + NvRegTransmitterControl);
		tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
		writel(tx_ctrl, base + NvRegTransmitterControl);

		/* verify that semaphore was acquired */
		tx_ctrl = readl(base + NvRegTransmitterControl);
		if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
		    ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
			np->mgmt_sema = 1;
			return 1;
		} else
			udelay(50);
	}

	return 0;
}

static void nv_mgmt_release_sema(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 tx_ctrl;

	if (np->driver_data & DEV_HAS_MGMT_UNIT) {
		if (np->mgmt_sema) {
			tx_ctrl = readl(base + NvRegTransmitterControl);
			tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
			writel(tx_ctrl, base + NvRegTransmitterControl);
		}
	}
}


static int nv_mgmt_get_version(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	u32 data_ready = readl(base + NvRegTransmitterControl);
	u32 data_ready2 = 0;
	unsigned long start;
	int ready = 0;

	writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
	writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
	start = jiffies;
	while (time_before(jiffies, start + 5*HZ)) {
		data_ready2 = readl(base + NvRegTransmitterControl);
		if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
			ready = 1;
			break;
		}
		schedule_timeout_uninterruptible(1);
	}

	if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
		return 0;

	np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;

	return 1;
}

static int nv_open(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	int ret = 1;
	int oom, i;
	u32 low;

	/* power up phy */
	mii_rw(dev, np->phyaddr, MII_BMCR,
	       mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);

	nv_txrx_gate(dev, false);
	/* erase previous misconfiguration */
	if (np->driver_data & DEV_HAS_POWER_CNTRL)
		nv_mac_reset(dev);
	writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
	writel(0, base + NvRegMulticastAddrB);
	writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
	writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
	writel(0, base + NvRegPacketFilterFlags);

	writel(0, base + NvRegTransmitterControl);
	writel(0, base + NvRegReceiverControl);

	writel(0, base + NvRegAdapterControl);

	if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
		writel(NVREG_TX_PAUSEFRAME_DISABLE,  base + NvRegTxPauseFrame);

	/* initialize descriptor rings */
	set_bufsize(dev);
	oom = nv_init_ring(dev);

	writel(0, base + NvRegLinkSpeed);
	writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
	nv_txrx_reset(dev);
	writel(0, base + NvRegUnknownSetupReg6);

	np->in_shutdown = 0;

	/* give hw rings */
	setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
	writel(((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
		base + NvRegRingSizes);

	writel(np->linkspeed, base + NvRegLinkSpeed);
	if (np->desc_ver == DESC_VER_1)
		writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
	else
		writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
	writel(np->txrxctl_bits, base + NvRegTxRxControl);
	writel(np->vlanctl_bits, base + NvRegVlanControl);
	pci_push(base);
	writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
	if (reg_delay(dev, NvRegUnknownSetupReg5,
		      NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
		      NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX))
		netdev_info(dev,
			    "%s: SetupReg5, Bit 31 remained off\n", __func__);

	writel(0, base + NvRegMIIMask);
	writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
	writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);

	writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
	writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
	writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
	writel(np->rx_buf_sz, base + NvRegOffloadConfig);

	writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);

	get_random_bytes(&low, sizeof(low));
	low &= NVREG_SLOTTIME_MASK;
	if (np->desc_ver == DESC_VER_1) {
		writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
	} else {
		if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
			/* setup legacy backoff */
			writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
		} else {
			writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
			nv_gear_backoff_reseed(dev);
		}
	}
	writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
	writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
	if (poll_interval == -1) {
		if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
			writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
		else
			writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
	} else
		writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
	writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
	writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
			base + NvRegAdapterControl);
	writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
	writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
	if (np->wolenabled)
		writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);

	i = readl(base + NvRegPowerState);
	if ((i & NVREG_POWERSTATE_POWEREDUP) == 0)
		writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);

	pci_push(base);
	udelay(10);
	writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);

	nv_disable_hw_interrupts(dev, np->irqmask);
	pci_push(base);
	writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
	writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
	pci_push(base);

	if (nv_request_irq(dev, 0))
		goto out_drain;

