Contributors: 4
Author Tokens Token Proportion Commits Commit Proportion
Grygorii Strashko 6668 99.21% 5 62.50%
Ilias Apalodimas 40 0.60% 1 12.50%
Wei Yongjun 9 0.13% 1 12.50%
Michael S. Tsirkin 4 0.06% 1 12.50%
Total 6721 8


// SPDX-License-Identifier: GPL-2.0
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2019 Texas Instruments
 */

#include <linux/bpf.h>
#include <linux/bpf_trace.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/kmemleak.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/net_tstamp.h>
#include <linux/of.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/skbuff.h>
#include <net/page_pool.h>
#include <net/pkt_cls.h>

#include "cpsw.h"
#include "cpts.h"
#include "cpsw_ale.h"
#include "cpsw_priv.h"
#include "cpsw_sl.h"
#include "davinci_cpdma.h"

int (*cpsw_slave_index)(struct cpsw_common *cpsw, struct cpsw_priv *priv);

void cpsw_intr_enable(struct cpsw_common *cpsw)
{
	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);

	cpdma_ctlr_int_ctrl(cpsw->dma, true);
}

void cpsw_intr_disable(struct cpsw_common *cpsw)
{
	writel_relaxed(0, &cpsw->wr_regs->tx_en);
	writel_relaxed(0, &cpsw->wr_regs->rx_en);

	cpdma_ctlr_int_ctrl(cpsw->dma, false);
}

void cpsw_tx_handler(void *token, int len, int status)
{
	struct cpsw_meta_xdp	*xmeta;
	struct xdp_frame	*xdpf;
	struct net_device	*ndev;
	struct netdev_queue	*txq;
	struct sk_buff		*skb;
	int			ch;

	if (cpsw_is_xdpf_handle(token)) {
		xdpf = cpsw_handle_to_xdpf(token);
		xmeta = (void *)xdpf + CPSW_XMETA_OFFSET;
		ndev = xmeta->ndev;
		ch = xmeta->ch;
		xdp_return_frame(xdpf);
	} else {
		skb = token;
		ndev = skb->dev;
		ch = skb_get_queue_mapping(skb);
		cpts_tx_timestamp(ndev_to_cpsw(ndev)->cpts, skb);
		dev_kfree_skb_any(skb);
	}

	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
	txq = netdev_get_tx_queue(ndev, ch);
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
}

irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
{
	struct cpsw_common *cpsw = dev_id;

	writel(0, &cpsw->wr_regs->tx_en);
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);

	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
	}

	napi_schedule(&cpsw->napi_tx);
	return IRQ_HANDLED;
}

irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
	struct cpsw_common *cpsw = dev_id;

	writel(0, &cpsw->wr_regs->rx_en);
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);

	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
	}

	napi_schedule(&cpsw->napi_rx);
	return IRQ_HANDLED;
}

int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
{
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
	int			num_tx, cur_budget, ch;
	u32			ch_map;
	struct cpsw_vector	*txv;

	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
	for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
		if (!(ch_map & 0x80))
			continue;

		txv = &cpsw->txv[ch];
		if (unlikely(txv->budget > budget - num_tx))
			cur_budget = budget - num_tx;
		else
			cur_budget = txv->budget;

		num_tx += cpdma_chan_process(txv->ch, cur_budget);
		if (num_tx >= budget)
			break;
	}

	if (num_tx < budget) {
		napi_complete(napi_tx);
		writel(0xff, &cpsw->wr_regs->tx_en);
	}

	return num_tx;
}

int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
	int num_tx;

	num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
	if (num_tx < budget) {
		napi_complete(napi_tx);
		writel(0xff, &cpsw->wr_regs->tx_en);
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
		}
	}

	return num_tx;
}

int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
{
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
	int			num_rx, cur_budget, ch;
	u32			ch_map;
	struct cpsw_vector	*rxv;

