Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Timur Tabi | 7130 | 98.92% | 13 | 61.90% |
Hemanth Puranik | 65 | 0.90% | 3 | 14.29% |
Matthew Wilcox | 8 | 0.11% | 1 | 4.76% |
Thomas Gleixner | 2 | 0.03% | 1 | 4.76% |
Wei Yang | 1 | 0.01% | 1 | 4.76% |
Heiner Kallweit | 1 | 0.01% | 1 | 4.76% |
Luis R. Rodriguez | 1 | 0.01% | 1 | 4.76% |
Total | 7208 | 21 |
// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. */ /* Qualcomm Technologies, Inc. EMAC Ethernet Controller MAC layer support */ #include <linux/tcp.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/crc32.h> #include <linux/if_vlan.h> #include <linux/jiffies.h> #include <linux/phy.h> #include <linux/of.h> #include <net/ip6_checksum.h> #include "emac.h" #include "emac-sgmii.h" /* EMAC_MAC_CTRL */ #define SINGLE_PAUSE_MODE 0x10000000 #define DEBUG_MODE 0x08000000 #define BROAD_EN 0x04000000 #define MULTI_ALL 0x02000000 #define RX_CHKSUM_EN 0x01000000 #define HUGE 0x00800000 #define SPEED(x) (((x) & 0x3) << 20) #define SPEED_MASK SPEED(0x3) #define SIMR 0x00080000 #define TPAUSE 0x00010000 #define PROM_MODE 0x00008000 #define VLAN_STRIP 0x00004000 #define PRLEN_BMSK 0x00003c00 #define PRLEN_SHFT 10 #define HUGEN 0x00000200 #define FLCHK 0x00000100 #define PCRCE 0x00000080 #define CRCE 0x00000040 #define FULLD 0x00000020 #define MAC_LP_EN 0x00000010 #define RXFC 0x00000008 #define TXFC 0x00000004 #define RXEN 0x00000002 #define TXEN 0x00000001 /* EMAC_DESC_CTRL_3 */ #define RFD_RING_SIZE_BMSK 0xfff /* EMAC_DESC_CTRL_4 */ #define RX_BUFFER_SIZE_BMSK 0xffff /* EMAC_DESC_CTRL_6 */ #define RRD_RING_SIZE_BMSK 0xfff /* EMAC_DESC_CTRL_9 */ #define TPD_RING_SIZE_BMSK 0xffff /* EMAC_TXQ_CTRL_0 */ #define NUM_TXF_BURST_PREF_BMSK 0xffff0000 #define NUM_TXF_BURST_PREF_SHFT 16 #define LS_8023_SP 0x80 #define TXQ_MODE 0x40 #define TXQ_EN 0x20 #define IP_OP_SP 0x10 #define NUM_TPD_BURST_PREF_BMSK 0xf #define NUM_TPD_BURST_PREF_SHFT 0 /* EMAC_TXQ_CTRL_1 */ #define JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK 0x7ff /* EMAC_TXQ_CTRL_2 */ #define TXF_HWM_BMSK 0xfff0000 #define TXF_LWM_BMSK 0xfff /* EMAC_RXQ_CTRL_0 */ #define RXQ_EN BIT(31) #define CUT_THRU_EN BIT(30) #define RSS_HASH_EN BIT(29) #define NUM_RFD_BURST_PREF_BMSK 0x3f00000 #define NUM_RFD_BURST_PREF_SHFT 20 #define IDT_TABLE_SIZE_BMSK 0x1ff00 #define IDT_TABLE_SIZE_SHFT 8 #define SP_IPV6 0x80 /* EMAC_RXQ_CTRL_1 */ #define JUMBO_1KAH_BMSK 0xf000 #define JUMBO_1KAH_SHFT 12 #define RFD_PREF_LOW_TH 0x10 #define RFD_PREF_LOW_THRESHOLD_BMSK 0xfc0 #define RFD_PREF_LOW_THRESHOLD_SHFT 6 #define RFD_PREF_UP_TH 0x10 #define RFD_PREF_UP_THRESHOLD_BMSK 0x3f #define RFD_PREF_UP_THRESHOLD_SHFT 0 /* EMAC_RXQ_CTRL_2 */ #define RXF_DOF_THRESFHOLD 0x1a0 #define RXF_DOF_THRESHOLD_BMSK 0xfff0000 #define RXF_DOF_THRESHOLD_SHFT 16 #define RXF_UOF_THRESFHOLD 0xbe #define RXF_UOF_THRESHOLD_BMSK 0xfff #define RXF_UOF_THRESHOLD_SHFT 0 /* EMAC_RXQ_CTRL_3 */ #define RXD_TIMER_BMSK 0xffff0000 #define RXD_THRESHOLD_BMSK 0xfff #define RXD_THRESHOLD_SHFT 0 /* EMAC_DMA_CTRL */ #define DMAW_DLY_CNT_BMSK 0xf0000 #define DMAW_DLY_CNT_SHFT 16 #define DMAR_DLY_CNT_BMSK 0xf800 #define DMAR_DLY_CNT_SHFT 11 #define DMAR_REQ_PRI 0x400 #define REGWRBLEN_BMSK 0x380 #define REGWRBLEN_SHFT 7 #define REGRDBLEN_BMSK 0x70 #define REGRDBLEN_SHFT 4 #define OUT_ORDER_MODE 0x4 #define ENH_ORDER_MODE 0x2 #define IN_ORDER_MODE 0x1 /* EMAC_MAILBOX_13 */ #define RFD3_PROC_IDX_BMSK 0xfff0000 #define RFD3_PROC_IDX_SHFT 16 #define RFD3_PROD_IDX_BMSK 0xfff #define RFD3_PROD_IDX_SHFT 0 /* EMAC_MAILBOX_2 */ #define NTPD_CONS_IDX_BMSK 0xffff0000 #define NTPD_CONS_IDX_SHFT 16 /* EMAC_MAILBOX_3 */ #define RFD0_CONS_IDX_BMSK 0xfff #define RFD0_CONS_IDX_SHFT 0 /* EMAC_MAILBOX_11 */ #define H3TPD_PROD_IDX_BMSK 0xffff0000 #define H3TPD_PROD_IDX_SHFT 16 /* EMAC_AXI_MAST_CTRL */ #define DATA_BYTE_SWAP 0x8 #define MAX_BOUND 0x2 #define MAX_BTYPE 0x1 /* EMAC_MAILBOX_12 */ #define H3TPD_CONS_IDX_BMSK 0xffff0000 #define H3TPD_CONS_IDX_SHFT 16 /* EMAC_MAILBOX_9 */ #define H2TPD_PROD_IDX_BMSK 0xffff #define H2TPD_PROD_IDX_SHFT 0 /* EMAC_MAILBOX_10 */ #define H1TPD_CONS_IDX_BMSK 0xffff0000 #define H1TPD_CONS_IDX_SHFT 16 #define H2TPD_CONS_IDX_BMSK 0xffff #define H2TPD_CONS_IDX_SHFT 0 /* EMAC_ATHR_HEADER_CTRL */ #define HEADER_CNT_EN 0x2 #define HEADER_ENABLE 0x1 /* EMAC_MAILBOX_0 */ #define RFD0_PROC_IDX_BMSK 0xfff0000 #define RFD0_PROC_IDX_SHFT 16 #define RFD0_PROD_IDX_BMSK 0xfff #define RFD0_PROD_IDX_SHFT 0 /* EMAC_MAILBOX_5 */ #define RFD1_PROC_IDX_BMSK 0xfff0000 #define RFD1_PROC_IDX_SHFT 16 #define RFD1_PROD_IDX_BMSK 0xfff #define RFD1_PROD_IDX_SHFT 0 /* EMAC_MISC_CTRL */ #define RX_UNCPL_INT_EN 0x1 /* EMAC_MAILBOX_7 */ #define RFD2_CONS_IDX_BMSK 0xfff0000 #define RFD2_CONS_IDX_SHFT 16 #define RFD1_CONS_IDX_BMSK 0xfff #define RFD1_CONS_IDX_SHFT 0 /* EMAC_MAILBOX_8 */ #define RFD3_CONS_IDX_BMSK 0xfff #define RFD3_CONS_IDX_SHFT 0 /* EMAC_MAILBOX_15 */ #define NTPD_PROD_IDX_BMSK 0xffff #define NTPD_PROD_IDX_SHFT 0 /* EMAC_MAILBOX_16 */ #define H1TPD_PROD_IDX_BMSK 0xffff #define H1TPD_PROD_IDX_SHFT 0 #define RXQ0_RSS_HSTYP_IPV6_TCP_EN 0x20 #define RXQ0_RSS_HSTYP_IPV6_EN 0x10 #define RXQ0_RSS_HSTYP_IPV4_TCP_EN 0x8 #define RXQ0_RSS_HSTYP_IPV4_EN 0x4 /* EMAC_EMAC_WRAPPER_TX_TS_INX */ #define EMAC_WRAPPER_TX_TS_EMPTY BIT(31) #define EMAC_WRAPPER_TX_TS_INX_BMSK 0xffff struct emac_skb_cb { u32 tpd_idx; unsigned long jiffies; }; #define EMAC_SKB_CB(skb) ((struct emac_skb_cb *)(skb)->cb) #define EMAC_RSS_IDT_SIZE 256 #define JUMBO_1KAH 0x4 #define RXD_TH 0x100 #define EMAC_TPD_LAST_FRAGMENT 0x80000000 #define EMAC_TPD_TSTAMP_SAVE 0x80000000 /* EMAC Errors in emac_rrd.word[3] */ #define EMAC_RRD_L4F BIT(14) #define EMAC_RRD_IPF BIT(15) #define EMAC_RRD_CRC BIT(21) #define EMAC_RRD_FAE BIT(22) #define EMAC_RRD_TRN BIT(23) #define EMAC_RRD_RNT BIT(24) #define EMAC_RRD_INC BIT(25) #define EMAC_RRD_FOV BIT(29) #define EMAC_RRD_LEN BIT(30) /* Error bits that will result in a received frame being discarded */ #define EMAC_RRD_ERROR (EMAC_RRD_IPF | EMAC_RRD_CRC | EMAC_RRD_FAE | \ EMAC_RRD_TRN | EMAC_RRD_RNT | EMAC_RRD_INC | \ EMAC_RRD_FOV | EMAC_RRD_LEN) #define EMAC_RRD_STATS_DW_IDX 3 #define EMAC_RRD(RXQ, SIZE, IDX) ((RXQ)->rrd.v_addr + (SIZE * (IDX))) #define EMAC_RFD(RXQ, SIZE, IDX) ((RXQ)->rfd.v_addr + (SIZE * (IDX))) #define EMAC_TPD(TXQ, SIZE, IDX) ((TXQ)->tpd.v_addr + (SIZE * (IDX))) #define GET_RFD_BUFFER(RXQ, IDX) (&((RXQ)->rfd.rfbuff[(IDX)])) #define GET_TPD_BUFFER(RTQ, IDX) (&((RTQ)->tpd.tpbuff[(IDX)])) #define EMAC_TX_POLL_HWTXTSTAMP_THRESHOLD 8 #define ISR_RX_PKT (\ RX_PKT_INT0 |\ RX_PKT_INT1 |\ RX_PKT_INT2 |\ RX_PKT_INT3) void emac_mac_multicast_addr_set(struct emac_adapter *adpt, u8 *addr) { u32 crc32, bit, reg, mta; /* Calculate the CRC of the MAC address */ crc32 = ether_crc(ETH_ALEN, addr); /* The HASH Table is an array of 2 32-bit registers. It is * treated like an array of 64 bits (BitArray[hash_value]). * Use the upper 6 bits of the above CRC as the hash value. */ reg = (crc32 >> 31) & 0x1; bit = (crc32 >> 26) & 0x1F; mta = readl(adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2)); mta |= BIT(bit); writel(mta, adpt->base + EMAC_HASH_TAB_REG0 + (reg << 2)); } void emac_mac_multicast_addr_clear(struct emac_adapter *adpt) { writel(0, adpt->base + EMAC_HASH_TAB_REG0); writel(0, adpt->base + EMAC_HASH_TAB_REG1); } /* definitions for RSS */ #define EMAC_RSS_KEY(_i, _type) \ (EMAC_RSS_KEY0 + ((_i) * sizeof(_type))) #define EMAC_RSS_TBL(_i, _type) \ (EMAC_IDT_TABLE0 + ((_i) * sizeof(_type))) /* Config MAC modes */ void emac_mac_mode_config(struct emac_adapter *adpt) { struct net_device *netdev = adpt->netdev; u32 mac; mac = readl(adpt->base + EMAC_MAC_CTRL); mac &= ~(VLAN_STRIP | PROM_MODE | MULTI_ALL | MAC_LP_EN); if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) mac |= VLAN_STRIP; if (netdev->flags & IFF_PROMISC) mac |= PROM_MODE; if (netdev->flags & IFF_ALLMULTI) mac |= MULTI_ALL; writel(mac, adpt->base + EMAC_MAC_CTRL); } /* Config descriptor rings */ static void emac_mac_dma_rings_config(struct emac_adapter *adpt) { /* TPD (Transmit Packet Descriptor) */ writel(upper_32_bits(adpt->tx_q.tpd.dma_addr), adpt->base + EMAC_DESC_CTRL_1); writel(lower_32_bits(adpt->tx_q.tpd.dma_addr), adpt->base + EMAC_DESC_CTRL_8); writel(adpt->tx_q.tpd.count & TPD_RING_SIZE_BMSK, adpt->base + EMAC_DESC_CTRL_9); /* RFD (Receive Free Descriptor) & RRD (Receive Return Descriptor) */ writel(upper_32_bits(adpt->rx_q.rfd.dma_addr), adpt->base + EMAC_DESC_CTRL_0); writel(lower_32_bits(adpt->rx_q.rfd.dma_addr), adpt->base + EMAC_DESC_CTRL_2); writel(lower_32_bits(adpt->rx_q.rrd.dma_addr), adpt->base + EMAC_DESC_CTRL_5); writel(adpt->rx_q.rfd.count & RFD_RING_SIZE_BMSK, adpt->base + EMAC_DESC_CTRL_3); writel(adpt->rx_q.rrd.count & RRD_RING_SIZE_BMSK, adpt->base + EMAC_DESC_CTRL_6); writel(adpt->rxbuf_size & RX_BUFFER_SIZE_BMSK, adpt->base + EMAC_DESC_CTRL_4); writel(0, adpt->base + EMAC_DESC_CTRL_11); /* Load all of the base addresses above and ensure that triggering HW to * read ring pointers is flushed */ writel(1, adpt->base + EMAC_INTER_SRAM_PART9); } /* Config transmit parameters */ static void emac_mac_tx_config(struct emac_adapter *adpt) { u32 val; writel((EMAC_MAX_TX_OFFLOAD_THRESH >> 3) & JUMBO_TASK_OFFLOAD_THRESHOLD_BMSK, adpt->base + EMAC_TXQ_CTRL_1); val = (adpt->tpd_burst << NUM_TPD_BURST_PREF_SHFT) & NUM_TPD_BURST_PREF_BMSK; val |= TXQ_MODE | LS_8023_SP; val |= (0x0100 << NUM_TXF_BURST_PREF_SHFT) & NUM_TXF_BURST_PREF_BMSK; writel(val, adpt->base + EMAC_TXQ_CTRL_0); emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_2, (TXF_HWM_BMSK | TXF_LWM_BMSK), 0); } /* Config receive parameters */ static void emac_mac_rx_config(struct emac_adapter *adpt) { u32 val; val = (adpt->rfd_burst << NUM_RFD_BURST_PREF_SHFT) & NUM_RFD_BURST_PREF_BMSK; val |= (SP_IPV6 | CUT_THRU_EN); writel(val, adpt->base + EMAC_RXQ_CTRL_0); val = readl(adpt->base + EMAC_RXQ_CTRL_1); val &= ~(JUMBO_1KAH_BMSK | RFD_PREF_LOW_THRESHOLD_BMSK | RFD_PREF_UP_THRESHOLD_BMSK); val |= (JUMBO_1KAH << JUMBO_1KAH_SHFT) | (RFD_PREF_LOW_TH << RFD_PREF_LOW_THRESHOLD_SHFT) | (RFD_PREF_UP_TH << RFD_PREF_UP_THRESHOLD_SHFT); writel(val, adpt->base + EMAC_RXQ_CTRL_1); val = readl(adpt->base + EMAC_RXQ_CTRL_2); val &= ~(RXF_DOF_THRESHOLD_BMSK | RXF_UOF_THRESHOLD_BMSK); val |= (RXF_DOF_THRESFHOLD << RXF_DOF_THRESHOLD_SHFT) | (RXF_UOF_THRESFHOLD << RXF_UOF_THRESHOLD_SHFT); writel(val, adpt->base + EMAC_RXQ_CTRL_2); val = readl(adpt->base + EMAC_RXQ_CTRL_3); val &= ~(RXD_TIMER_BMSK | RXD_THRESHOLD_BMSK); val |= RXD_TH << RXD_THRESHOLD_SHFT; writel(val, adpt->base + EMAC_RXQ_CTRL_3); } /* Config dma */ static void emac_mac_dma_config(struct emac_adapter *adpt) { u32 dma_ctrl = DMAR_REQ_PRI; switch (adpt->dma_order) { case emac_dma_ord_in: dma_ctrl |= IN_ORDER_MODE; break; case emac_dma_ord_enh: dma_ctrl |= ENH_ORDER_MODE; break; case emac_dma_ord_out: dma_ctrl |= OUT_ORDER_MODE; break; default: break; } dma_ctrl |= (((u32)adpt->dmar_block) << REGRDBLEN_SHFT) & REGRDBLEN_BMSK; dma_ctrl |= (((u32)adpt->dmaw_block) << REGWRBLEN_SHFT) & REGWRBLEN_BMSK; dma_ctrl |= (((u32)adpt->dmar_dly_cnt) << DMAR_DLY_CNT_SHFT) & DMAR_DLY_CNT_BMSK; dma_ctrl |= (((u32)adpt->dmaw_dly_cnt) << DMAW_DLY_CNT_SHFT) & DMAW_DLY_CNT_BMSK; /* config DMA and ensure that configuration is flushed to HW */ writel(dma_ctrl, adpt->base + EMAC_DMA_CTRL); } /* set MAC address */ static void emac_set_mac_address(struct emac_adapter *adpt, u8 *addr) { u32 sta; /* for example: 00-A0-C6-11-22-33 * 0<-->C6112233, 1<-->00A0. */ /* low 32bit word */ sta = (((u32)addr[2]) << 24) | (((u32)addr[3]) << 16) | (((u32)addr[4]) << 8) | (((u32)addr[5])); writel(sta, adpt->base + EMAC_MAC_STA_ADDR0); /* hight 32bit word */ sta = (((u32)addr[0]) << 8) | (u32)addr[1]; writel(sta, adpt->base + EMAC_MAC_STA_ADDR1); } static void emac_mac_config(struct emac_adapter *adpt) { struct net_device *netdev = adpt->netdev; unsigned int max_frame; u32 val; emac_set_mac_address(adpt, netdev->dev_addr); max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; adpt->rxbuf_size = netdev->mtu > EMAC_DEF_RX_BUF_SIZE ? ALIGN(max_frame, 8) : EMAC_DEF_RX_BUF_SIZE; emac_mac_dma_rings_config(adpt); writel(netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, adpt->base + EMAC_MAX_FRAM_LEN_CTRL); emac_mac_tx_config(adpt); emac_mac_rx_config(adpt); emac_mac_dma_config(adpt); val = readl(adpt->base + EMAC_AXI_MAST_CTRL); val &= ~(DATA_BYTE_SWAP | MAX_BOUND); val |= MAX_BTYPE; writel(val, adpt->base + EMAC_AXI_MAST_CTRL); writel(0, adpt->base + EMAC_CLK_GATE_CTRL); writel(RX_UNCPL_INT_EN, adpt->base + EMAC_MISC_CTRL); } void emac_mac_reset(struct emac_adapter *adpt) { emac_mac_stop(adpt); emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, SOFT_RST); usleep_range(100, 150); /* reset may take up to 100usec */ /* interrupt clear-on-read */ emac_reg_update32(adpt->base + EMAC_DMA_MAS_CTRL, 0, INT_RD_CLR_EN); } static void emac_mac_start(struct emac_adapter *adpt) { struct phy_device *phydev = adpt->phydev; u32 mac, csr1; /* enable tx queue */ emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, 0, TXQ_EN); /* enable rx queue */ emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, 0, RXQ_EN); /* enable mac control */ mac = readl(adpt->base + EMAC_MAC_CTRL); csr1 = readl(adpt->csr + EMAC_EMAC_WRAPPER_CSR1); mac |= TXEN | RXEN; /* enable RX/TX */ /* Configure MAC flow control. If set to automatic, then match * whatever the PHY does. Otherwise, enable or disable it, depending * on what the user configured via ethtool. */ mac &= ~(RXFC | TXFC); if (adpt->automatic) { /* If it's set to automatic, then update our local values */ adpt->rx_flow_control = phydev->pause; adpt->tx_flow_control = phydev->pause != phydev->asym_pause; } mac |= adpt->rx_flow_control ? RXFC : 0; mac |= adpt->tx_flow_control ? TXFC : 0; /* setup link speed */ mac &= ~SPEED_MASK; if (phydev->speed == SPEED_1000) { mac |= SPEED(2); csr1 |= FREQ_MODE; } else { mac |= SPEED(1); csr1 &= ~FREQ_MODE; } if (phydev->duplex == DUPLEX_FULL) mac |= FULLD; else mac &= ~FULLD; /* other parameters */ mac |= (CRCE | PCRCE); mac |= ((adpt->preamble << PRLEN_SHFT) & PRLEN_BMSK); mac |= BROAD_EN; mac |= FLCHK; mac &= ~RX_CHKSUM_EN; mac &= ~(HUGEN | VLAN_STRIP | TPAUSE | SIMR | HUGE | MULTI_ALL | DEBUG_MODE | SINGLE_PAUSE_MODE); /* Enable single-pause-frame mode if requested. * * If enabled, the EMAC will send a single