	/* ask for interrupts */
	nv_enable_hw_interrupts(dev, np->irqmask);

	spin_lock_irq(&np->lock);
	writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
	writel(0, base + NvRegMulticastAddrB);
	writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
	writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
	writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
	/* One manual link speed update: Interrupts are enabled, future link
	 * speed changes cause interrupts and are handled by nv_link_irq().
	 */
	readl(base + NvRegMIIStatus);
	writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);

	/* set linkspeed to invalid value, thus force nv_update_linkspeed
	 * to init hw */
	np->linkspeed = 0;
	ret = nv_update_linkspeed(dev);
	nv_start_rxtx(dev);
	netif_start_queue(dev);
	nv_napi_enable(dev);

	if (ret) {
		netif_carrier_on(dev);
	} else {
		netdev_info(dev, "no link during initialization\n");
		netif_carrier_off(dev);
	}
	if (oom)
		mod_timer(&np->oom_kick, jiffies + OOM_REFILL);

	/* start statistics timer */
	if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
		mod_timer(&np->stats_poll,
			round_jiffies(jiffies + STATS_INTERVAL));

	spin_unlock_irq(&np->lock);

	/* If the loopback feature was set while the device was down, make sure
	 * that it's set correctly now.
	 */
	if (dev->features & NETIF_F_LOOPBACK)
		nv_set_loopback(dev, dev->features);

	return 0;
out_drain:
	nv_drain_rxtx(dev);
	return ret;
}

static int nv_close(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base;

	spin_lock_irq(&np->lock);
	np->in_shutdown = 1;
	spin_unlock_irq(&np->lock);
	nv_napi_disable(dev);
	synchronize_irq(np->pci_dev->irq);

	del_timer_sync(&np->oom_kick);
	del_timer_sync(&np->nic_poll);
	del_timer_sync(&np->stats_poll);

	netif_stop_queue(dev);
	spin_lock_irq(&np->lock);
	nv_update_pause(dev, 0); /* otherwise stop_tx bricks NIC */
	nv_stop_rxtx(dev);
	nv_txrx_reset(dev);

	/* disable interrupts on the nic or we will lock up */
	base = get_hwbase(dev);
	nv_disable_hw_interrupts(dev, np->irqmask);
	pci_push(base);

	spin_unlock_irq(&np->lock);

	nv_free_irq(dev);

	nv_drain_rxtx(dev);

	if (np->wolenabled || !phy_power_down) {
		nv_txrx_gate(dev, false);
		writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
		nv_start_rx(dev);
	} else {
		/* power down phy */
		mii_rw(dev, np->phyaddr, MII_BMCR,
		       mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
		nv_txrx_gate(dev, true);
	}

	/* FIXME: power down nic */

	return 0;
}

static const struct net_device_ops nv_netdev_ops = {
	.ndo_open		= nv_open,
	.ndo_stop		= nv_close,
	.ndo_get_stats64	= nv_get_stats64,
	.ndo_start_xmit		= nv_start_xmit,
	.ndo_tx_timeout		= nv_tx_timeout,
	.ndo_change_mtu		= nv_change_mtu,
	.ndo_fix_features	= nv_fix_features,
	.ndo_set_features	= nv_set_features,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_set_mac_address	= nv_set_mac_address,
	.ndo_set_rx_mode	= nv_set_multicast,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= nv_poll_controller,
#endif
};

static const struct net_device_ops nv_netdev_ops_optimized = {
	.ndo_open		= nv_open,
	.ndo_stop		= nv_close,
	.ndo_get_stats64	= nv_get_stats64,
	.ndo_start_xmit		= nv_start_xmit_optimized,
	.ndo_tx_timeout		= nv_tx_timeout,
	.ndo_change_mtu		= nv_change_mtu,
	.ndo_fix_features	= nv_fix_features,
	.ndo_set_features	= nv_set_features,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_set_mac_address	= nv_set_mac_address,
	.ndo_set_rx_mode	= nv_set_multicast,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= nv_poll_controller,
#endif
};

static int nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
{
	struct net_device *dev;
	struct fe_priv *np;
	unsigned long addr;
	u8 __iomem *base;
	int err, i;
	u32 powerstate, txreg;
	u32 phystate_orig = 0, phystate;
	int phyinitialized = 0;
	static int printed_version;

	if (!printed_version++)
		pr_info("Reverse Engineered nForce ethernet driver. Version %s.\n",
			FORCEDETH_VERSION);

