Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jose Abreu | 8054 | 33.17% | 94 | 24.10% |
Giuseppe Cavallaro | 6228 | 25.65% | 79 | 20.26% |
Joao Pinto | 4004 | 16.49% | 30 | 7.69% |
Alexandre Torgue | 1181 | 4.86% | 4 | 1.03% |
Rayagond Kokatanur | 1026 | 4.23% | 3 | 0.77% |
Corentin Labbe | 639 | 2.63% | 12 | 3.08% |
Srinivas Kandagatla | 449 | 1.85% | 9 | 2.31% |
Thierry Reding | 209 | 0.86% | 10 | 2.56% |
Niklas Cassel | 200 | 0.82% | 13 | 3.33% |
Weifeng Voon | 149 | 0.61% | 2 | 0.51% |
Vince Bridgers | 141 | 0.58% | 7 | 1.79% |
Mathieu Olivari | 121 | 0.50% | 3 | 0.77% |
Artem Panfilov | 112 | 0.46% | 1 | 0.26% |
Jiping Ma | 111 | 0.46% | 1 | 0.26% |
Biao Huang | 105 | 0.43% | 4 | 1.03% |
Joachim Eastwood | 104 | 0.43% | 5 | 1.28% |
Fabrice Gasnier | 70 | 0.29% | 2 | 0.51% |
Francesco Virlinzi | 67 | 0.28% | 3 | 0.77% |
Michał Mirosław | 66 | 0.27% | 2 | 0.51% |
Bhadram Varka | 65 | 0.27% | 2 | 0.51% |
Michael Weiser | 56 | 0.23% | 1 | 0.26% |
Kees Cook | 55 | 0.23% | 2 | 0.51% |
Wong Vee Khee | 55 | 0.23% | 1 | 0.26% |
Jarod Wilson | 55 | 0.23% | 1 | 0.26% |
Bartlomiej Zolnierkiewicz | 54 | 0.22% | 1 | 0.26% |
Deepak Sikri | 52 | 0.21% | 2 | 0.51% |
Elad Nachman | 51 | 0.21% | 1 | 0.26% |
Aaro Koskinen | 49 | 0.20% | 4 | 1.03% |
Florian Fainelli | 48 | 0.20% | 3 | 0.77% |
Kweh, Hock Leong | 47 | 0.19% | 2 | 0.51% |
Beniamino Galvani | 45 | 0.19% | 1 | 0.26% |
Chen-Yu Tsai | 42 | 0.17% | 3 | 0.77% |
Sonic Zhang | 37 | 0.15% | 3 | 0.77% |
Andy Shevchenko | 35 | 0.14% | 4 | 1.03% |
Nicolin Chen | 33 | 0.14% | 1 | 0.26% |
Eugeniy Paltsev | 30 | 0.12% | 1 | 0.26% |
Heiner Kallweit | 24 | 0.10% | 2 | 0.51% |
Phil Reid | 21 | 0.09% | 1 | 0.26% |
Vincent Palatin | 21 | 0.09% | 1 | 0.26% |
Jongsung Kim | 21 | 0.09% | 1 | 0.26% |
Bryan O'Donoghue | 19 | 0.08% | 1 | 0.26% |
Andrew Bresticker | 19 | 0.08% | 1 | 0.26% |
Ben Hutchings | 18 | 0.07% | 1 | 0.26% |
Ezequiel García | 18 | 0.07% | 1 | 0.26% |
Pablo Neira Ayuso | 17 | 0.07% | 2 | 0.51% |
Viresh Kumar | 15 | 0.06% | 1 | 0.26% |
Jon Hunter | 13 | 0.05% | 2 | 0.51% |
Andrew Lunn | 13 | 0.05% | 2 | 0.51% |
Huacai Chen | 13 | 0.05% | 1 | 0.26% |
Byungho An | 13 | 0.05% | 2 | 0.51% |
Arnd Bergmann | 12 | 0.05% | 2 | 0.51% |
Joe Perches | 11 | 0.05% | 1 | 0.26% |
Russell King | 10 | 0.04% | 1 | 0.26% |
Dan Carpenter | 9 | 0.04% | 2 | 0.51% |
Nathan Chancellor | 8 | 0.03% | 1 | 0.26% |
Yangtao Li | 8 | 0.03% | 1 | 0.26% |
Fugang Duan | 8 | 0.03% | 1 | 0.26% |
Vaishali Thakkar | 7 | 0.03% | 1 | 0.26% |
JiSheng Zhang | 7 | 0.03% | 2 | 0.51% |
Christophe Jaillet | 6 | 0.02% | 2 | 0.51% |
Pavel Machek | 6 | 0.02% | 1 | 0.26% |
Jiri Pirko | 6 | 0.02% | 1 | 0.26% |
Eric Dumazet | 6 | 0.02% | 3 | 0.77% |
Bernd Edlinger | 6 | 0.02% | 1 | 0.26% |
Leon Yu | 5 | 0.02% | 1 | 0.26% |
Vinod Koul | 5 | 0.02% | 1 | 0.26% |
Hans de Goede | 4 | 0.02% | 2 | 0.51% |
Jerome Brunet | 4 | 0.02% | 1 | 0.26% |
Michael S. Tsirkin | 4 | 0.02% | 1 | 0.26% |
damuzi000 | 4 | 0.02% | 1 | 0.26% |
Petr Štetiar | 4 | 0.02% | 1 | 0.26% |
Jinyu Qi | 4 | 0.02% | 1 | 0.26% |
Miroslav Lichvar | 3 | 0.01% | 1 | 0.26% |
Paul Gortmaker | 3 | 0.01% | 1 | 0.26% |
Allen Pais | 3 | 0.01% | 1 | 0.26% |
Ilias Apalodimas | 3 | 0.01% | 2 | 0.51% |
Luis R. Rodriguez | 3 | 0.01% | 1 | 0.26% |
Fredrik Hallenberg | 3 | 0.01% | 1 | 0.26% |
Mario Molitor | 3 | 0.01% | 1 | 0.26% |
Tejun Heo | 3 | 0.01% | 1 | 0.26% |
Tobias Klauser | 2 | 0.01% | 1 | 0.26% |
Thomas Gleixner | 2 | 0.01% | 1 | 0.26% |
Petr Machata | 2 | 0.01% | 1 | 0.26% |
Tom Herbert | 2 | 0.01% | 1 | 0.26% |
Lino Sanfilippo | 2 | 0.01% | 1 | 0.26% |
Greg Kroah-Hartman | 2 | 0.01% | 1 | 0.26% |
Dinh Nguyen | 1 | 0.00% | 1 | 0.26% |
Eric W. Biedermann | 1 | 0.00% | 1 | 0.26% |
Ben Dooks | 1 | 0.00% | 1 | 0.26% |
Maxim Petrov | 1 | 0.00% | 1 | 0.26% |
Colin Ian King | 1 | 0.00% | 1 | 0.26% |
Patrick McHardy | 1 | 0.00% | 1 | 0.26% |
Alexandru Ardelean | 1 | 0.00% | 1 | 0.26% |
Stephen Hemminger | 1 | 0.00% | 1 | 0.26% |
Frode Isaksen | 1 | 0.00% | 1 | 0.26% |
Danny Kukawka | 1 | 0.00% | 1 | 0.26% |
Total | 24280 | 390 |
// SPDX-License-Identifier: GPL-2.0-only /******************************************************************************* This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. ST Ethernet IPs are built around a Synopsys IP Core. Copyright(C) 2007-2011 STMicroelectronics Ltd Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> Documentation available at: http://www.stlinux.com Support available at: https://bugzilla.stlinux.com/ *******************************************************************************/ #include <linux/clk.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/skbuff.h> #include <linux/ethtool.h> #include <linux/if_ether.h> #include <linux/crc32.h> #include <linux/mii.h> #include <linux/if.h> #include <linux/if_vlan.h> #include <linux/dma-mapping.h> #include <linux/slab.h> #include <linux/prefetch.h> #include <linux/pinctrl/consumer.h> #ifdef CONFIG_DEBUG_FS #include <linux/debugfs.h> #include <linux/seq_file.h> #endif /* CONFIG_DEBUG_FS */ #include <linux/net_tstamp.h> #include <linux/phylink.h> #include <linux/udp.h> #include <net/pkt_cls.h> #include "stmmac_ptp.h" #include "stmmac.h" #include <linux/reset.h> #include <linux/of_mdio.h> #include "dwmac1000.h" #include "dwxgmac2.h" #include "hwif.h" #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) /* Module parameters */ #define TX_TIMEO 5000 static int watchdog = TX_TIMEO; module_param(watchdog, int, 0644); MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); static int debug = -1; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); static int phyaddr = -1; module_param(phyaddr, int, 0444); MODULE_PARM_DESC(phyaddr, "Physical device address"); #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4) #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4) static int flow_ctrl = FLOW_AUTO; module_param(flow_ctrl, int, 0644); MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); static int pause = PAUSE_TIME; module_param(pause, int, 0644); MODULE_PARM_DESC(pause, "Flow Control Pause Time"); #define TC_DEFAULT 64 static int tc = TC_DEFAULT; module_param(tc, int, 0644); MODULE_PARM_DESC(tc, "DMA threshold control value"); #define DEFAULT_BUFSIZE 1536 static int buf_sz = DEFAULT_BUFSIZE; module_param(buf_sz, int, 0644); MODULE_PARM_DESC(buf_sz, "DMA buffer size"); #define STMMAC_RX_COPYBREAK 256 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); #define STMMAC_DEFAULT_LPI_TIMER 1000 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; module_param(eee_timer, int, 0644); MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x)) /* By default the driver will use the ring mode to manage tx and rx descriptors, * but allow user to force to use the chain instead of the ring */ static unsigned int chain_mode; module_param(chain_mode, int, 0444); MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); static irqreturn_t stmmac_interrupt(int irq, void *dev_id); #ifdef CONFIG_DEBUG_FS static const struct net_device_ops stmmac_netdev_ops; static void stmmac_init_fs(struct net_device *dev); static void stmmac_exit_fs(struct net_device *dev); #endif #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) /** * stmmac_verify_args - verify the driver parameters. * Description: it checks the driver parameters and set a default in case of * errors. */ static void stmmac_verify_args(void) { if (unlikely(watchdog < 0)) watchdog = TX_TIMEO; if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) buf_sz = DEFAULT_BUFSIZE; if (unlikely(flow_ctrl > 1)) flow_ctrl = FLOW_AUTO; else if (likely(flow_ctrl < 0)) flow_ctrl = FLOW_OFF; if (unlikely((pause < 0) || (pause > 0xffff))) pause = PAUSE_TIME; if (eee_timer < 0) eee_timer = STMMAC_DEFAULT_LPI_TIMER; } /** * stmmac_disable_all_queues - Disable all queues * @priv: driver private structure */ static void stmmac_disable_all_queues(struct stmmac_priv *priv) { u32 rx_queues_cnt = priv->plat->rx_queues_to_use; u32 tx_queues_cnt = priv->plat->tx_queues_to_use; u32 maxq = max(rx_queues_cnt, tx_queues_cnt); u32 queue; for (queue = 0; queue < maxq; queue++) { struct stmmac_channel *ch = &priv->channel[queue]; if (queue < rx_queues_cnt) napi_disable(&ch->rx_napi); if (queue < tx_queues_cnt) napi_disable(&ch->tx_napi); } } /** * stmmac_enable_all_queues - Enable all queues * @priv: driver private structure */ static void stmmac_enable_all_queues(struct stmmac_priv *priv) { u32 rx_queues_cnt = priv->plat->rx_queues_to_use; u32 tx_queues_cnt = priv->plat->tx_queues_to_use; u32 maxq = max(rx_queues_cnt, tx_queues_cnt); u32 queue; for (queue = 0; queue < maxq; queue++) { struct stmmac_channel *ch = &priv->channel[queue]; if (queue < rx_queues_cnt) napi_enable(&ch->rx_napi); if (queue < tx_queues_cnt) napi_enable(&ch->tx_napi); } } /** * stmmac_stop_all_queues - Stop all queues * @priv: driver private structure */ static void stmmac_stop_all_queues(struct stmmac_priv *priv) { u32 tx_queues_cnt = priv->plat->tx_queues_to_use; u32 queue; for (queue = 0; queue < tx_queues_cnt; queue++) netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); } /** * stmmac_start_all_queues - Start all queues * @priv: driver private structure */ static void stmmac_start_all_queues(struct stmmac_priv *priv) { u32 tx_queues_cnt = priv->plat->tx_queues_to_use; u32 queue; for (queue = 0; queue < tx_queues_cnt; queue++) netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue)); } static void stmmac_service_event_schedule(struct stmmac_priv *priv) { if (!test_bit(STMMAC_DOWN, &priv->state) && !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) queue_work(priv->wq, &priv->service_task); } static void stmmac_global_err(struct stmmac_priv *priv) { netif_carrier_off(priv->dev); set_bit(STMMAC_RESET_REQUESTED, &priv->state); stmmac_service_event_schedule(priv); } /** * stmmac_clk_csr_set - dynamically set the MDC clock * @priv: driver private structure * Description: this is to dynamically set the MDC clock according to the csr * clock input. * Note: * If a specific clk_csr value is passed from the platform * this means that the CSR Clock Range selection cannot be * changed at run-time and it is fixed (as reported in the driver * documentation). Viceversa the driver will try to set the MDC * clock dynamically according to the actual clock input. */ static void stmmac_clk_csr_set(struct stmmac_priv *priv) { u32 clk_rate; clk_rate = clk_get_rate(priv->plat->stmmac_clk); /* Platform provided default clk_csr would be assumed valid * for all other cases except for the below mentioned ones. * For values higher than the IEEE 802.3 specified frequency * we can not estimate the proper divider as it is not known * the frequency of clk_csr_i. So we do not change the default * divider. */ if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { if (clk_rate < CSR_F_35M) priv->clk_csr = STMMAC_CSR_20_35M; else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) priv->clk_csr = STMMAC_CSR_35_60M; else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) priv->clk_csr = STMMAC_CSR_60_100M; else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) priv->clk_csr = STMMAC_CSR_100_150M; else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) priv->clk_csr = STMMAC_CSR_150_250M; else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) priv->clk_csr = STMMAC_CSR_250_300M; } if (priv->plat->has_sun8i) { if (clk_rate > 160000000) priv->clk_csr = 0x03; else if (clk_rate > 80000000) priv->clk_csr = 0x02; else if (clk_rate > 40000000) priv->clk_csr = 0x01; else priv->clk_csr = 0; } if (priv->plat->has_xgmac) { if (clk_rate > 400000000) priv->clk_csr = 0x5; else if (clk_rate > 350000000) priv->clk_csr = 0x4; else if (clk_rate > 300000000) priv->clk_csr = 0x3; else if (clk_rate > 250000000) priv->clk_csr = 0x2; else if (clk_rate > 150000000) priv->clk_csr = 0x1; else priv->clk_csr = 0x0; } } static void print_pkt(unsigned char *buf, int len) { pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); } static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; u32 avail; if (tx_q->dirty_tx > tx_q->cur_tx) avail = tx_q->dirty_tx - tx_q->cur_tx - 1; else avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1; return avail; } /** * stmmac_rx_dirty - Get RX queue dirty * @priv: driver private structure * @queue: RX queue index */ static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) { struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; u32 dirty; if (rx_q->dirty_rx <= rx_q->cur_rx) dirty = rx_q->cur_rx - rx_q->dirty_rx; else dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx; return dirty; } /** * stmmac_enable_eee_mode - check and enter in LPI mode * @priv: driver private structure * Description: this function is to verify and enter in LPI mode in case of * EEE. */ static void stmmac_enable_eee_mode(struct stmmac_priv *priv) { u32 tx_cnt = priv->plat->tx_queues_to_use; u32 queue; /* check if all TX queues have the work finished */ for (queue = 0; queue < tx_cnt; queue++) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; if (tx_q->dirty_tx != tx_q->cur_tx) return; /* still unfinished work */ } /* Check and enter in LPI mode */ if (!priv->tx_path_in_lpi_mode) stmmac_set_eee_mode(priv, priv->hw, priv->plat->en_tx_lpi_clockgating); } /** * stmmac_disable_eee_mode - disable and exit from LPI mode * @priv: driver private structure * Description: this function is to exit and disable EEE in case of * LPI state is true. This is called by the xmit. */ void stmmac_disable_eee_mode(struct stmmac_priv *priv) { stmmac_reset_eee_mode(priv, priv->hw); del_timer_sync(&priv->eee_ctrl_timer); priv->tx_path_in_lpi_mode = false; } /** * stmmac_eee_ctrl_timer - EEE TX SW timer. * @arg : data hook * Description: * if there is no data transfer and if we are not in LPI state, * then MAC Transmitter can be moved to LPI state. */ static void stmmac_eee_ctrl_timer(struct timer_list *t) { struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); stmmac_enable_eee_mode(priv); mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); } /** * stmmac_eee_init - init EEE * @priv: driver private structure * Description: * if the GMAC supports the EEE (from the HW cap reg) and the phy device * can also manage EEE, this function enable the LPI state and start related * timer. */ bool stmmac_eee_init(struct stmmac_priv *priv) { int tx_lpi_timer = priv->tx_lpi_timer; /* Using PCS we cannot dial with the phy registers at this stage * so we do not support extra feature like EEE. */ if (priv->hw->pcs == STMMAC_PCS_TBI || priv->hw->pcs == STMMAC_PCS_RTBI) return false; /* Check if MAC core supports the EEE feature. */ if (!priv->dma_cap.eee) return false; mutex_lock(&priv->lock); /* Check if it needs to be deactivated */ if (!priv->eee_active) { if (priv->eee_enabled) { netdev_dbg(priv->dev, "disable EEE\n"); del_timer_sync(&priv->eee_ctrl_timer); stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer); } mutex_unlock(&priv->lock); return false; } if (priv->eee_active && !priv->eee_enabled) { timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, tx_lpi_timer); } mutex_unlock(&priv->lock); netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); return true; } /* stmmac_get_tx_hwtstamp - get HW TX timestamps * @priv: driver private structure * @p : descriptor pointer * @skb : the socket buffer * Description : * This function will read timestamp from the descriptor & pass it to stack. * and also perform some sanity checks. */ static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, struct sk_buff *skb) { struct skb_shared_hwtstamps shhwtstamp; bool found = false; u64 ns = 0; if (!priv->hwts_tx_en) return; /* exit if skb doesn't support hw tstamp */ if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) return; /* check tx tstamp status */ if (stmmac_get_tx_timestamp_status(priv, p)) { stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); found = true; } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { found = true; } if (found) { memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); shhwtstamp.hwtstamp = ns_to_ktime(ns); netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); /* pass tstamp to stack */ skb_tstamp_tx(skb, &shhwtstamp); } } /* stmmac_get_rx_hwtstamp - get HW RX timestamps * @priv: driver private structure * @p : descriptor pointer * @np : next descriptor pointer * @skb : the socket buffer * Description : * This function will read received packet's timestamp from the descriptor * and pass it to stack. It also perform some sanity checks. */ static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, struct dma_desc *np, struct sk_buff *skb) { struct skb_shared_hwtstamps *shhwtstamp = NULL; struct dma_desc *desc = p; u64 ns = 0; if (!priv->hwts_rx_en) return; /* For GMAC4, the valid timestamp is from CTX next desc. */ if (priv->plat->has_gmac4 || priv->plat->has_xgmac) desc = np; /* Check if timestamp is available */ if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); shhwtstamp = skb_hwtstamps(skb); memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); shhwtstamp->hwtstamp = ns_to_ktime(ns); } else { netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); } } /** * stmmac_hwtstamp_set - control hardware timestamping. * @dev: device pointer. * @ifr: An IOCTL specific structure, that can contain a pointer to * a proprietary structure used to pass information to the driver. * Description: * This function configures the MAC to enable/disable both outgoing(TX) * and incoming(RX) packets time stamping based on user input. * Return Value: * 0 on success and an appropriate -ve integer on failure. */ static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) { struct stmmac_priv *priv = netdev_priv(dev); struct hwtstamp_config config; struct timespec64 now; u64 temp = 0; u32 ptp_v2 = 0; u32 tstamp_all = 0; u32 ptp_over_ipv4_udp = 0; u32 ptp_over_ipv6_udp = 0; u32 ptp_over_ethernet = 0; u32 snap_type_sel = 0; u32 ts_master_en = 0; u32 ts_event_en = 0; u32 sec_inc = 0; u32 value = 0; bool xmac; xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { netdev_alert(priv->dev, "No support for HW time stamping\n"); priv->hwts_tx_en = 0; priv->hwts_rx_en = 0; return -EOPNOTSUPP; } if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", __func__, config.flags, config.tx_type, config.rx_filter); /* reserved for future extensions */ if (config.flags) return -EINVAL; if (config.tx_type != HWTSTAMP_TX_OFF && config.tx_type != HWTSTAMP_TX_ON) return -ERANGE; if (priv->adv_ts) { switch (config.rx_filter) { case HWTSTAMP_FILTER_NONE: /* time stamp no incoming packet at all */ config.rx_filter = HWTSTAMP_FILTER_NONE; break; case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: /* PTP v1, UDP, any kind of event packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; /* 'xmac' hardware can support Sync, Pdelay_Req and * Pdelay_resp by setting bit14 and bits17/16 to 01 * This leaves Delay_Req timestamps out. * Enable all events *and* general purpose message * timestamping */ snap_type_sel = PTP_TCR_SNAPTYPSEL_1; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; break; case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: /* PTP v1, UDP, Sync packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; /* take time stamp for SYNC messages only */ ts_event_en = PTP_TCR_TSEVNTENA; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; break; case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: /* PTP v1, UDP, Delay_req packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; /* take time stamp for Delay_Req messages only */ ts_master_en = PTP_TCR_TSMSTRENA; ts_event_en = PTP_TCR_TSEVNTENA; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; break; case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: /* PTP v2, UDP, any kind of event packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; ptp_v2 = PTP_TCR_TSVER2ENA; /* take time stamp for all event messages */ snap_type_sel = PTP_TCR_SNAPTYPSEL_1; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; break; case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: /* PTP v2, UDP, Sync packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; ptp_v2 = PTP_TCR_TSVER2ENA; /* take time stamp for SYNC messages only */ ts_event_en = PTP_TCR_TSEVNTENA; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; break; case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: /* PTP v2, UDP, Delay_req packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; ptp_v2 = PTP_TCR_TSVER2ENA; /* take time stamp for Delay_Req messages only */ ts_master_en = PTP_TCR_TSMSTRENA; ts_event_en = PTP_TCR_TSEVNTENA; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; break; case HWTSTAMP_FILTER_PTP_V2_EVENT: /* PTP v2/802.AS1 any layer, any kind of event packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; ptp_v2 = PTP_TCR_TSVER2ENA; snap_type_sel = PTP_TCR_SNAPTYPSEL_1; if (priv->synopsys_id != DWMAC_CORE_5_10) ts_event_en = PTP_TCR_TSEVNTENA; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; ptp_over_ethernet = PTP_TCR_TSIPENA; break; case HWTSTAMP_FILTER_PTP_V2_SYNC: /* PTP v2/802.AS1, any layer, Sync packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; ptp_v2 = PTP_TCR_TSVER2ENA; /* take time stamp for SYNC messages only */ ts_event_en = PTP_TCR_TSEVNTENA; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; ptp_over_ethernet = PTP_TCR_TSIPENA; break; case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: /* PTP v2/802.AS1, any layer, Delay_req packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; ptp_v2 = PTP_TCR_TSVER2ENA; /* take time stamp for Delay_Req messages only */ ts_master_en = PTP_TCR_TSMSTRENA; ts_event_en = PTP_TCR_TSEVNTENA; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; ptp_over_ethernet = PTP_TCR_TSIPENA; break; case HWTSTAMP_FILTER_NTP_ALL: case HWTSTAMP_FILTER_ALL: /* time stamp any incoming packet */ config.rx_filter = HWTSTAMP_FILTER_ALL; tstamp_all = PTP_TCR_TSENALL; break; default: return -ERANGE; } } else { switch (config.rx_filter) { case HWTSTAMP_FILTER_NONE: config.rx_filter = HWTSTAMP_FILTER_NONE; break; default: /* PTP v1, UDP, any kind of event packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; break; } } priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; if (!priv->hwts_tx_en && !priv->hwts_rx_en) stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0); else { value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | tstamp_all | ptp_v2 | ptp_over_ethernet | ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | ts_master_en | snap_type_sel); stmmac_config_hw_tstamping(priv, priv->ptpaddr, value); /* program Sub Second Increment reg */ stmmac_config_sub_second_increment(priv, priv->ptpaddr, priv->plat->clk_ptp_rate, xmac, &sec_inc); temp = div_u64(1000000000ULL, sec_inc); /* Store sub second increment and flags for later use */ priv->sub_second_inc = sec_inc; priv->systime_flags = value; /* calculate default added value: * formula is : * addend = (2^32)/freq_div_ratio; * where, freq_div_ratio = 1e9ns/sec_inc */ temp = (u64)(temp << 32); priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); /* initialize system time */ ktime_get_real_ts64(&now); /* lower 32 bits of tv_sec are safe until y2106 */ stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec); } memcpy(&priv->tstamp_config, &config, sizeof(config)); return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } /** * stmmac_hwtstamp_get - read hardware timestamping. * @dev: device pointer. * @ifr: An IOCTL specific structure, that can contain a pointer to * a proprietary structure used to pass information to the driver. * Description: * This function obtain the current hardware timestamping settings as requested. */ static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) { struct stmmac_priv *priv = netdev_priv(dev); struct hwtstamp_config *config = &priv->tstamp_config; if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) return -EOPNOTSUPP; return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? -EFAULT : 0; } /** * stmmac_init_ptp - init PTP * @priv: driver private structure * Description: this is to verify if the HW supports the PTPv1 or PTPv2. * This is done by looking at the HW cap. register. * This function also registers the ptp driver. */ static int stmmac_init_ptp(struct stmmac_priv *priv) { bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) return -EOPNOTSUPP; priv->adv_ts = 0; /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ if (xmac && priv->dma_cap.atime_stamp) priv->adv_ts = 1; /* Dwmac 3.x core with extend_desc can support adv_ts */ else if (priv->extend_desc && priv->dma_cap.atime_stamp) priv->adv_ts = 1; if (priv->dma_cap.time_stamp) netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); if (priv->adv_ts) netdev_info(priv->dev, "IEEE 1588-2008 Advanced Timestamp supported\n"); priv->hwts_tx_en = 0; priv->hwts_rx_en = 0; stmmac_ptp_register(priv); return 0; } static void stmmac_release_ptp(struct stmmac_priv *priv) { if (priv->plat->clk_ptp_ref) clk_disable_unprepare(priv->plat->clk_ptp_ref); stmmac_ptp_unregister(priv); } /** * stmmac_mac_flow_ctrl - Configure flow control in all queues * @priv: driver private structure * Description: It is used for configuring the flow control in all queues */ static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) { u32 tx_cnt = priv->plat->tx_queues_to_use; stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, priv->pause, tx_cnt); } static void stmmac_validate(struct phylink_config *config, unsigned long *supported, struct phylink_link_state *state) { struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, }; __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; int tx_cnt = priv->plat->tx_queues_to_use; int max_speed = priv->plat->max_speed; phylink_set(mac_supported, 10baseT_Half); phylink_set(mac_supported, 10baseT_Full); phylink_set(mac_supported, 100baseT_Half); phylink_set(mac_supported, 100baseT_Full); phylink_set(mac_supported, 1000baseT_Half); phylink_set(mac_supported, 1000baseT_Full); phylink_set(mac_supported, 1000baseKX_Full); phylink_set(mac_supported, Autoneg); phylink_set(mac_supported, Pause); phylink_set(mac_supported, Asym_Pause); phylink_set_port_modes(mac_supported); /* Cut down 1G if asked to */ if ((max_speed > 0) && (max_speed < 1000)) { phylink_set(mask, 1000baseT_Full); phylink_set(mask, 1000baseX_Full); } else if (priv->plat->has_xgmac) { if (!max_speed || (max_speed >= 2500)) { phylink_set(mac_supported, 2500baseT_Full); phylink_set(mac_supported, 2500baseX_Full); } if (!max_speed || (max_speed >= 5000)) { phylink_set(mac_supported, 5000baseT_Full); } if (!max_speed || (max_speed >= 10000)) { phylink_set(mac_supported, 10000baseSR_Full); phylink_set(mac_supported, 10000baseLR_Full); phylink_set(mac_supported, 10000baseER_Full); phylink_set(mac_supported, 10000baseLRM_Full); phylink_set(mac_supported, 10000baseT_Full); phylink_set(mac_supported, 10000baseKX4_Full); phylink_set(mac_supported, 10000baseKR_Full); } if (!max_speed || (max_speed >= 25000)) { phylink_set(mac_supported, 25000baseCR_Full); phylink_set(mac_supported, 25000baseKR_Full); phylink_set(mac_supported, 25000baseSR_Full); } if (!max_speed || (max_speed >= 40000)) { phylink_set(mac_supported, 40000baseKR4_Full); phylink_set(mac_supported, 40000baseCR4_Full); phylink_set(mac_supported, 40000baseSR4_Full); phylink_set(mac_supported, 40000baseLR4_Full); } if (!max_speed || (max_speed >= 50000)) { phylink_set(mac_supported, 50000baseCR2_Full); phylink_set(mac_supported, 50000baseKR2_Full); phylink_set(mac_supported, 50000baseSR2_Full); phylink_set(mac_supported, 50000baseKR_Full); phylink_set(mac_supported, 50000baseSR_Full); phylink_set(mac_supported, 50000baseCR_Full); phylink_set(mac_supported, 50000baseLR_ER_FR_Full); phylink_set(mac_supported, 50000baseDR_Full); } if (!max_speed || (max_speed >= 100000)) { phylink_set(mac_supported, 100000baseKR4_Full); phylink_set(mac_supported, 100000baseSR4_Full); phylink_set(mac_supported, 100000baseCR4_Full); phylink_set(mac_supported, 100000baseLR4_ER4_Full); phylink_set(mac_supported, 100000baseKR2_Full); phylink_set(mac_supported, 100000baseSR2_Full); phylink_set(mac_supported, 100000baseCR2_Full); phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full); phylink_set(mac_supported, 100000baseDR2_Full); } } /* Half-Duplex can only work with single queue */ if (tx_cnt > 1) { phylink_set(mask, 10baseT_Half); phylink_set(mask, 100baseT_Half); phylink_set(mask, 1000baseT_Half); } linkmode_and(supported, supported, mac_supported); linkmode_andnot(supported, supported, mask); linkmode_and(state->advertising, state->advertising, mac_supported); linkmode_andnot(state->advertising, state->advertising, mask); /* If PCS is supported, check which modes it supports. */ stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state); } static void stmmac_mac_pcs_get_state(struct phylink_config *config, struct phylink_link_state *state) { struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); state->link = 0; stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state); } static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, const struct phylink_link_state *state) { struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state); } static void stmmac_mac_an_restart(struct phylink_config *config) { /* Not Supported */ } static void stmmac_mac_link_down(struct phylink_config *config, unsigned int mode, phy_interface_t interface) { struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); stmmac_mac_set(priv, priv->ioaddr, false); priv->eee_active = false; stmmac_eee_init(priv); stmmac_set_eee_pls(priv, priv->hw, false); } static void stmmac_mac_link_up(struct phylink_config *config, struct phy_device *phy, unsigned int mode, phy_interface_t interface, int speed, int duplex, bool tx_pause, bool rx_pause) { struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); u32 ctrl; stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface); ctrl = readl(priv->ioaddr + MAC_CTRL_REG); ctrl &= ~priv->hw->link.speed_mask; if (interface == PHY_INTERFACE_MODE_USXGMII) { switch (speed) { case SPEED_10000: ctrl |= priv->hw->link.xgmii.speed10000; break; case SPEED_5000: ctrl |= priv->hw->link.xgmii.speed5000; break; case SPEED_2500: ctrl |= priv->hw->link.xgmii.speed2500; break; default: return; } } else if (interface == PHY_INTERFACE_MODE_XLGMII) { switch (speed) { case SPEED_100000: ctrl |= priv->hw->link.xlgmii.speed100000; break; case SPEED_50000: ctrl |= priv->hw->link.xlgmii.speed50000; break; case SPEED_40000: ctrl |= priv->hw->link.xlgmii.speed40000; break; case SPEED_25000: ctrl |= priv->hw->link.xlgmii.speed25000; break; case SPEED_10000: ctrl |= priv->hw->link.xgmii.speed10000; break; case SPEED_2500: ctrl |= priv->hw->link.speed2500; break; case SPEED_1000: ctrl |= priv->hw->link.speed1000; break; default: return; } } else { switch (speed) { case SPEED_2500: ctrl |= priv->hw->link.speed2500; break; case SPEED_1000: ctrl |= priv->hw->link.speed1000; break; case SPEED_100: ctrl |= priv->hw->link.speed100; break; case SPEED_10: ctrl |= priv->hw->link.speed10; break; default: return; } } priv->speed = speed; if (priv->plat->fix_mac_speed) priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); if (!duplex) ctrl &= ~priv->hw->link.duplex; else ctrl |= priv->hw->link.duplex; /* Flow Control operation */ if (tx_pause && rx_pause) stmmac_mac_flow_ctrl(priv, duplex); writel(ctrl, priv->ioaddr + MAC_CTRL_REG); stmmac_mac_set(priv, priv->ioaddr, true); if (phy && priv->dma_cap.eee) { priv->eee_active = phy_init_eee(phy, 1) >= 0; priv->eee_enabled = stmmac_eee_init(priv); stmmac_set_eee_pls(priv, priv->hw, true); } } static const struct phylink_mac_ops stmmac_phylink_mac_ops = { .validate = stmmac_validate, .mac_pcs_get_state = stmmac_mac_pcs_get_state, .mac_config = stmmac_mac_config, .mac_an_restart = stmmac_mac_an_restart, .mac_link_down = stmmac_mac_link_down, .mac_link_up = stmmac_mac_link_up, }; /** * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported * @priv: driver private structure * Description: this is to verify if the HW supports the PCS. * Physical Coding Sublayer (PCS) interface that can be used when the MAC is * configured for the TBI, RTBI, or SGMII PHY interface. */ static void stmmac_check_pcs_mode(struct stmmac_priv *priv) { int interface = priv->plat->interface; if (priv->dma_cap.pcs) { if ((interface == PHY_INTERFACE_MODE_RGMII) || (interface == PHY_INTERFACE_MODE_RGMII_ID) || (interface == PHY_INTERFACE_MODE_RGMII_RXID) || (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); priv->hw->pcs = STMMAC_PCS_RGMII; } else if (interface == PHY_INTERFACE_MODE_SGMII) { netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); priv->hw->pcs = STMMAC_PCS_SGMII; } } } /** * stmmac_init_phy - PHY initialization * @dev: net device structure * Description: it initializes the driver's PHY state, and attaches the PHY * to the mac driver. * Return value: * 0 on success */ static int stmmac_init_phy(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); struct device_node *node; int ret; node = priv->plat->phylink_node; if (node) ret = phylink_of_phy_connect(priv->phylink, node, 0); /* Some DT bindings do not set-up the PHY handle. Let's try to * manually parse it */ if (!node || ret) { int addr = priv->plat->phy_addr; struct phy_device *phydev; phydev = mdiobus_get_phy(priv->mii, addr); if (!phydev) { netdev_err(priv->dev, "no phy at addr %d\n", addr); return -ENODEV; } ret = phylink_connect_phy(priv->phylink, phydev); } return ret; } static int stmmac_phy_setup(struct stmmac_priv *priv) { struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); int mode = priv->plat->phy_interface; struct phylink *phylink; priv->phylink_config.dev = &priv->dev->dev; priv->phylink_config.type = PHYLINK_NETDEV; priv->phylink_config.pcs_poll = true; if (!fwnode) fwnode = dev_fwnode(priv->device); phylink = phylink_create(&priv->phylink_config, fwnode, mode, &stmmac_phylink_mac_ops); if (IS_ERR(phylink)) return PTR_ERR(phylink); priv->phylink = phylink; return 0; } static void stmmac_display_rx_rings(struct stmmac_priv *priv) { u32 