pause frame when the RX * queue is full. This normally leads to packet loss because * the pause frame disables the remote MAC only for 33ms (the quanta), * and then the remote MAC continues sending packets even though * the RX queue is still full. * * If disabled, the EMAC sends a pause frame every 31ms until the RX * queue is no longer full. Normally, this is the preferred * method of operation. However, when the system is hung (e.g. * cores are halted), the EMAC interrupt handler is never called * and so the RX queue fills up quickly and stays full. The resuling * non-stop "flood" of pause frames sometimes has the effect of * disabling nearby switches. In some cases, other nearby switches * are also affected, shutting down the entire network. * * The user can enable or disable single-pause-frame mode * via ethtool. */ mac |= adpt->single_pause_mode ? SINGLE_PAUSE_MODE : 0; writel_relaxed(csr1, adpt->csr + EMAC_EMAC_WRAPPER_CSR1); writel_relaxed(mac, adpt->base + EMAC_MAC_CTRL); /* enable interrupt read clear, low power sleep mode and * the irq moderators */ writel_relaxed(adpt->irq_mod, adpt->base + EMAC_IRQ_MOD_TIM_INIT); writel_relaxed(INT_RD_CLR_EN | LPW_MODE | IRQ_MODERATOR_EN | IRQ_MODERATOR2_EN, adpt->base + EMAC_DMA_MAS_CTRL); emac_mac_mode_config(adpt); emac_reg_update32(adpt->base + EMAC_ATHR_HEADER_CTRL, (HEADER_ENABLE | HEADER_CNT_EN), 0); } void emac_mac_stop(struct emac_adapter *adpt) { emac_reg_update32(adpt->base + EMAC_RXQ_CTRL_0, RXQ_EN, 0); emac_reg_update32(adpt->base + EMAC_TXQ_CTRL_0, TXQ_EN, 0); emac_reg_update32(adpt->base + EMAC_MAC_CTRL, TXEN | RXEN, 0); usleep_range(1000, 1050); /* stopping mac may take upto 1msec */ } /* Free all descriptors of given transmit queue */ static void emac_tx_q_descs_free(struct emac_adapter *adpt) { struct emac_tx_queue *tx_q = &adpt->tx_q; unsigned int i; size_t size; /* ring already cleared, nothing to do */ if (!tx_q->tpd.tpbuff) return; for (i = 0; i < tx_q->tpd.count; i++) { struct emac_buffer *tpbuf = GET_TPD_BUFFER(tx_q, i); if (tpbuf->dma_addr) { dma_unmap_single(adpt->netdev->dev.parent, tpbuf->dma_addr, tpbuf->length, DMA_TO_DEVICE); tpbuf->dma_addr = 0; } if (tpbuf->skb) { dev_kfree_skb_any(tpbuf->skb); tpbuf->skb = NULL; } } size = sizeof(struct emac_buffer) * tx_q->tpd.count; memset(tx_q->tpd.tpbuff, 0, size); /* clear the descriptor ring */ memset(tx_q->tpd.v_addr, 0, tx_q->tpd.size); tx_q->tpd.consume_idx = 0; tx_q->tpd.produce_idx = 0; } /* Free all descriptors of given receive queue */ static void emac_rx_q_free_descs(struct emac_adapter *adpt) { struct device *dev = adpt->netdev->dev.parent; struct emac_rx_queue *rx_q = &adpt->rx_q; unsigned int i; size_t size; /* ring already cleared, nothing to do */ if (!rx_q->rfd.rfbuff) return; for (i = 0; i < rx_q->rfd.count; i++) { struct emac_buffer *rfbuf = GET_RFD_BUFFER(rx_q, i); if (rfbuf->dma_addr) { dma_unmap_single(dev, rfbuf->dma_addr, rfbuf->length, DMA_FROM_DEVICE); rfbuf->dma_addr = 0; } if (rfbuf->skb) { dev_kfree_skb(rfbuf->skb); rfbuf->skb = NULL; } } size = sizeof(struct emac_buffer) * rx_q->rfd.count; memset(rx_q->rfd.rfbuff, 0, size); /* clear the descriptor rings */ memset(rx_q->rrd.v_addr, 0, rx_q->rrd.size); rx_q->rrd.produce_idx = 0; rx_q->rrd.consume_idx = 0; memset(rx_q->rfd.v_addr, 0, rx_q->rfd.size); rx_q->rfd.produce_idx = 0; rx_q->rfd.consume_idx = 0; } /* Free all buffers associated with given transmit queue */ static void emac_tx_q_bufs_free(struct emac_adapter *adpt) { struct emac_tx_queue *tx_q = &adpt->tx_q; emac_tx_q_descs_free(adpt); kfree(tx_q->tpd.tpbuff); tx_q->tpd.tpbuff = NULL; tx_q->tpd.v_addr = NULL; tx_q->tpd.dma_addr = 0; tx_q->tpd.size = 0; } /* Allocate TX descriptor ring for the given transmit queue */ static int emac_tx_q_desc_alloc(struct emac_adapter *adpt, struct emac_tx_queue *tx_q) { struct emac_ring_header *ring_header = &adpt->ring_header; int node = dev_to_node(adpt->netdev->dev.parent); size_t size; size = sizeof(struct emac_buffer) * tx_q->tpd.count; tx_q->tpd.tpbuff = kzalloc_node(size, GFP_KERNEL, node); if (!tx_q->tpd.tpbuff) return -ENOMEM; tx_q->tpd.size = tx_q->tpd.count * (adpt->tpd_size * 4); tx_q->tpd.dma_addr = ring_header->dma_addr + ring_header->used; tx_q->tpd.v_addr = ring_header->v_addr + ring_header->used; ring_header->used += ALIGN(tx_q->tpd.size, 8); tx_q->tpd.produce_idx = 0; tx_q->tpd.consume_idx = 0; return 0; } /* Free all buffers associated with given transmit queue */ static void emac_rx_q_bufs_free(struct emac_adapter *adpt) { struct emac_rx_queue *rx_q = &adpt->rx_q; emac_rx_q_free_descs(adpt); kfree(rx_q->rfd.rfbuff); rx_q->rfd.rfbuff = NULL; rx_q->rfd.v_addr = NULL; rx_q->rfd.dma_addr = 0; rx_q->rfd.size = 0; rx_q->rrd.v_addr = NULL; rx_q->rrd.dma_addr = 0; rx_q->rrd.size = 0; } /* Allocate RX