Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 8777 | 71.83% | 23 | 20.91% |
Sakari Ailus | 1103 | 9.03% | 6 | 5.45% |
Ondrej Zary | 481 | 3.94% | 10 | 9.09% |
Alan Cox | 445 | 3.64% | 2 | 1.82% |
Linus Torvalds | 385 | 3.15% | 5 | 4.55% |
Stephen Hemminger | 367 | 3.00% | 13 | 11.82% |
Joe Perches | 137 | 1.12% | 3 | 2.73% |
Jeff Garzik | 134 | 1.10% | 3 | 2.73% |
Kees Cook | 62 | 0.51% | 1 | 0.91% |
David Howells | 42 | 0.34% | 1 | 0.91% |
Prasanna S. Panchamukhi | 39 | 0.32% | 1 | 0.91% |
Leonardo Potenza | 37 | 0.30% | 1 | 0.91% |
Harvey Harrison | 31 | 0.25% | 1 | 0.91% |
Nicholas Mc Guire | 26 | 0.21% | 2 | 1.82% |
Jiri Pirko | 16 | 0.13% | 4 | 3.64% |
Matt Mackall | 15 | 0.12% | 1 | 0.91% |
Michael S. Tsirkin | 10 | 0.08% | 1 | 0.91% |
Andrew Morton | 8 | 0.07% | 1 | 0.91% |
Rusty Russell | 8 | 0.07% | 1 | 0.91% |
Devendra Naga | 8 | 0.07% | 1 | 0.91% |
Alexey Dobriyan | 6 | 0.05% | 1 | 0.91% |
Benoit Taine | 6 | 0.05% | 1 | 0.91% |
Adrian Bunk | 6 | 0.05% | 1 | 0.91% |
Ingo Molnar | 5 | 0.04% | 1 | 0.91% |
Thomas Graf | 5 | 0.04% | 1 | 0.91% |
Eric Dumazet | 5 | 0.04% | 2 | 1.82% |
Robert Fitzsimons | 5 | 0.04% | 1 | 0.91% |
Samuel S. Chessman | 5 | 0.04% | 1 | 0.91% |
Patrick McHardy | 4 | 0.03% | 2 | 1.82% |
Al Viro | 4 | 0.03% | 2 | 1.82% |
Benjamin Poirier | 4 | 0.03% | 1 | 0.91% |
James Harper | 4 | 0.03% | 1 | 0.91% |
Yang Hongyang | 4 | 0.03% | 1 | 0.91% |
Matthew Wilcox | 3 | 0.02% | 1 | 0.91% |
Auke-Jan H Kok | 3 | 0.02% | 1 | 0.91% |
Florian Westphal | 3 | 0.02% | 1 | 0.91% |
Michael Hayes | 3 | 0.02% | 1 | 0.91% |
Domen Puncer | 3 | 0.02% | 1 | 0.91% |
Arnd Bergmann | 2 | 0.02% | 1 | 0.91% |
François Romieu | 2 | 0.02% | 1 | 0.91% |
Masanari Iida | 1 | 0.01% | 1 | 0.91% |
Geert Uytterhoeven | 1 | 0.01% | 1 | 0.91% |
Jakub Kiciński | 1 | 0.01% | 1 | 0.91% |
Thomas Gleixner | 1 | 0.01% | 1 | 0.91% |
Yijing Wang | 1 | 0.01% | 1 | 0.91% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 0.91% |
Total | 12219 | 110 |
/******************************************************************************* * * Linux ThunderLAN Driver * * tlan.c * by James Banks * * (C) 1997-1998 Caldera, Inc. * (C) 1998 James Banks * (C) 1999-2001 Torben Mathiasen * (C) 2002 Samuel Chessman * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. * ** Useful (if not required) reading: * * Texas Instruments, ThunderLAN Programmer's Guide, * TI Literature Number SPWU013A * available in PDF format from www.ti.com * Level One, LXT901 and LXT970 Data Sheets * available in PDF format from www.level1.com * National Semiconductor, DP83840A Data Sheet * available in PDF format from www.national.com * Microchip Technology, 24C01A/02A/04A Data Sheet * available in PDF format from www.microchip.com * ******************************************************************************/ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/hardirq.h> #include <linux/module.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/eisa.