	dev = alloc_etherdev(sizeof(struct fe_priv));
	err = -ENOMEM;
	if (!dev)
		goto out;

	np = netdev_priv(dev);
	np->dev = dev;
	np->pci_dev = pci_dev;
	spin_lock_init(&np->lock);
	spin_lock_init(&np->hwstats_lock);
	SET_NETDEV_DEV(dev, &pci_dev->dev);
	u64_stats_init(&np->swstats_rx_syncp);
	u64_stats_init(&np->swstats_tx_syncp);
	np->txrx_stats = alloc_percpu(struct nv_txrx_stats);
	if (!np->txrx_stats) {
		pr_err("np->txrx_stats, alloc memory error.\n");
		err = -ENOMEM;
		goto out_alloc_percpu;
	}

	timer_setup(&np->oom_kick, nv_do_rx_refill, 0);
	timer_setup(&np->nic_poll, nv_do_nic_poll, 0);
	timer_setup(&np->stats_poll, nv_do_stats_poll, TIMER_DEFERRABLE);

	err = pci_enable_device(pci_dev);
	if (err)
		goto out_free;

	pci_set_master(pci_dev);

	err = pci_request_regions(pci_dev, DRV_NAME);
	if (err < 0)
		goto out_disable;

	if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
		np->register_size = NV_PCI_REGSZ_VER3;
	else if (id->driver_data & DEV_HAS_STATISTICS_V1)
		np->register_size = NV_PCI_REGSZ_VER2;
	else
		np->register_size = NV_PCI_REGSZ_VER1;

	err = -EINVAL;
	addr = 0;
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
				pci_resource_len(pci_dev, i) >= np->register_size) {
			addr = pci_resource_start(pci_dev, i);
			break;
		}
	}
	if (i == DEVICE_COUNT_RESOURCE) {
		dev_info(&pci_dev->dev, "Couldn't find register window\n");
		goto out_relreg;
	}

	/* copy of driver data */
	np->driver_data = id->driver_data;
	/* copy of device id */
	np->device_id = id->device;

	/* handle different descriptor versions */
	if (id->driver_data & DEV_HAS_HIGH_DMA) {
		/* packet format 3: supports 40-bit addressing */
		np->desc_ver = DESC_VER_3;
		np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
		if (dma_64bit) {
			if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
				dev_info(&pci_dev->dev,
					 "64-bit DMA failed, using 32-bit addressing\n");
			else
				dev->features |= NETIF_F_HIGHDMA;
			if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
				dev_info(&pci_dev->dev,
					 "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
			}
		}
	} else if (id->driver_data & DEV_HAS_LARGEDESC) {
		/* packet format 2: supports jumbo frames */
		np->desc_ver = DESC_VER_2;
		np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
	} else {
		/* original packet format */
		np->desc_ver = DESC_VER_1;
		np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
	}

	np->pkt_limit = NV_PKTLIMIT_1;
	if (id->driver_data & DEV_HAS_LARGEDESC)
		np->pkt_limit = NV_PKTLIMIT_2;

	if (id->driver_data & DEV_HAS_CHECKSUM) {
		np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
		dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_SG |
			NETIF_F_TSO | NETIF_F_RXCSUM;
	}

	np->vlanctl_bits = 0;
	if (id->driver_data & DEV_HAS_VLAN) {
		np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX |
				    NETIF_F_HW_VLAN_CTAG_TX;
	}

	dev->features |= dev->hw_features;

	/* Add loopback capability to the device. */
	dev->hw_features |= NETIF_F_LOOPBACK;

	/* MTU range: 64 - 1500 or 9100 */
	dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
	dev->max_mtu = np->pkt_limit;

	np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
	if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
	    (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
	    (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
		np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
	}

	err = -ENOMEM;
	np->base = ioremap(addr, np->register_size);
	if (!np->base)
		goto out_relreg;

	np->rx_ring_size = RX_RING_DEFAULT;
	np->tx_ring_size = TX_RING_DEFAULT;

