Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ben Hutchings | 6255 | 62.57% | 38 | 45.24% |
Edward Cree | 1861 | 18.62% | 9 | 10.71% |
Bert Kenward | 1122 | 11.22% | 5 | 5.95% |
Jon Cooper | 275 | 2.75% | 9 | 10.71% |
Daniel Pieczko | 145 | 1.45% | 6 | 7.14% |
Robert Stonehouse | 86 | 0.86% | 3 | 3.57% |
Stuart Hodgson | 72 | 0.72% | 2 | 2.38% |
Steve Hodgson | 55 | 0.55% | 2 | 2.38% |
Alexandre Rames | 43 | 0.43% | 1 | 1.19% |
Matthew Slattery | 35 | 0.35% | 1 | 1.19% |
Kees Cook | 18 | 0.18% | 1 | 1.19% |
Shradha Shah | 13 | 0.13% | 1 | 1.19% |
Takashi Iwai | 6 | 0.06% | 1 | 1.19% |
Tomáš Pilař | 6 | 0.06% | 1 | 1.19% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.19% |
Boqun Feng | 1 | 0.01% | 1 | 1.19% |
Stephen Hemminger | 1 | 0.01% | 1 | 1.19% |
Rafael J. Wysocki | 1 | 0.01% | 1 | 1.19% |
Total | 9997 | 84 |
// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2008-2013 Solarflare Communications Inc. */ #include <linux/delay.h> #include <linux/moduleparam.h> #include <linux/atomic.h> #include "net_driver.h" #include "nic.h" #include "io.h" #include "farch_regs.h" #include "mcdi_pcol.h" /************************************************************************** * * Management-Controller-to-Driver Interface * ************************************************************************** */ #define MCDI_RPC_TIMEOUT (10 * HZ) /* A reboot/assertion causes the MCDI status word to be set after the * command word is set or a REBOOT event is sent. If we notice a reboot * via these mechanisms then wait 250ms for the status word to be set. */ #define MCDI_STATUS_DELAY_US 100 #define MCDI_STATUS_DELAY_COUNT 2500 #define MCDI_STATUS_SLEEP_MS \ (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000) #define SEQ_MASK \ EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) struct efx_mcdi_async_param { struct list_head list; unsigned int cmd; size_t inlen; size_t outlen; bool quiet; efx_mcdi_async_completer *complete; unsigned long cookie; /* followed by request/response buffer */ }; static void efx_mcdi_timeout_async(struct timer_list *t); static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, bool *was_attached_out); static bool efx_mcdi_poll_once(struct efx_nic *efx); static void efx_mcdi_abandon(struct efx_nic *efx); #ifdef CONFIG_SFC_MCDI_LOGGING static bool mcdi_logging_default; module_param(mcdi_logging_default, bool, 0644); MODULE_PARM_DESC(mcdi_logging_default, "Enable MCDI logging on newly-probed functions"); #endif int efx_mcdi_init(struct efx_nic *efx) { struct efx_mcdi_iface *mcdi; bool already_attached; int rc = -ENOMEM; efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL); if (!efx->mcdi) goto fail; mcdi = efx_mcdi(efx); mcdi->efx = efx; #ifdef CONFIG_SFC_MCDI_LOGGING /* consuming code assumes buffer is page-sized */ mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL); if (!mcdi->logging_buffer) goto fail1; mcdi->logging_enabled = mcdi_logging_default; #endif init_waitqueue_head(&mcdi->wq); init_waitqueue_head(&mcdi->proxy_rx_wq); spin_lock_init(&mcdi->iface_lock); mcdi->state = MCDI_STATE_QUIESCENT; mcdi->mode = MCDI_MODE_POLL; spin_lock_init(&mcdi->async_lock); INIT_LIST_HEAD(&mcdi->async_list); timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0); (void) efx_mcdi_poll_reboot(efx); mcdi->new_epoch = true; /* Recover from a failed assertion before probing */ rc = efx_mcdi_handle_assertion(efx); if (rc) goto fail2; /* Let the MC (and BMC, if this is a LOM) know that the driver * is loaded. We should do this before we reset the NIC. */ rc = efx_mcdi_drv_attach(efx, true, &already_attached); if (rc) { netif_err(efx, probe, efx->net_dev, "Unable to register driver with MCPU\n"); goto fail2; } if (already_attached) /* Not a fatal error */ netif_err(efx, probe, efx->net_dev, "Host already registered with MCPU\n"); if (efx->mcdi->fn_flags & (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) efx->primary = efx; return 0; fail2: #ifdef CONFIG_SFC_MCDI_LOGGING free_page((unsigned long)mcdi->logging_buffer); fail1: #endif kfree(efx->mcdi); efx->mcdi = NULL; fail: return rc; } void efx_mcdi_detach(struct efx_nic *efx) { if (!efx->mcdi) return; BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT); /* Relinquish the device (back to the BMC, if this is a LOM) */ efx_mcdi_drv_attach(efx, false, NULL); } void efx_mcdi_fini(struct efx_nic *efx) { if (!efx->mcdi) return; #ifdef CONFIG_SFC_MCDI_LOGGING free_page((unsigned long)efx->mcdi->iface.logging_buffer); #endif kfree(efx->mcdi); } static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd, const efx_dword_t *inbuf, size_t inlen) { struct efx_mcdi_iface *mcdi = efx_mcdi(efx); #ifdef CONFIG_SFC_MCDI_LOGGING char *buf = mcdi->logging_buffer; /* page-sized */ #endif efx_dword_t hdr[2]; size_t hdr_len; u32 xflags, seqno; BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT); /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ spin_lock_bh(&mcdi->iface_lock); ++mcdi->seqno; spin_unlock_bh(&mcdi->iface_lock); seqno = mcdi->seqno & SEQ_MASK; xflags = 0; if (mcdi->mode == MCDI_MODE_EVENTS) xflags |= MCDI_HEADER_XFLAGS_EVREQ; if (efx->type->mcdi_max_ver == 1) { /* MCDI v1 */ EFX_POPULATE_DWORD_7(hdr[0], MCDI_HEADER_RESPONSE, 0, MCDI_HEADER_RESYNC, 1, MCDI_HEADER_CODE, cmd, MCDI_HEADER_DATALEN, inlen, MCDI_HEADER_SEQ, seqno, MCDI_HEADER_XFLAGS, xflags, MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); hdr_len = 4; } else { /* MCDI v2 */ BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2); EFX_POPULATE_DWORD_7(hdr[0], MCDI_HEADER_RESPONSE, 0, MCDI_HEADER_RESYNC, 1, MCDI_HEADER_CODE, MC_CMD_V2_EXTN, MCDI_HEADER_DATALEN, 0, MCDI_HEADER_SEQ, seqno, MCDI_HEADER_XFLAGS, xflags, MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); EFX_POPULATE_DWORD_2(hdr[1], MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd, MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen); hdr_len = 8; } #ifdef CONFIG_SFC_MCDI_LOGGING if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { int bytes = 0; int i; /* Lengths should always be a whole number of dwords, so scream * if they're not. */ WARN_ON_ONCE(hdr_len % 4); WARN_ON_ONCE(inlen % 4); /* We own the logging buffer, as only one MCDI can be in * progress on a NIC at any one time. So no need for locking. */ for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++) bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, " %08x", le32_to_cpu(hdr[i].u32[0])); for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++) bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, " %08x", le32_to_cpu(inbuf[i].u32[0])); netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf); } #endif efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen); mcdi->new_epoch = false; } static int efx_mcdi_errno(unsigned int mcdi_err) { switch (mcdi_err) { case 0: return 0; #define TRANSLATE_ERROR(name) \ case MC_CMD_ERR_ ## name: \ return -name; TRANSLATE_ERROR(EPERM); TRANSLATE_ERROR(ENOENT); TRANSLATE_ERROR(EINTR); TRANSLATE_ERROR(EAGAIN); TRANSLATE_ERROR(EACCES); TRANSLATE_ERROR(EBUSY); TRANSLATE_ERROR(EINVAL); TRANSLATE_ERROR(EDEADLK); TRANSLATE_ERROR(ENOSYS); TRANSLATE_ERROR(ETIME); TRANSLATE_ERROR(EALREADY); TRANSLATE_ERROR(ENOSPC); #undef