descriptor rings for the given receive queue */ static int emac_rx_descs_alloc(struct emac_adapter *adpt) { struct emac_ring_header *ring_header = &adpt->ring_header; int node = dev_to_node(adpt->netdev->dev.parent); struct emac_rx_queue *rx_q = &adpt->rx_q; size_t size; size = sizeof(struct emac_buffer) * rx_q->rfd.count; rx_q->rfd.rfbuff = kzalloc_node(size, GFP_KERNEL, node); if (!rx_q->rfd.rfbuff) return -ENOMEM; rx_q->rrd.size = rx_q->rrd.count * (adpt->rrd_size * 4); rx_q->rfd.size = rx_q->rfd.count * (adpt->rfd_size * 4); rx_q->rrd.dma_addr = ring_header->dma_addr + ring_header->used; rx_q->rrd.v_addr = ring_header->v_addr + ring_header->used; ring_header->used += ALIGN(rx_q->rrd.size, 8); rx_q->rfd.dma_addr = ring_header->dma_addr + ring_header->used; rx_q->rfd.v_addr = ring_header->v_addr + ring_header->used; ring_header->used += ALIGN(rx_q->rfd.size, 8); rx_q->rrd.produce_idx = 0; rx_q->rrd.consume_idx = 0; rx_q->rfd.produce_idx = 0; rx_q->rfd.consume_idx = 0; return 0; } /* Allocate all TX and RX descriptor rings */ int emac_mac_rx_tx_rings_alloc_all(struct emac_adapter *adpt) { struct emac_ring_header *ring_header = &adpt->ring_header; struct device *dev = adpt->netdev->dev.parent; unsigned int num_tx_descs = adpt->tx_desc_cnt; unsigned int num_rx_descs = adpt->rx_desc_cnt; int ret; adpt->tx_q.tpd.count = adpt->tx_desc_cnt; adpt->rx_q.rrd.count = adpt->rx_desc_cnt; adpt->rx_q.rfd.count = adpt->rx_desc_cnt; /* Ring DMA buffer. Each ring may need up to 8 bytes for alignment, * hence the additional padding bytes are allocated. */ ring_header->size = num_tx_descs * (adpt->tpd_size * 4) + num_rx_descs * (adpt->rfd_size * 4) + num_rx_descs * (adpt->rrd_size * 4) + 8 + 2 * 8; /* 8 byte per one Tx and two Rx rings */ ring_header->used = 0; ring_header->v_addr = dma_alloc_coherent(dev, ring_header->size, &ring_header->dma_addr, GFP_KERNEL); if (!ring_header->v_addr) return -ENOMEM; ring_header->used = ALIGN(ring_header->dma_addr, 8) - ring_header->dma_addr; ret = emac_tx_q_desc_alloc(adpt, &adpt->tx_q); if (ret) { netdev_err(adpt->netdev, "error: Tx Queue alloc failed\n"); goto err_alloc_tx; } ret = emac_rx_descs_alloc(adpt); if (ret) { netdev_err(adpt->netdev, "error: Rx Queue alloc failed\n"); goto err_alloc_rx; } return 0; err_alloc_rx: emac_tx_q_bufs_free(adpt); err_alloc_tx: dma_free_coherent(dev, ring_header->size, ring_header->v_addr, ring_header->dma_addr); ring_header->v_addr = NULL; ring_header->dma_addr = 0; ring_header->size = 0; ring_header->used = 0; return ret; } /* Free all TX and RX descriptor rings */ void emac_mac_rx_tx_rings_free_all(struct emac_adapter *adpt) { struct emac_ring_header *ring_header = &adpt->ring_header; struct device *dev = adpt->netdev->dev.parent; emac_tx_q_bufs_free(adpt); emac_rx_q_bufs_free(adpt); dma_free_coherent(dev, ring_header->size, ring_header->v_addr, ring_header->dma_addr); ring_header->v_addr = NULL; ring_header->dma_addr = 0; ring_header->size = 0; ring_header->used = 0; } /* Initialize descriptor rings */ static void emac_mac_rx_tx_ring_reset_all(struct emac_adapter *adpt) { unsigned int i; adpt->tx_q.tpd.produce_idx = 0; adpt->tx_q.tpd.consume_idx = 0; for (i = 0; i < adpt->tx_q.tpd.count; i++) adpt->tx_q.tpd.tpbuff[i].dma_addr = 0; adpt->rx_q.rrd.produce_idx = 0; adpt->rx_q.rrd.consume_idx = 0; adpt->rx_q.rfd.produce_idx = 0; adpt->rx_q.rfd.consume_idx = 0; for (i = 0; i < adpt->rx_q.rfd.count; i++) adpt->rx_q.rfd.rfbuff[i].dma_addr = 0; } /* Produce new receive free descriptor */ static void emac_mac_rx_rfd_create(struct emac_adapter *adpt, struct emac_rx_queue *rx_q, dma_addr_t addr) { u32 *hw_rfd = EMAC_RFD(rx_q, adpt->rfd_size, rx_q->rfd.produce_idx); *(hw_rfd++) = lower_32_bits(addr); *hw_rfd = upper_32_bits(addr); if (++rx_q->rfd.produce_idx == rx_q->rfd.count) rx_q->rfd.produce_idx = 0; } /* Fill up receive queue's RFD with preallocated receive buffers */ static void emac_mac_rx_descs_refill(struct emac_adapter *adpt, struct emac_rx_queue *rx_q) { struct emac_buffer *curr_rxbuf; struct emac_buffer *next_rxbuf; unsigned int count = 0; u32 next_produce_idx; next_produce_idx = rx_q->rfd.produce_idx + 1; if (next_produce_idx == rx_q->rfd.count) next_produce_idx = 0; curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx); next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx); /* this always has a blank rx_buffer*/ while (!next_rxbuf->dma_addr) { struct sk_buff *skb; int ret; skb = netdev_alloc_skb_ip_align(adpt->netdev, adpt->rxbuf_size); if (!skb) break; curr_rxbuf->dma_addr = dma_map_single(adpt->netdev->dev.parent, skb->data, adpt->rxbuf_size, DMA_FROM_DEVICE); ret = dma_mapping_error(adpt->netdev->dev.parent, curr_rxbuf->dma_addr); if (ret) { dev_kfree_skb(skb); break; } curr_rxbuf->skb = skb; curr_rxbuf->length = adpt->rxbuf_size; emac_mac_rx_rfd_create(adpt, rx_q, curr_rxbuf->dma_addr); next_produce_idx = rx_q->rfd.produce_idx + 1; if (next_produce_idx == rx_q->rfd.count) next_produce_idx = 0; curr_rxbuf = GET_RFD_BUFFER(rx_q, rx_q->rfd.produce_idx); next_rxbuf = GET_RFD_BUFFER(rx_q, next_produce_idx); count++; } if (count) { u32 prod_idx = (rx_q->rfd.produce_idx << rx_q->produce_shift) & rx_q->produce_mask; emac_reg_update32(adpt->base + rx_q->produce_reg, rx_q->produce_mask, prod_idx); } } static void emac_adjust_link(struct net_device *netdev) { struct emac_adapter *adpt = netdev_priv(netdev); struct phy_device *phydev = netdev->phydev; if (phydev->link) { emac_mac_start(adpt); emac_sgmii_link_change(adpt, true); } else { emac_sgmii_link_change(adpt, false); emac_mac_stop(adpt); } phy_print_status(phydev); } /* Bringup the interface/HW */ int emac_mac_up(struct emac_adapter *adpt) { struct net_device *netdev = adpt->netdev; int ret; emac_mac_rx_tx_ring_reset_all(adpt); emac_mac_config(adpt); emac_mac_rx_descs_refill(adpt, &adpt->rx_q); adpt->phydev->irq = PHY_POLL; ret = phy_connect_direct(netdev, adpt->phydev, emac_adjust_link, PHY_INTERFACE_MODE_SGMII); if (ret) { netdev_err(adpt->netdev, "could not connect phy\n"); return ret; } phy_attached_print(adpt->phydev, NULL); /* enable mac irq */ writel((u32)~DIS_INT, adpt->base + EMAC_INT_STATUS); writel(adpt->irq.mask, adpt->base + EMAC_INT_MASK); phy_start(adpt->phydev); napi_enable(&adpt->rx_q.napi); netif_start_queue(netdev); return 0; } /* Bring down the interface/HW */ void emac_mac_down(struct emac_adapter *adpt) { struct net_device *netdev = adpt->netdev; netif_stop_queue(netdev); napi_disable(&adpt->rx_q.napi); phy_stop(adpt->phydev); /* Interrupts must be disabled before the PHY is disconnected, to * avoid a race condition where adjust_link is null when we get * an interrupt. */ writel(DIS_INT, adpt->base + EMAC_INT_STATUS); writel(0, adpt->base + EMAC_INT_MASK); synchronize_irq(adpt->irq.irq); phy_disconnect(adpt->phydev); emac_mac_reset(adpt); emac_tx_q_descs_free(adpt); netdev_reset_queue(adpt->netdev); emac_rx_q_free_descs(adpt); } /* Consume next received packet descriptor */ static bool emac_rx_process_rrd(struct emac_adapter *adpt, struct emac_rx_queue *rx_q, struct emac_rrd *rrd) { u32 *hw_rrd = EMAC_RRD(rx_q, adpt->rrd_size, rx_q->rrd.consume_idx); rrd->word[3] = *(hw_rrd + 3); if (!RRD_UPDT(rrd)) return false; rrd->word[4] = 0; rrd->word[5] = 0; rrd->word[0] = *(hw_rrd++); rrd->word[1] = *(hw_rrd++); rrd->word[2] = *(hw_rrd++); if (unlikely(RRD_NOR(rrd) != 1)) { netdev_err(adpt->netdev, "error: multi-RFD not support yet! nor:%lu\n", RRD_NOR(rrd)); } /* mark rrd as processed */ RRD_UPDT_SET(rrd, 0); *hw_rrd = rrd->word[3]; if (++rx_q->rrd.consume_idx == rx_q->rrd.count) rx_q->rrd.consume_idx = 0; return true; } /* Produce new transmit descriptor */ static void emac_tx_tpd_create(struct emac_adapter *adpt, struct emac_tx_queue *tx_q, struct emac_tpd *tpd) { u32 *hw_tpd; tx_q->tpd.last_produce_idx = tx_q->tpd.produce_idx; hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.produce_idx); if (++tx_q->tpd.produce_idx == tx_q->tpd.count) tx_q->tpd.produce_idx = 0; *(hw_tpd++) = tpd->word[0]; *(hw_tpd++) = tpd->word[1]; *(hw_tpd++) = tpd->word[2]; *hw_tpd = tpd->word[3]; } /* Mark the last transmit descriptor as such (for the transmit packet) */ static void emac_tx_tpd_mark_last(struct emac_adapter *adpt, struct emac_tx_queue *tx_q) { u32 *hw_tpd = EMAC_TPD(tx_q, adpt->tpd_size, tx_q->tpd.last_produce_idx); u32 tmp_tpd; tmp_tpd = *(hw_tpd + 1); tmp_tpd |= EMAC_TPD_LAST_FRAGMENT; *(hw_tpd + 1) = tmp_tpd; } static void emac_rx_rfd_clean(struct emac_rx_queue *rx_q, struct emac_rrd *rrd) { struct emac_buffer *rfbuf = rx_q->rfd.rfbuff; u32 consume_idx = RRD_SI(rrd); unsigned int i; for (i = 0; i < RRD_NOR(rrd); i++) { rfbuf[consume_idx].skb = NULL; if (++consume_idx == rx_q->rfd.count) consume_idx = 0; } rx_q->rfd.consume_idx = consume_idx; rx_q->rfd.process_idx = consume_idx; } /* Push the received skb to upper layers */ static void emac_receive_skb(struct emac_rx_queue *rx_q, struct sk_buff *skb, u16 vlan_tag, bool vlan_flag) { if (vlan_flag) { u16 vlan; EMAC_TAG_TO_VLAN(vlan_tag, vlan); __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan); } napi_gro_receive(&rx_q->napi, skb); } /* Process receive event */ void emac_mac_rx_process(struct emac_adapter *adpt, struct emac_rx_queue *rx_q, int *num_pkts, int max_pkts) { u32 proc_idx, hw_consume_idx, num_consume_pkts; struct net_device *netdev = adpt->netdev; struct emac_buffer *rfbuf; unsigned int count = 0; struct emac_rrd rrd; struct sk_buff *skb; u32 reg; reg = readl_relaxed(adpt->base + rx_q->consume_reg); hw_consume_idx = (reg & rx_q->consume_mask) >> rx_q->consume_shift; num_consume_pkts = (hw_consume_idx >= rx_q->rrd.consume_idx) ? (hw_consume_idx - rx_q->rrd.consume_idx) : (hw_consume_idx + rx_q->rrd.count - rx_q->rrd.consume_idx); do { if (!num_consume_pkts) break; if (!emac_rx_process_rrd(adpt, rx_q, &rrd)) break; if (likely(RRD_NOR(&rrd) == 1)) { /* good receive */ rfbuf = GET_RFD_BUFFER(rx_q, RRD_SI(&rrd)); dma_unmap_single(adpt->netdev->dev.parent, rfbuf->dma_addr, rfbuf->length, DMA_FROM_DEVICE); rfbuf->dma_addr = 0; skb = rfbuf->skb; } else { netdev_err(adpt->netdev, "error: multi-RFD not support yet!