Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Giuseppe Cavallaro | 1697 | 69.61% | 17 | 33.33% |
Vince Bridgers | 371 | 15.22% | 6 | 11.76% |
Jose Abreu | 128 | 5.25% | 5 | 9.80% |
Corentin Labbe | 123 | 5.05% | 4 | 7.84% |
Florian Fainelli | 27 | 1.11% | 1 | 1.96% |
Jiri Pirko | 25 | 1.03% | 4 | 7.84% |
Joao Pinto | 19 | 0.78% | 4 | 7.84% |
Remi Pommarel | 17 | 0.70% | 1 | 1.96% |
Alexey Brodkin | 16 | 0.66% | 1 | 1.96% |
Tejun Heo | 3 | 0.12% | 1 | 1.96% |
Deepak Sikri | 3 | 0.12% | 1 | 1.96% |
Alexey Dobriyan | 3 | 0.12% | 1 | 1.96% |
Thomas Gleixner | 2 | 0.08% | 1 | 1.96% |
Alexandre Torgue | 1 | 0.04% | 1 | 1.96% |
Colin Ian King | 1 | 0.04% | 1 | 1.96% |
JiSheng Zhang | 1 | 0.04% | 1 | 1.96% |
Stephen Hemminger | 1 | 0.04% | 1 | 1.96% |
Total | 2438 | 51 |
// SPDX-License-Identifier: GPL-2.0-only /******************************************************************************* This is the driver for the GMAC on-chip Ethernet controller for ST SoCs. DWC Ether MAC 10/100/1000 Universal version 3.41a has been used for developing this code. This only implements the mac core functions for this chip. Copyright (C) 2007-2009 STMicroelectronics Ltd Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> *******************************************************************************/ #include <linux/crc32.h> #include <linux/slab.h> #include <linux/ethtool.h> #include <net/dsa.h> #include <asm/io.h> #include "stmmac.h" #include "stmmac_pcs.h" #include "dwmac1000.h" static void dwmac1000_core_init(struct mac_device_info *hw, struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); void __iomem *ioaddr = hw->pcsr; u32 value = readl(ioaddr + GMAC_CONTROL); int mtu = dev->mtu; /* Configure GMAC core */ value |= GMAC_CORE_INIT; /* Clear ACS bit because Ethernet switch tagging formats such as * Broadcom tags can look like invalid LLC/SNAP packets and cause the * hardware to truncate packets on reception. */ if (netdev_uses_dsa(dev) || !priv->plat->enh_desc) value &= ~GMAC_CONTROL_ACS; if (mtu > 1500) value |= GMAC_CONTROL_2K; if (mtu > 2000) value |= GMAC_CONTROL_JE; if (hw->ps) { value |= GMAC_CONTROL_TE; value &= ~hw->link.speed_mask; switch (hw->ps) { case SPEED_1000: value |= hw->link.speed1000; break; case SPEED_100: value |= hw->link.speed100; break; case SPEED_10: value |= hw->link.speed10; break; } } writel(value, ioaddr + GMAC_CONTROL); /* Mask GMAC interrupts */ value = GMAC_INT_DEFAULT_MASK; if (hw->pcs) value &= ~GMAC_INT_DISABLE_PCS; writel(value, ioaddr + GMAC_INT_MASK); #ifdef STMMAC_VLAN_TAG_USED /* Tag detection without filtering */ writel(0x0, ioaddr + GMAC_VLAN_TAG); #endif } static int dwmac1000_rx_ipc_enable(struct mac_device_info *hw) { void __iomem *ioaddr = hw->pcsr; u32 value = readl(ioaddr + GMAC_CONTROL); if (hw->rx_csum) value |= GMAC_CONTROL_IPC; else value &= ~GMAC_CONTROL_IPC; writel(value, ioaddr + GMAC_CONTROL); value = readl(ioaddr + GMAC_CONTROL); return !!