	if (!nv_optimized(np)) {
		np->rx_ring.orig = dma_alloc_coherent(&pci_dev->dev,
						      sizeof(struct ring_desc) *
						      (np->rx_ring_size +
						      np->tx_ring_size),
						      &np->ring_addr,
						      GFP_KERNEL);
		if (!np->rx_ring.orig)
			goto out_unmap;
		np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
	} else {
		np->rx_ring.ex = dma_alloc_coherent(&pci_dev->dev,
						    sizeof(struct ring_desc_ex) *
						    (np->rx_ring_size +
						    np->tx_ring_size),
						    &np->ring_addr, GFP_KERNEL);
		if (!np->rx_ring.ex)
			goto out_unmap;
		np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
	}
	np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
	np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
	if (!np->rx_skb || !np->tx_skb)
		goto out_freering;

	if (!nv_optimized(np))
		dev->netdev_ops = &nv_netdev_ops;
	else
		dev->netdev_ops = &nv_netdev_ops_optimized;

	netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
	dev->ethtool_ops = &ops;
	dev->watchdog_timeo = NV_WATCHDOG_TIMEO;

	pci_set_drvdata(pci_dev, dev);

	/* read the mac address */
	base = get_hwbase(dev);
	np->orig_mac[0] = readl(base + NvRegMacAddrA);
	np->orig_mac[1] = readl(base + NvRegMacAddrB);

	/* check the workaround bit for correct mac address order */
	txreg = readl(base + NvRegTransmitPoll);
	if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
		/* mac address is already in correct order */
		dev->dev_addr[0] = (np->orig_mac[0] >>  0) & 0xff;
		dev->dev_addr[1] = (np->orig_mac[0] >>  8) & 0xff;
		dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
		dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
		dev->dev_addr[4] = (np->orig_mac[1] >>  0) & 0xff;
		dev->dev_addr[5] = (np->orig_mac[1] >>  8) & 0xff;
	} else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
		/* mac address is already in correct order */
		dev->dev_addr[0] = (np->orig_mac[0] >>  0) & 0xff;
		dev->dev_addr[1] = (np->orig_mac[0] >>  8) & 0xff;
		dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
		dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
		dev->dev_addr[4] = (np->orig_mac[1] >>  0) & 0xff;
		dev->dev_addr[5] = (np->orig_mac[1] >>  8) & 0xff;
		/*
		 * Set orig mac address back to the reversed version.
		 * This flag will be cleared during low power transition.
		 * Therefore, we should always put back the reversed address.
		 */
		np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
			(dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
		np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
	} else {
		/* need to reverse mac address to correct order */
		dev->dev_addr[0] = (np->orig_mac[1] >>  8) & 0xff;
		dev->dev_addr[1] = (np->orig_mac[1] >>  0) & 0xff;
		dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
		dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
		dev->dev_addr[4] = (np->orig_mac[0] >>  8) & 0xff;
		dev->dev_addr[5] = (np->orig_mac[0] >>  0) & 0xff;
		writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
		dev_dbg(&pci_dev->dev,
			"%s: set workaround bit for reversed mac addr\n",
			__func__);
	}

	if (!is_valid_ether_addr(dev->dev_addr)) {
		/*
		 * Bad mac address. At least one bios sets the mac address
		 * to 01:23:45:67:89:ab
		 */
		dev_err(&pci_dev->dev,
			"Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n",
			dev->dev_addr);
		eth_hw_addr_random(dev);
		dev_err(&pci_dev->dev,
			"Using random MAC address: %pM\n", dev->dev_addr);
	}

	/* set mac address */
	nv_copy_mac_to_hw(dev);

	/* disable WOL */
	writel(0, base + NvRegWakeUpFlags);
	np->wolenabled = 0;
	device_set_wakeup_enable(&pci_dev->dev, false);

	if (id->driver_data & DEV_HAS_POWER_CNTRL) {

		/* take phy and nic out of low power mode */
		powerstate = readl(base + NvRegPowerState2);
		powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
		if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
		    pci_dev->revision >= 0xA3)
			powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
		writel(powerstate, base + NvRegPowerState2);
	}

	if (np->desc_ver == DESC_VER_1)
		np->tx_flags = NV_TX_VALID;
	else
		np->tx_flags = NV_TX2_VALID;

	np->msi_flags = 0;
	if ((id->driver_data & DEV_HAS_MSI) && msi)
		np->msi_flags |= NV_MSI_CAPABLE;