\n"); break; } emac_rx_rfd_clean(rx_q, &rrd); num_consume_pkts--; count++; /* Due to a HW issue in L4 check sum detection (UDP/TCP frags * with DF set are marked as error), drop packets based on the * error mask rather than the summary bit (ignoring L4F errors) */ if (rrd.word[EMAC_RRD_STATS_DW_IDX] & EMAC_RRD_ERROR) { netif_dbg(adpt, rx_status, adpt->netdev, "Drop error packet[RRD: 0x%x:0x%x:0x%x:0x%x]\n", rrd.word[0], rrd.word[1], rrd.word[2], rrd.word[3]); dev_kfree_skb(skb); continue; } skb_put(skb, RRD_PKT_SIZE(&rrd) - ETH_FCS_LEN); skb->dev = netdev; skb->protocol = eth_type_trans(skb, skb->dev); if (netdev->features & NETIF_F_RXCSUM) skb->ip_summed = RRD_L4F(&rrd) ? CHECKSUM_NONE : CHECKSUM_UNNECESSARY; else skb_checksum_none_assert(skb); emac_receive_skb(rx_q, skb, (u16)RRD_CVALN_TAG(&rrd), (bool)RRD_CVTAG(&rrd)); (*num_pkts)++; } while (*num_pkts < max_pkts); if (count) { proc_idx = (rx_q->rfd.process_idx << rx_q->process_shft) & rx_q->process_mask; emac_reg_update32(adpt->base + rx_q->process_reg, rx_q->process_mask, proc_idx); emac_mac_rx_descs_refill(adpt, rx_q); } } /* get the number of free transmit descriptors */ static unsigned int emac_tpd_num_free_descs(struct emac_tx_queue *tx_q) { u32 produce_idx = tx_q->tpd.produce_idx; u32 consume_idx = tx_q->tpd.consume_idx; return (consume_idx > produce_idx) ? (consume_idx - produce_idx - 1) : (tx_q->tpd.count + consume_idx - produce_idx - 1); } /* Process transmit event */ void emac_mac_tx_process(struct emac_adapter *adpt, struct emac_tx_queue *tx_q) { u32 reg = readl_relaxed(adpt->base + tx_q->consume_reg); u32 hw_consume_idx, pkts_compl = 0, bytes_compl = 0; struct emac_buffer *tpbuf; hw_consume_idx = (reg & tx_q->consume_mask) >> tx_q->consume_shift; while (tx_q->tpd.consume_idx != hw_consume_idx) { tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.consume_idx); if (tpbuf->dma_addr) { dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr, tpbuf->length, DMA_TO_DEVICE); tpbuf->dma_addr = 0; } if (tpbuf->skb) { pkts_compl++; bytes_compl += tpbuf->skb->len; dev_consume_skb_irq(tpbuf->skb); tpbuf->skb = NULL; } if (++tx_q->tpd.consume_idx == tx_q->tpd.count) tx_q->tpd.consume_idx = 0; } netdev_completed_queue(adpt->netdev, pkts_compl, bytes_compl); if (netif_queue_stopped(adpt->netdev)) if (emac_tpd_num_free_descs(tx_q) > (MAX_SKB_FRAGS + 1)) netif_wake_queue(adpt->netdev); } /* Initialize all queue data structures */ void emac_mac_rx_tx_ring_init_all(struct platform_device *pdev, struct emac_adapter *adpt) { adpt->rx_q.netdev = adpt->netdev; adpt->rx_q.produce_reg = EMAC_MAILBOX_0; adpt->rx_q.produce_mask = RFD0_PROD_IDX_BMSK; adpt->rx_q.produce_shift = RFD0_PROD_IDX_SHFT; adpt->rx_q.process_reg = EMAC_MAILBOX_0; adpt->rx_q.process_mask = RFD0_PROC_IDX_BMSK; adpt->rx_q.process_shft = RFD0_PROC_IDX_SHFT; adpt->rx_q.consume_reg = EMAC_MAILBOX_3; adpt->rx_q.consume_mask = RFD0_CONS_IDX_BMSK; adpt->rx_q.consume_shift = RFD0_CONS_IDX_SHFT; adpt->rx_q.irq = &adpt->irq; adpt->rx_q.intr = adpt->irq.mask & ISR_RX_PKT; adpt->tx_q.produce_reg = EMAC_MAILBOX_15; adpt->tx_q.produce_mask = NTPD_PROD_IDX_BMSK; adpt->tx_q.produce_shift = NTPD_PROD_IDX_SHFT; adpt->tx_q.consume_reg = EMAC_MAILBOX_2; adpt->tx_q.consume_mask = NTPD_CONS_IDX_BMSK; adpt->tx_q.consume_shift = NTPD_CONS_IDX_SHFT; } /* Fill up transmit descriptors with TSO and Checksum offload information */ static int emac_tso_csum(struct emac_adapter *adpt, struct emac_tx_queue *tx_q, struct sk_buff *skb, struct emac_tpd *tpd) { unsigned int hdr_len; int ret; if (skb_is_gso(skb)) { if (skb_header_cloned(skb)) { ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); if (unlikely(ret)) return ret; } if (skb->protocol == htons(ETH_P_IP)) { u32 pkt_len = ((unsigned char *)ip_hdr(skb) - skb->data) + ntohs(ip_hdr(skb)->tot_len); if (skb->len > pkt_len) pskb_trim(skb, pkt_len); } hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); if (unlikely(skb->len == hdr_len)) { /* we only need to do csum */ netif_warn(adpt, tx_err, adpt->netdev, "tso not needed for packet with 0 data\n"); goto do_csum; } if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { ip_hdr(skb)->check = 0; tcp_hdr(skb)->check = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); TPD_IPV4_SET(tpd, 