	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
		if (!(ch_map & 0x01))
			continue;

		rxv = &cpsw->rxv[ch];
		if (unlikely(rxv->budget > budget - num_rx))
			cur_budget = budget - num_rx;
		else
			cur_budget = rxv->budget;

		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
		if (num_rx >= budget)
			break;
	}

	if (num_rx < budget) {
		napi_complete_done(napi_rx, num_rx);
		writel(0xff, &cpsw->wr_regs->rx_en);
	}

	return num_rx;
}

int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
{
	struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
	int num_rx;

	num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
	if (num_rx < budget) {
		napi_complete_done(napi_rx, num_rx);
		writel(0xff, &cpsw->wr_regs->rx_en);
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
		}
	}

	return num_rx;
}

void cpsw_rx_vlan_encap(struct sk_buff *skb)
{
	struct cpsw_priv *priv = netdev_priv(skb->dev);
	u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
	struct cpsw_common *cpsw = priv->cpsw;
	u16 vtag, vid, prio, pkt_type;

	/* Remove VLAN header encapsulation word */
	skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);

	pkt_type = (rx_vlan_encap_hdr >>
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
		    CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
	/* Ignore unknown & Priority-tagged packets*/
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
	    pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
		return;

	vid = (rx_vlan_encap_hdr >>
	       CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
	       VLAN_VID_MASK;
	/* Ignore vid 0 and pass packet as is */
	if (!vid)
		return;

	/* Untag P0 packets if set for vlan */
	if (!cpsw_ale_get_vlan_p0_untag(cpsw->ale, vid)) {
		prio = (rx_vlan_encap_hdr >>
			CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
			CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;

		vtag = (prio << VLAN_PRIO_SHIFT) | vid;
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
	}

	/* strip vlan tag for VLAN-tagged packet */
	if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
		memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
		skb_pull(skb, VLAN_HLEN);
	}
}

void cpsw_set_slave_mac(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
}

void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

	writel_relaxed(1, reg);
	do {
		cpu_relax();
	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));

	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
}

void cpsw_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int ch;

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
	ndev->stats.tx_errors++;
	cpsw_intr_disable(cpsw);
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
		cpdma_chan_stop(cpsw->txv[ch].ch);
		cpdma_chan_start(cpsw->txv[ch].ch);
	}

	cpsw_intr_enable(cpsw);
	netif_trans_update(ndev);
	netif_tx_wake_all_queues(ndev);
}

static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
	int i, speed;

	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
			speed += cpsw->slaves[i].phy->speed;

	return speed;
}

int cpsw_need_resplit(struct cpsw_common *cpsw)
{
	int i, rlim_ch_num;
	int speed, ch_rate;

	/* re-split resources only in case speed was changed */
	speed = cpsw_get_common_speed(cpsw);
	if (speed == cpsw->speed || !speed)
		return 0;

	cpsw->speed = speed;

	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
		if (!ch_rate)
			break;

		rlim_ch_num++;
	}

	/* cases not dependent on speed */
	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
		return 0;

	return 1;
}

void cpsw_split_res(struct cpsw_common *cpsw)
{
	u32 consumed_rate = 0, bigest_rate = 0;
	struct cpsw_vector *txv = cpsw->txv;
	int i, ch_weight, rlim_ch_num = 0;
	int budget, bigest_rate_ch = 0;
	u32 ch_rate, max_rate;
	int ch_budget = 0;

	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (!ch_rate)
			continue;

		rlim_ch_num++;
		consumed_rate += ch_rate;
	}

	if (cpsw->tx_ch_num == rlim_ch_num) {
		max_rate = consumed_rate;
	} else if (!rlim_ch_num) {
		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
		bigest_rate = 0;
		max_rate = consumed_rate;
	} else {
		max_rate = cpsw->speed * 1000;

		/* if max_rate is less then expected due to reduced link speed,
		 * split proportionally according next potential max speed
		 */
		if (max_rate < consumed_rate)
			max_rate *= 10;

		if (max_rate < consumed_rate)
			max_rate *= 10;