	if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
		/* msix has had reported issues when modifying irqmask
		   as in the case of napi, therefore, disable for now
		*/
#if 0
		np->msi_flags |= NV_MSI_X_CAPABLE;
#endif
	}

	if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
		np->irqmask = NVREG_IRQMASK_CPU;
		if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
			np->msi_flags |= 0x0001;
	} else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
		   !(id->driver_data & DEV_NEED_TIMERIRQ)) {
		/* start off in throughput mode */
		np->irqmask = NVREG_IRQMASK_THROUGHPUT;
		/* remove support for msix mode */
		np->msi_flags &= ~NV_MSI_X_CAPABLE;
	} else {
		optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
		np->irqmask = NVREG_IRQMASK_THROUGHPUT;
		if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
			np->msi_flags |= 0x0003;
	}

	if (id->driver_data & DEV_NEED_TIMERIRQ)
		np->irqmask |= NVREG_IRQ_TIMER;
	if (id->driver_data & DEV_NEED_LINKTIMER) {
		np->need_linktimer = 1;
		np->link_timeout = jiffies + LINK_TIMEOUT;
	} else {
		np->need_linktimer = 0;
	}

	/* Limit the number of tx's outstanding for hw bug */
	if (id->driver_data & DEV_NEED_TX_LIMIT) {
		np->tx_limit = 1;
		if (((id->driver_data & DEV_NEED_TX_LIMIT2) == DEV_NEED_TX_LIMIT2) &&
		    pci_dev->revision >= 0xA2)
			np->tx_limit = 0;
	}

	/* clear phy state and temporarily halt phy interrupts */
	writel(0, base + NvRegMIIMask);
	phystate = readl(base + NvRegAdapterControl);
	if (phystate & NVREG_ADAPTCTL_RUNNING) {
		phystate_orig = 1;
		phystate &= ~NVREG_ADAPTCTL_RUNNING;
		writel(phystate, base + NvRegAdapterControl);
	}
	writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);

	if (id->driver_data & DEV_HAS_MGMT_UNIT) {
		/* management unit running on the mac? */
		if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
		    (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
		    nv_mgmt_acquire_sema(dev) &&
		    nv_mgmt_get_version(dev)) {
			np->mac_in_use = 1;
			if (np->mgmt_version > 0)
				np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
			/* management unit setup the phy already? */
			if (np->mac_in_use &&
			    ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
			     NVREG_XMITCTL_SYNC_PHY_INIT)) {
				/* phy is inited by mgmt unit */
				phyinitialized = 1;
			} else {
				/* we need to init the phy */
			}
		}
	}

	/* find a suitable phy */
	for (i = 1; i <= 32; i++) {
		int id1, id2;
		int phyaddr = i & 0x1F;

		spin_lock_irq(&np->lock);
		id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
		spin_unlock_irq(&np->lock);
		if (id1 < 0 || id1 == 0xffff)
			continue;
		spin_lock_irq(&np->lock);
		id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
		spin_unlock_irq(&np->lock);
		if (id2 < 0 || id2 == 0xffff)
			continue;

		np->phy_model = id2 & PHYID2_MODEL_MASK;
		id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
		id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
		np->phyaddr = phyaddr;
		np->phy_oui = id1 | id2;

		/* Realtek hardcoded phy id1 to all zero's on certain phys */
		if (np->phy_oui == PHY_OUI_REALTEK2)
			np->phy_oui = PHY_OUI_REALTEK;
		/* Setup phy revision for Realtek */
		if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
			np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;

		break;
	}
	if (i == 33) {
		dev_info(&pci_dev->dev, "open: Could not find a valid PHY\n");
		goto out_error;
	}

	if (!phyinitialized) {
		/* reset it */
		phy_init(dev);
	} else {
		/* see if it is a gigabit phy */
		u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
		if (mii_status & PHY_GIGABIT)
			np->gigabit = PHY_GIGABIT;
	}

	/* set default link speed settings */
	np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
	np->duplex = 0;
	np->autoneg = 1;

	err = register_netdev(dev);
	if (err) {
		dev_info(&pci_dev->dev, "unable to register netdev: %d\n", err);
		goto out_error;
	}

	netif_carrier_off(dev);