rx_cnt = priv->plat->rx_queues_to_use; void *head_rx; u32 queue; /* Display RX rings */ for (queue = 0; queue < rx_cnt; queue++) { struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; pr_info("\tRX Queue %u rings\n", queue); if (priv->extend_desc) head_rx = (void *)rx_q->dma_erx; else head_rx = (void *)rx_q->dma_rx; /* Display RX ring */ stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true); } } static void stmmac_display_tx_rings(struct stmmac_priv *priv) { u32 tx_cnt = priv->plat->tx_queues_to_use; void *head_tx; u32 queue; /* Display TX rings */ for (queue = 0; queue < tx_cnt; queue++) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; pr_info("\tTX Queue %d rings\n", queue); if (priv->extend_desc) head_tx = (void *)tx_q->dma_etx; else if (tx_q->tbs & STMMAC_TBS_AVAIL) head_tx = (void *)tx_q->dma_entx; else head_tx = (void *)tx_q->dma_tx; stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false); } } static void stmmac_display_rings(struct stmmac_priv *priv) { /* Display RX ring */ stmmac_display_rx_rings(priv); /* Display TX ring */ stmmac_display_tx_rings(priv); } static int stmmac_set_bfsize(int mtu, int bufsize) { int ret = bufsize; if (mtu >= BUF_SIZE_8KiB) ret = BUF_SIZE_16KiB; else if (mtu >= BUF_SIZE_4KiB) ret = BUF_SIZE_8KiB; else if (mtu >= BUF_SIZE_2KiB) ret = BUF_SIZE_4KiB; else if (mtu > DEFAULT_BUFSIZE) ret = BUF_SIZE_2KiB; else ret = DEFAULT_BUFSIZE; return ret; } /** * stmmac_clear_rx_descriptors - clear RX descriptors * @priv: driver private structure * @queue: RX queue index * Description: this function is called to clear the RX descriptors * in case of both basic and extended descriptors are used. */ static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) { struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; int i; /* Clear the RX descriptors */ for (i = 0; i < DMA_RX_SIZE; i++) if (priv->extend_desc) stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, priv->use_riwt, priv->mode, (i == DMA_RX_SIZE - 1), priv->dma_buf_sz); else stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], priv->use_riwt, priv->mode, (i == DMA_RX_SIZE - 1), priv->dma_buf_sz); } /** * stmmac_clear_tx_descriptors - clear tx descriptors * @priv: driver private structure * @queue: TX queue index. * Description: this function is called to clear the TX descriptors * in case of both basic and extended descriptors are used. */ static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; int i; /* Clear the TX descriptors */ for (i = 0; i < DMA_TX_SIZE; i++) { int last = (i == (DMA_TX_SIZE - 1)); struct dma_desc *p; if (priv->extend_desc) p = &tx_q->dma_etx[i].basic; else if (tx_q->tbs & STMMAC_TBS_AVAIL) p = &tx_q->dma_entx[i].basic; else p = &tx_q->dma_tx[i]; stmmac_init_tx_desc(priv, p, priv->mode, last); } } /** * stmmac_clear_descriptors - clear descriptors * @priv: driver private structure * Description: this function is called to clear the TX and RX descriptors * in case of both basic and extended descriptors are used. */ static void stmmac_clear_descriptors(struct stmmac_priv *priv) { u32 rx_queue_cnt = priv->plat->rx_queues_to_use; u32 tx_queue_cnt = priv->plat->tx_queues_to_use; u32 queue; /* Clear the RX descriptors */ for (queue = 0; queue < rx_queue_cnt; queue++) stmmac_clear_rx_descriptors(priv, queue); /* Clear the TX descriptors */ for (queue = 0; queue < tx_queue_cnt; queue++) stmmac_clear_tx_descriptors(priv, queue); } /** * stmmac_init_rx_buffers - init the RX descriptor buffer. * @priv: driver private structure * @p: descriptor pointer * @i: descriptor index * @flags: gfp flag * @queue: RX queue index * Description: this function is called to allocate a receive buffer, perform * the DMA mapping and init the descriptor. */ static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, int i, gfp_t flags, u32 queue) { struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); if (!buf->page) return -ENOMEM; if (priv->sph) { buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); if (!buf->sec_page) return -ENOMEM; buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); stmmac_set_desc_sec_addr(priv, p, buf->sec_addr); } else { buf->sec_page = NULL; } buf->addr = page_pool_get_dma_addr(buf->page); stmmac_set_desc_addr(priv, p, buf->addr); if (priv->dma_buf_sz == BUF_SIZE_16KiB) stmmac_init_desc3(priv, p); return 0; } /** * stmmac_free_rx_buffer - free RX dma buffers * @priv: private structure * @queue: RX queue index * @i: buffer index. */ static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) { struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; if (buf->page) page_pool_put_full_page(rx_q->page_pool, buf->page, false); buf->page = NULL; if (buf->sec_page) page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); buf->sec_page = NULL; } /** * stmmac_free_tx_buffer - free RX dma buffers * @priv: private structure * @queue: RX queue index * @i: buffer index. */ static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; if (tx_q->tx_skbuff_dma[i].buf) { if (tx_q->tx_skbuff_dma[i].map_as_page) dma_unmap_page(priv->device, tx_q->tx_skbuff_dma[i].buf, tx_q->tx_skbuff_dma[i].len, DMA_TO_DEVICE); else dma_unmap_single(priv->device, tx_q->tx_skbuff_dma[i].buf, tx_q->tx_skbuff_dma[i].len, DMA_TO_DEVICE); } if (tx_q->tx_skbuff[i]) { dev_kfree_skb_any(tx_q->tx_skbuff[i]); tx_q->tx_skbuff[i] = NULL; tx_q->tx_skbuff_dma[i].buf = 0; tx_q->tx_skbuff_dma[i].map_as_page = false; } } /** * init_dma_rx_desc_rings - init the RX descriptor rings * @dev: net device structure * @flags: gfp flag. * Description: this function initializes the DMA RX descriptors * and allocates the socket buffers. It supports the chained and ring * modes. */ static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) { struct stmmac_priv *priv = netdev_priv(dev); u32 rx_count = priv->plat->rx_queues_to_use; int ret = -ENOMEM; int queue; int i; /* RX INITIALIZATION */ netif_dbg(priv, probe, priv->dev, "SKB addresses:\nskb\t\tskb data\tdma data\n"); for (queue = 0; queue < rx_count; queue++) { struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; netif_dbg(priv, probe, priv->dev, "(%s) dma_rx_phy=0x%08x\n", __func__, (u32)rx_q->dma_rx_phy); stmmac_clear_rx_descriptors(priv, queue); for (i = 0; i < DMA_RX_SIZE; i++) { struct dma_desc *p; if (priv->extend_desc) p = &((rx_q->dma_erx + i)->basic); else p = rx_q->dma_rx + i; ret = stmmac_init_rx_buffers(priv, p, i, flags, queue); if (ret) goto err_init_rx_buffers; } rx_q->cur_rx = 0; rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE); /* Setup the chained descriptor addresses */ if (priv->mode == STMMAC_CHAIN_MODE) { if (priv->extend_desc) stmmac_mode_init(priv, rx_q->dma_erx, rx_q->dma_rx_phy, DMA_RX_SIZE, 1); else stmmac_mode_init(priv, rx_q->dma_rx, rx_q->dma_rx_phy, DMA_RX_SIZE, 0); } } return 0; err_init_rx_buffers: while (queue >= 0) { while (--i >= 0) stmmac_free_rx_buffer(priv, queue, i); if (queue == 0) break; i = DMA_RX_SIZE; queue--; } return ret; } /** * init_dma_tx_desc_rings - init the TX descriptor rings * @dev: net device structure. * Description: this function initializes the DMA TX descriptors * and allocates the socket buffers. It supports the chained and ring * modes. */ static int init_dma_tx_desc_rings(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); u32 tx_queue_cnt = priv->plat->tx_queues_to_use; u32 queue; int i; for (queue = 0; queue < tx_queue_cnt; queue++) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; netif_dbg(priv, probe, priv->dev, "(%s) dma_tx_phy=0x%08x\n", __func__, (u32)tx_q->dma_tx_phy); /* Setup the chained descriptor addresses */ if (priv->mode == STMMAC_CHAIN_MODE) { if (priv->extend_desc) stmmac_mode_init(priv, tx_q->dma_etx, tx_q->dma_tx_phy, DMA_TX_SIZE, 1); else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) stmmac_mode_init(priv, tx_q->dma_tx, tx_q->dma_tx_phy, DMA_TX_SIZE, 0); } for (i = 0; i < DMA_TX_SIZE; i++) { struct dma_desc *p; if (priv->extend_desc) p = &((tx_q->dma_etx + i)->basic); else if (tx_q->tbs & STMMAC_TBS_AVAIL) p = &((tx_q->dma_entx + i)->basic); else p = tx_q->dma_tx + i; stmmac_clear_desc(priv, p); tx_q->tx_skbuff_dma[i].buf = 0; tx_q->tx_skbuff_dma[i].map_as_page = false; tx_q->tx_skbuff_dma[i].len = 0; tx_q->tx_skbuff_dma[i].last_segment = false; tx_q->tx_skbuff[i] = NULL; } tx_q->dirty_tx = 0; tx_q->cur_tx = 0; tx_q->mss = 0; netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); } return 0; } /** * init_dma_desc_rings - init the RX/TX descriptor rings * @dev: net device structure * @flags: gfp flag. * Description: this function initializes the DMA RX/TX descriptors * and allocates the socket buffers. It supports the chained and ring * modes. */ static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) { struct stmmac_priv *priv = netdev_priv(dev); int ret; ret = init_dma_rx_desc_rings(dev, flags); if (ret) return ret; ret = init_dma_tx_desc_rings(dev); stmmac_clear_descriptors(priv); if (netif_msg_hw(priv)) stmmac_display_rings(priv); return ret; } /** * dma_free_rx_skbufs - free RX dma buffers * @priv: private structure * @queue: RX queue index */ static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) { int i; for (i = 0; i < DMA_RX_SIZE; i++) stmmac_free_rx_buffer(priv, queue, i); } /** * dma_free_tx_skbufs - free TX dma buffers * @priv: private structure * @queue: TX queue index */ static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) { int i; for (i = 0; i < DMA_TX_SIZE; i++) stmmac_free_tx_buffer(priv, queue, i); } /** * free_dma_rx_desc_resources - free RX dma desc resources * @priv: private structure */ static void free_dma_rx_desc_resources(struct stmmac_priv *priv) { u32 rx_count = priv->plat->rx_queues_to_use; u32 queue; /* Free RX queue resources */ for (queue = 0; queue < rx_count; queue++) { struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; /* Release the DMA RX socket buffers */ dma_free_rx_skbufs(priv, queue); /* Free DMA regions of consistent memory previously allocated */ if (!priv->extend_desc) dma_free_coherent(priv->device, DMA_RX_SIZE * sizeof(struct dma_desc), rx_q->dma_rx, rx_q->dma_rx_phy); else dma_free_coherent(priv->device, DMA_RX_SIZE * sizeof(struct dma_extended_desc), rx_q->dma_erx, rx_q->dma_rx_phy); kfree(rx_q->buf_pool); if (rx_q->page_pool) page_pool_destroy(rx_q->page_pool); } } /** * free_dma_tx_desc_resources - free TX dma desc resources * @priv: private structure */ static void free_dma_tx_desc_resources(struct stmmac_priv *priv) { u32 tx_count = priv->plat->tx_queues_to_use; u32 queue; /* Free TX queue resources */ for (queue = 0; queue < tx_count; queue++) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; size_t size; void *addr; /* Release the DMA TX socket buffers */ dma_free_tx_skbufs(priv, queue); if (priv->extend_desc) { size = sizeof(struct dma_extended_desc); addr = tx_q->dma_etx; } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { size = sizeof(struct dma_edesc); addr = tx_q->dma_entx; } else { size = sizeof(struct dma_desc); addr = tx_q->dma_tx; } size *= DMA_TX_SIZE; dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); kfree(tx_q->tx_skbuff_dma); kfree(tx_q->tx_skbuff); } } /** * alloc_dma_rx_desc_resources - alloc RX resources. * @priv: private structure * Description: according to which descriptor can be used (extend or basic) * this function allocates the resources for TX and RX paths. In case of * reception, for example, it pre-allocated the RX socket buffer in order to * allow zero-copy mechanism. */ static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) { u32 rx_count = priv->plat->rx_queues_to_use; int ret = -ENOMEM; u32 queue; /* RX queues buffers and DMA */ for (queue = 0; queue < rx_count; queue++) { struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; struct page_pool_params pp_params = { 0 }; unsigned int num_pages; rx_q->queue_index = queue; rx_q->priv_data = priv; pp_params.flags = PP_FLAG_DMA_MAP; pp_params.pool_size = DMA_RX_SIZE; num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE); pp_params.order = ilog2(num_pages); pp_params.nid = dev_to_node(priv->device); pp_params.dev = priv->device; pp_params.dma_dir = DMA_FROM_DEVICE; rx_q->page_pool = page_pool_create(&pp_params); if (IS_ERR(rx_q->page_pool)) { ret = PTR_ERR(rx_q->page_pool); rx_q->page_pool = NULL; goto err_dma; } rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool), GFP_KERNEL); if (!rx_q->buf_pool) goto err_dma; if (priv->extend_desc) { rx_q->dma_erx = dma_alloc_coherent(priv->device, DMA_RX_SIZE * sizeof(struct dma_extended_desc), &rx_q->dma_rx_phy, GFP_KERNEL); if (!rx_q->dma_erx) goto err_dma; } else { rx_q->dma_rx = dma_alloc_coherent(priv->device, DMA_RX_SIZE * sizeof(struct dma_desc), &rx_q->dma_rx_phy, GFP_KERNEL); if (!rx_q->dma_rx) goto err_dma; } } return 0; err_dma: free_dma_rx_desc_resources(priv); return ret; } /** * alloc_dma_tx_desc_resources - alloc TX resources. * @priv: private structure * Description: according to which descriptor can be used (extend or basic) * this function allocates the resources for TX and RX paths. In case of * reception, for example, it pre-allocated the RX socket buffer in order to * allow zero-copy mechanism. */ static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) { u32 tx_count = priv->plat->tx_queues_to_use; int ret = -ENOMEM; u32 queue; /* TX queues buffers and DMA */ for (queue = 0; queue < tx_count; queue++) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; size_t size; void *addr; tx_q->queue_index = queue; tx_q->priv_data = priv; tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE, sizeof(*tx_q->tx_skbuff_dma), GFP_KERNEL); if (!tx_q->tx_skbuff_dma) goto err_dma; tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE, sizeof(struct sk_buff *), GFP_KERNEL); if (!tx_q->tx_skbuff) goto err_dma; if (priv->extend_desc) size = sizeof(struct dma_extended_desc); else if (tx_q->tbs & STMMAC_TBS_AVAIL) size = sizeof(struct dma_edesc); else size = sizeof(struct dma_desc); size *= DMA_TX_SIZE; addr = dma_alloc_coherent(priv->device, size, &tx_q->dma_tx_phy, GFP_KERNEL); if (!addr) goto err_dma; if (priv->extend_desc) tx_q->dma_etx = addr; else if (tx_q->tbs & STMMAC_TBS_AVAIL) tx_q->dma_entx = addr; else tx_q->dma_tx = addr; } return 0; err_dma: free_dma_tx_desc_resources(priv); return ret; } /** * alloc_dma_desc_resources - alloc TX/RX resources. * @priv: private structure * Description: according to which descriptor can be used (extend or basic) * this function allocates the resources for TX and RX paths. In case of * reception, for example, it pre-allocated the RX socket buffer in order to * allow zero-copy mechanism. */ static int alloc_dma_desc_resources(struct stmmac_priv *priv) { /* RX Allocation */ int ret = alloc_dma_rx_desc_resources(priv); if (ret) return ret; ret = alloc_dma_tx_desc_resources(priv); return ret; } /** * free_dma_desc_resources - free dma desc resources * @priv: private structure */ static void free_dma_desc_resources(struct stmmac_priv *priv) { /* Release the DMA RX socket buffers */ free_dma_rx_desc_resources(priv); /* Release the DMA TX socket buffers */ free_dma_tx_desc_resources(priv); } /** * stmmac_mac_enable_rx_queues - Enable MAC rx queues * @priv: driver private structure * Description: It is used for enabling the rx queues in the MAC */ static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) { u32 rx_queues_count = priv->plat->rx_queues_to_use; int queue; u8 mode; for (queue = 0; queue < rx_queues_count; queue++) { mode = priv->plat->rx_queues_cfg[queue].mode_to_use; stmmac_rx_queue_enable(priv, priv->hw, mode, queue); } } /** * stmmac_start_rx_dma - start RX DMA channel * @priv: driver private structure * @chan: RX channel index * Description: * This starts a RX DMA channel */ static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) { netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); stmmac_start_rx(priv, priv->ioaddr, chan); } /** * stmmac_start_tx_dma - start TX DMA channel * @priv: driver private structure * @chan: TX channel index * Description: * This starts a TX DMA channel */ static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) { netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); stmmac_start_tx(priv, priv->ioaddr, chan); } /** * stmmac_stop_rx_dma - stop RX DMA channel * @priv: driver private structure * @chan: RX channel index * Description: * This stops a RX DMA channel */ static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) { netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); stmmac_stop_rx(priv, priv->ioaddr, chan); } /** * stmmac_stop_tx_dma - stop TX DMA channel * @priv: driver private structure * @chan: TX channel index * Description: * This stops a TX DMA channel */ static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) { netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); stmmac_stop_tx(priv, priv->ioaddr, chan); } /** * stmmac_start_all_dma - start all RX and TX DMA channels * @priv: driver private structure * Description: * This starts all the RX and TX DMA channels */ static void stmmac_start_all_dma(struct stmmac_priv *priv) { u32 rx_channels_count = priv->plat->rx_queues_to_use; u32 tx_channels_count = priv->plat->tx_queues_to_use; u32 chan = 0; for (chan = 0; chan < rx_channels_count; chan++) stmmac_start_rx_dma(priv, chan); for (chan = 0; chan < tx_channels_count; chan++) stmmac_start_tx_dma(priv, chan); } /** * stmmac_stop_all_dma - stop all RX and TX DMA channels * @priv: driver private structure * Description: * This stops the RX and TX DMA channels */ static void stmmac_stop_all_dma(struct stmmac_priv *priv) { u32 rx_channels_count = priv->plat->rx_queues_to_use; u32 tx_channels_count = priv->plat->tx_queues_to_use; u32 chan = 0; for (chan = 0; chan < rx_channels_count; chan++) stmmac_stop_rx_dma(priv, chan); for (chan = 0; chan < tx_channels_count; chan++) stmmac_stop_tx_dma(priv, chan); } /** * stmmac_dma_operation_mode - HW DMA operation mode * @priv: driver private structure * Description: it is used for configuring the DMA operation mode register in * order to program the tx/rx DMA thresholds or Store-And-Forward mode. */ static void stmmac_dma_operation_mode(struct stmmac_priv *priv) { u32 rx_channels_count = priv->plat->rx_queues_to_use; u32 tx_channels_count = priv->plat->tx_queues_to_use; int rxfifosz = priv->plat->rx_fifo_size; int txfifosz = priv->plat->tx_fifo_size; u32 txmode = 0; u32 rxmode = 0; u32 chan = 0; u8 qmode = 0; if (rxfifosz == 0) rxfifosz = priv->dma_cap.rx_fifo_size; if (txfifosz == 0) txfifosz = priv->dma_cap.tx_fifo_size; /* Adjust for real per queue fifo size */ rxfifosz /= rx_channels_count; txfifosz /= tx_channels_count; if (priv->plat->force_thresh_dma_mode) { txmode = tc; rxmode = tc; } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { /* * In case of GMAC, SF mode can be enabled * to perform the TX COE in HW. This depends on: * 1) TX COE if actually supported * 2) There is no bugged Jumbo frame support * that needs to not insert csum in the TDES. */ txmode = SF_DMA_MODE; rxmode = SF_DMA_MODE; priv->xstats.threshold = SF_DMA_MODE; } else { txmode = tc; rxmode = SF_DMA_MODE; } /* configure all channels */ for (chan = 0; chan < rx_channels_count; chan++) { qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, qmode); stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz, chan); } for (chan = 0; chan < tx_channels_count; chan++) { qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, qmode); } } /** * stmmac_tx_clean - to manage the transmission completion * @priv: driver private structure * @queue: TX queue index * Description: it reclaims the transmit resources after transmission completes. */ static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; unsigned int bytes_compl = 0, pkts_compl = 0; unsigned int entry, count = 0; __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); priv->xstats.tx_clean++; entry = tx_q->dirty_tx; while ((entry != tx_q->cur_tx) && (count < budget)) { struct sk_buff *skb = tx_q->tx_skbuff[entry]; struct dma_desc *p; int status; if (priv->extend_desc) p = (struct dma_desc *)(tx_q->dma_etx + entry); else if (tx_q->tbs & STMMAC_TBS_AVAIL) p = &tx_q->dma_entx[entry].basic; else p = tx_q->dma_tx + entry; status = stmmac_tx_status(priv, &priv->dev->stats, &priv->xstats, p, priv->ioaddr); /* Check if the descriptor is owned by the DMA */ if (unlikely(status & tx_dma_own)) break; count++; /* Make sure descriptor fields are read after reading * the own bit. */ dma_rmb(); /* Just consider the last segment and ...*/ if (likely(!(status & tx_not_ls))) { /* ... verify the status error condition */ if (unlikely(status & tx_err)) { priv->dev->stats.tx_errors++; } else { priv->dev->stats.tx_packets++; priv->xstats.tx_pkt_n++; } stmmac_get_tx_hwtstamp(priv, p, skb); } if (likely(tx_q->tx_skbuff_dma[entry].buf)) { if (tx_q->tx_skbuff_dma[entry].map_as_page) dma_unmap_page(priv->device, tx_q->tx_skbuff_dma[entry].buf, tx_q->tx_skbuff_dma[entry].len, DMA_TO_DEVICE); else dma_unmap_single(priv->device, tx_q->tx_skbuff_dma[entry].buf, tx_q->tx_skbuff_dma[entry].len, DMA_TO_DEVICE); tx_q->tx_skbuff_dma[entry].buf = 0; tx_q->tx_skbuff_dma[entry].len = 0; tx_q->tx_skbuff_dma[entry].map_as_page = false; } stmmac_clean_desc3(priv, tx_q, p); tx_q->tx_skbuff_dma[entry].last_segment = false; tx_q->tx_skbuff_dma[entry].is_jumbo = false; if (likely(skb != NULL)) { pkts_compl++; bytes_compl += skb->len; dev_consume_skb_any(skb); tx_q->tx_skbuff[entry] = NULL; } stmmac_release_tx_desc(priv, p, priv->mode); entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); } tx_q->dirty_tx = entry; netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), pkts_compl, bytes_compl); if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, queue))) && stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) { netif_dbg(priv, tx_done, priv->dev, "%s: restart transmit\n", __func__); netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); } if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { stmmac_enable_eee_mode(priv); mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); } /* We still have pending packets, let's call for a new scheduling */ if (tx_q->dirty_tx != tx_q->cur_tx) mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer)); __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); return count; } /** * stmmac_tx_err - to manage the tx error * @priv: driver private structure * @chan: channel index * Description: it cleans the descriptors and restarts the transmission * in case of transmission errors. */ static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); stmmac_stop_tx_dma(priv, chan); dma_free_tx_skbufs(priv, chan); stmmac_clear_tx_descriptors(priv, chan); tx_q->dirty_tx = 0; tx_q->cur_tx = 0; tx_q->mss = 0; netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, tx_q->dma_tx_phy, chan); stmmac_start_tx_dma(priv, chan); priv->dev->stats.tx_errors++; netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); } /** * stmmac_set_dma_operation_mode - Set DMA operation mode by channel * @priv: driver private structure * @txmode: TX operating mode * @rxmode: RX operating mode * @chan: channel index * Description: it is used for configuring of the DMA operation mode in * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward * mode. */ static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, u32 rxmode, u32 chan) { u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; u32 rx_channels_count = priv->plat->rx_queues_to_use; u32 tx_channels_count = priv->plat->tx_queues_to_use; int rxfifosz = priv->plat->rx_fifo_size; int txfifosz = priv->plat->tx_fifo_size; if (rxfifosz == 0) rxfifosz = priv->dma_cap.rx_fifo_size; if (txfifosz == 0) txfifosz = priv->dma_cap.tx_fifo_size; /* Adjust for real per queue fifo size */ rxfifosz /= rx_channels_count; txfifosz /= tx_channels_count; stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); } static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) { int ret; ret = stmmac_safety_feat_irq_status(priv, priv->dev, priv->ioaddr, priv->dma_cap.asp, &priv->sstats); if (ret && (ret != -EINVAL)) { stmmac_global_err(priv); return true; } return false; } static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan) { int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, &priv->xstats, chan); struct stmmac_channel *ch = &priv->channel[chan]; unsigned long flags; if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { if (napi_schedule_prep(&ch->rx_napi)) { spin_lock_irqsave(&ch->lock, flags); stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); spin_unlock_irqrestore(&ch->lock, flags); __napi_schedule_irqoff(&ch->rx_napi); } } if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { if (napi_schedule_prep(&ch->tx_napi)) { spin_lock_irqsave(&ch->lock, flags); stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); spin_unlock_irqrestore(&ch->lock, flags); __napi_schedule_irqoff(&ch->tx_napi); } } return status; } /** * stmmac_dma_interrupt - DMA ISR * @priv: driver private structure * Description: this is the DMA ISR. It is called by the main ISR. * It calls the dwmac dma routine and schedule poll method in case of some * work can be done. */ static void stmmac_dma_interrupt(struct stmmac_priv *priv) { u32 tx_channel_count = priv->plat->tx_queues_to_use; u32 rx_channel_count = priv->plat->rx_queues_to_use; u32 channels_to_check = tx_channel_count > rx_channel_count ? tx_channel_count : rx_channel_count; u32 chan; int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; /* Make sure we never check beyond our status buffer. */ if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) channels_to_check = ARRAY_SIZE(status); for (chan = 0; chan < channels_to_check; chan++) status[chan] = stmmac_napi_check(priv, chan); for (chan = 0; chan < tx_channel_count; chan++) { if (unlikely(status[chan] & tx_hard_error_bump_tc)) { /* Try to bump up the dma threshold on this failure */ if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && (tc <= 256)) { tc += 64; if (priv->plat->force_thresh_dma_mode) stmmac_set_dma_operation_mode(priv, tc, tc, chan); else stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE, chan); priv->xstats.threshold = tc; } } else if (unlikely(status[chan] == tx_hard_error)) { stmmac_tx_err(priv, chan); } } } /** * stmmac_mmc_setup: setup the Mac Management Counters (MMC) * @priv: driver private structure * Description: this masks the MMC irq, in fact, the counters are managed in SW. */ static void stmmac_mmc_setup(struct stmmac_priv *priv) { unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); if (priv->dma_cap.rmon) { stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); } else netdev_info(priv->dev, "No MAC Management Counters available\n"); } /** * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. * @priv: driver private structure * Description: * new GMAC chip generations have a new register to indicate the * presence of the optional feature/functions. * This can be also used to override the value passed through the * platform and necessary for old MAC10/100 and GMAC chips. */ static int stmmac_get_hw_features(struct stmmac_priv *priv) { return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; } /** * stmmac_check_ether_addr - check if the MAC addr is valid * @priv: driver private structure * Description: * it is to verify if the MAC address is valid, in case of failures it * generates a random MAC address */ static void stmmac_check_ether_addr(struct stmmac_priv *priv) { if (!is_valid_ether_addr(priv->dev->dev_addr)) { stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0); if (!is_valid_ether_addr(priv->dev->dev_addr)) eth_hw_addr_random(priv->dev); dev_info(priv->device, "device MAC address %pM\n", priv->dev->dev_addr); } } /** * stmmac_init_dma_engine - DMA init. * @priv: driver private structure * Description: * It inits the DMA invoking the specific MAC/GMAC callback. * Some DMA parameters can be passed from the platform; * in case of these are not passed a default is kept for the MAC or GMAC. */ static int stmmac_init_dma_engine(struct stmmac_priv *priv) { u32 rx_channels_count = priv->plat->rx_queues_to_use; u32 tx_channels_count = priv->plat->tx_queues_to_use; u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); struct stmmac_rx_queue *rx_q; struct stmmac_tx_queue *tx_q; u32 chan = 0; int atds = 0; int ret = 0; if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { dev_err(priv->device, "Invalid DMA configuration\n"); return -EINVAL; } if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) atds = 1; ret = stmmac_reset(priv, priv->ioaddr); if (ret) { dev_err(priv->device, "Failed to reset the dma\n"); return ret; } /* DMA Configuration */ stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); if (priv->plat->axi) stmmac_axi(priv, priv->ioaddr, priv->plat->axi); /* DMA CSR Channel configuration */ for (chan = 0; chan < dma_csr_ch; chan++) stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); /* DMA RX Channel Configuration */ for (chan = 0; chan < rx_channels_count; chan++) { rx_q = &priv->rx_queue[chan]; stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, rx_q->dma_rx_phy, chan); rx_q->rx_tail_addr = rx_q->dma_rx_phy + (DMA_RX_SIZE * sizeof(struct dma_desc)); stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, chan); } /* DMA TX Channel Configuration */ for (chan = 0; chan < tx_channels_count; chan++) { tx_q = &priv->tx_queue[chan]; stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, tx_q->dma_tx_phy, chan); tx_q->tx_tail_addr = tx_q->dma_tx_phy; stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, chan); } return ret; } static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer)); } /** * stmmac_tx_timer - mitigation sw timer for tx. * @data: data pointer * Description: * This is the timer handler to directly invoke the stmmac_tx_clean. */ static void stmmac_tx_timer(struct timer_list *t) { struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer); struct stmmac_priv *priv = tx_q->priv_data; struct stmmac_channel *ch; ch = &priv->channel[tx_q->queue_index]; if (likely(napi_schedule_prep(&ch->tx_napi))) { unsigned long flags; spin_lock_irqsave(&ch->lock, flags); stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); spin_unlock_irqrestore(&ch->lock, flags); __napi_schedule(&ch->tx_napi); } } /** * stmmac_init_coalesce - init mitigation options. * @priv: driver private structure * Description: * This inits the coalesce parameters: i.e. timer rate, * timer handler and default threshold used for enabling the * interrupt on completion bit. */ static void stmmac_init_coalesce(struct stmmac_priv *priv) { u32 tx_channel_count = priv->plat->tx_queues_to_use; u32 chan; priv->tx_coal_frames = STMMAC_TX_FRAMES; priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; priv->rx_coal_frames = STMMAC_RX_FRAMES; for (chan = 0; chan < tx_channel_count; chan++) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0); } } static void stmmac_set_rings_length(struct stmmac_priv *priv) { u32 rx_channels_count = priv->plat->rx_queues_to_use; u32 tx_channels_count = priv->plat->tx_queues_to_use; u32 chan; /* set TX ring length */ for (chan = 0; chan < tx_channels_count; chan++) stmmac_set_tx_ring_len(priv, priv->ioaddr, (DMA_TX_SIZE - 1), chan); /* set RX ring length */ for (chan = 0; chan < rx_channels_count; chan++) stmmac_set_rx_ring_len(priv, priv->ioaddr, (DMA_RX_SIZE - 1), chan); } /** * stmmac_set_tx_queue_weight - Set TX queue weight * @priv: driver private structure * Description: It is used for setting TX queues weight */ static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) { u32 tx_queues_count = priv->plat->tx_queues_to_use; u32 weight; u32 queue; for (queue = 0; queue < tx_queues_count; queue++) { weight = priv->plat->tx_queues_cfg[queue].weight; stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); } } /** * stmmac_configure_cbs - Configure CBS in TX queue * @priv: driver private structure * Description: It is used for configuring CBS in AVB TX queues */ static void stmmac_configure_cbs(struct stmmac_priv *priv) { u32 tx_queues_count = priv->plat->tx_queues_to_use; u32 mode_to_use; u32 queue; /* queue 0 is reserved for legacy traffic */ for (queue = 1; queue < tx_queues_count; queue++) { mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; if (mode_to_use == MTL_QUEUE_DCB) continue; stmmac_config_cbs(priv, priv->hw, priv->plat->tx_queues_cfg[queue].send_slope, priv->plat->tx_queues_cfg[queue].idle_slope, priv->plat->tx_queues_cfg[queue].high_credit, priv->plat->tx_queues_cfg[queue].low_credit, queue); } } /** * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel * @priv: driver private structure * Description: It is used for mapping RX queues to RX dma channels */ static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) { u32 rx_queues_count = priv->plat->rx_queues_to_use; u32 queue; u32 chan; for (queue = 0; queue < rx_queues_count; queue++) { chan = priv->plat->rx_queues_cfg[queue].chan; stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); } } /** * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority * @priv: driver private structure * Description: It is used for configuring the RX Queue Priority */ static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) { u32 rx_queues_count = priv->plat->rx_queues_to_use; u32 queue; u32 prio; for (queue = 0; queue < rx_queues_count; queue++) { if (!priv->plat->rx_queues_cfg[queue].use_prio) continue; prio = priv->plat->rx_queues_cfg[queue].prio; stmmac_rx_queue_prio(priv, priv->hw, prio, queue); } } /** * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority * @priv: driver private structure * Description: It is used for configuring the TX Queue Priority */ static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) { u32 tx_queues_count = priv->plat->tx_queues_to_use; u32 queue; u32 prio; for (queue = 0; queue < tx_queues_count; queue++) { if (!priv->plat->tx_queues_cfg[queue].use_prio) continue; prio = priv->plat->tx_queues_cfg[queue].prio; stmmac_tx_queue_prio(priv, priv->hw, prio, queue); } } /** * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing * @priv: driver private structure * Description: It is used for configuring the RX queue routing */ static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) { u32 rx_queues_count = priv->plat->rx_queues_to_use; u32 queue; u8 packet; for (queue = 0; queue < rx_queues_count; queue++) { /* no specific packet type routing specified for the queue */ if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) continue; packet = priv->plat->rx_queues_cfg[queue].pkt_route; stmmac_rx_queue_routing(priv, priv->hw, packet, queue); } } static void stmmac_mac_config_rss(struct stmmac_priv *priv) { if (!priv->dma_cap.rssen || !priv->plat->rss_en) { priv->rss.enable = false; return; } if (priv->dev->features & NETIF_F_RXHASH) priv->rss.enable = true; else priv->rss.enable = false; stmmac_rss_configure(priv, priv->hw, &priv->rss, priv->plat->rx_queues_to_use); } /** * stmmac_mtl_configuration - Configure MTL * @priv: driver private structure * Description: It is used for configurring MTL */ static void stmmac_mtl_configuration(struct stmmac_priv *priv) { u32 rx_queues_count = priv->plat->rx_queues_to_use; u32 tx_queues_count = priv->plat->tx_queues_to_use; if (tx_queues_count > 1) stmmac_set_tx_queue_weight(priv); /* Configure MTL RX algorithms */ if (rx_queues_count > 1) stmmac_prog_mtl_rx_algorithms(priv, priv->hw, priv->plat->rx_sched_algorithm); /* Configure MTL TX algorithms */ if (tx_queues_count > 1) stmmac_prog_mtl_tx_algorithms(priv, priv->hw, priv->plat->tx_sched_algorithm); /* Configure CBS in AVB TX queues */ if (tx_queues_count > 1) stmmac_configure_cbs(priv); /* Map RX MTL to DMA channels */ stmmac_rx_queue_dma_chan_map(priv); /* Enable MAC RX Queues */ stmmac_mac_enable_rx_queues(priv); /* Set RX priorities */ if (rx_queues_count > 1) stmmac_mac_config_rx_queues_prio(priv); /* Set TX priorities */ if (tx_queues_count > 1) stmmac_mac_config_tx_queues_prio(priv); /* Set RX routing */ if (rx_queues_count > 1) stmmac_mac_config_rx_queues_routing(priv); /* Receive Side Scaling */ if (rx_queues_count > 1) stmmac_mac_config_rss(priv); } static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) { if (priv->dma_cap.asp) { netdev_info(priv->dev, "Enabling Safety Features\n"); stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp); } else { netdev_info(priv->dev, "No Safety Features support found\n"); } } /** * stmmac_hw_setup - setup mac in a usable state. * @dev : pointer to the device structure. * Description: * this is the main function to setup the HW in a usable state because the * dma engine is reset, the core registers are configured (e.g. AXI, * Checksum features, timers). The DMA is ready to start receiving and * transmitting. * Return value: * 0 on success and an appropriate (-)ve integer as defined in errno.h * file on failure. */ static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) { struct stmmac_priv *priv = netdev_priv(dev); u32 rx_cnt = priv->plat->rx_queues_to_use; u32 tx_cnt = priv->plat->tx_queues_to_use; u32 chan; int ret; /* DMA initialization and SW reset */ ret = stmmac_init_dma_engine(priv); if (ret < 0) { netdev_err(priv->dev, "%s: DMA engine initialization failed\n", __func__); return ret; } /* Copy the MAC addr into the HW */ stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); /* PS and related bits will be programmed according to the speed */ if (priv->hw->pcs) { int speed = priv->plat->mac_port_sel_speed; if ((speed == SPEED_10) || (speed == SPEED_100) || (speed == SPEED_1000)) { priv->hw->ps = speed; } else { dev_warn(priv->device, "invalid port speed\n"); priv->hw->ps = 0; } } /* Initialize the MAC Core */ stmmac_core_init(priv, priv->hw, dev); /* Initialize MTL*/ stmmac_mtl_configuration(priv); /* Initialize Safety Features */ stmmac_safety_feat_configuration(priv); ret = stmmac_rx_ipc(priv, priv->hw); if (!ret) { netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); priv->plat->rx_coe = STMMAC_RX_COE_NONE; priv->hw->rx_csum = 0; } /* Enable the MAC Rx/Tx */ stmmac_mac_set(priv, priv->ioaddr, true); /* Set the HW DMA mode and the COE */ stmmac_dma_operation_mode(priv); stmmac_mmc_setup(priv); if (init_ptp) { ret = clk_prepare_enable(priv->plat->clk_ptp_ref); if (ret < 0) netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret); ret = stmmac_init_ptp(priv); if (ret == -EOPNOTSUPP) netdev_warn(priv->dev, "PTP not supported by HW\n"); else if (ret) netdev_warn(priv->dev, "PTP init failed\n"); } priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS; if (priv->use_riwt) { if (!priv->rx_riwt) priv->rx_riwt = DEF_DMA_RIWT; ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt); } if (priv->hw->pcs) stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); /* set TX and RX rings length */ stmmac_set_rings_length(priv); /* Enable TSO */ if (priv->tso) { for (chan = 0; chan < tx_cnt; chan++) stmmac_enable_tso(priv, priv->ioaddr, 1, chan); } /* Enable Split Header */ if (priv->sph && priv->hw->rx_csum) { for (chan = 0; chan < rx_cnt; chan++) stmmac_enable_sph(priv, priv->ioaddr, 1, chan); } /* VLAN Tag Insertion */ if (priv->dma_cap.vlins) stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); /* TBS */ for (chan = 0; chan < tx_cnt; chan++) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; int enable = tx_q->tbs & STMMAC_TBS_AVAIL; stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); } /* Start the ball rolling... */ stmmac_start_all_dma(priv); return 0; } static void stmmac_hw_teardown(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); clk_disable_unprepare(priv->plat->clk_ptp_ref); } /** * stmmac_open - open entry point of the driver * @dev : pointer to the device structure. * Description: * This function is the open entry point of the driver. * Return value: * 0 on success and an appropriate (-)ve integer as defined in errno.h * file on failure. */ static int stmmac_open(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); int bfsize = 0; u32 chan; int ret; if (priv->hw->pcs != STMMAC_PCS_TBI && priv->hw->pcs != STMMAC_PCS_RTBI && priv->hw->xpcs == NULL) { ret = stmmac_init_phy(dev); if (ret) { netdev_err(priv->dev, "%s: Cannot attach to PHY (error: %d)\n", __func__, ret); return ret; } } /* Extra statistics */ memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); priv->xstats.threshold = tc; bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); if (bfsize < 0) bfsize = 0; if (bfsize < BUF_SIZE_16KiB) bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); priv->dma_buf_sz = bfsize; buf_sz = bfsize; priv->rx_copybreak = STMMAC_RX_COPYBREAK; /* Earlier check for TBS */ for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; if (stmmac_enable_tbs(priv, priv->ioaddr, tbs_en, chan)) tx_q->tbs &= ~STMMAC_TBS_AVAIL; } ret = alloc_dma_desc_resources(priv); if (ret < 0) { netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", __func__); goto dma_desc_error; } ret = init_dma_desc_rings(dev, GFP_KERNEL); if (ret < 0) { netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", __func__); goto init_error; } ret = stmmac_hw_setup(dev, true); if (ret < 0) { netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); goto init_error; } stmmac_init_coalesce(priv); phylink_start(priv->phylink); /* Request the IRQ lines */ ret = request_irq(dev->irq, stmmac_interrupt, IRQF_SHARED, dev->name, dev); if (unlikely(ret < 0)) { netdev_err(priv->dev, "%s: ERROR: allocating the IRQ %d (error: %d)\n", __func__, dev->irq, ret); goto irq_error; } /* Request the Wake IRQ in case of another line is used for WoL */ if (priv->wol_irq != dev->irq) { ret = request_irq(priv->wol_irq, stmmac_interrupt, IRQF_SHARED, dev->name, dev); if (unlikely(ret < 0)) { netdev_err(priv->dev, "%s: ERROR: allocating the WoL IRQ %d (%d)\n", __func__, priv->wol_irq, ret); goto wolirq_error; } } /* Request the IRQ lines */ if (priv->lpi_irq > 0) { ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, dev->name, dev); if (unlikely(ret < 0)) { netdev_err(priv->dev, "%s: ERROR: allocating the LPI IRQ %d (%d)\n", __func__, priv->lpi_irq, ret); goto lpiirq_error; } } stmmac_enable_all_queues(priv); stmmac_start_all_queues(priv); return 0; lpiirq_error: if (priv->wol_irq != dev->irq) free_irq(priv->wol_irq, dev); wolirq_error: free_irq(dev->irq, dev); irq_error: phylink_stop(priv->phylink); for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) del_timer_sync(&priv->tx_queue[chan].txtimer); stmmac_hw_teardown(dev); init_error: free_dma_desc_resources(priv); dma_desc_error: phylink_disconnect_phy(priv->phylink); return ret; } /** * stmmac_release - close entry point of the driver * @dev : device pointer. * Description: * This is the stop entry point of the driver. */ static int stmmac_release(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); u32 chan; if (priv->eee_enabled) del_timer_sync(&priv->eee_ctrl_timer); /* Stop and disconnect the PHY */ phylink_stop(priv->phylink); phylink_disconnect_phy(priv->phylink); stmmac_stop_all_queues(priv); stmmac_disable_all_queues(priv); for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) del_timer_sync(&priv->tx_queue[chan].txtimer); /* Free the IRQ lines */ free_irq(dev->irq, dev); if (priv->wol_irq != dev->irq) free_irq(priv->wol_irq, dev); if (priv->lpi_irq > 0) free_irq(priv->lpi_irq, dev); /* Stop TX/RX DMA and clear the descriptors */ stmmac_stop_all_dma(priv); /* Release and free the Rx/Tx resources */ free_dma_desc_resources(priv); /* Disable the MAC Rx/Tx */ stmmac_mac_set(priv, priv->ioaddr, false); netif_carrier_off(dev); stmmac_release_ptp(priv); return 0; } static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, struct stmmac_tx_queue *tx_q) { u16 tag = 0x0, inner_tag = 0x0; u32 inner_type = 0x0; struct dma_desc *p; if (!priv->dma_cap.vlins) return false; if (!skb_vlan_tag_present(skb)) return false; if (skb->vlan_proto == htons(ETH_P_8021AD)) { inner_tag = skb_vlan_tag_get(skb); inner_type = STMMAC_VLAN_INSERT; } tag = skb_vlan_tag_get(skb); if (tx_q->tbs & STMMAC_TBS_AVAIL) p = &tx_q->dma_entx[tx_q->cur_tx].basic; else p = &tx_q->dma_tx[tx_q->cur_tx]; if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) return false; stmmac_set_tx_owner(priv, p); tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); return true; } /** * stmmac_tso_allocator - close entry point of the driver * @priv: driver private structure * @des: buffer start address * @total_len: total length to fill in descriptors * @last_segmant: condition for the last descriptor * @queue: TX queue index * Description: * This function fills descriptor and request new descriptors according to * buffer length to fill */ static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, int total_len, bool last_segment, u32 queue) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; struct dma_desc *desc; u32 buff_size; int tmp_len; tmp_len = total_len; while (tmp_len > 0) { dma_addr_t curr_addr; tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); if (tx_q->tbs & STMMAC_TBS_AVAIL) desc = &tx_q->dma_entx[tx_q->cur_tx].basic; else desc = &tx_q->dma_tx[tx_q->cur_tx]; curr_addr = des + (total_len - tmp_len); if (priv->dma_cap.addr64 <= 32) desc->des0 = cpu_to_le32(curr_addr); else stmmac_set_desc_addr(priv, desc, curr_addr); buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? TSO_MAX_BUFF_SIZE : tmp_len; stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 0, 1, (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 0, 0); tmp_len -= TSO_MAX_BUFF_SIZE; } } /** * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) * @skb : the socket buffer * @dev : device pointer * Description: this is the transmit function that is called on TSO frames * (support available on GMAC4 and newer chips). * Diagram below show the ring programming in case of TSO frames: * * First Descriptor * -------- * | DES0 |---> buffer1 = L2/L3/L4 header * | DES1 |---> TCP Payload (can continue on next descr...) * | DES2 |---> buffer 1 and 2 len * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] * -------- * | * ... * | * -------- * | DES0 | --| Split TCP Payload on Buffers 1 and 2 * | DES1 | --| * | DES2 | --> buffer 1 and 2 len * | DES3 | * -------- * * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. */ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) { struct dma_desc *desc, *first, *mss_desc = NULL; struct stmmac_priv *priv = netdev_priv(dev); int desc_size, tmp_pay_len = 0, first_tx; int nfrags = skb_shinfo(skb)->nr_frags; u32 queue = skb_get_queue_mapping(skb); unsigned int first_entry, tx_packets; struct stmmac_tx_queue *tx_q; bool has_vlan, set_ic; u8 proto_hdr_len, hdr; u32 pay_len, mss; dma_addr_t des; int i; tx_q = &priv->tx_queue[queue]; first_tx = tx_q->cur_tx; /* Compute header lengths */ if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); hdr = sizeof(struct udphdr); } else { proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); hdr = tcp_hdrlen(skb); } /* Desc availability based on threshold should be enough safe */ if (unlikely(stmmac_tx_avail(priv, queue) < (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); /* This is a hard error, log it. */ netdev_err(priv->dev, "%s: Tx Ring full when queue awake\n", __func__); } return NETDEV_TX_BUSY; } pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ mss = skb_shinfo(skb)->gso_size; /* set new MSS value if needed */ if (mss != tx_q->mss) { if (tx_q->tbs & STMMAC_TBS_AVAIL) mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; else mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; stmmac_set_mss(priv, mss_desc, mss); tx_q->mss = mss; tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); } if (netif_msg_tx_queued(priv)) { pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", __func__, hdr, proto_hdr_len, pay_len, mss); pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, skb->data_len); } /* Check if VLAN can be inserted by HW */ has_vlan = stmmac_vlan_insert(priv, skb, tx_q); first_entry = tx_q->cur_tx; WARN_ON(tx_q->tx_skbuff[first_entry]); if (tx_q->tbs & STMMAC_TBS_AVAIL) desc = &tx_q->dma_entx[first_entry].basic; else desc = &tx_q->dma_tx[first_entry]; first = desc; if (has_vlan) stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); /* first descriptor: fill Headers on Buf1 */ des = dma_map_single(priv->device, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (dma_mapping_error(priv->device, des)) goto dma_map_err; tx_q->tx_skbuff_dma[first_entry].buf = des; tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); if (priv->dma_cap.addr64 <= 32) { first->des0 = cpu_to_le32(des); /* Fill start of payload in buff2 of first descriptor */ if (pay_len) first->des1 = cpu_to_le32(des + proto_hdr_len); /* If needed take extra descriptors to fill the remaining payload */ tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; } else { stmmac_set_desc_addr(priv, first, des); tmp_pay_len = pay_len; des += proto_hdr_len; pay_len = 0; } stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); /* Prepare fragments */ for (i = 0; i < nfrags; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; des = skb_frag_dma_map(priv->device, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); if (dma_mapping_error(priv->device, des)) goto dma_map_err; stmmac_tso_allocator(priv, des, skb_frag_size(frag), (i == nfrags - 1), queue); tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; } tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; /* Only the last descriptor gets to point to the skb. */ tx_q->tx_skbuff[tx_q->cur_tx] = skb; /* Manage tx mitigation */ tx_packets = (tx_q->cur_tx + 1) - first_tx; tx_q->tx_count_frames += tx_packets; if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) set_ic = true; else if (!priv->tx_coal_frames) set_ic = false; else if (tx_packets > priv->tx_coal_frames) set_ic = true; else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets) set_ic = true; else set_ic = false; if (set_ic) { if (tx_q->tbs & STMMAC_TBS_AVAIL) desc = &tx_q->dma_entx[tx_q->cur_tx].basic; else desc = &tx_q->dma_tx[tx_q->cur_tx]; tx_q->tx_count_frames = 0; stmmac_set_tx_ic(priv, desc); priv->xstats.tx_set_ic_bit++; } /* We've used all descriptors we need for this skb, however, * advance cur_tx so that it references a fresh descriptor. * ndo_start_xmit will fill this descriptor the next time it's * called and stmmac_tx_clean may clean up to this descriptor. */ tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", __func__); netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); } dev->stats.tx_bytes += skb->len; priv->xstats.tx_tso_frames++; priv->xstats.tx_tso_nfrags += nfrags; if (priv->sarc_type) stmmac_set_desc_sarc(priv, first, priv->sarc_type); skb_tx_timestamp(skb); if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)) { /* declare that device is doing timestamping */ skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; stmmac_enable_tx_timestamp(priv, first); } /* Complete the first descriptor before granting the DMA */ stmmac_prepare_tso_tx_desc(priv, first, 1, proto_hdr_len, pay_len, 1, tx_q->tx_skbuff_dma[first_entry].last_segment, hdr / 4, (skb->len - proto_hdr_len)); /* If context desc is used to change MSS */ if (mss_desc) { /* Make