		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
			    (cpsw->tx_ch_num - rlim_ch_num);
		bigest_rate = (max_rate - consumed_rate) /
			      (cpsw->tx_ch_num - rlim_ch_num);
	}

	/* split tx weight/budget */
	budget = CPSW_POLL_WEIGHT;
	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (ch_rate) {
			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
			if (!txv[i].budget)
				txv[i].budget++;
			if (ch_rate > bigest_rate) {
				bigest_rate_ch = i;
				bigest_rate = ch_rate;
			}

			ch_weight = (ch_rate * 100) / max_rate;
			if (!ch_weight)
				ch_weight++;
			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
		} else {
			txv[i].budget = ch_budget;
			if (!bigest_rate_ch)
				bigest_rate_ch = i;
			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
		}

		budget -= txv[i].budget;
	}

	if (budget)
		txv[bigest_rate_ch].budget += budget;

	/* split rx budget */
	budget = CPSW_POLL_WEIGHT;
	ch_budget = budget / cpsw->rx_ch_num;
	for (i = 0; i < cpsw->rx_ch_num; i++) {
		cpsw->rxv[i].budget = ch_budget;
		budget -= ch_budget;
	}

	if (budget)
		cpsw->rxv[0].budget += budget;
}

int cpsw_init_common(struct cpsw_common *cpsw, void __iomem *ss_regs,
		     int ale_ageout, phys_addr_t desc_mem_phys,
		     int descs_pool_size)
{
	u32 slave_offset, sliver_offset, slave_size;
	struct cpsw_ale_params ale_params;
	struct cpsw_platform_data *data;
	struct cpdma_params dma_params;
	struct device *dev = cpsw->dev;
	struct device_node *cpts_node;
	void __iomem *cpts_regs;
	int ret = 0, i;

	data = &cpsw->data;
	cpsw->rx_ch_num = 1;
	cpsw->tx_ch_num = 1;

	cpsw->version = readl(&cpsw->regs->id_ver);

	memset(&dma_params, 0, sizeof(dma_params));
	memset(&ale_params, 0, sizeof(ale_params));

	switch (cpsw->version) {
	case CPSW_VERSION_1:
		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
		cpts_regs	     = ss_regs + CPSW1_CPTS_OFFSET;
		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
		slave_offset         = CPSW1_SLAVE_OFFSET;
		slave_size           = CPSW1_SLAVE_SIZE;
		sliver_offset        = CPSW1_SLIVER_OFFSET;
		dma_params.desc_mem_phys = 0;
		break;
	case CPSW_VERSION_2:
	case CPSW_VERSION_3:
	case CPSW_VERSION_4:
		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
		cpts_regs	     = ss_regs + CPSW2_CPTS_OFFSET;
		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
		slave_offset         = CPSW2_SLAVE_OFFSET;
		slave_size           = CPSW2_SLAVE_SIZE;
		sliver_offset        = CPSW2_SLIVER_OFFSET;
		dma_params.desc_mem_phys = desc_mem_phys;
		break;
	default:
		dev_err(dev, "unknown version 0x%08x\n", cpsw->version);
		return -ENODEV;
	}

	for (i = 0; i < cpsw->data.slaves; i++) {
		struct cpsw_slave *slave = &cpsw->slaves[i];
		void __iomem		*regs = cpsw->regs;

		slave->slave_num = i;
		slave->data	= &cpsw->data.slave_data[i];
		slave->regs	= regs + slave_offset;
		slave->port_vlan = slave->data->dual_emac_res_vlan;
		slave->mac_sl = cpsw_sl_get("cpsw", dev, regs + sliver_offset);
		if (IS_ERR(slave->mac_sl))
			return PTR_ERR(slave->mac_sl);