(value & GMAC_CONTROL_IPC); } static void dwmac1000_dump_regs(struct mac_device_info *hw, u32 *reg_space) { void __iomem *ioaddr = hw->pcsr; int i; for (i = 0; i < 55; i++) reg_space[i] = readl(ioaddr + i * 4); } static void dwmac1000_set_umac_addr(struct mac_device_info *hw, unsigned char *addr, unsigned int reg_n) { void __iomem *ioaddr = hw->pcsr; stmmac_set_mac_addr(ioaddr, addr, GMAC_ADDR_HIGH(reg_n), GMAC_ADDR_LOW(reg_n)); } static void dwmac1000_get_umac_addr(struct mac_device_info *hw, unsigned char *addr, unsigned int reg_n) { void __iomem *ioaddr = hw->pcsr; stmmac_get_mac_addr(ioaddr, addr, GMAC_ADDR_HIGH(reg_n), GMAC_ADDR_LOW(reg_n)); } static void dwmac1000_set_mchash(void __iomem *ioaddr, u32 *mcfilterbits, int mcbitslog2) { int numhashregs, regs; switch (mcbitslog2) { case 6: writel(mcfilterbits[0], ioaddr + GMAC_HASH_LOW); writel(mcfilterbits[1], ioaddr + GMAC_HASH_HIGH); return; case 7: numhashregs = 4; break; case 8: numhashregs = 8; break; default: pr_debug("STMMAC: err in setting multicast filter\n"); return; } for (regs = 0; regs < numhashregs; regs++) writel(mcfilterbits[regs], ioaddr + GMAC_EXTHASH_BASE + regs * 4); } static void dwmac1000_set_filter(struct mac_device_info *hw, struct net_device *dev) { void __iomem *ioaddr = (void __iomem *)dev->base_addr; unsigned int value = 0; unsigned int perfect_addr_number = hw->unicast_filter_entries; u32 mc_filter[8]; int mcbitslog2 = hw->mcast_bits_log2; pr_debug("%s: # mcasts %d, # unicast %d\n", __func__, netdev_mc_count(dev), netdev_uc_count(dev)); memset(mc_filter, 0, sizeof(mc_filter)); if (dev->flags & IFF_PROMISC) { value = GMAC_FRAME_FILTER_PR | GMAC_FRAME_FILTER_PCF; } else if (dev->flags & IFF_ALLMULTI) { value = GMAC_FRAME_FILTER_PM; /* pass all multi */ } else if (!netdev_mc_empty(dev)) { struct netdev_hw_addr *ha; /* Hash filter for multicast */ value = GMAC_FRAME_FILTER_HMC; netdev_for_each_mc_addr(ha, dev) { /* The upper n bits of the calculated CRC are used to * index the contents of the hash table. The number of * bits used depends on the hardware configuration * selected at core configuration time. */ int bit_nr = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN)) >> (32 - mcbitslog2); /* The most significant bit determines the register to * use (H/L) while the other 5 bits determine the bit * within the register. */ mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); } } value |= GMAC_FRAME_FILTER_HPF; dwmac1000_set_mchash(ioaddr, mc_filter, mcbitslog2); /* Handle multiple unicast addresses (perfect filtering) */ if (netdev_uc_count(dev) > perfect_addr_number) /* Switch to promiscuous mode if more than unicast * addresses are requested than supported by hardware. */ value |= GMAC_FRAME_FILTER_PR; else { int reg = 1; struct netdev_hw_addr *ha; netdev_for_each_uc_addr(ha, dev) { stmmac_set_mac_addr(ioaddr, ha->addr, GMAC_ADDR_HIGH(reg), GMAC_ADDR_LOW(reg)); reg++; } while (reg < perfect_addr_number) { writel(0, ioaddr + GMAC_ADDR_HIGH(reg)); writel(0, ioaddr + GMAC_ADDR_LOW(reg)); reg++; } } #ifdef FRAME_FILTER_DEBUG /* Enable Receive all mode (to debug filtering_fail errors) */ value |= GMAC_FRAME_FILTER_RA; #endif