TRANSLATE_ERROR case MC_CMD_ERR_ENOTSUP: return -EOPNOTSUPP; case MC_CMD_ERR_ALLOC_FAIL: return -ENOBUFS; case MC_CMD_ERR_MAC_EXIST: return -EADDRINUSE; default: return -EPROTO; } } static void efx_mcdi_read_response_header(struct efx_nic *efx) { struct efx_mcdi_iface *mcdi = efx_mcdi(efx); unsigned int respseq, respcmd, error; #ifdef CONFIG_SFC_MCDI_LOGGING char *buf = mcdi->logging_buffer; /* page-sized */ #endif efx_dword_t hdr; efx->type->mcdi_read_response(efx, &hdr, 0, 4); respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ); respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE); error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR); if (respcmd != MC_CMD_V2_EXTN) { mcdi->resp_hdr_len = 4; mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN); } else { efx->type->mcdi_read_response(efx, &hdr, 4, 4); mcdi->resp_hdr_len = 8; mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN); } #ifdef CONFIG_SFC_MCDI_LOGGING if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) { size_t hdr_len, data_len; int bytes = 0; int i; WARN_ON_ONCE(mcdi->resp_hdr_len % 4); hdr_len = mcdi->resp_hdr_len / 4; /* MCDI_DECLARE_BUF ensures that underlying buffer is padded * to dword size, and the MCDI buffer is always dword size */ data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4); /* We own the logging buffer, as only one MCDI can be in * progress on a NIC at any one time. So no need for locking. */ for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) { efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4); bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, " %08x", le32_to_cpu(hdr.u32[0])); } for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) { efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len + (i * 4), 4); bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, " %08x", le32_to_cpu(hdr.u32[0])); } netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf); } #endif mcdi->resprc_raw = 0; if (error && mcdi->resp_data_len == 0) { netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); mcdi->resprc = -EIO; } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { netif_err(efx, hw, efx->net_dev, "MC response mismatch tx seq 0x%x rx seq 0x%x\n", respseq, mcdi->seqno); mcdi->resprc = -EIO; } else if (error) { efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4); mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0); mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw); } else { mcdi->resprc = 0; } } static bool efx_mcdi_poll_once(struct efx_nic *efx) { struct efx_mcdi_iface *mcdi = efx_mcdi(efx); rmb(); if (!efx->type->mcdi_poll_response(efx)) return false; spin_lock_bh(&mcdi->iface_lock); efx_mcdi_read_response_header(efx); spin_unlock_bh(&mcdi->iface_lock); return true; } static int efx_mcdi_poll(struct efx_nic *efx) { struct efx_mcdi_iface *mcdi = efx_mcdi(efx); unsigned long time, finish; unsigned int spins; int rc; /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ rc = efx_mcdi_poll_reboot(efx); if (rc) { spin_lock_bh(&mcdi->iface_lock); mcdi->resprc = rc; mcdi->resp_hdr_len = 0; mcdi->resp_data_len = 0; spin_unlock_bh(&mcdi->iface_lock); return 0; } /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, * because generally mcdi responses are fast. After that, back off * and poll once a jiffy (approximately) */ spins = USER_TICK_USEC; finish = jiffies + MCDI_RPC_TIMEOUT; while (1) { if (spins != 0) { --spins; udelay(1); } else { schedule_timeout_uninterruptible(1); } time = jiffies; if (efx_mcdi_poll_once(efx)) break; if (time_after(time, finish)) return -ETIMEDOUT; } /* Return rc=0 like wait_event_timeout() */ return 0; } /* Test and clear MC-rebooted flag for this port/function; reset * software state as necessary. */ int efx_mcdi_poll_reboot(struct efx_nic *efx) { if (!efx->mcdi) return 0; return efx->type->mcdi_poll_reboot(efx); } static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi) { return cmpxchg(&mcdi->state, MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) == MCDI_STATE_QUIESCENT; } static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi) { /* Wait until the interface becomes QUIESCENT and we win the race * to mark it RUNNING_SYNC. */ wait_event(mcdi->wq, cmpxchg(&mcdi->state, MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) == MCDI_STATE_QUIESCENT); } static int efx_mcdi_await_completion(struct efx_nic *efx) { struct efx_mcdi_iface *mcdi = efx_mcdi(efx); if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED, MCDI_RPC_TIMEOUT) == 0) return -ETIMEDOUT; /* Check if efx_mcdi_set_mode() switched us back to polled completions. * In which case, poll for completions directly. If efx_mcdi_ev_cpl() * completed the request first, then we'll just end up completing the * request again, which is safe. * * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which * wait_event_timeout() implicitly provides. */ if (mcdi->mode == MCDI_MODE_POLL) return efx_mcdi_poll(efx); return 0; } /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the * requester. Return whether this was done. Does not take any locks. */ static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi) { if (cmpxchg(&mcdi->state, MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) == MCDI_STATE_RUNNING_SYNC) { wake_up(&mcdi->wq); return true; } return false; } static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) { if (mcdi->mode == MCDI_MODE_EVENTS) { struct efx_mcdi_async_param *async; struct efx_nic *efx = mcdi->efx; /* Process the asynchronous request queue */ spin_lock_bh(&mcdi->async_lock); async = list_first_entry_or_null( &mcdi->async_list, struct efx_mcdi_async_param, list); if (async) { mcdi->state = MCDI_STATE_RUNNING_ASYNC; efx_mcdi_send_request(efx, async->cmd, (const efx_dword_t *)(async + 1), async->inlen); mod_timer(&mcdi->async_timer, jiffies + MCDI_RPC_TIMEOUT); } spin_unlock_bh(&mcdi->async_lock); if (async) return; } mcdi->state = MCDI_STATE_QUIESCENT; wake_up(&mcdi->wq); } /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the * asynchronous completion function, and release the interface. * Return whether this was done. Must be called in bh-disabled * context. Will take iface_lock and async_lock. */ static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout) { struct efx_nic *efx = mcdi->efx; struct efx_mcdi_async_param *async; size_t hdr_len, data_len, err_len; efx_dword_t *outbuf; MCDI_DECLARE_BUF_ERR(errbuf); int rc; if (cmpxchg(&mcdi->state, MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) != MCDI_STATE_RUNNING_ASYNC) return false; spin_lock(&mcdi->iface_lock); if (timeout) { /* Ensure that if the completion event arrives later, * the seqno check in efx_mcdi_ev_cpl() will fail */ ++mcdi->seqno; ++mcdi->credits; rc = -ETIMEDOUT; hdr_len = 0; data_len = 0; } else { rc = mcdi->resprc; hdr_len = mcdi->resp_hdr_len; data_len = mcdi->resp_data_len; } spin_unlock(&mcdi->iface_lock); /* Stop the timer. In case the timer function is running, we * must wait for it to return so that there is no possibility * of it aborting the next request. */ if (!timeout) del_timer_sync(&mcdi->async_timer); spin_lock(&mcdi->async_lock); async = list_first_entry(&mcdi->async_list, struct efx_mcdi_async_param, list); list_del(&async->list); spin_unlock(&mcdi->async_lock); outbuf = (efx_dword_t *)(async + 1); efx->type->mcdi_read_response(efx, outbuf, hdr_len, min(async->outlen, data_len)); if (!timeout && rc && !async->quiet) { err_len = min(sizeof(errbuf), data_len); efx->type->mcdi_read_response(efx, errbuf, hdr_len, sizeof(errbuf)); efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf, err_len, rc); } if (async->complete) async->complete(efx, async->cookie, rc, outbuf, min(async->outlen, data_len)); kfree(async); efx_mcdi_release(mcdi); return true; } static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, unsigned int datalen, unsigned int mcdi_err) { struct efx_mcdi_iface *mcdi = efx_mcdi(efx); bool wake = false; spin_lock(&mcdi->iface_lock); if ((seqno ^ mcdi->seqno) & SEQ_MASK) { if (mcdi->credits) /* The request has been cancelled */ --mcdi->credits; else netif_err(efx, hw, efx->net_dev, "MC response mismatch tx seq 0x%x rx " "seq 0x%x\n", seqno, mcdi->seqno); } else { if (efx->type->mcdi_max_ver >= 2) { /* MCDI v2 responses don't fit in an event */ efx_mcdi_read_response_header(efx); } else { mcdi->resprc = efx_mcdi_errno(mcdi_err); mcdi->resp_hdr_len = 4; mcdi->resp_data_len = datalen; } wake = true; } spin_unlock(&mcdi->iface_lock); if (wake) { if (!efx_mcdi_complete_async(mcdi, false)) (void) efx_mcdi_complete_sync(mcdi); /* If the interface isn't RUNNING_ASYNC or * RUNNING_SYNC then we've received a duplicate * completion after we've already transitioned back to * QUIESCENT. [A subsequent invocation would increment * seqno, so would have failed the seqno check]. */ } } static void efx_mcdi_timeout_async(struct timer_list *t) { struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer); efx_mcdi_complete_async(mcdi, true); } static int efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen) { if (efx->type->mcdi_max_ver < 0 || (efx->type->mcdi_max_ver < 2 && cmd > MC_CMD_CMD_SPACE_ESCAPE_7)) return -EINVAL; if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 || (efx->type->mcdi_max_ver < 2 && inlen > MCDI_CTL_SDU_LEN_MAX_V1)) return -EMSGSIZE; return 0; } static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx, size_t hdr_len, size_t data_len, u32 *proxy_handle) { MCDI_DECLARE_BUF_ERR(testbuf); const size_t buflen = sizeof(testbuf); if (!proxy_handle || data_len < buflen) return false; efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen); if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) { *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE); return true; } return false; } static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd, size_t inlen, efx_dword_t *outbuf, size_t outlen, size_t *outlen_actual, bool quiet, u32 *proxy_handle, int *raw_rc) { struct efx_mcdi_iface *mcdi = efx_mcdi(efx); MCDI_DECLARE_BUF_ERR(errbuf); int rc; if (mcdi->mode == MCDI_MODE_POLL) rc = efx_mcdi_poll(efx); else rc = efx_mcdi_await_completion(efx); if (rc != 0) { netif_err(efx, hw, efx->net_dev, "MC command 0x%x inlen %d mode %d timed out\n", cmd, (int)inlen, mcdi->mode); if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) { netif_err(efx, hw, efx->net_dev, "MCDI request was completed without an event\n"); rc = 0; } efx_mcdi_abandon(efx); /* Close the race with efx_mcdi_ev_cpl() executing just too late * and completing a request we've just cancelled, by ensuring * that the seqno check therein fails. */ spin_lock_bh(&mcdi->iface_lock); ++mcdi->seqno; ++mcdi->credits; spin_unlock_bh(&mcdi->iface_lock); } if (proxy_handle) *proxy_handle = 0; if (rc != 0) { if (outlen_actual) *outlen_actual = 0; } else { size_t hdr_len, data_len, err_len; /* At the very least we need a memory barrier here to ensure * we pick up changes from efx_mcdi_ev_cpl(). Protect against * a spurious efx_mcdi_ev_cpl() running concurrently by * acquiring the iface_lock. */ spin_lock_bh(&mcdi->iface_lock); rc = mcdi->resprc; if (raw_rc) *raw_rc = mcdi->resprc_raw; hdr_len = mcdi->resp_hdr_len; data_len = mcdi->resp_data_len; err_len = min(sizeof(errbuf), data_len); spin_unlock_bh(&mcdi->iface_lock); BUG_ON(rc > 0); efx->type->mcdi_read_response(efx, outbuf, hdr_len, min(outlen, data_len)); if (outlen_actual) *outlen_actual = data_len; efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len); if (cmd == MC_CMD_REBOOT && rc == -EIO) { /* Don't reset if MC_CMD_REBOOT returns EIO */ } else if (rc == -EIO || rc == -EINTR) { netif_err(efx, hw, efx->net_dev, "MC reboot detected\n"); netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n", cmd, -rc); if (efx->type->mcdi_reboot_detected) efx->type->mcdi_reboot_detected(efx); efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); } else if (proxy_handle && (rc == -EPROTO) && efx_mcdi_get_proxy_handle(efx, hdr_len, data_len, proxy_handle)) { mcdi->proxy_rx_status = 0; mcdi->proxy_rx_handle = 0; mcdi->state = MCDI_STATE_PROXY_WAIT; } else if (rc && !quiet) { efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len, rc); } if (rc == -EIO || rc == -EINTR) { msleep(MCDI_STATUS_SLEEP_MS); efx_mcdi_poll_reboot(efx); mcdi->new_epoch = true; } } if (!proxy_handle || !*proxy_handle) efx_mcdi_release(mcdi); return rc; } static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi) { if (mcdi->state == MCDI_STATE_PROXY_WAIT) { /* Interrupt the proxy wait. */ mcdi->proxy_rx_status = -EINTR; wake_up(&mcdi->proxy_rx_wq); } } static void efx_mcdi_ev_proxy_response(struct efx_nic *efx, u32 handle, int status) { struct efx_mcdi_iface *mcdi = efx_mcdi(efx); WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT); mcdi->proxy_rx_status = efx_mcdi_errno(status); /* Ensure the status is written before we update the handle, since the * latter is used to check if we've finished. */ wmb(); mcdi->proxy_rx_handle = handle; wake_up(&mcdi->proxy_rx_wq); } static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet) { struct efx_mcdi_iface *mcdi = efx_mcdi(efx); int rc; /* Wait for a proxy event, or timeout. */ rc = wait_event_timeout(mcdi->proxy_rx_wq, mcdi->proxy_rx_handle != 0 || mcdi->proxy_rx_status == -EINTR, MCDI_RPC_TIMEOUT); if (rc <= 0) { netif_dbg(efx, hw, efx->net_dev, "MCDI proxy timeout %d\n", handle); return -ETIMEDOUT; } else if (mcdi->proxy_rx_handle != handle) { netif_warn(efx, hw, efx->net_dev, "MCDI proxy unexpected handle %d (expected %d)\n", mcdi->proxy_rx_handle, handle); return -EINVAL; } return mcdi->proxy_rx_status; } static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd, const efx_dword_t *inbuf, size_t inlen, efx_dword_t *outbuf, size_t outlen, size_t *outlen_actual, bool quiet, int *raw_rc) { u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */ int rc; if (inbuf && inlen && (inbuf == outbuf)) { /* The input buffer can't be aliased with the output. */ WARN_ON(1); return -EINVAL; } rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen); if (rc) return rc; rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, outlen_actual, quiet, &proxy_handle, raw_rc); if (proxy_handle) { /* Handle proxy authorisation. This allows approval of MCDI * operations to be delegated to the admin function, allowing * fine