sure that first descriptor has been completely * written, including its own bit. This is because MSS is * actually before first descriptor, so we need to make * sure that MSS's own bit is the last thing written. */ dma_wmb(); stmmac_set_tx_owner(priv, mss_desc); } /* The own bit must be the latest setting done when prepare the * descriptor and then barrier is needed to make sure that * all is coherent before granting the DMA engine. */ wmb(); if (netif_msg_pktdata(priv)) { pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, tx_q->cur_tx, first, nfrags); pr_info(">>> frame to be transmitted: "); print_pkt(skb->data, skb_headlen(skb)); } netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); if (tx_q->tbs & STMMAC_TBS_AVAIL) desc_size = sizeof(struct dma_edesc); else desc_size = sizeof(struct dma_desc); tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); stmmac_tx_timer_arm(priv, queue); return NETDEV_TX_OK; dma_map_err: dev_err(priv->device, "Tx dma map failed\n"); dev_kfree_skb(skb); priv->dev->stats.tx_dropped++; return NETDEV_TX_OK; } /** * stmmac_xmit - Tx entry point of the driver * @skb : the socket buffer * @dev : device pointer * Description : this is the tx entry point of the driver. * It programs the chain or the ring and supports oversized frames * and SG feature. */ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) { unsigned int first_entry, tx_packets, enh_desc; struct stmmac_priv *priv = netdev_priv(dev); unsigned int nopaged_len = skb_headlen(skb); int i, csum_insertion = 0, is_jumbo = 0; u32 queue = skb_get_queue_mapping(skb); int nfrags = skb_shinfo(skb)->nr_frags; int gso = skb_shinfo(skb)->gso_type; struct dma_edesc *tbs_desc = NULL; int entry, desc_size, first_tx; struct dma_desc *desc, *first; struct stmmac_tx_queue *tx_q; bool has_vlan, set_ic; dma_addr_t des; tx_q = &priv->tx_queue[queue]; first_tx = tx_q->cur_tx; if (priv->tx_path_in_lpi_mode) stmmac_disable_eee_mode(priv); /* Manage oversized TCP frames for GMAC4 device */ if (skb_is_gso(skb) && priv->tso) { if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) return stmmac_tso_xmit(skb, dev); if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) return stmmac_tso_xmit(skb, dev); } if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); /* This is a hard error, log it. */ netdev_err(priv->dev, "%s: Tx Ring full when queue awake\n", __func__); } return NETDEV_TX_BUSY; } /* Check if VLAN can be inserted by HW */ has_vlan = stmmac_vlan_insert(priv, skb, tx_q); entry = tx_q->cur_tx; first_entry = entry; WARN_ON(tx_q->tx_skbuff[first_entry]); csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); if (likely(priv->extend_desc)) desc = (struct dma_desc *)(tx_q->dma_etx + entry); else if (tx_q->tbs & STMMAC_TBS_AVAIL) desc = &tx_q->dma_entx[entry].basic; else desc = tx_q->dma_tx + entry; first = desc; if (has_vlan) stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); enh_desc = priv->plat->enh_desc; /* To program the descriptors according to the size of the frame */ if (enh_desc) is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); if (unlikely(is_jumbo)) { entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); if (unlikely(entry < 0) && (entry != -EINVAL)) goto dma_map_err; } for (i = 0; i < nfrags; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; int len = skb_frag_size(frag); bool last_segment = (i == (nfrags - 1)); entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); WARN_ON(tx_q->tx_skbuff[entry]); if (likely(priv->extend_desc)) desc = (struct dma_desc *)(tx_q->dma_etx + entry); else if (tx_q->tbs & STMMAC_TBS_AVAIL) desc = &tx_q->dma_entx[entry].basic; else desc = tx_q->dma_tx + entry; des = skb_frag_dma_map(priv->device, frag, 0, len, DMA_TO_DEVICE); if (dma_mapping_error(priv->device, des)) goto dma_map_err; /* should reuse desc w/o issues */ tx_q->tx_skbuff_dma[entry].buf = des; stmmac_set_desc_addr(priv, desc, des); tx_q->tx_skbuff_dma[entry].map_as_page = true; tx_q->tx_skbuff_dma[entry].len = len; tx_q->tx_skbuff_dma[entry].last_segment = last_segment; /* Prepare the descriptor and set the own bit too */ stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, priv->mode, 1, last_segment, skb->len); } /* Only the last descriptor gets to point to the skb. */ tx_q->tx_skbuff[entry] = skb; /* According to the coalesce parameter the IC bit for the latest * segment is reset and the timer re-started to clean the tx status. * This approach takes care about the fragments: desc is the first * element in case of no SG. */ tx_packets = (entry + 1) - first_tx; tx_q->tx_count_frames += tx_packets; if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) set_ic = true; else if (!priv->tx_coal_frames) set_ic = false; else if (tx_packets > priv->tx_coal_frames) set_ic = true; else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets) set_ic = true; else set_ic = false; if (set_ic) { if (likely(priv->extend_desc)) desc = &tx_q->dma_etx[entry].basic; else if (tx_q->tbs & STMMAC_TBS_AVAIL) desc = &tx_q->dma_entx[entry].basic; else desc = &tx_q->dma_tx[entry]; tx_q->tx_count_frames = 0; stmmac_set_tx_ic(priv, desc); priv->xstats.tx_set_ic_bit++; } /* We've used all descriptors we need for this skb, however, * advance cur_tx so that it references a fresh descriptor. * ndo_start_xmit will fill this descriptor the next time it's * called and stmmac_tx_clean may clean up to this descriptor. */ entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); tx_q->cur_tx = entry; if (netif_msg_pktdata(priv)) { netdev_dbg(priv->dev, "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, entry, first, nfrags); netdev_dbg(priv->dev, ">>> frame to be transmitted: "); print_pkt(skb->data, skb->len); } if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", __func__); netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); } dev->stats.tx_bytes += skb->len; if (priv->sarc_type) stmmac_set_desc_sarc(priv, first, priv->sarc_type); skb_tx_timestamp(skb); /* Ready to fill the first descriptor and set the OWN bit w/o any * problems because all the descriptors are actually ready to be * passed to the DMA engine. */ if (likely(!is_jumbo)) { bool last_segment = (nfrags == 0); des = dma_map_single(priv->device, skb->data, nopaged_len, DMA_TO_DEVICE); if (dma_mapping_error(priv->device, des)) goto dma_map_err; tx_q->tx_skbuff_dma[first_entry].buf = des; stmmac_set_desc_addr(priv, first, des); tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)) { /* declare that device is doing timestamping */ skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; stmmac_enable_tx_timestamp(priv, first); } /* Prepare the first descriptor setting the OWN bit too */ stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, csum_insertion, priv->mode, 0, last_segment, skb->len); } if (tx_q->tbs & STMMAC_TBS_EN) { struct timespec64 ts = ns_to_timespec64(skb->tstamp); tbs_desc = &tx_q->dma_entx[first_entry]; stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); } stmmac_set_tx_owner(priv, first); /* The own bit must be the latest setting done when prepare the * descriptor and then barrier is needed to make sure that * all is coherent before granting the DMA engine. */ wmb(); netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); stmmac_enable_dma_transmission(priv, priv->ioaddr); if (likely(priv->extend_desc)) desc_size = sizeof(struct dma_extended_desc); else if (tx_q->tbs & STMMAC_TBS_AVAIL) desc_size = sizeof(struct dma_edesc); else desc_size = sizeof(struct dma_desc); tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); stmmac_tx_timer_arm(priv, queue); return NETDEV_TX_OK; dma_map_err: netdev_err(priv->dev, "Tx DMA map failed\n"); dev_kfree_skb(skb); priv->dev->stats.tx_dropped++; return NETDEV_TX_OK; } static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) { struct vlan_ethhdr *veth; __be16 vlan_proto; u16 vlanid; veth = (struct vlan_ethhdr *)skb->data; vlan_proto = veth->h_vlan_proto; if ((vlan_proto == htons(ETH_P_8021Q) && dev->features & NETIF_F_HW_VLAN_CTAG_RX) || (vlan_proto == htons(ETH_P_8021AD) && dev->features & NETIF_F_HW_VLAN_STAG_RX)) { /* pop the vlan tag */ vlanid = ntohs(veth->h_vlan_TCI); memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); skb_pull(skb, VLAN_HLEN); __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); } } static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q) { if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH) return 0; return 1; } /** * stmmac_rx_refill - refill used skb preallocated buffers * @priv: driver private structure * @queue: RX queue index * Description : this is to reallocate the skb for the reception process * that is based on zero-copy. */ static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) { struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; int len, dirty = stmmac_rx_dirty(priv, queue); unsigned int entry = rx_q->dirty_rx; len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; while (dirty-- > 0) { struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; struct dma_desc *p; bool use_rx_wd; if (priv->extend_desc) p = (struct dma_desc *)(rx_q->dma_erx + entry); else p = rx_q->dma_rx + entry; if (!buf->page) { buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); if (!buf->page) break; } if (priv->sph && !buf->sec_page) { buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); if (!buf->sec_page) break; buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); dma_sync_single_for_device(priv->device, buf->sec_addr, len, DMA_FROM_DEVICE); } buf->addr = page_pool_get_dma_addr(buf->page); /* Sync whole allocation to device. This will invalidate old * data. */ dma_sync_single_for_device(priv->device, buf->addr, len, DMA_FROM_DEVICE); stmmac_set_desc_addr(priv, p, buf->addr); stmmac_set_desc_sec_addr(priv, p, buf->sec_addr); stmmac_refill_desc3(priv, rx_q, p); rx_q->rx_count_frames++; rx_q->rx_count_frames += priv->rx_coal_frames; if (rx_q->rx_count_frames > priv->rx_coal_frames) rx_q->rx_count_frames = 0; use_rx_wd = !priv->rx_coal_frames; use_rx_wd |= rx_q->rx_count_frames > 0; if (!priv->use_riwt) use_rx_wd = false; dma_wmb(); stmmac_set_rx_owner(priv, p, use_rx_wd); entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE); } rx_q->dirty_rx = entry; rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->dirty_rx * sizeof(struct dma_desc)); stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); } static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, struct dma_desc *p, int status, unsigned int len) { int ret, coe = priv->hw->rx_csum; unsigned int plen = 0, hlen = 0; /* Not first descriptor, buffer is always zero */ if (priv->sph && len) return 0; /* First descriptor, get split header length */ ret = stmmac_get_rx_header_len(priv, p, &hlen); if (priv->sph && hlen) { priv->xstats.rx_split_hdr_pkt_n++; return hlen; } /* First descriptor, not last descriptor and not split header */ if (status & rx_not_ls) return priv->dma_buf_sz; plen = stmmac_get_rx_frame_len(priv, p, coe); /* First descriptor and last descriptor and not split header */ return min_t(unsigned int, priv->dma_buf_sz, plen); } static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, struct dma_desc *p, int status, unsigned int len) { int coe = priv->hw->rx_csum; unsigned int plen = 0; /* Not split header, buffer is not available */ if (!priv->sph) return 0; /* Not last descriptor */ if (status & rx_not_ls) return priv->dma_buf_sz; plen = stmmac_get_rx_frame_len(priv, p, coe); /* Last descriptor */ return plen - len; } /** * stmmac_rx - manage the receive process * @priv: driver private structure * @limit: napi bugget * @queue: RX queue index. * Description : this the function called by the napi poll method. * It gets all the frames inside the ring. */ static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) { struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; struct stmmac_channel *ch = &priv->channel[queue]; unsigned int count = 0, error = 0, len = 0; int status = 0, coe = priv->hw->rx_csum; unsigned int next_entry = rx_q->cur_rx; struct sk_buff *skb = NULL; if (netif_msg_rx_status(priv)) { void *rx_head; netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); if (priv->extend_desc) rx_head = (void *)rx_q->dma_erx; else rx_head = (void *)rx_q->dma_rx; stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true); } while (count < limit) { unsigned int buf1_len = 0, buf2_len = 0; enum pkt_hash_types hash_type; struct stmmac_rx_buffer *buf; struct dma_desc *np, *p; int entry; u32 hash; if (!count && rx_q->state_saved) { skb = rx_q->state.skb; error = rx_q->state.error; len = rx_q->state.len; } else { rx_q->state_saved = false; skb = NULL; error = 0; len = 0; } if (count >= limit) break; read_again: buf1_len = 0; buf2_len = 0; entry = next_entry; buf = &rx_q->buf_pool[entry]; if (priv->extend_desc) p = (struct dma_desc *)(rx_q->dma_erx + entry); else p = rx_q->dma_rx + entry; /* read the status of the incoming frame */ status = stmmac_rx_status(priv, &priv->dev->stats, &priv->xstats, p); /* check if managed by the DMA otherwise go ahead */ if (unlikely(status & dma_own)) break; rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE); next_entry = rx_q->cur_rx; if (priv->extend_desc) np = (struct dma_desc *)(rx_q->dma_erx + next_entry); else np = rx_q->dma_rx + next_entry; prefetch(np); if (priv->extend_desc) stmmac_rx_extended_status(priv, &priv->dev->stats, &priv->xstats, rx_q->dma_erx + entry); if (unlikely(status == discard_frame)) { page_pool_recycle_direct(rx_q->page_pool, buf->page); buf->page = NULL; error = 1; if (!priv->hwts_rx_en) priv->dev->stats.rx_errors++; } if (unlikely(error && (status & rx_not_ls))) goto read_again; if (unlikely(error)) { dev_kfree_skb(skb); skb = NULL; count++; continue; } /* Buffer is good. Go on. */ prefetch(page_address(buf->page)); if (buf->sec_page) prefetch(page_address(buf->sec_page)); buf1_len = stmmac_rx_buf1_len(priv, p, status, len); len += buf1_len; buf2_len = stmmac_rx_buf2_len(priv, p, status, len); len += buf2_len; /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 * Type frames (LLC/LLC-SNAP) * * llc_snap is never checked in GMAC >= 4, so this ACS * feature is always disabled and packets need to be * stripped manually. */ if (likely(!(status & rx_not_ls)) && (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || unlikely(status != llc_snap))) { if (buf2_len) buf2_len -= ETH_FCS_LEN; else buf1_len -= ETH_FCS_LEN; len -= ETH_FCS_LEN; } if (!skb) { skb = napi_alloc_skb(&ch->rx_napi, buf1_len); if (!skb) { priv->dev->stats.rx_dropped++; count++; goto drain_data; } dma_sync_single_for_cpu(priv->device, buf->addr, buf1_len, DMA_FROM_DEVICE); skb_copy_to_linear_data(skb, page_address(buf->page), buf1_len); skb_put(skb, buf1_len); /* Data payload copied into SKB, page ready for recycle */ page_pool_recycle_direct(rx_q->page_pool, buf->page); buf->page = NULL; } else if (buf1_len) { dma_sync_single_for_cpu(priv->device, buf->addr, buf1_len, DMA_FROM_DEVICE); skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, buf->page, 0, buf1_len, priv->dma_buf_sz); /* Data payload appended into SKB */ page_pool_release_page(rx_q->page_pool, buf->page); buf->page = NULL; } if (buf2_len) { dma_sync_single_for_cpu(priv->device, buf->sec_addr, buf2_len, DMA_FROM_DEVICE); skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, buf->sec_page, 0, buf2_len, priv->dma_buf_sz); /* Data payload appended into SKB */ page_pool_release_page(rx_q->page_pool, buf->sec_page); buf->sec_page = NULL; } drain_data: if (likely(status & rx_not_ls)) goto read_again; if (!skb) continue; /* Got entire packet into SKB. Finish it. */ stmmac_get_rx_hwtstamp(priv, p, np, skb); stmmac_rx_vlan(priv->dev, skb); skb->protocol = eth_type_trans(skb, priv->dev); if (unlikely(!coe)) skb_checksum_none_assert(skb); else skb->ip_summed = CHECKSUM_UNNECESSARY; if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) skb_set_hash(skb, hash, hash_type); skb_record_rx_queue(skb, queue); napi_gro_receive(&ch->rx_napi, skb); skb = NULL; priv->dev->stats.rx_packets++; priv->dev->stats.rx_bytes += len; count++; } if (status & rx_not_ls || skb) { rx_q->state_saved = true; rx_q->state.skb = skb; rx_q->state.error = error; rx_q->state.len = len; } stmmac_rx_refill(priv, queue); priv->xstats.rx_pkt_n += count; return count; } static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) { struct stmmac_channel *ch = container_of(napi, struct stmmac_channel, rx_napi); struct stmmac_priv *priv = ch->priv_data; u32 chan = ch->index; int work_done; priv->xstats.napi_poll++; work_done = stmmac_rx(priv, budget, chan); if (work_done < budget && napi_complete_done(napi, work_done)) { unsigned long flags; spin_lock_irqsave(&ch->lock, flags); stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); spin_unlock_irqrestore(&ch->lock, flags); } return work_done; } static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) { struct stmmac_channel *ch = container_of(napi, struct stmmac_channel, tx_napi); struct stmmac_priv *priv = ch->priv_data; u32 chan = ch->index; int