		slave_offset  += slave_size;
		sliver_offset += SLIVER_SIZE;
	}

	ale_params.dev			= dev;
	ale_params.ale_ageout		= ale_ageout;
	ale_params.ale_entries		= data->ale_entries;
	ale_params.ale_ports		= CPSW_ALE_PORTS_NUM;

	cpsw->ale = cpsw_ale_create(&ale_params);
	if (IS_ERR(cpsw->ale)) {
		dev_err(dev, "error initializing ale engine\n");
		return PTR_ERR(cpsw->ale);
	}

	dma_params.dev		= dev;
	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;

	dma_params.num_chan		= data->channels;
	dma_params.has_soft_reset	= true;
	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
	dma_params.desc_mem_size	= data->bd_ram_size;
	dma_params.desc_align		= 16;
	dma_params.has_ext_regs		= true;
	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
	dma_params.descs_pool_size	= descs_pool_size;

	cpsw->dma = cpdma_ctlr_create(&dma_params);
	if (!cpsw->dma) {
		dev_err(dev, "error initializing dma\n");
		return -ENOMEM;
	}

	cpts_node = of_get_child_by_name(cpsw->dev->of_node, "cpts");
	if (!cpts_node)
		cpts_node = cpsw->dev->of_node;

	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpts_node);
	if (IS_ERR(cpsw->cpts)) {
		ret = PTR_ERR(cpsw->cpts);
		cpdma_ctlr_destroy(cpsw->dma);
	}
	of_node_put(cpts_node);

	return ret;
}

#if IS_ENABLED(CONFIG_TI_CPTS)

static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	u32 ts_en, seq_id;

	if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) {
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

	if (priv->tx_ts_enabled)
		ts_en |= CPSW_V1_TS_TX_EN;

	if (priv->rx_ts_enabled)
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 ctrl, mtype;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];

	ctrl = slave_read(slave, CPSW2_CONTROL);
	switch (cpsw->version) {
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;

		if (priv->tx_ts_enabled)
			ctrl |= CTRL_V2_TX_TS_BITS;

		if (priv->rx_ts_enabled)
			ctrl |= CTRL_V2_RX_TS_BITS;
		break;
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

		if (priv->tx_ts_enabled)
			ctrl |= CTRL_V3_TX_TS_BITS;

		if (priv->rx_ts_enabled)
			ctrl |= CTRL_V3_RX_TS_BITS;
		break;
	}

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
	writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype);
}

static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	struct cpsw_priv *priv = netdev_priv(dev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct hwtstamp_config cfg;

	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
		return -EOPNOTSUPP;

	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		priv->rx_ts_enabled = 0;
		break;
	case HWTSTAMP_FILTER_ALL:
	case HWTSTAMP_FILTER_NTP_ALL:
		return -ERANGE;
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
		priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		break;
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
		priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT;
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

	priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON;

	switch (cpsw->version) {
	case CPSW_VERSION_1:
		cpsw_hwtstamp_v1(priv);
		break;
	case CPSW_VERSION_2:
	case CPSW_VERSION_3:
		cpsw_hwtstamp_v2(priv);
		break;
	default:
		WARN_ON(1);
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
	struct cpsw_priv *priv = netdev_priv(dev);
	struct hwtstamp_config cfg;

	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
		return -EOPNOTSUPP;

	cfg.flags = 0;
	cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = priv->rx_ts_enabled;

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}

static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
#endif /*CONFIG_TI_CPTS*/

int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
	struct cpsw_priv *priv = netdev_priv(dev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (!netif_running(dev))
		return -EINVAL;

	switch (cmd) {
	case SIOCSHWTSTAMP:
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
	}

	if (!cpsw->slaves[slave_no].phy)
		return -EOPNOTSUPP;
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
}

int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 min_rate;
	u32 ch_rate;
	int i, ret;