control over (eg) multicast subscriptions. */ struct efx_mcdi_iface *mcdi = efx_mcdi(efx); netif_dbg(efx, hw, efx->net_dev, "MCDI waiting for proxy auth %d\n", proxy_handle); rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet); if (rc == 0) { netif_dbg(efx, hw, efx->net_dev, "MCDI proxy retry %d\n", proxy_handle); /* We now retry the original request. */ mcdi->state = MCDI_STATE_RUNNING_SYNC; efx_mcdi_send_request(efx, cmd, inbuf, inlen); rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, outlen_actual, quiet, NULL, raw_rc); } else { netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err, "MC command 0x%x failed after proxy auth rc=%d\n", cmd, rc); if (rc == -EINTR || rc == -EIO) efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); efx_mcdi_release(mcdi); } } return rc; } static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd, const efx_dword_t *inbuf, size_t inlen, efx_dword_t *outbuf, size_t outlen, size_t *outlen_actual, bool quiet) { int raw_rc = 0; int rc; rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen, outlen_actual, true, &raw_rc); if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && efx->type->is_vf) { /* If the EVB port isn't available within a VF this may * mean the PF is still bringing the switch up. We should * retry our request shortly. */ unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT; unsigned int delay_us = 10000; netif_dbg(efx, hw, efx->net_dev, "%s: NO_EVB_PORT; will retry request\n", __func__); do { usleep_range(delay_us, delay_us + 10000); rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen, outlen_actual, true, &raw_rc); if (delay_us < 100000) delay_us <<= 1; } while ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) && time_before(jiffies, abort_time)); } if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO)) efx_mcdi_display_error(efx, cmd, inlen, outbuf, outlen, rc); return rc; } /** * efx_mcdi_rpc - Issue an MCDI command and wait for completion * @efx: NIC through which to issue the command * @cmd: Command type number * @inbuf: Command parameters * @inlen: Length of command parameters, in bytes. Must be a multiple * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1. * @outbuf: Response buffer. May be %NULL if @outlen is 0. * @outlen: Length of response buffer, in bytes. If the actual * response is longer than @outlen & ~3, it will be truncated * to that length. * @outlen_actual: Pointer through which to return the actual response * length. May be %NULL if this is not needed. * * This function may sleep and therefore must be called in an appropriate * context. * * Return: A negative error code, or zero if successful. The error * code may come from the MCDI response or may indicate a failure * to communicate with the MC. In the former case, the response * will still be copied to @outbuf and *@outlen_actual will be * set accordingly. In the latter case, *@outlen_actual will be * set to zero. */ int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, const efx_dword_t *inbuf, size_t inlen, efx_dword_t *outbuf, size_t outlen, size_t *outlen_actual) { return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, outlen_actual, false); } /* Normally, on receiving an error code in the MCDI response, * efx_mcdi_rpc will log an error message containing (among other * things) the raw error code, by means of efx_mcdi_display_error. * This _quiet version suppresses that; if the caller wishes to log * the error conditionally on the return code, it should call this * function and is then responsible for calling efx_mcdi_display_error * as needed. */ int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd, const efx_dword_t *inbuf, size_t inlen, efx_dword_t *outbuf, size_t outlen, size_t *outlen_actual) { return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen, outlen_actual, true); } int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, const efx_dword_t *inbuf, size_t inlen) { struct efx_mcdi_iface *mcdi = efx_mcdi(efx); int rc; rc = efx_mcdi_check_supported(efx, cmd, inlen); if (rc) return rc; if (efx->mc_bist_for_other_fn) return -ENETDOWN; if (mcdi->mode == MCDI_MODE_FAIL) return -ENETDOWN; efx_mcdi_acquire_sync(mcdi); efx_mcdi_send_request(efx, cmd, inbuf, inlen); return 0; } static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, const efx_dword_t *inbuf, size_t inlen, size_t outlen, efx_mcdi_async_completer *complete, unsigned long cookie, bool quiet) { struct efx_mcdi_iface *mcdi = efx_mcdi(efx); struct efx_mcdi_async_param *async; int rc; rc = efx_mcdi_check_supported(efx, cmd, inlen); if (rc) return rc; if (efx->mc_bist_for_other_fn) return -ENETDOWN; async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4), GFP_ATOMIC); if (!async) return -ENOMEM; async->cmd = cmd; async->inlen = inlen; async->outlen = outlen; async->quiet = quiet; async->complete = complete; async->cookie = cookie; memcpy(async + 1, inbuf, inlen); spin_lock_bh(&mcdi->async_lock); if (mcdi->mode == MCDI_MODE_EVENTS) { list_add_tail(&async->list, &mcdi->async_list); /* If this is at the front of the queue, try to start it * immediately */ if (mcdi->async_list.next == &async->list && efx_mcdi_acquire_async(mcdi)) { efx_mcdi_send_request(efx, cmd, inbuf, inlen); mod_timer(&mcdi->async_timer, jiffies + MCDI_RPC_TIMEOUT); } } else { kfree(async); rc = -ENETDOWN; } spin_unlock_bh(&mcdi->async_lock); return rc; } /** * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously * @efx: NIC through which to issue the command * @cmd: Command type number * @inbuf: Command parameters * @inlen: Length of command parameters, in bytes * @outlen: Length to allocate for response buffer, in bytes * @complete: Function to be called on completion or cancellation. * @cookie: Arbitrary value to be passed to @complete. * * This function does not sleep and therefore may be called in atomic * context. It will fail if event queues are disabled or if MCDI * event completions have been disabled due to an error. * * If it succeeds, the @complete function will be called exactly once * in atomic context, when one of the following occurs: * (a) the completion event is received (in NAPI context) * (b) event queues are disabled (in the process that disables them) * (c) the request times-out (in timer context) */ int efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, const efx_dword_t *inbuf, size_t inlen, size_t outlen, efx_mcdi_async_completer *complete, unsigned long cookie) { return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, cookie, false); } int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd, const efx_dword_t *inbuf, size_t inlen, size_t outlen, efx_mcdi_async_completer *complete, unsigned long cookie) { return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, cookie, true); } int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, efx_dword_t *outbuf, size_t outlen, size_t *outlen_actual) { return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, outlen_actual, false, NULL, NULL); } int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen, efx_dword_t *outbuf, size_t outlen, size_t *outlen_actual) { return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, outlen_actual, true, NULL, NULL); } void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd, size_t inlen, efx_dword_t *outbuf, size_t outlen, int rc) { int code = 0, err_arg = 0; if (outlen >= MC_CMD_ERR_CODE_OFST + 4) code = MCDI_DWORD(outbuf, ERR_CODE); if (outlen >= MC_CMD_ERR_ARG_OFST + 4) err_arg = MCDI_DWORD(outbuf, ERR_ARG); netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err, "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n", cmd, inlen, rc, code, err_arg); } /* Switch to polled MCDI completions. This can be called in various * error conditions with various locks held, so it must be lockless. * Caller is responsible for flushing asynchronous requests later. */ void efx_mcdi_mode_poll(struct efx_nic *efx) { struct efx_mcdi_iface *mcdi; if (!efx->mcdi) return; mcdi = efx_mcdi(efx); /* If already in polling mode, nothing to do. * If in fail-fast state, don't switch to polled completion. * FLR recovery will do that later. */ if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL) return; /* We can switch from event completion to polled completion, because * mcdi requests are always completed in shared memory. We do this by * switching the mode to POLL'd then completing the request. * efx_mcdi_await_completion() will then call efx_mcdi_poll(). * * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), * which efx_mcdi_complete_sync() provides for us. */ mcdi->mode = MCDI_MODE_POLL; efx_mcdi_complete_sync(mcdi); } /* Flush any running or queued asynchronous requests, after event processing * is stopped */ void efx_mcdi_flush_async(struct efx_nic *efx) { struct efx_mcdi_async_param *async, *next; struct efx_mcdi_iface *mcdi; if (!efx->mcdi) return; mcdi = efx_mcdi(efx); /* We must be in poll or fail mode so no more requests can be queued */ BUG_ON(mcdi->mode == MCDI_MODE_EVENTS); del_timer_sync(&mcdi->async_timer); /* If a request is still running, make sure we give the MC * time to complete it so that the response won't overwrite our * next request. */ if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) { efx_mcdi_poll(efx); mcdi->state = MCDI_STATE_QUIESCENT; } /* Nothing else will access the async list now, so it is safe * to walk it without holding async_lock. If we hold it while * calling a completer then lockdep may warn that we have * acquired locks in the wrong order. */ list_for_each_entry_safe(async, next, &mcdi->async_list, list) { if (async->complete) async->complete(efx, async->cookie, -ENETDOWN, NULL, 0); list_del(&async->list); kfree(async); } } void efx_mcdi_mode_event(struct efx_nic *efx) { struct efx_mcdi_iface *mcdi; if (!efx->mcdi) return; mcdi = efx_mcdi(efx); /* If already in event completion mode, nothing to do. * If in fail-fast state, don't switch to event completion. FLR * recovery will do that later. */ if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL) return; /* We can't switch from polled to event completion in the middle of a * request, because the completion method is specified in the request. * So acquire the interface to serialise the requestors. We don't need * to acquire the iface_lock to change the mode here, but we do need a * write memory barrier ensure that efx_mcdi_rpc() sees it, which * efx_mcdi_acquire() provides. */ efx_mcdi_acquire_sync(mcdi); mcdi->mode = MCDI_MODE_EVENTS; efx_mcdi_release(mcdi); } static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) { struct efx_mcdi_iface *mcdi = efx_mcdi(efx); /* If there is an outstanding MCDI request, it has been terminated * either by a BADASSERT or REBOOT event. If the mcdi interface is * in polled mode, then do nothing because the MC reboot handler will * set the header correctly. However, if the mcdi interface is waiting * for a CMDDONE event it won't receive it [and since all MCDI events * are sent to the same queue, we can't be racing with * efx_mcdi_ev_cpl()] * * If there is an outstanding asynchronous request, we can't * complete it now (efx_mcdi_complete() would deadlock). The * reset process will take care of this. * * There's a race here with efx_mcdi_send_request(), because * we might receive a REBOOT event *before* the request has * been copied out. In polled mode (during startup) this is * irrelevant, because efx_mcdi_complete_sync() is ignored. In * event mode, this condition is just an edge-case of * receiving a REBOOT event after posting the MCDI * request. Did the mc reboot before or after the copyout? The * best we can do always is just return failure. * * If there is an outstanding proxy response expected it is not going * to arrive. We should thus abort it. */ spin_lock(&mcdi->iface_lock); efx_mcdi_proxy_abort(mcdi); if (efx_mcdi_complete_sync(mcdi)) { if (mcdi->mode == MCDI_MODE_EVENTS) { mcdi->resprc = rc; mcdi->resp_hdr_len = 0; mcdi->resp_data_len = 0; ++mcdi->credits; } } else { int count; /* Consume the status word since efx_mcdi_rpc_finish() won't */ for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) { rc = efx_mcdi_poll_reboot(efx); if (rc) break; udelay(MCDI_STATUS_DELAY_US); } /* On EF10, a CODE_MC_REBOOT event can be received without the * reboot detection in efx_mcdi_poll_reboot() being triggered. * If zero was returned from the final call to * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the * MC has definitely rebooted so prepare for the reset. */ if (!rc && efx->type->mcdi_reboot_detected) efx->type->mcdi_reboot_detected(efx); mcdi->new_epoch = true; /* Nobody was waiting for an MCDI request, so trigger a reset */ efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); } spin_unlock(&mcdi->iface_lock); } /* The MC is going down in to BIST mode. set the BIST flag to block * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset * (which doesn't actually execute a reset, it waits for the controlling * function to reset it). */ static void efx_mcdi_ev_bist(struct efx_nic *efx) { struct efx_mcdi_iface *mcdi = efx_mcdi(efx); spin_lock(&mcdi->iface_lock); efx->mc_bist_for_other_fn = true; efx_mcdi_proxy_abort(mcdi); if (efx_mcdi_complete_sync(mcdi)) { if (mcdi->mode == MCDI_MODE_EVENTS) { mcdi->resprc = -EIO; mcdi->resp_hdr_len = 0; mcdi->resp_data_len = 0; ++mcdi->credits; } } mcdi->new_epoch = true; efx_schedule_reset(efx, RESET_TYPE_MC_BIST); spin_unlock(&mcdi->iface_lock); } /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try * to recover. */ static void efx_mcdi_abandon(struct efx_nic *efx) { struct efx_mcdi_iface *mcdi = efx_mcdi(efx); if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL) return; /* it had already been done */ netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n"); efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT); } /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */ void efx_mcdi_process_event(struct efx_channel *channel, efx_qword_t *event) { struct efx_nic *efx = channel->efx; int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); switch (code) { case MCDI_EVENT_CODE_BADSSERT: netif_err(efx, hw, efx->net_dev, "MC watchdog or assertion failure at 0x%x\n", data); efx_mcdi_ev_death(efx, -EINTR); break; case MCDI_EVENT_CODE_PMNOTICE: netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); break; case