work_done; priv->xstats.napi_poll++; work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan); work_done = min(work_done, budget); if (work_done < budget && napi_complete_done(napi, work_done)) { unsigned long flags; spin_lock_irqsave(&ch->lock, flags); stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); spin_unlock_irqrestore(&ch->lock, flags); } return work_done; } /** * stmmac_tx_timeout * @dev : Pointer to net device structure * Description: this function is called when a packet transmission fails to * complete within a reasonable time. The driver will mark the error in the * netdev structure and arrange for the device to be reset to a sane state * in order to transmit a new packet. */ static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct stmmac_priv *priv = netdev_priv(dev); stmmac_global_err(priv); } /** * stmmac_set_rx_mode - entry point for multicast addressing * @dev : pointer to the device structure * Description: * This function is a driver entry point which gets called by the kernel * whenever multicast addresses must be enabled/disabled. * Return value: * void. */ static void stmmac_set_rx_mode(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); stmmac_set_filter(priv, priv->hw, dev); } /** * stmmac_change_mtu - entry point to change MTU size for the device. * @dev : device pointer. * @new_mtu : the new MTU size for the device. * Description: the Maximum Transfer Unit (MTU) is used by the network layer * to drive packet transmission. Ethernet has an MTU of 1500 octets * (ETH_DATA_LEN). This value can be changed with ifconfig. * Return value: * 0 on success and an appropriate (-)ve integer as defined in errno.h * file on failure. */ static int stmmac_change_mtu(struct net_device *dev, int new_mtu) { struct stmmac_priv *priv = netdev_priv(dev); int txfifosz = priv->plat->tx_fifo_size; if (txfifosz == 0) txfifosz = priv->dma_cap.tx_fifo_size; txfifosz /= priv->plat->tx_queues_to_use; if (netif_running(dev)) { netdev_err(priv->dev, "must be stopped to change its MTU\n"); return -EBUSY; } new_mtu = STMMAC_ALIGN(new_mtu); /* If condition true, FIFO is too small or MTU too large */ if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) return -EINVAL; dev->mtu = new_mtu; netdev_update_features(dev); return 0; } static netdev_features_t stmmac_fix_features(struct net_device *dev, netdev_features_t features) { struct stmmac_priv *priv = netdev_priv(dev); if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) features &= ~NETIF_F_RXCSUM; if (!priv->plat->tx_coe) features &= ~NETIF_F_CSUM_MASK; /* Some GMAC devices have a bugged Jumbo frame support that * needs to have the Tx COE disabled for oversized frames * (due to limited buffer sizes). In this case we disable * the TX csum insertion in the TDES and not use SF. */ if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) features &= ~NETIF_F_CSUM_MASK; /* Disable tso if asked by ethtool */ if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { if (features & NETIF_F_TSO) priv->tso = true; else priv->tso = false; } return features; } static int stmmac_set_features(struct net_device *netdev, netdev_features_t features) { struct stmmac_priv *priv = netdev_priv(netdev); bool sph_en; u32 chan; /* Keep the COE Type in case of csum is supporting */ if (features & NETIF_F_RXCSUM) priv->hw->rx_csum = priv->plat->rx_coe; else priv->hw->rx_csum = 0; /* No check needed because rx_coe has been set before and it will be * fixed in case of issue. */ stmmac_rx_ipc(priv, priv->hw); sph_en = (priv->hw->rx_csum > 0) && priv->sph; for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); return 0; } /** * stmmac_interrupt - main ISR * @irq: interrupt number. * @dev_id: to pass the net device pointer (must be valid). * Description: this is the main driver interrupt service routine. * It can call: * o DMA service routine (to manage incoming frame reception and transmission * status) * o Core interrupts to manage: remote wake-up, management counter, LPI * interrupts. */ static irqreturn_t stmmac_interrupt(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct stmmac_priv *priv = netdev_priv(dev); u32 rx_cnt = priv->plat->rx_queues_to_use; u32 tx_cnt = priv->plat->tx_queues_to_use; u32 queues_count; u32 queue; bool xmac; xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; if (priv->irq_wake) pm_wakeup_event(priv->device, 0); /* Check if adapter is up */ if (test_bit(STMMAC_DOWN, &priv->state)) return IRQ_HANDLED; /* Check if a fatal error happened */ if (stmmac_safety_feat_interrupt(priv)) return IRQ_HANDLED; /* To handle GMAC own interrupts */ if ((priv->plat->has_gmac) || xmac) { int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); int mtl_status; if (unlikely(status)) { /* For LPI we need to save the tx status */ if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) priv->tx_path_in_lpi_mode = true; if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) priv->tx_path_in_lpi_mode = false; } for (queue = 0; queue < queues_count; queue++) { struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw, queue); if (mtl_status != -EINVAL) status |= mtl_status; if (status & CORE_IRQ_MTL_RX_OVERFLOW) stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); } /* PCS link status */ if (priv->hw->pcs) { if (priv->xstats.pcs_link) netif_carrier_on(dev); else netif_carrier_off(dev); } } /* To handle DMA interrupts */ stmmac_dma_interrupt(priv); return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER /* Polling receive - used by NETCONSOLE and other diagnostic tools * to allow network I/O with interrupts disabled. */ static void stmmac_poll_controller(struct net_device *dev) { disable_irq(dev->irq); stmmac_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif /** * stmmac_ioctl - Entry point for the Ioctl * @dev: Device pointer. * @rq: An IOCTL specefic structure, that can contain a pointer to * a proprietary structure used to pass information to the driver. * @cmd: IOCTL command * Description: * Currently it supports the phy_mii_ioctl(...) and HW time stamping. */ static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct stmmac_priv *priv = netdev_priv (dev); int ret = -EOPNOTSUPP; if (!netif_running(dev)) return -EINVAL; switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: ret = phylink_mii_ioctl(priv->phylink, rq, cmd); break; case SIOCSHWTSTAMP: ret = stmmac_hwtstamp_set(dev, rq); break; case SIOCGHWTSTAMP: ret = stmmac_hwtstamp_get(dev, rq); break; default: break; } return ret; } static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { struct stmmac_priv *priv = cb_priv; int ret = -EOPNOTSUPP; if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) return ret; stmmac_disable_all_queues(priv); switch (type) { case TC_SETUP_CLSU32: ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); break; case TC_SETUP_CLSFLOWER: ret = stmmac_tc_setup_cls(priv, priv, type_data); break; default: break; } stmmac_enable_all_queues(priv); return ret; } static LIST_HEAD(stmmac_block_cb_list); static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, void *type_data) { struct stmmac_priv *priv = netdev_priv(ndev); switch (type) { case TC_SETUP_BLOCK: return flow_block_cb_setup_simple(type_data, &stmmac_block_cb_list, stmmac_setup_tc_block_cb, priv, priv, true); case TC_SETUP_QDISC_CBS: return stmmac_tc_setup_cbs(priv, priv, type_data); case TC_SETUP_QDISC_TAPRIO: return stmmac_tc_setup_taprio(priv, priv, type_data); case TC_SETUP_QDISC_ETF: return stmmac_tc_setup_etf(priv, priv, type_data); default: return -EOPNOTSUPP; } } static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev) { int gso = skb_shinfo(skb)->gso_type; if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { /* * There is no way to determine the number of TSO/USO * capable Queues. Let's use always the Queue 0 * because if TSO/USO is supported then at least this * one will be capable. */ return 0; } return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; } static int stmmac_set_mac_address(struct net_device *ndev, void *addr) { struct stmmac_priv *priv = netdev_priv(ndev); int ret = 0; ret = eth_mac_addr(ndev, addr); if (ret) return ret; stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); return ret; } #ifdef CONFIG_DEBUG_FS static struct dentry *stmmac_fs_dir; static void sysfs_display_ring(void *head, int size, int extend_desc, struct seq_file *seq) { int i; struct dma_extended_desc *ep = (struct dma_extended_desc *)head; struct dma_desc *p = (struct dma_desc *)head; for (i = 0; i < size; i++) { if (extend_desc) { seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", i, (unsigned int)virt_to_phys(ep), le32_to_cpu(ep->basic.des0), le32_to_cpu(ep->basic.des1), le32_to_cpu(ep->basic.des2), le32_to_cpu(ep->basic.des3)); ep++; } else { seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", i, (unsigned int)virt_to_phys(p), le32_to_cpu(p->des0), le32_to_cpu(p->des1), le32_to_cpu(p->des2), le32_to_cpu(p->des3)); p++; } seq_printf(seq, "\n"); } } static int stmmac_rings_status_show(struct seq_file *seq, void *v) { struct net_device *dev = seq->private; struct stmmac_priv *priv = netdev_priv(dev); u32 rx_count = priv->plat->rx_queues_to_use; u32 tx_count = priv->plat->tx_queues_to_use; u32 queue; if ((dev->flags & IFF_UP) == 0) return 0; for (queue = 0; queue < rx_count; queue++) { struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; seq_printf(seq, "RX Queue %d:\n", queue); if (priv->extend_desc) { seq_printf(seq, "Extended descriptor ring:\n"); sysfs_display_ring((void *)rx_q->dma_erx, DMA_RX_SIZE, 1, seq); } else { seq_printf(seq, "Descriptor ring:\n"); sysfs_display_ring((void *)rx_q->dma_rx, DMA_RX_SIZE, 0, seq); } } for (queue = 0; queue < tx_count; queue++) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; seq_printf(seq, "TX Queue %d:\n", queue); if (priv->extend_desc) { seq_printf(seq, "Extended descriptor ring:\n"); sysfs_display_ring((void *)tx_q->dma_etx, DMA_TX_SIZE, 1, seq); } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { seq_printf(seq, "Descriptor ring:\n"); sysfs_display_ring((void *)tx_q->dma_tx, DMA_TX_SIZE, 0, seq); } } return 0; } DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); static int stmmac_dma_cap_show(struct seq_file *seq, void *v) { struct net_device *dev = seq->private; struct stmmac_priv *priv = netdev_priv(dev); if (!priv->hw_cap_support) { seq_printf(seq, "DMA HW features not supported\n"); return 0; } seq_printf(seq, "==============================\n"); seq_printf(seq, "\tDMA HW features\n"); seq_printf(seq, "==============================\n"); seq_printf(seq, "\t10/100 Mbps: %s\n", (priv->dma_cap.mbps_10_100) ? "Y" : "N"); seq_printf(seq, "\t1000 Mbps: %s\n", (priv->dma_cap.mbps_1000) ? "Y" : "N"); seq_printf(seq, "\tHalf duplex: %s\n", (priv->dma_cap.half_duplex) ? "Y" : "N"); seq_printf(seq, "\tHash Filter: %s\n", (priv->dma_cap.hash_filter) ? "Y" : "N"); seq_printf(seq, "\tMultiple MAC address registers: %s\n", (priv->dma_cap.multi_addr) ? "Y" : "N"); seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", (priv->dma_cap.pcs) ? "Y" : "N"); seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", (priv->dma_cap.sma_mdio) ? "Y" : "N"); seq_printf(seq, "\tPMT Remote wake up: %s\n", (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); seq_printf(seq, "\tPMT Magic Frame: %s\n", (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); seq_printf(seq, "\tRMON module: %s\n", (priv->dma_cap.rmon) ? "Y" : "N"); seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", (priv->dma_cap.time_stamp) ? "Y" : "N"); seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", (priv->dma_cap.atime_stamp) ? "Y" : "N"); seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", (priv->dma_cap.eee) ? "Y" : "N"); seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); seq_printf(seq, "\tChecksum Offload in TX: %s\n", (priv->dma_cap.tx_coe) ? "Y" : "N"); if (priv->synopsys_id >= DWMAC_CORE_4_00) { seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", (priv->dma_cap.rx_coe) ? "Y" : "N"); } else { seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); } seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); seq_printf(seq, "\tNumber of Additional RX channel: %d\n", priv->dma_cap.number_rx_channel); seq_printf(seq, "\tNumber of Additional TX channel: %d\n", priv->dma_cap.number_tx_channel); seq_printf(seq, "\tNumber of Additional RX queues: %d\n", priv->dma_cap.number_rx_queues); seq_printf(seq, "\tNumber of Additional TX queues: %d\n", priv->dma_cap.number_tx_queues); seq_printf(seq, "\tEnhanced descriptors: %s\n", (priv->dma_cap.enh_desc) ? "Y" : "N"); seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); seq_printf(seq, "\tNumber of PPS Outputs: %d\n", priv->dma_cap.pps_out_num); seq_printf(seq, "\tSafety Features: %s\n", priv->dma_cap.asp ? "Y" : "N"); seq_printf(seq, "\tFlexible RX Parser: %s\n", priv->dma_cap.frpsel ? "Y" : "N"); seq_printf(seq, "\tEnhanced Addressing: %d\n", priv->dma_cap.addr64); seq_printf(seq, "\tReceive Side Scaling: %s\n", priv->dma_cap.rssen ? "Y" : "N"); seq_printf(seq, "\tVLAN Hash Filtering: %s\n", priv->dma_cap.vlhash ? "Y" : "N"); seq_printf(seq, "\tSplit Header: %s\n", priv->dma_cap.sphen ? "Y" : "N"); seq_printf(seq, "\tVLAN TX Insertion: %s\n", priv->dma_cap.vlins ? "Y" : "N"); seq_printf(seq, "\tDouble VLAN: %s\n", priv->dma_cap.dvlan ? "Y" : "N"); seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", priv->dma_cap.l3l4fnum); seq_printf(seq, "\tARP Offloading: %s\n", priv->dma_cap.arpoffsel ? "Y" : "N"); seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", priv->dma_cap.estsel ? "Y" : "N"); seq_printf(seq, "\tFrame Preemption (FPE): %s\n", priv->dma_cap.fpesel ? "Y" : "N"); seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", priv->dma_cap.tbssel ? "Y" : "N"); return 0; } DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); /* Use network device events to rename debugfs file entries. */ static int stmmac_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct stmmac_priv *priv = netdev_priv(dev); if (dev->netdev_ops != &stmmac_netdev_ops) goto done; switch (event) { case NETDEV_CHANGENAME: if (priv->dbgfs_dir) priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, priv->dbgfs_dir, stmmac_fs_dir, dev->name); break; } done: return NOTIFY_DONE; } static struct notifier_block stmmac_notifier = { .notifier_call = stmmac_device_event, }; static void stmmac_init_fs(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); rtnl_lock(); /* Create per netdev entries */ priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); /* Entry to report DMA RX/TX rings */ debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, &stmmac_rings_status_fops); /* Entry to report the DMA HW features */ debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, &stmmac_dma_cap_fops); rtnl_unlock(); } static void stmmac_exit_fs(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); debugfs_remove_recursive(priv->dbgfs_dir); } #endif /* CONFIG_DEBUG_FS */ static u32 stmmac_vid_crc32_le(__le16 vid_le) { unsigned char *data = (unsigned char *)&vid_le; unsigned char data_byte = 0; u32 crc = ~0x0; u32 temp = 0; int i, bits; bits = get_bitmask_order(VLAN_VID_MASK); for (i = 0; i < bits; i++) { if ((i % 8) == 0) data_byte = data[i / 8]; temp = ((crc & 1) ^ data_byte) & 1; crc >>= 1; data_byte >>= 1; if (temp) crc ^= 0xedb88320; } return crc; } static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) { u32 crc, hash = 0; __le16 pmatch = 0; int count = 0; u16 vid = 0; for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { __le16 vid_le = cpu_to_le16(vid); crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; hash |= (1 << crc); count++; } if (!priv->dma_cap.vlhash) { if (count > 2) /* VID = 0 always passes filter */ return -EOPNOTSUPP; pmatch = cpu_to_le16(vid); hash = 0; } return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); } static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct stmmac_priv *priv = netdev_priv(ndev); bool is_double = false; int ret; if (be16_to_cpu(proto) == ETH_P_8021AD) is_double = true; set_bit(vid, priv->active_vlans); ret = stmmac_vlan_update(priv, is_double); if (ret) { clear_bit(vid, priv->active_vlans); return ret; } if (priv->hw->num_vlan) { ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); if (ret) return ret; } return 0; } static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct stmmac_priv *priv = netdev_priv(ndev); bool is_double = false; int ret; if (be16_to_cpu(proto) == ETH_P_8021AD) is_double = true; clear_bit(vid, priv->active_vlans); if (priv->hw->num_vlan) { ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); if (ret) return ret; } return stmmac_vlan_update(priv, is_double); } static const struct net_device_ops stmmac_netdev_ops = { .ndo_open = stmmac_open, .ndo_start_xmit = stmmac_xmit, .ndo_stop = stmmac_release, .ndo_change_mtu = stmmac_change_mtu, .ndo_fix_features = stmmac_fix_features, .ndo_set_features = stmmac_set_features, .ndo_set_rx_mode = stmmac_set_rx_mode, .ndo_tx_timeout = stmmac_tx_timeout, .ndo_do_ioctl = stmmac_ioctl, .ndo_setup_tc = stmmac_setup_tc, .ndo_select_queue = stmmac_select_queue, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = stmmac_poll_controller, #endif .ndo_set_mac_address = stmmac_set_mac_address, .