1); } if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) { /* ipv6 tso need an extra tpd */ struct emac_tpd extra_tpd; memset(tpd, 0, sizeof(*tpd)); memset(&extra_tpd, 0, sizeof(extra_tpd)); tcp_v6_gso_csum_prep(skb); TPD_PKT_LEN_SET(&extra_tpd, skb->len); TPD_LSO_SET(&extra_tpd, 1); TPD_LSOV_SET(&extra_tpd, 1); emac_tx_tpd_create(adpt, tx_q, &extra_tpd); TPD_LSOV_SET(tpd, 1); } TPD_LSO_SET(tpd, 1); TPD_TCPHDR_OFFSET_SET(tpd, skb_transport_offset(skb)); TPD_MSS_SET(tpd, skb_shinfo(skb)->gso_size); return 0; } do_csum: if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { unsigned int css, cso; cso = skb_transport_offset(skb); if (unlikely(cso & 0x1)) { netdev_err(adpt->netdev, "error: payload offset should be even\n"); return -EINVAL; } css = cso + skb->csum_offset; TPD_PAYLOAD_OFFSET_SET(tpd, cso >> 1); TPD_CXSUM_OFFSET_SET(tpd, css >> 1); TPD_CSX_SET(tpd, 1); } return 0; } /* Fill up transmit descriptors */ static void emac_tx_fill_tpd(struct emac_adapter *adpt, struct emac_tx_queue *tx_q, struct sk_buff *skb, struct emac_tpd *tpd) { unsigned int nr_frags = skb_shinfo(skb)->nr_frags; unsigned int first = tx_q->tpd.produce_idx; unsigned int len = skb_headlen(skb); struct emac_buffer *tpbuf = NULL; unsigned int mapped_len = 0; unsigned int i; int count = 0; int ret; /* if Large Segment Offload is (in TCP Segmentation Offload struct) */ if (TPD_LSO(tpd)) { mapped_len = skb_transport_offset(skb) + tcp_hdrlen(skb); tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx); tpbuf->length = mapped_len; tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent, virt_to_page(skb->data), offset_in_page(skb->data), tpbuf->length, DMA_TO_DEVICE); ret = dma_mapping_error(adpt->netdev->dev.parent, tpbuf->dma_addr); if (ret) goto error; TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr)); TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr)); TPD_BUF_LEN_SET(tpd, tpbuf->length); emac_tx_tpd_create(adpt, tx_q, tpd); count++; } if (mapped_len < len) { tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx); tpbuf->length = len - mapped_len; tpbuf->dma_addr = dma_map_page(adpt->netdev->dev.parent, virt_to_page(skb->data + mapped_len), offset_in_page(skb->data + mapped_len), tpbuf->length, DMA_TO_DEVICE); ret = dma_mapping_error(adpt->netdev->dev.parent, tpbuf->dma_addr); if (ret) goto error; TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr)); TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr)); TPD_BUF_LEN_SET(tpd, tpbuf->length); emac_tx_tpd_create(adpt, tx_q, tpd); count++; } for (i = 0; i < nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; tpbuf = GET_TPD_BUFFER(tx_q, tx_q->tpd.produce_idx); tpbuf->length = skb_frag_size(frag); tpbuf->dma_addr = skb_frag_dma_map(adpt->netdev->dev.parent, frag, 0, tpbuf->length, DMA_TO_DEVICE); ret = dma_mapping_error(adpt->netdev->dev.parent, tpbuf->dma_addr); if (ret) goto error; TPD_BUFFER_ADDR_L_SET(tpd, lower_32_bits(tpbuf->dma_addr)); TPD_BUFFER_ADDR_H_SET(tpd, upper_32_bits(tpbuf->dma_addr)); TPD_BUF_LEN_SET(tpd, tpbuf->length); emac_tx_tpd_create(adpt, tx_q, tpd); count++; } /* The last tpd */ wmb(); emac_tx_tpd_mark_last(adpt, tx_q); /* The last buffer info contain the skb address, * so it will be freed after unmap */ tpbuf->skb = skb; return; error: /* One of the memory mappings failed, so undo everything */ tx_q->tpd.produce_idx = first; while (count--) { tpbuf = GET_TPD_BUFFER(tx_q, first); dma_unmap_page(adpt->netdev->dev.parent, tpbuf->dma_addr, tpbuf->length, DMA_TO_DEVICE); tpbuf->dma_addr = 0; tpbuf->length = 0; if (++first == tx_q->tpd.count) first = 0; } dev_kfree_skb(skb); } /* Transmit the packet using specified transmit queue */ int emac_mac_tx_buf_send(struct emac_adapter *adpt, struct emac_tx_queue *tx_q, struct sk_buff *skb) { struct emac_tpd tpd; u32 prod_idx; memset(&tpd, 0, sizeof(tpd)); if (emac_tso_csum(adpt, tx_q, skb, &tpd) != 0) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } if (skb_vlan_tag_present(skb)) { u16 tag; EMAC_VLAN_TO_TAG(skb_vlan_tag_get(skb), tag); TPD_CVLAN_TAG_SET(&tpd, tag); TPD_INSTC_SET(&tpd, 1); } if (skb_network_offset(skb) != ETH_HLEN) TPD_TYP_SET(&tpd, 1); emac_tx_fill_tpd(adpt, tx_q, skb, &tpd); netdev_sent_queue(adpt->netdev, skb->len); /* Make sure the are enough free descriptors to hold one * maximum-sized SKB. We need one desc for each fragment, * one for the checksum (emac_tso_csum), one for TSO, and * and one for the SKB header. */ if (emac_tpd_num_free_descs(tx_q) < (MAX_SKB_FRAGS + 3)) netif_stop_queue(adpt->netdev); /* update produce idx */ prod_idx = (tx_q->tpd.produce_idx << tx_q->produce_shift) & tx_q->produce_mask; emac_reg_update32(adpt->base + tx_q->produce_reg, tx_q->produce_mask, prod_idx); return NETDEV_TX_OK; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1