writel(value, ioaddr + GMAC_FRAME_FILTER); } static void dwmac1000_flow_ctrl(struct mac_device_info *hw, unsigned int duplex, unsigned int fc, unsigned int pause_time, u32 tx_cnt) { void __iomem *ioaddr = hw->pcsr; /* Set flow such that DZPQ in Mac Register 6 is 0, * and unicast pause detect is enabled. */ unsigned int flow = GMAC_FLOW_CTRL_UP; pr_debug("GMAC Flow-Control:\n"); if (fc & FLOW_RX) { pr_debug("\tReceive Flow-Control ON\n"); flow |= GMAC_FLOW_CTRL_RFE; } if (fc & FLOW_TX) { pr_debug("\tTransmit Flow-Control ON\n"); flow |= GMAC_FLOW_CTRL_TFE; } if (duplex) { pr_debug("\tduplex mode: PAUSE %d\n", pause_time); flow |= (pause_time << GMAC_FLOW_CTRL_PT_SHIFT); } writel(flow, ioaddr + GMAC_FLOW_CTRL); } static void dwmac1000_pmt(struct mac_device_info *hw, unsigned long mode) { void __iomem *ioaddr = hw->pcsr; unsigned int pmt = 0; if (mode & WAKE_MAGIC) { pr_debug("GMAC: WOL Magic frame\n"); pmt |= power_down | magic_pkt_en; } if (mode & WAKE_UCAST) { pr_debug("GMAC: WOL on global unicast\n"); pmt |= power_down | global_unicast | wake_up_frame_en; } writel(pmt, ioaddr + GMAC_PMT); } /* RGMII or SMII interface */ static void dwmac1000_rgsmii(void __iomem *ioaddr, struct stmmac_extra_stats *x) { u32 status; status = readl(ioaddr + GMAC_RGSMIIIS); x->irq_rgmii_n++; /* Check the link status */ if (status & GMAC_RGSMIIIS_LNKSTS) { int speed_value; x->pcs_link = 1; speed_value = ((status & GMAC_RGSMIIIS_SPEED) >> GMAC_RGSMIIIS_SPEED_SHIFT); if (speed_value == GMAC_RGSMIIIS_SPEED_125) x->pcs_speed = SPEED_1000; else if (speed_value == GMAC_RGSMIIIS_SPEED_25) x->pcs_speed = SPEED_100; else x->pcs_speed = SPEED_10; x->pcs_duplex = (status & GMAC_RGSMIIIS_LNKMOD_MASK); pr_info("Link is Up - %d/%s\n", (int)x->pcs_speed, x->pcs_duplex ? "Full" : "Half"); } else { x->pcs_link = 0; pr_info("Link is Down\n"); } } static int dwmac1000_irq_status(struct mac_device_info *hw, struct stmmac_extra_stats *x) { void __iomem *ioaddr = hw->pcsr; u32 intr_status = readl(ioaddr + GMAC_INT_STATUS); u32 intr_mask = readl(ioaddr + GMAC_INT_MASK); int ret = 0; /* Discard masked bits */ intr_status &= ~intr_mask; /* Not used events (e.g. MMC interrupts) are not handled. */ if ((intr_status & GMAC_INT_STATUS_MMCTIS)) x->mmc_tx_irq_n++; if (unlikely(intr_status & GMAC_INT_STATUS_MMCRIS)) x->mmc_rx_irq_n++; if (unlikely(intr_status & GMAC_INT_STATUS_MMCCSUM)) x->mmc_rx_csum_offload_irq_n++; if (unlikely(intr_status & GMAC_INT_DISABLE_PMT)) { /* clear the PMT bits 5 and 6 by reading the PMT status reg */ readl(ioaddr + GMAC_PMT); x->irq_receive_pmt_irq_n++; } /* MAC tx/rx EEE LPI entry/exit interrupts */ if (intr_status & GMAC_INT_STATUS_LPIIS) { /* Clean LPI interrupt by reading the Reg 12 */ ret = readl(ioaddr + LPI_CTRL_STATUS); if (ret & LPI_CTRL_STATUS_TLPIEN) x->irq_tx_path_in_lpi_mode_n++; if (ret & LPI_CTRL_STATUS_TLPIEX) x->irq_tx_path_exit_lpi_mode_n++; if (ret & LPI_CTRL_STATUS_RLPIEN) x->irq_rx_path_in_lpi_mode_n++; if (ret & LPI_CTRL_STATUS_RLPIEX) x->irq_rx_path_exit_lpi_mode_n++; } dwmac_pcs_isr(ioaddr, GMAC_PCS_BASE, intr_status, x); if (intr_status & PCS_RGSMIIIS_IRQ) dwmac1000_rgsmii(ioaddr, x); return ret; } static void dwmac1000_set_eee_mode(struct mac_device_info *hw, bool en_tx_lpi_clockgating) { void __iomem *ioaddr = hw->pcsr; u32 value; /*TODO - en_tx_lpi_clockgating treatment */ /* Enable the link status receive on RGMII, SGMII ore SMII * receive path and instruct the transmit to enter in LPI * state. */ value = readl(ioaddr + LPI_CTRL_STATUS); value |= LPI_CTRL_STATUS_LPIEN | LPI_CTRL_STATUS_LPITXA; writel(value, ioaddr + LPI_CTRL_STATUS); } static void dwmac1000_reset_eee_mode(struct mac_device_info *hw) { void __iomem *ioaddr = hw->pcsr; u32 value; value = readl(ioaddr + LPI_CTRL_STATUS); value &= ~(LPI_CTRL_STATUS_LPIEN | LPI_CTRL_STATUS_LPITXA); writel(value, ioaddr + LPI_CTRL_STATUS); } static void dwmac1000_set_eee_pls(struct mac_device_info *hw, int link) { void __iomem *ioaddr = hw->pcsr; u32 value; value = readl(ioaddr + LPI_CTRL_STATUS); if (link) value |= LPI_CTRL_STATUS_PLS; else value &= ~LPI_CTRL_STATUS_PLS; writel(value, ioaddr + LPI_CTRL_STATUS); } static void dwmac1000_set_eee_timer(struct mac_device_info *hw, int ls, int tw) { void __iomem *ioaddr = hw->pcsr; int value = ((tw & 0xffff)) | ((ls & 0x7ff) << 16); /* Program the timers in the LPI timer control register: * LS: minimum time (ms) for which the link * status from PHY should be ok before transmitting * the LPI pattern. * TW: minimum time (us) for which the core waits * after it has stopped transmitting the LPI pattern. */ writel(value, ioaddr + LPI_TIMER_CTRL); } static void dwmac1000_ctrl_ane(void __iomem *ioaddr, bool ane, bool srgmi_ral, bool loopback) { dwmac_ctrl_ane(ioaddr, GMAC_PCS_BASE, ane, srgmi_ral, loopback); } static void dwmac1000_rane(void __iomem *ioaddr, bool restart) { dwmac_rane(ioaddr, GMAC_PCS_BASE, restart); } static void dwmac1000_get_adv_lp(void __iomem *ioaddr, struct rgmii_adv *adv) { dwmac_get_adv_lp(ioaddr, GMAC_PCS_BASE, adv); } static void dwmac1000_debug(void __iomem *ioaddr, struct stmmac_extra_stats *x, u32 rx_queues, u32 tx_queues) { u32 value = readl(ioaddr + GMAC_DEBUG); if (value & GMAC_DEBUG_TXSTSFSTS) x->mtl_tx_status_fifo_full++; if (value & GMAC_DEBUG_TXFSTS) x->mtl_tx_fifo_not_empty++; if (value & GMAC_DEBUG_TWCSTS) x->mmtl_fifo_ctrl++; if (value & GMAC_DEBUG_TRCSTS_MASK) { u32 trcsts = (value & GMAC_DEBUG_TRCSTS_MASK) >> GMAC_DEBUG_TRCSTS_SHIFT; if (trcsts == GMAC_DEBUG_TRCSTS_WRITE) x->mtl_tx_fifo_read_ctrl_write++; else if (trcsts == GMAC_DEBUG_TRCSTS_TXW) x->mtl_tx_fifo_read_ctrl_wait++; else if (trcsts == GMAC_DEBUG_TRCSTS_READ) x->mtl_tx_fifo_read_ctrl_read++; else x->mtl_tx_fifo_read_ctrl_idle++; } if (value & GMAC_DEBUG_TXPAUSED) x->mac_tx_in_pause++; if (value & GMAC_DEBUG_TFCSTS_MASK) { u32 tfcsts = (value & GMAC_DEBUG_TFCSTS_MASK) >> GMAC_DEBUG_TFCSTS_SHIFT; if (tfcsts == GMAC_DEBUG_TFCSTS_XFER) x->mac_tx_frame_ctrl_xfer++; else if (tfcsts == GMAC_DEBUG_TFCSTS_GEN_PAUSE) x->mac_tx_frame_ctrl_pause++; else if (tfcsts == GMAC_DEBUG_TFCSTS_WAIT) x->mac_tx_frame_ctrl_wait++; else