	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
	if (ch_rate == rate)
		return 0;

	ch_rate = rate * 1000;
	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
	if ((ch_rate < min_rate && ch_rate)) {
		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
			min_rate);
		return -EINVAL;
	}

	if (rate > cpsw->speed) {
		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
		return -EINVAL;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
	pm_runtime_put(cpsw->dev);

	if (ret)
		return ret;

	/* update rates for slaves tx queues */
	for (i = 0; i < cpsw->data.slaves; i++) {
		slave = &cpsw->slaves[i];
		if (!slave->ndev)
			continue;

		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
	}

	cpsw_split_res(cpsw);
	return ret;
}

static int cpsw_tc_to_fifo(int tc, int num_tc)
{
	if (tc == num_tc - 1)
		return 0;

	return CPSW_FIFO_SHAPERS_NUM - tc;
}

bool cpsw_shp_is_off(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 shift, mask, val;

	val = readl_relaxed(&cpsw->regs->ptype);

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
	mask = 7 << shift;
	val = val & mask;

	return !val;
}

static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 shift, mask, val;

	val = readl_relaxed(&cpsw->regs->ptype);

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
	mask = (1 << --fifo) << shift;
	val = on ? val | mask : val & ~mask;

	writel_relaxed(val, &cpsw->regs->ptype);
}

static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
{
	struct cpsw_common *cpsw = priv->cpsw;
	u32 val = 0, send_pct, shift;
	struct cpsw_slave *slave;
	int pct = 0, i;

	if (bw > priv->shp_cfg_speed * 1000)
		goto err;

	/* shaping has to stay enabled for highest fifos linearly
	 * and fifo bw no more then interface can allow
	 */
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	send_pct = slave_read(slave, SEND_PERCENT);
	for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
		if (!bw) {
			if (i >= fifo || !priv->fifo_bw[i])
				continue;

			dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
			continue;
		}

		if (!priv->fifo_bw[i] && i > fifo) {
			dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
			return -EINVAL;
		}

		shift = (i - 1) * 8;
		if (i == fifo) {
			send_pct &= ~(CPSW_PCT_MASK << shift);
			val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
			if (!val)
				val = 1;

			send_pct |= val << shift;
			pct += val;
			continue;
		}

		if (priv->fifo_bw[i])
			pct += (send_pct >> shift) & CPSW_PCT_MASK;
	}

	if (pct >= 100)
		goto err;

	slave_write(slave, send_pct, SEND_PERCENT);
	priv->fifo_bw[fifo] = bw;

	dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
		 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));

	return 0;
err:
	dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
	return -EINVAL;
}

static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	u32 tx_in_ctl_rg, val;
	int ret;

	ret = cpsw_set_fifo_bw(priv, fifo, bw);
	if (ret)
		return ret;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
		       CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;

	if (!bw)
		cpsw_fifo_shp_on(priv, fifo, bw);

	val = slave_read(slave, tx_in_ctl_rg);
	if (cpsw_shp_is_off(priv)) {
		/* disable FIFOs rate limited queues */
		val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);

		/* set type of FIFO queues to normal priority mode */
		val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);

		/* set type of FIFO queues to be rate limited */
		if (bw)
			val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
		else
			priv->shp_cfg_speed = 0;
	}

	/* toggle a FIFO rate limited queue */
	if (bw)
		val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
	else
		val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
	slave_write(slave, val, tx_in_ctl_rg);

	/* FIFO transmit shape enable */
	cpsw_fifo_shp_on(priv, fifo, bw);
	return 0;
}

/* Defaults:
 * class A - prio 3
 * class B - prio 2
 * shaping for class A should be set first
 */
static int cpsw_set_cbs(struct net_device *ndev,
			struct tc_cbs_qopt_offload *qopt)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int prev_speed = 0;
	int tc, ret, fifo;
	u32 bw = 0;

	tc = netdev_txq_to_tc(priv->ndev, qopt->queue);

	/* enable channels in backward order, as highest FIFOs must be rate
	 * limited first and for compliance with CPDMA rate limited channels
	 * that also used in bacward order. FIFO0 cannot be rate limited.
	 */
	fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
	if (!fifo) {
		dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
		return -EINVAL;
	}