MCDI_EVENT_CODE_CMDDONE: efx_mcdi_ev_cpl(efx, MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); break; case MCDI_EVENT_CODE_LINKCHANGE: efx_mcdi_process_link_change(efx, event); break; case MCDI_EVENT_CODE_SENSOREVT: efx_mcdi_sensor_event(efx, event); break; case MCDI_EVENT_CODE_SCHEDERR: netif_dbg(efx, hw, efx->net_dev, "MC Scheduler alert (0x%x)\n", data); break; case MCDI_EVENT_CODE_REBOOT: case MCDI_EVENT_CODE_MC_REBOOT: netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); efx_mcdi_ev_death(efx, -EIO); break; case MCDI_EVENT_CODE_MC_BIST: netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n"); efx_mcdi_ev_bist(efx); break; case MCDI_EVENT_CODE_MAC_STATS_DMA: /* MAC stats are gather lazily. We can ignore this. */ break; case MCDI_EVENT_CODE_FLR: if (efx->type->sriov_flr) efx->type->sriov_flr(efx, MCDI_EVENT_FIELD(*event, FLR_VF)); break; case MCDI_EVENT_CODE_PTP_RX: case MCDI_EVENT_CODE_PTP_FAULT: case MCDI_EVENT_CODE_PTP_PPS: efx_ptp_event(efx, event); break; case MCDI_EVENT_CODE_PTP_TIME: efx_time_sync_event(channel, event); break; case MCDI_EVENT_CODE_TX_FLUSH: case MCDI_EVENT_CODE_RX_FLUSH: /* Two flush events will be sent: one to the same event * queue as completions, and one to event queue 0. * In the latter case the {RX,TX}_FLUSH_TO_DRIVER * flag will be set, and we should ignore the event * because we want to wait for all completions. */ BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN != MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN); if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER)) efx_ef10_handle_drain_event(efx); break; case MCDI_EVENT_CODE_TX_ERR: case MCDI_EVENT_CODE_RX_ERR: netif_err(efx, hw, efx->net_dev, "%s DMA error (event: "EFX_QWORD_FMT")\n", code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX", EFX_QWORD_VAL(*event)); efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); break; case MCDI_EVENT_CODE_PROXY_RESPONSE: efx_mcdi_ev_proxy_response(efx, MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE), MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC)); break; default: netif_err(efx, hw, efx->net_dev, "Unknown MCDI event " EFX_QWORD_FMT "\n", EFX_QWORD_VAL(*event)); } } /************************************************************************** * * Specific request functions * ************************************************************************** */ void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN); size_t outlength; const __le16 *ver_words; size_t offset; int rc; BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, outbuf, sizeof(outbuf), &outlength); if (rc) goto fail; if (outlength < MC_CMD_GET_VERSION_OUT_LEN) { rc = -EIO; goto fail; } ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); offset = scnprintf(buf, len, "%u.%u.%u.%u", le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]), le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3])); /* EF10 may have multiple datapath firmware variants within a * single version. Report which variants are running. */ if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) { struct efx_ef10_nic_data *nic_data = efx->nic_data; offset += scnprintf(buf + offset, len - offset, " rx%x tx%x", nic_data->rx_dpcpu_fw_id, nic_data->tx_dpcpu_fw_id); /* It's theoretically possible for the string to exceed 31 * characters, though in practice the first three version * components are short enough that this doesn't happen. */ if (WARN_ON(offset >= len)) buf[0] = 0; } return; fail: netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); buf[0] = 0; } static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, bool *was_attached) { MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); size_t outlen; int rc; MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, driver_operating ? 1 : 0); MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID * specified will fail with EPERM, and we have to tell the MC we don't * care what firmware we get. */ if (rc == -EPERM) { netif_dbg(efx, probe, efx->net_dev, "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n"); MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_DONT_CARE); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); } if (rc) { efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf), outbuf, outlen, rc); goto fail; } if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { rc = -EIO; goto fail; } if (driver_operating) { if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { efx->mcdi->fn_flags = MCDI_DWORD(outbuf, DRV_ATTACH_EXT_OUT_FUNC_FLAGS); } else { /* Synthesise flags for Siena */ efx->mcdi->fn_flags = 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED | (efx_port_num(efx) == 0) << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY; } } /* We currently assume we have control of the external link * and are completely trusted by firmware. Abort probing * if that's not true for this function. */ if (was_attached != NULL) *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); return 0; fail: netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); return rc; } int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, u16 *fw_subtype_list, u32 *capabilities) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX); size_t outlen, i; int port_num = efx_port_num(efx); int rc; BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); /* we need __aligned(2) for ether_addr_copy */ BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1); BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1); rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) goto fail; if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { rc = -EIO; goto fail; } if (mac_address) ether_addr_copy(mac_address, port_num ? MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) : MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0)); if (fw_subtype_list) { for (i = 0; i < MCDI_VAR_ARRAY_LEN(outlen, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST); i++) fw_subtype_list[i] = MCDI_ARRAY_WORD( outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i); for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++) fw_subtype_list[i] = 0; } if (capabilities) { if (port_num) *capabilities = MCDI_DWORD(outbuf, GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); else *capabilities = MCDI_DWORD(outbuf, GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); } return 0; fail: netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", __func__, rc, (int)outlen); return rc; } int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq) { MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN); u32 dest = 0; int rc; if (uart) dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; if (evq) dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), NULL, 0, NULL); return rc; } int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) { MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN); size_t outlen; int rc; BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) goto fail; if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { rc = -EIO; goto fail; } *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); return 0; fail: netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); return rc; } int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, size_t *size_out, size_t *erase_size_out, bool *protected_out) { MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN); size_t outlen; int rc; MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc) goto fail; if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { rc = -EIO; goto fail; } *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN)); return 0; fail: netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); return rc; } static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) { MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN); int rc; MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), NULL); if (rc) return rc; switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { case MC_CMD_NVRAM_TEST_PASS: case MC_CMD_NVRAM_TEST_NOTSUPP: return 0; default: return -EIO; } } int efx_mcdi_nvram_test_all(struct efx_nic *efx) { u32 nvram_types; unsigned int type; int rc; rc = efx_mcdi_nvram_types(efx, &nvram_types); if (rc) goto fail1; type = 0; while (nvram_types != 0) { if (nvram_types & 1) { rc = efx_mcdi_nvram_test(efx, type); if (rc) goto fail2; } type++; nvram_types >>= 1; } return 0; fail2: netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", __func__, type); fail1: netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); return rc; } /* Returns 1 if an assertion was read, 0 if no assertion had fired, * negative on error. */ static int efx_mcdi_read_assertion(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN); unsigned int flags, index; const char *reason; size_t outlen; int retry; int rc; /* Attempt to read any stored assertion state before we reboot * the mcfw out of the assertion handler. Retry twice, once * because a boot-time assertion might cause this command to fail * with EINTR. And once again because GET_ASSERTS can race with * MC_CMD_REBOOT running on the other port. */ retry = 2; do { MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS, inbuf, MC_CMD_GET_ASSERTS_IN_LEN, outbuf, sizeof(outbuf), &outlen); if (rc == -EPERM) return 0; } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); if (rc) { efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS, MC_CMD_GET_ASSERTS_IN_LEN, outbuf, outlen, rc); return rc; } if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) return -EIO; /* Print out any recorded assertion state */ flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) return 0; reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) ? "system-level assertion" : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) ? "thread-level assertion" : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) ? "watchdog reset" : "unknown assertion"; netif_err(efx, hw, efx->net_dev, "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); /* Print out the registers */ for (index = 0; index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; index++) netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", 1 + index, MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS, index)); return 1; } static int efx_mcdi_exit_assertion(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); int rc; /* If the MC is running debug firmware, it might now be * waiting for a debugger to attach, but we just want it to * reboot. We set a flag that makes the command a no-op if it * has already done so. * The MCDI will thus return either 0 or -EIO. */ BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN, NULL, 0, NULL); if (rc == -EIO) rc = 0; if (rc) efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN, NULL, 0, rc); return rc; } int efx_mcdi_handle_assertion(struct efx_nic *efx) { int rc; rc = efx_mcdi_read_assertion(efx); if (rc <= 0) return rc; return efx_mcdi_exit_assertion(efx); } void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) { MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN); int rc; BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), NULL, 0, NULL); } static int efx_mcdi_reset_func(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN); int rc; BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0); MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG, ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf), NULL, 0, NULL); return rc; } static int efx_mcdi_reset_mc(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); int rc; BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), NULL, 0, NULL); /* White is black, and up is down */ if (rc == -EIO) return 0; if (rc == 0) rc = -EIO; return rc; } enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason) { return RESET_TYPE_RECOVER_OR_ALL; } int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method) { int rc; /* If MCDI is down, we can't handle_assertion */ if (method == RESET_TYPE_MCDI_TIMEOUT) { rc = pci_reset_function(efx->pci_dev); if (rc) return rc; /* Re-enable polled MCDI completion */ if (efx->mcdi) { struct efx_mcdi_iface *mcdi = efx_mcdi(efx); mcdi->mode = MCDI_MODE_POLL; } return 0; } /* Recover from a failed assertion pre-reset */ rc = efx_mcdi_handle_assertion(efx); if (rc) return rc; if (method == RESET_TYPE_DATAPATH) return 0; else if (method == RESET_TYPE_WORLD) return efx_mcdi_reset_mc(efx); else return efx_mcdi_reset_func(efx); } static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, const u8 *mac, int *id_out) { MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN); size_t outlen; int rc; MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, MC_CMD_FILTER_MODE_SIMPLE); ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac); rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc) goto fail; if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { rc = -EIO; goto fail; } *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); return 0; fail: *id_out = -1; netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); return rc; } int efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out) { return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); } int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out) { MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN); size_t outlen; int rc; rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) goto fail; if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) { rc = -EIO; goto fail; } *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID); return 0; fail: *id_out = -1; netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); return rc; } int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id) { MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN); int rc; MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf), NULL, 0, NULL); return rc; } int efx_mcdi_flush_rxqs(struct efx_nic *efx) { struct efx_channel *channel; struct efx_rx_queue *rx_queue; MCDI_DECLARE_BUF(inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS)); int rc, count; BUILD_BUG_ON(EFX_MAX_CHANNELS > MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); count = 0; efx_for_each_channel(channel, efx) { efx_for_each_channel_rx_queue(rx_queue, channel) { if (rx_queue->flush_pending) { rx_queue->flush_pending = false; atomic_dec(&efx->rxq_flush_pending); MCDI_SET_ARRAY_DWORD( inbuf, FLUSH_RX_QUEUES_IN_QID_OFST, count, efx_rx_queue_index(rx_queue)); count++; } } } rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf, MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL); WARN_ON(rc < 0); return rc; } int efx_mcdi_wol_filter_reset(struct efx_nic *efx) { int rc; rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL); return rc; } int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled, unsigned int *flags) { MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN); size_t outlen; int rc; BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0); MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type); MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled); rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc) return rc; if (!flags) return 0; if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN) *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS); else *flags = 0; return 0; } int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out, unsigned int *enabled_out) { MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN); size_t outlen; int rc; rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0, outbuf, sizeof(outbuf), &outlen); if (rc) goto fail; if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) { rc = -EIO; goto fail; } if (impl_out) *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED); if (enabled_out) *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED); return 0; fail: /* Older firmware lacks GET_WORKAROUNDS and this isn't especially * terrifying. The call site will have to deal with it though. */ netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err, "%s: failed rc=%d\n", __func__, rc); return rc; } #ifdef CONFIG_SFC_MTD #define EFX_MCDI_NVRAM_LEN_MAX 128 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) { MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN); int rc; MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS, NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT, 1); BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf), NULL, 0, NULL); return rc; } static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, loff_t offset, u8 *buffer, size_t length) { MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)); size_t outlen; int rc; MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE, MC_CMD_NVRAM_READ_IN_V2_DEFAULT); rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (rc) return rc; memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); return 0; } static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, loff_t offset, const u8 *buffer, size_t length) { MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)); int rc; MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), NULL, 0, NULL); return rc; } static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, loff_t offset, size_t length) { MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN); int rc; MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), NULL, 0, NULL); return rc; } static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) { MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN); size_t outlen; int rc, rc2; MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); /* Always set this flag. Old firmware ignores it */ MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS, NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT, 1); rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &outlen); if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) { rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE); if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS) netif_err(efx, drv, efx->net_dev, "NVRAM update failed verification with code 0x%x\n", rc2); switch (rc2) { case MC_CMD_NVRAM_VERIFY_RC_SUCCESS: break; case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED: case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED: case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED: case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED: case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED: rc = -EIO; break; case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT: case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST: rc = -EINVAL; break; case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES: case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS: case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH: rc = -EPERM; break; default: netif_err(efx, drv, efx->net_dev, "Unknown response to NVRAM_UPDATE_FINISH\n"); rc = -EIO; } } return rc; } int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start, size_t len, size_t *retlen, u8 *buffer) { struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); struct efx_nic *efx = mtd->priv; loff_t offset = start; loff_t end = min_t(loff_t, start + len, mtd->size); size_t chunk; int rc = 0; while (offset < end) { chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset, buffer, chunk); if (rc) goto out; offset += chunk; buffer += chunk; } out: *retlen = offset - start; return rc; } int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) { struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); struct efx_nic *efx = mtd->priv; loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); loff_t end = min_t(loff_t, start + len, mtd->size); size_t chunk = part->common.mtd.erasesize; int rc = 0; if (!part->updating) { rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); if (rc) goto out; part->updating = true; } /* The MCDI interface can in fact do multiple erase blocks at once; * but erasing may be slow, so we make multiple calls here to avoid * tripping the MCDI RPC timeout. */ while (offset < end) { rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset, chunk); if (rc) goto out; offset += chunk; } out: return rc; } int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start, size_t len, size_t *retlen, const u8 *buffer) { struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); struct efx_nic *efx = mtd->priv; loff_t offset = start; loff_t end = min_t(loff_t, start + len, mtd->size); size_t chunk; int rc = 0; if (!part->updating) { rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); if (rc) goto out; part->updating = true; } while (offset < end) { chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset, buffer, chunk); if (rc) goto out; offset += chunk; buffer += chunk; } out: *retlen = offset - start; return rc; } int efx_mcdi_mtd_sync(struct mtd_info *mtd) { struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); struct efx_nic *efx = mtd->priv; int rc = 0; if (part->updating) { part->updating = false; rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type); } return rc; } void efx_mcdi_mtd_rename(struct efx_mtd_partition *part) { struct efx_mcdi_mtd_partition *mcdi_part = container_of(part, struct efx_mcdi_mtd_partition, common); struct efx_nic *efx = part->mtd.priv; snprintf(part->name, sizeof(part->name), "%s %s:%02x", efx->name, part->type_name, mcdi_part->fw_subtype); } #endif /* CONFIG_SFC_MTD */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1