x->mac_tx_frame_ctrl_idle++; } if (value & GMAC_DEBUG_TPESTS) x->mac_gmii_tx_proto_engine++; if (value & GMAC_DEBUG_RXFSTS_MASK) { u32 rxfsts = (value & GMAC_DEBUG_RXFSTS_MASK) >> GMAC_DEBUG_RRCSTS_SHIFT; if (rxfsts == GMAC_DEBUG_RXFSTS_FULL) x->mtl_rx_fifo_fill_level_full++; else if (rxfsts == GMAC_DEBUG_RXFSTS_AT) x->mtl_rx_fifo_fill_above_thresh++; else if (rxfsts == GMAC_DEBUG_RXFSTS_BT) x->mtl_rx_fifo_fill_below_thresh++; else x->mtl_rx_fifo_fill_level_empty++; } if (value & GMAC_DEBUG_RRCSTS_MASK) { u32 rrcsts = (value & GMAC_DEBUG_RRCSTS_MASK) >> GMAC_DEBUG_RRCSTS_SHIFT; if (rrcsts == GMAC_DEBUG_RRCSTS_FLUSH) x->mtl_rx_fifo_read_ctrl_flush++; else if (rrcsts == GMAC_DEBUG_RRCSTS_RSTAT) x->mtl_rx_fifo_read_ctrl_read_data++; else if (rrcsts == GMAC_DEBUG_RRCSTS_RDATA) x->mtl_rx_fifo_read_ctrl_status++; else x->mtl_rx_fifo_read_ctrl_idle++; } if (value & GMAC_DEBUG_RWCSTS) x->mtl_rx_fifo_ctrl_active++; if (value & GMAC_DEBUG_RFCFCSTS_MASK) x->mac_rx_frame_ctrl_fifo = (value & GMAC_DEBUG_RFCFCSTS_MASK) >> GMAC_DEBUG_RFCFCSTS_SHIFT; if (value & GMAC_DEBUG_RPESTS) x->mac_gmii_rx_proto_engine++; } static void dwmac1000_set_mac_loopback(void __iomem *ioaddr, bool enable) { u32 value = readl(ioaddr + GMAC_CONTROL); if (enable) value |= GMAC_CONTROL_LM; else value &= ~GMAC_CONTROL_LM; writel(value, ioaddr + GMAC_CONTROL); } const struct stmmac_ops dwmac1000_ops = { .core_init = dwmac1000_core_init, .set_mac = stmmac_set_mac, .rx_ipc = dwmac1000_rx_ipc_enable, .dump_regs = dwmac1000_dump_regs, .host_irq_status = dwmac1000_irq_status, .set_filter = dwmac1000_set_filter, .flow_ctrl = dwmac1000_flow_ctrl, .pmt = dwmac1000_pmt, .set_umac_addr = dwmac1000_set_umac_addr, .get_umac_addr = dwmac1000_get_umac_addr, .set_eee_mode = dwmac1000_set_eee_mode, .reset_eee_mode = dwmac1000_reset_eee_mode, .set_eee_timer = dwmac1000_set_eee_timer, .set_eee_pls = dwmac1000_set_eee_pls, .debug = dwmac1000_debug, .pcs_ctrl_ane = dwmac1000_ctrl_ane, .pcs_rane = dwmac1000_rane, .pcs_get_adv_lp = dwmac1000_get_adv_lp, .set_mac_loopback = dwmac1000_set_mac_loopback, }; int dwmac1000_setup(struct stmmac_priv *priv) { struct mac_device_info *mac = priv->hw; dev_info(priv->device, "\tDWMAC1000\n"); priv->dev->priv_flags |= IFF_UNICAST_FLT; mac->pcsr = priv->ioaddr; mac->multicast_filter_bins = priv->plat->multicast_filter_bins; mac->unicast_filter_entries = priv->plat->unicast_filter_entries; mac->mcast_bits_log2 = 0; if (mac->multicast_filter_bins) mac->mcast_bits_log2 = ilog2(mac->multicast_filter_bins); mac->link.duplex = GMAC_CONTROL_DM; mac->link.speed10 = GMAC_CONTROL_PS; mac->link.speed100 = GMAC_CONTROL_PS | GMAC_CONTROL_FES; mac->link.speed1000 = 0; mac->link.speed_mask = GMAC_CONTROL_PS | GMAC_CONTROL_FES; mac->mii.addr = GMAC_MII_ADDR; mac->mii.data = GMAC_MII_DATA; mac->mii.addr_shift = 11; mac->mii.addr_mask = 0x0000F800; mac->mii.reg_shift = 6; mac->mii.reg_mask = 0x000007C0; mac->mii.clk_csr_shift = 2; mac->mii.clk_csr_mask = GENMASK(5, 2); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1