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, }; static void stmmac_reset_subtask(struct stmmac_priv *priv) { if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) return; if (test_bit(STMMAC_DOWN, &priv->state)) return; netdev_err(priv->dev, "Reset adapter.\n"); rtnl_lock(); netif_trans_update(priv->dev); while (test_and_set_bit(STMMAC_RESETING, &priv->state)) usleep_range(1000, 2000); set_bit(STMMAC_DOWN, &priv->state); dev_close(priv->dev); dev_open(priv->dev, NULL); clear_bit(STMMAC_DOWN, &priv->state); clear_bit(STMMAC_RESETING, &priv->state); rtnl_unlock(); } static void stmmac_service_task(struct work_struct *work) { struct stmmac_priv *priv = container_of(work, struct stmmac_priv, service_task); stmmac_reset_subtask(priv); clear_bit(STMMAC_SERVICE_SCHED, &priv->state); } /** * stmmac_hw_init - Init the MAC device * @priv: driver private structure * Description: this function is to configure the MAC device according to * some platform parameters or the HW capability register. It prepares the * driver to use either ring or chain modes and to setup either enhanced or * normal descriptors. */ static int stmmac_hw_init(struct stmmac_priv *priv) { int ret; /* dwmac-sun8i only work in chain mode */ if (priv->plat->has_sun8i) chain_mode = 1; priv->chain_mode = chain_mode; /* Initialize HW Interface */ ret = stmmac_hwif_init(priv); if (ret) return ret; /* Get the HW capability (new GMAC newer than 3.50a) */ priv->hw_cap_support = stmmac_get_hw_features(priv); if (priv->hw_cap_support) { dev_info(priv->device, "DMA HW capability register supported\n"); /* We can override some gmac/dma configuration fields: e.g. * enh_desc, tx_coe (e.g. that are passed through the * platform) with the values from the HW capability * register (if supported). */ priv->plat->enh_desc = priv->dma_cap.enh_desc; priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; priv->hw->pmt = priv->plat->pmt; if (priv->dma_cap.hash_tb_sz) { priv->hw->multicast_filter_bins = (BIT(priv->dma_cap.hash_tb_sz) << 5); priv->hw->mcast_bits_log2 = ilog2(priv->hw->multicast_filter_bins); } /* TXCOE doesn't work in thresh DMA mode */ if (priv->plat->force_thresh_dma_mode) priv->plat->tx_coe = 0; else priv->plat->tx_coe = priv->dma_cap.tx_coe; /* In case of GMAC4 rx_coe is from HW cap register. */ priv->plat->rx_coe = priv->dma_cap.rx_coe; if (priv->dma_cap.rx_coe_type2) priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; else if (priv->dma_cap.rx_coe_type1) priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; } else { dev_info(priv->device, "No HW DMA feature register supported\n"); } if (priv->plat->rx_coe) { priv->hw->rx_csum = priv->plat->rx_coe; dev_info(priv->device, "RX Checksum Offload Engine supported\n"); if (priv->synopsys_id < DWMAC_CORE_4_00) dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); } if (priv->plat->tx_coe) dev_info(priv->device, "TX Checksum insertion supported\n"); if (priv->plat->pmt) { dev_info(priv->device, "Wake-Up On Lan supported\n"); device_set_wakeup_capable(priv->device, 1); } if (priv->dma_cap.tsoen) dev_info(priv->device, "TSO supported\n"); /* Run HW quirks, if any */ if (priv->hwif_quirks) { ret = priv->hwif_quirks(priv); if (ret) return ret; } /* Rx Watchdog is available in the COREs newer than the 3.40. * In some case, for example on bugged HW this feature * has to be disable and this can be done by passing the * riwt_off field from the platform. */ if (((priv->synopsys_id >= DWMAC_CORE_3_50) || (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { priv->use_riwt = 1; dev_info(priv->device, "Enable RX Mitigation via HW Watchdog Timer\n"); } return 0; } /** * stmmac_dvr_probe * @device: device pointer * @plat_dat: platform data pointer * @res: stmmac resource pointer * Description: this is the main probe function used to * call the alloc_etherdev, allocate the priv structure. * Return: * returns 0 on success, otherwise errno. */ int stmmac_dvr_probe(struct device *device, struct plat_stmmacenet_data *plat_dat, struct stmmac_resources *res) { struct net_device *ndev = NULL; struct stmmac_priv *priv; u32 queue, rxq, maxq; int i, ret = 0; ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); if (!ndev) return -ENOMEM; SET_NETDEV_DEV(ndev, device); priv = netdev_priv(ndev); priv->device = device; priv->dev = ndev; stmmac_set_ethtool_ops(ndev); priv->pause = pause; priv->plat = plat_dat; priv->ioaddr = res->addr; priv->dev->base_addr = (unsigned long)res->addr; priv->dev->irq = res->irq; priv->wol_irq = res->wol_irq; priv->lpi_irq = res->lpi_irq; if (!IS_ERR_OR_NULL(res->mac)) memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN); dev_set_drvdata(device, priv->dev); /* Verify driver arguments */ stmmac_verify_args(); /* Allocate workqueue */ priv->wq = create_singlethread_workqueue("stmmac_wq"); if (!priv->wq) { dev_err(priv->device, "failed to create workqueue\n"); return -ENOMEM; } INIT_WORK(&priv->service_task, stmmac_service_task); /* Override with kernel parameters if supplied XXX CRS XXX * this needs to have multiple instances */ if ((phyaddr >= 0) && (phyaddr <= 31)) priv->plat->phy_addr = phyaddr; if (priv->plat->stmmac_rst) { ret = reset_control_assert(priv->plat->stmmac_rst); reset_control_deassert(priv->plat->stmmac_rst); /* Some reset controllers have only reset callback instead of * assert + deassert callbacks pair. */ if (ret == -ENOTSUPP) reset_control_reset(priv->plat->stmmac_rst); } /* Init MAC and get the capabilities */ ret = stmmac_hw_init(priv); if (ret) goto error_hw_init; stmmac_check_ether_addr(priv); /* Configure real RX and TX queues */ netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use); netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use); ndev->netdev_ops = &stmmac_netdev_ops; ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; ret = stmmac_tc_init(priv, priv); if (!ret) { ndev->hw_features |= NETIF_F_HW_TC; } if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; if (priv->plat->has_gmac4) ndev->hw_features |= NETIF_F_GSO_UDP_L4; priv->tso = true; dev_info(priv->device, "TSO feature enabled\n"); } if (priv->dma_cap.sphen) { ndev->hw_features |= NETIF_F_GRO; priv->sph = true; dev_info(priv->device, "SPH feature enabled\n"); } if (priv->dma_cap.addr64) { ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(priv->dma_cap.addr64)); if (!ret) { dev_info(priv->device, "Using %d bits DMA width\n", priv->dma_cap.addr64); /* * If more than 32 bits can be addressed, make sure to * enable enhanced addressing mode. */ if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) priv->plat->dma_cfg->eame = true; } else { ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); if (ret) { dev_err(priv->device, "Failed to set DMA Mask\n"); goto error_hw_init; } priv->dma_cap.addr64 = 32; } } ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; ndev->watchdog_timeo = msecs_to_jiffies(watchdog); #ifdef STMMAC_VLAN_TAG_USED /* Both mac100 and gmac support receive VLAN tag detection */ ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; if (priv->dma_cap.vlhash) { ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; } if (priv->dma_cap.vlins) { ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; if (priv->dma_cap.dvlan) ndev->features |= NETIF_F_HW_VLAN_STAG_TX; } #endif priv->msg_enable = netif_msg_init(debug, default_msg_level); /* Initialize RSS */ rxq = priv->plat->rx_queues_to_use; netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); if (priv->dma_cap.rssen && priv->plat->rss_en) ndev->features |= NETIF_F_RXHASH; /* MTU range: 46 - hw-specific max */ ndev->min_mtu = ETH_ZLEN - ETH_HLEN; if (priv->plat->has_xgmac) ndev->max_mtu = XGMAC_JUMBO_LEN; else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) ndev->max_mtu = JUMBO_LEN; else ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. */ if ((priv->plat->maxmtu < ndev->max_mtu) && (priv->plat->maxmtu >= ndev->min_mtu)) ndev->max_mtu = priv->plat->maxmtu; else if (priv->plat->maxmtu < ndev->min_mtu) dev_warn(priv->device, "%s: warning: maxmtu having invalid value (%d)\n", __func__, priv->plat->maxmtu); if (flow_ctrl) priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ /* Setup channels NAPI */ maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); for (queue = 0; queue < maxq; queue++) { struct stmmac_channel *ch = &priv->channel[queue]; spin_lock_init(&ch->lock); ch->priv_data = priv; ch->index = queue; if (queue < priv->plat->rx_queues_to_use) { netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx, NAPI_POLL_WEIGHT); } if (queue < priv->plat->tx_queues_to_use) { netif_tx_napi_add(ndev, &ch->tx_napi, stmmac_napi_poll_tx, NAPI_POLL_WEIGHT); } } mutex_init(&priv->lock); /* If a specific clk_csr value is passed from the platform * this means that the CSR Clock Range selection cannot be * changed at run-time and it is fixed. Viceversa the driver'll try to * set the MDC clock dynamically according to the csr actual * clock input. */ if (priv->plat->clk_csr >= 0) priv->clk_csr = priv->plat->clk_csr; else stmmac_clk_csr_set(priv); stmmac_check_pcs_mode(priv); if (priv->hw->pcs != STMMAC_PCS_TBI && priv->hw->pcs != STMMAC_PCS_RTBI) { /* MDIO bus Registration */ ret = stmmac_mdio_register(ndev); if (ret < 0) { dev_err(priv->device, "%s: MDIO bus (id: %d) registration failed", __func__, priv->plat->bus_id); goto error_mdio_register; } } ret = stmmac_phy_setup(priv); if (ret) { netdev_err(ndev, "failed to setup phy (%d)\n", ret); goto error_phy_setup; } ret = register_netdev(ndev); if (ret) { dev_err(priv->device, "%s: ERROR %i registering the device\n", __func__, ret); goto error_netdev_register; } if (priv->plat->serdes_powerup) { ret = priv->plat->serdes_powerup(ndev, priv->plat->bsp_priv); if (ret < 0) goto error_serdes_powerup; } #ifdef CONFIG_DEBUG_FS stmmac_init_fs(ndev); #endif return ret; error_serdes_powerup: unregister_netdev(ndev); error_netdev_register: phylink_destroy(priv->phylink); error_phy_setup: if (priv->hw->pcs != STMMAC_PCS_TBI && priv->hw->pcs != STMMAC_PCS_RTBI) stmmac_mdio_unregister(ndev); error_mdio_register: for (queue = 0; queue < maxq; queue++) { struct stmmac_channel *ch = &priv->channel[queue]; if (queue < priv->plat->rx_queues_to_use) netif_napi_del(&ch->rx_napi); if (queue < priv->plat->tx_queues_to_use) netif_napi_del(&ch->tx_napi); } error_hw_init: destroy_workqueue(priv->wq); return ret; } EXPORT_SYMBOL_GPL(stmmac_dvr_probe); /** * stmmac_dvr_remove * @dev: device pointer * Description: this function resets the TX/RX processes, disables the MAC RX/TX * changes the link status, releases the DMA descriptor rings. */ int stmmac_dvr_remove(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct stmmac_priv *priv = netdev_priv(ndev); netdev_info(priv->dev, "%s: removing driver", __func__); stmmac_stop_all_dma(priv); if (priv->plat->serdes_powerdown) priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); stmmac_mac_set(priv, priv->ioaddr, false); netif_carrier_off(ndev); unregister_netdev(ndev); #ifdef CONFIG_DEBUG_FS stmmac_exit_fs(ndev); #endif phylink_destroy(priv->phylink); if (priv->plat->stmmac_rst) reset_control_assert(priv->plat->stmmac_rst); clk_disable_unprepare(priv->plat->pclk); clk_disable_unprepare(priv->plat->stmmac_clk); if (priv->hw->pcs != STMMAC_PCS_TBI && priv->hw->pcs != STMMAC_PCS_RTBI) stmmac_mdio_unregister(ndev); destroy_workqueue(priv->wq); mutex_destroy(&priv->lock); return 0; } EXPORT_SYMBOL_GPL(stmmac_dvr_remove); /** * stmmac_suspend - suspend callback * @dev: device pointer * Description: this is the function to suspend the device and it is called * by the platform driver to stop the network queue, release the resources, * program the PMT register (for WoL), clean and release driver resources. */ int stmmac_suspend(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct stmmac_priv *priv = netdev_priv(ndev); u32 chan; if (!ndev || !netif_running(ndev)) return 0; phylink_mac_change(priv->phylink, false); mutex_lock(&priv->lock); netif_device_detach(ndev); stmmac_stop_all_queues(priv); stmmac_disable_all_queues(priv); for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) del_timer_sync(&priv->tx_queue[chan].txtimer); /* Stop TX/RX DMA */ stmmac_stop_all_dma(priv); if (priv->plat->serdes_powerdown) priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); /* Enable Power down mode by programming the PMT regs */ if (device_may_wakeup(priv->device)) { stmmac_pmt(priv, priv->hw, priv->wolopts); priv->irq_wake = 1; } else { mutex_unlock(&priv->lock); rtnl_lock(); phylink_stop(priv->phylink); rtnl_unlock(); mutex_lock(&priv->lock); stmmac_mac_set(priv, priv->ioaddr, false); pinctrl_pm_select_sleep_state(priv->device); /* Disable clock in case of PWM is off */ if (priv->plat->clk_ptp_ref) clk_disable_unprepare(priv->plat->clk_ptp_ref); clk_disable_unprepare(priv->plat->pclk); clk_disable_unprepare(priv->plat->stmmac_clk); } mutex_unlock(&priv->lock); priv->speed = SPEED_UNKNOWN; return 0; } EXPORT_SYMBOL_GPL(stmmac_suspend); /** * stmmac_reset_queues_param - reset queue parameters * @dev: device pointer */ static void stmmac_reset_queues_param(struct stmmac_priv *priv) { u32 rx_cnt = priv->plat->rx_queues_to_use; u32 tx_cnt = priv->plat->tx_queues_to_use; u32 queue; for (queue = 0; queue < rx_cnt; queue++) { struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; rx_q->cur_rx = 0; rx_q->dirty_rx = 0; } for (queue = 0; queue < tx_cnt; queue++) { struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; tx_q->cur_tx = 0; tx_q->dirty_tx = 0; tx_q->mss = 0; } } /** * stmmac_resume - resume callback * @dev: device pointer * Description: when resume this function is invoked to setup the DMA and CORE * in a usable state. */ int stmmac_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct stmmac_priv *priv = netdev_priv(ndev); int ret; if (!netif_running(ndev)) return 0; /* Power Down bit, into the PM register, is cleared * automatically as soon as a magic packet or a Wake-up frame * is received. Anyway, it's better to manually clear * this bit because it can generate problems while resuming * from another devices (e.g. serial console). */ if (device_may_wakeup(priv->device)) { mutex_lock(&priv->lock); stmmac_pmt(priv, priv->hw, 0); mutex_unlock(&priv->lock); priv->irq_wake = 0; } else { pinctrl_pm_select_default_state(priv->device); /* enable the clk previously disabled */ clk_prepare_enable(priv->plat->stmmac_clk); clk_prepare_enable(priv->plat->pclk); if (priv->plat->clk_ptp_ref) clk_prepare_enable(priv->plat->clk_ptp_ref); /* reset the phy so that it's ready */ if (priv->mii) stmmac_mdio_reset(priv->mii); } if (priv->plat->serdes_powerup) { ret = priv->plat->serdes_powerup(ndev, priv->plat->bsp_priv); if (ret < 0) return ret; } mutex_lock(&priv->lock); stmmac_reset_queues_param(priv); stmmac_clear_descriptors(priv); stmmac_hw_setup(ndev, false); stmmac_init_coalesce(priv); stmmac_set_rx_mode(ndev); stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); stmmac_enable_all_queues(priv); stmmac_start_all_queues(priv); mutex_unlock(&priv->lock); if (!device_may_wakeup(priv->device)) { rtnl_lock(); phylink_start(priv->phylink); rtnl_unlock(); } phylink_mac_change(priv->phylink, true); netif_device_attach(ndev); return 0; } EXPORT_SYMBOL_GPL(stmmac_resume); #ifndef MODULE static int __init stmmac_cmdline_opt(char *str) { char *opt; if (!str || !*str) return -EINVAL; while ((opt = strsep(&str, ",")) != NULL) { if (!strncmp(opt, "debug:", 6)) { if (kstrtoint(opt + 6, 0, &debug)) goto err; } else if (!strncmp(opt, "phyaddr:", 8)) { if (kstrtoint(opt + 8, 0, &phyaddr)) goto err; } else if (!strncmp(opt, "buf_sz:", 7)) { if (kstrtoint(opt + 7, 0, &buf_sz)) goto err; } else if (!strncmp(opt, "tc:", 3)) { if (kstrtoint(opt + 3, 0, &tc)) goto err; } else if (!strncmp(opt, "watchdog:", 9)) { if (kstrtoint(opt + 9, 0, &watchdog)) goto err; } else if (!strncmp(opt, "flow_ctrl:", 10)) { if (kstrtoint(opt + 10, 0, &flow_ctrl)) goto err; } else if (!strncmp(opt, "pause:", 6)) { if (kstrtoint(opt + 6, 0, &pause)) goto err; } else if (!strncmp(opt, "eee_timer:", 10)) { if (kstrtoint(opt + 10, 0, &eee_timer)) goto err; } else if (!strncmp(opt, "chain_mode:", 11)) { if (kstrtoint(opt + 11, 0, &chain_mode)) goto err; } } return 0; err: pr_err("%s: ERROR broken module parameter conversion", __func__); return -EINVAL; } __setup("stmmaceth=", stmmac_cmdline_opt); #endif /* MODULE */ static int __init stmmac_init(void) { #ifdef CONFIG_DEBUG_FS /* Create debugfs main directory if it doesn't exist yet */ if (!stmmac_fs_dir) stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); register_netdevice_notifier(&stmmac_notifier); #endif return 0; } static void __exit stmmac_exit(void) { #ifdef CONFIG_DEBUG_FS unregister_netdevice_notifier(&stmmac_notifier); debugfs_remove_recursive(stmmac_fs_dir); #endif } module_init(stmmac_init) module_exit(stmmac_exit) MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1