	/* do nothing, it's disabled anyway */
	if (!qopt->enable && !priv->fifo_bw[fifo])
		return 0;

	/* shapers can be set if link speed is known */
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	if (slave->phy && slave->phy->link) {
		if (priv->shp_cfg_speed &&
		    priv->shp_cfg_speed != slave->phy->speed)
			prev_speed = priv->shp_cfg_speed;

		priv->shp_cfg_speed = slave->phy->speed;
	}

	if (!priv->shp_cfg_speed) {
		dev_err(priv->dev, "Link speed is not known");
		return -1;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	bw = qopt->enable ? qopt->idleslope : 0;
	ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
	if (ret) {
		priv->shp_cfg_speed = prev_speed;
		prev_speed = 0;
	}

	if (bw && prev_speed)
		dev_warn(priv->dev,
			 "Speed was changed, CBS shaper speeds are changed!");

	pm_runtime_put_sync(cpsw->dev);
	return ret;
}

static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
{
	struct tc_mqprio_qopt_offload *mqprio = type_data;
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int fifo, num_tc, count, offset;
	struct cpsw_slave *slave;
	u32 tx_prio_map = 0;
	int i, tc, ret;

	num_tc = mqprio->qopt.num_tc;
	if (num_tc > CPSW_TC_NUM)
		return -EINVAL;

	if (mqprio->mode != TC_MQPRIO_MODE_DCB)
		return -EINVAL;

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

	if (num_tc) {
		for (i = 0; i < 8; i++) {
			tc = mqprio->qopt.prio_tc_map[i];
			fifo = cpsw_tc_to_fifo(tc, num_tc);
			tx_prio_map |= fifo << (4 * i);
		}

		netdev_set_num_tc(ndev, num_tc);
		for (i = 0; i < num_tc; i++) {
			count = mqprio->qopt.count[i];
			offset = mqprio->qopt.offset[i];
			netdev_set_tc_queue(ndev, i, count, offset);
		}
	}

	if (!mqprio->qopt.hw) {
		/* restore default configuration */
		netdev_reset_tc(ndev);
		tx_prio_map = TX_PRIORITY_MAPPING;
	}

	priv->mqprio_hw = mqprio->qopt.hw;

	offset = cpsw->version == CPSW_VERSION_1 ?
		 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;

	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
	slave_write(slave, tx_prio_map, offset);

	pm_runtime_put_sync(cpsw->dev);

	return 0;
}

int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
		      void *type_data)
{
	switch (type) {
	case TC_SETUP_QDISC_CBS:
		return cpsw_set_cbs(ndev, type_data);

	case TC_SETUP_QDISC_MQPRIO:
		return cpsw_set_mqprio(ndev, type_data);

	default:
		return -EOPNOTSUPP;
	}
}

void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	int fifo, bw;

	for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
		bw = priv->fifo_bw[fifo];
		if (!bw)
			continue;

		cpsw_set_fifo_rlimit(priv, fifo, bw);
	}
}

void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	u32 tx_prio_map = 0;
	int i, tc, fifo;
	u32 tx_prio_rg;

	if (!priv->mqprio_hw)
		return;

	for (i = 0; i < 8; i++) {
		tc = netdev_get_prio_tc_map(priv->ndev, i);
		fifo = CPSW_FIFO_SHAPERS_NUM - tc;
		tx_prio_map |= fifo << (4 * i);
	}

	tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
		     CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;

	slave_write(slave, tx_prio_map, tx_prio_rg);
}

int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_meta_xdp *xmeta;
	struct page_pool *pool;
	struct page *page;
	int ch_buf_num;
	int ch, i, ret;
	dma_addr_t dma;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
		pool = cpsw->page_pool[ch];
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
		for (i = 0; i < ch_buf_num; i++) {
			page = page_pool_dev_alloc_pages(pool);
			if (!page) {
				cpsw_err(priv, ifup, "allocate rx page err\n");
				return -ENOMEM;
			}