	/* Some NICs freeze when TX pause is enabled while NIC is
	 * down, and this stays across warm reboots. The sequence
	 * below should be enough to recover from that state.
	 */
	nv_update_pause(dev, 0);
	nv_start_tx(dev);
	nv_stop_tx(dev);

	if (id->driver_data & DEV_HAS_VLAN)
		nv_vlan_mode(dev, dev->features);

	dev_info(&pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n",
		 dev->name, np->phy_oui, np->phyaddr, dev->dev_addr);

	dev_info(&pci_dev->dev, "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
		 dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
		 dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
			"csum " : "",
		 dev->features & (NETIF_F_HW_VLAN_CTAG_RX |
				  NETIF_F_HW_VLAN_CTAG_TX) ?
			"vlan " : "",
		 dev->features & (NETIF_F_LOOPBACK) ?
			"loopback " : "",
		 id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
		 id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
		 id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
		 np->gigabit == PHY_GIGABIT ? "gbit " : "",
		 np->need_linktimer ? "lnktim " : "",
		 np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
		 np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
		 np->desc_ver);

	return 0;

out_error:
	if (phystate_orig)
		writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
out_freering:
	free_rings(dev);
out_unmap:
	iounmap(get_hwbase(dev));
out_relreg:
	pci_release_regions(pci_dev);
out_disable:
	pci_disable_device(pci_dev);
out_free:
	free_percpu(np->txrx_stats);
out_alloc_percpu:
	free_netdev(dev);
out:
	return err;
}

static void nv_restore_phy(struct net_device *dev)
{
	struct fe_priv *np = netdev_priv(dev);
	u16 phy_reserved, mii_control;

	if (np->phy_oui == PHY_OUI_REALTEK &&
	    np->phy_model == PHY_MODEL_REALTEK_8201 &&
	    phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
		mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
		phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
		phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
		phy_reserved |= PHY_REALTEK_INIT8;
		mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
		mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);

		/* restart auto negotiation */
		mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
		mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
		mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
	}
}

static void nv_restore_mac_addr(struct pci_dev *pci_dev)
{
	struct net_device *dev = pci_get_drvdata(pci_dev);
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);

	/* special op: write back the misordered MAC address - otherwise
	 * the next nv_probe would see a wrong address.
	 */
	writel(np->orig_mac[0], base + NvRegMacAddrA);
	writel(np->orig_mac[1], base + NvRegMacAddrB);
	writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
	       base + NvRegTransmitPoll);
}

static void nv_remove(struct pci_dev *pci_dev)
{
	struct net_device *dev = pci_get_drvdata(pci_dev);
	struct fe_priv *np = netdev_priv(dev);

	free_percpu(np->txrx_stats);

	unregister_netdev(dev);

	nv_restore_mac_addr(pci_dev);

	/* restore any phy related changes */
	nv_restore_phy(dev);

	nv_mgmt_release_sema(dev);

	/* free all structures */
	free_rings(dev);
	iounmap(get_hwbase(dev));
	pci_release_regions(pci_dev);
	pci_disable_device(pci_dev);
	free_netdev(dev);
}

#ifdef CONFIG_PM_SLEEP
static int nv_suspend(struct device *device)
{
	struct net_device *dev = dev_get_drvdata(device);
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	int i;

	if (netif_running(dev)) {
		/* Gross. */
		nv_close(dev);
	}
	netif_device_detach(dev);

	/* save non-pci configuration space */
	for (i = 0; i <= np->register_size/sizeof(u32); i++)
		np->saved_config_space[i] = readl(base + i*sizeof(u32));

	return 0;
}

static int nv_resume(struct device *device)
{
	struct pci_dev *pdev = to_pci_dev(device);
	struct net_device *dev = pci_get_drvdata(pdev);
	struct fe_priv *np = netdev_priv(dev);
	u8 __iomem *base = get_hwbase(dev);
	int i, rc = 0;

	/* restore non-pci configuration space */
	for (i = 0; i <= np->register_size/sizeof(u32); i++)
		writel(np->saved_config_space[i], base+i*sizeof(u32));

	if (np->driver_data & DEV_NEED_MSI_FIX)
		pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);

	/* restore phy state, including autoneg */
	phy_init(dev);

	netif_device_attach(dev);
	if (netif_running(dev)) {
		rc = nv_open(dev);
		nv_set_multicast(dev);
	}
	return rc;
}

static SIMPLE_DEV_PM_OPS(nv_pm_ops, nv_suspend, nv_resume);
#define NV_PM_OPS (&nv_pm_ops)