			xmeta = page_address(page) + CPSW_XMETA_OFFSET;
			xmeta->ndev = priv->ndev;
			xmeta->ch = ch;

			dma = page_pool_get_dma_addr(page) + CPSW_HEADROOM;
			ret = cpdma_chan_idle_submit_mapped(cpsw->rxv[ch].ch,
							    page, dma,
							    cpsw->rx_packet_max,
							    0);
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit page to channel %d rx, error %d\n",
					 ch, ret);
				page_pool_recycle_direct(pool, page);
				return ret;
			}
		}

		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}

	return 0;
}

static struct page_pool *cpsw_create_page_pool(struct cpsw_common *cpsw,
					       int size)
{
	struct page_pool_params pp_params;
	struct page_pool *pool;

	pp_params.order = 0;
	pp_params.flags = PP_FLAG_DMA_MAP;
	pp_params.pool_size = size;
	pp_params.nid = NUMA_NO_NODE;
	pp_params.dma_dir = DMA_BIDIRECTIONAL;
	pp_params.dev = cpsw->dev;

	pool = page_pool_create(&pp_params);
	if (IS_ERR(pool))
		dev_err(cpsw->dev, "cannot create rx page pool\n");

	return pool;
}

static int cpsw_create_rx_pool(struct cpsw_common *cpsw, int ch)
{
	struct page_pool *pool;
	int ret = 0, pool_size;

	pool_size = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
	pool = cpsw_create_page_pool(cpsw, pool_size);
	if (IS_ERR(pool))
		ret = PTR_ERR(pool);
	else
		cpsw->page_pool[ch] = pool;

	return ret;
}

static int cpsw_ndev_create_xdp_rxq(struct cpsw_priv *priv, int ch)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct xdp_rxq_info *rxq;
	struct page_pool *pool;
	int ret;

	pool = cpsw->page_pool[ch];
	rxq = &priv->xdp_rxq[ch];

	ret = xdp_rxq_info_reg(rxq, priv->ndev, ch);
	if (ret)
		return ret;

	ret = xdp_rxq_info_reg_mem_model(rxq, MEM_TYPE_PAGE_POOL, pool);
	if (ret)
		xdp_rxq_info_unreg(rxq);

	return ret;
}

static void cpsw_ndev_destroy_xdp_rxq(struct cpsw_priv *priv, int ch)
{
	struct xdp_rxq_info *rxq = &priv->xdp_rxq[ch];

	if (!xdp_rxq_info_is_reg(rxq))
		return;

	xdp_rxq_info_unreg(rxq);
}

void cpsw_destroy_xdp_rxqs(struct cpsw_common *cpsw)
{
	struct net_device *ndev;
	int i, ch;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
		for (i = 0; i < cpsw->data.slaves; i++) {
			ndev = cpsw->slaves[i].ndev;
			if (!ndev)
				continue;

			cpsw_ndev_destroy_xdp_rxq(netdev_priv(ndev), ch);
		}

		page_pool_destroy(cpsw->page_pool[ch]);
		cpsw->page_pool[ch] = NULL;
	}
}

int cpsw_create_xdp_rxqs(struct cpsw_common *cpsw)
{
	struct net_device *ndev;
	int i, ch, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
		ret = cpsw_create_rx_pool(cpsw, ch);
		if (ret)
			goto err_cleanup;

		/* using same page pool is allowed as no running rx handlers
		 * simultaneously for both ndevs
		 */
		for (i = 0; i < cpsw->data.slaves; i++) {
			ndev = cpsw->slaves[i].ndev;
			if (!ndev)
				continue;

			ret = cpsw_ndev_create_xdp_rxq(netdev_priv(ndev), ch);
			if (ret)
				goto err_cleanup;
		}
	}

	return 0;

err_cleanup:
	cpsw_destroy_xdp_rxqs(cpsw);

	return ret;
}

static int cpsw_xdp_prog_setup(struct cpsw_priv *priv, struct netdev_bpf *bpf)
{
	struct bpf_prog *prog = bpf->prog;

	if (!priv->xdpi.prog && !prog)
		return 0;

	if (!xdp_attachment_flags_ok(&priv->xdpi, bpf))
		return -EBUSY;

	WRITE_ONCE(priv->xdp_prog, prog);

	xdp_attachment_setup(&priv->xdpi, bpf);

	return 0;
}

int cpsw_ndo_bpf(struct net_device *ndev, struct netdev_bpf *bpf)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	switch (bpf->command) {
	case XDP_SETUP_PROG:
		return cpsw_xdp_prog_setup(priv, bpf);

	case XDP_QUERY_PROG:
		return xdp_attachment_query(&priv->xdpi, bpf);

	default:
		return -EINVAL;
	}
}

int cpsw_xdp_tx_frame(struct cpsw_priv *priv, struct xdp_frame *xdpf,
		      struct page *page, int port)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_meta_xdp *xmeta;
	struct cpdma_chan *txch;
	dma_addr_t dma;
	int ret;

	xmeta = (void *)xdpf + CPSW_XMETA_OFFSET;
	xmeta->ndev = priv->ndev;
	xmeta->ch = 0;
	txch = cpsw->txv[0].ch;

	if (page) {
		dma = page_pool_get_dma_addr(page);
		dma += xdpf->headroom + sizeof(struct xdp_frame);
		ret = cpdma_chan_submit_mapped(txch, cpsw_xdpf_to_handle(xdpf),
					       dma, xdpf->len, port);
	} else {
		if (sizeof(*xmeta) > xdpf->headroom) {
			xdp_return_frame_rx_napi(xdpf);
			return -EINVAL;
		}

		ret = cpdma_chan_submit(txch, cpsw_xdpf_to_handle(xdpf),
					xdpf->data, xdpf->len, port);
	}

	if (ret) {
		priv->ndev->stats.tx_dropped++;
		xdp_return_frame_rx_napi(xdpf);
	}

	return ret;
}

int cpsw_run_xdp(struct cpsw_priv *priv, int ch, struct xdp_buff *xdp,
		 struct page *page, int port)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct net_device *ndev = priv->ndev;
	int ret = CPSW_XDP_CONSUMED;
	struct xdp_frame *xdpf;
	struct bpf_prog *prog;
	u32 act;

	rcu_read_lock();

	prog = READ_ONCE(priv->xdp_prog);
	if (!prog) {
		ret = CPSW_XDP_PASS;
		goto out;
	}

	act = bpf_prog_run_xdp(prog, xdp);
	switch (act) {
	case XDP_PASS:
		ret = CPSW_XDP_PASS;
		break;
	case XDP_TX:
		xdpf = convert_to_xdp_frame(xdp);
		if (unlikely(!xdpf))
			goto drop;

		cpsw_xdp_tx_frame(priv, xdpf, page, port);
		break;
	case XDP_REDIRECT:
		if (xdp_do_redirect(ndev, xdp, prog))
			goto drop;

		/*  Have to flush here, per packet, instead of doing it in bulk
		 *  at the end of the napi handler. The RX devices on this
		 *  particular hardware is sharing a common queue, so the
		 *  incoming device might change per packet.
		 */
		xdp_do_flush_map();
		break;
	default:
		bpf_warn_invalid_xdp_action(act);
		/* fall through */
	case XDP_ABORTED:
		trace_xdp_exception(ndev, prog, act);
		/* fall through -- handle aborts by dropping packet */
	case XDP_DROP:
		goto drop;
	}
out:
	rcu_read_unlock();
	return ret;
drop:
	rcu_read_unlock();
	page_pool_recycle_direct(cpsw->page_pool[ch], page);
	return ret;
}