#else
#define NV_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */

#ifdef CONFIG_PM
static void nv_shutdown(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct fe_priv *np = netdev_priv(dev);

	if (netif_running(dev))
		nv_close(dev);

	/*
	 * Restore the MAC so a kernel started by kexec won't get confused.
	 * If we really go for poweroff, we must not restore the MAC,
	 * otherwise the MAC for WOL will be reversed at least on some boards.
	 */
	if (system_state != SYSTEM_POWER_OFF)
		nv_restore_mac_addr(pdev);

	pci_disable_device(pdev);
	/*
	 * Apparently it is not possible to reinitialise from D3 hot,
	 * only put the device into D3 if we really go for poweroff.
	 */
	if (system_state == SYSTEM_POWER_OFF) {
		pci_wake_from_d3(pdev, np->wolenabled);
		pci_set_power_state(pdev, PCI_D3hot);
	}
}
#else
#define nv_shutdown NULL
#endif /* CONFIG_PM */

static const struct pci_device_id pci_tbl[] = {
	{	/* nForce Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x01C3),
		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
	},
	{	/* nForce2 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0066),
		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
	},
	{	/* nForce3 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x00D6),
		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
	},
	{	/* nForce3 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0086),
		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
	},
	{	/* nForce3 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x008C),
		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
	},
	{	/* nForce3 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x00E6),
		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
	},
	{	/* nForce3 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x00DF),
		.driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
	},
	{	/* CK804 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0056),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
	},
	{	/* CK804 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0057),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
	},
	{	/* MCP04 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0037),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
	},
	{	/* MCP04 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0038),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
	},
	{	/* MCP51 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0268),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
	},
	{	/* MCP51 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0269),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
	},
	{	/* MCP55 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0372),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
	},
	{	/* MCP55 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0373),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
	},
	{	/* MCP61 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x03E5),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
	},
	{	/* MCP61 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x03E6),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
	},
	{	/* MCP61 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x03EE),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
	},
	{	/* MCP61 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x03EF),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
	},
	{	/* MCP65 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0450),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
	},
	{	/* MCP65 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0451),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
	},
	{	/* MCP65 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0452),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
	},
	{	/* MCP65 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0453),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
	},
	{	/* MCP67 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x054C),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
	},
	{	/* MCP67 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x054D),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
	},
	{	/* MCP67 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x054E),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
	},
	{	/* MCP67 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x054F),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
	},
	{	/* MCP73 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x07DC),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
	},
	{	/* MCP73 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x07DD),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
	},
	{	/* MCP73 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x07DE),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
	},
	{	/* MCP73 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x07DF),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V12|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
	},
	{	/* MCP77 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0760),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
	},
	{	/* MCP77 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0761),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
	},
	{	/* MCP77 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0762),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
	},
	{	/* MCP77 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0763),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
	},
	{	/* MCP79 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0AB0),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
	},
	{	/* MCP79 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0AB1),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
	},
	{	/* MCP79 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0AB2),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
	},
	{	/* MCP79 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0AB3),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
	},
	{	/* MCP89 Ethernet Controller */
		PCI_DEVICE(0x10DE, 0x0D7D),
		.driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V123|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
	},
	{0,},
};

static struct pci_driver forcedeth_pci_driver = {
	.name		= DRV_NAME,
	.id_table	= pci_tbl,
	.probe		= nv_probe,
	.remove		= nv_remove,
	.shutdown	= nv_shutdown,
	.driver.pm	= NV_PM_OPS,
};

module_param(max_interrupt_work, int, 0);
MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
module_param(optimization_mode, int, 0);
MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
module_param(poll_interval, int, 0);
MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
module_param(msi, int, 0);
MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
module_param(msix, int, 0);
MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
module_param(dma_64bit, int, 0);
MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
module_param(phy_cross, int, 0);
MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
module_param(phy_power_down, int, 0);
MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
module_param(debug_tx_timeout, bool, 0);
MODULE_PARM_DESC(debug_tx_timeout,
		 "Dump tx related registers and ring when tx_timeout happens");

module_pci_driver(forcedeth_pci_driver);
MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, pci_tbl);