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/delay.h> #include <linux/spinlock.h> #include <linux/workqueue.h> #include <linux/mii.h> #include "tlan.h" /* For removing EISA devices */ static struct net_device *tlan_eisa_devices; static int tlan_devices_installed; /* Set speed, duplex and aui settings */ static int aui[MAX_TLAN_BOARDS]; static int duplex[MAX_TLAN_BOARDS]; static int speed[MAX_TLAN_BOARDS]; static int boards_found; module_param_array(aui, int, NULL, 0); module_param_array(duplex, int, NULL, 0); module_param_array(speed, int, NULL, 0); MODULE_PARM_DESC(aui, "ThunderLAN use AUI port(s) (0-1)"); MODULE_PARM_DESC(duplex, "ThunderLAN duplex setting(s) (0-default, 1-half, 2-full)"); MODULE_PARM_DESC(speed, "ThunderLAN port speed setting(s) (0,10,100)"); MODULE_AUTHOR("Maintainer: Samuel Chessman <chessman@tux.org>"); MODULE_DESCRIPTION("Driver for TI ThunderLAN based ethernet PCI adapters"); MODULE_LICENSE("GPL"); /* Turn on debugging. * See Documentation/networking/device_drivers/ti/tlan.txt for details */ static int debug; module_param(debug, int, 0); MODULE_PARM_DESC(debug, "ThunderLAN debug mask"); static const char tlan_signature[] = "TLAN"; static const char tlan_banner[] = "ThunderLAN driver v1.17\n"; static int tlan_have_pci; static int tlan_have_eisa; static const char * const media[] = { "10BaseT-HD", "10BaseT-FD", "100baseTx-HD", "100BaseTx-FD", "100BaseT4", NULL }; static struct board { const char *device_label; u32 flags; u16 addr_ofs; } board_info[] = { { "Compaq Netelligent 10 T PCI UTP", TLAN_ADAPTER_ACTIVITY_LED, 0x83 }, { "Compaq Netelligent 10/100 TX PCI UTP", TLAN_ADAPTER_ACTIVITY_LED, 0x83 }, { "Compaq Integrated NetFlex-3/P", TLAN_ADAPTER_NONE, 0x83 }, { "Compaq NetFlex-3/P", TLAN_ADAPTER_UNMANAGED_PHY | TLAN_ADAPTER_BIT_RATE_PHY, 0x83 }, { "Compaq NetFlex-3/P", TLAN_ADAPTER_NONE, 0x83 }, { "Compaq Netelligent Integrated 10/100 TX UTP", TLAN_ADAPTER_ACTIVITY_LED, 0x83 }, { "Compaq Netelligent Dual 10/100 TX PCI UTP", TLAN_ADAPTER_NONE, 0x83 }, { "Compaq Netelligent 10/100 TX Embedded UTP", TLAN_ADAPTER_NONE, 0x83 }, { "Olicom OC-2183/2185", TLAN_ADAPTER_USE_INTERN_10, 0x83 }, { "Olicom OC-2325", TLAN_ADAPTER_ACTIVITY_LED | TLAN_ADAPTER_UNMANAGED_PHY, 0xf8 }, { "Olicom OC-2326", TLAN_ADAPTER_ACTIVITY_LED | TLAN_ADAPTER_USE_INTERN_10, 0xf8 }, { "Compaq Netelligent 10/100 TX UTP", TLAN_ADAPTER_ACTIVITY_LED, 0x83 }, { "Compaq Netelligent 10 T/2 PCI UTP/coax", TLAN_ADAPTER_NONE, 0x83 }, { "Compaq NetFlex-3/E", TLAN_ADAPTER_ACTIVITY_LED | /* EISA card */ TLAN_ADAPTER_UNMANAGED_PHY | TLAN_ADAPTER_BIT_RATE_PHY, 0x83 }, { "Compaq NetFlex-3/E", TLAN_ADAPTER_ACTIVITY_LED, 0x83 }, /* EISA card */ }; static const struct pci_device_id tlan_pci_tbl[] = { { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETEL10, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETEL100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETFLEX3I, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_THUNDER, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETFLEX3B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETEL100PI, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETEL100D, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETEL100I, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 7 }, { PCI_VENDOR_ID_OLICOM, PCI_DEVICE_ID_OLICOM_OC2183, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 8 }, { PCI_VENDOR_ID_OLICOM, PCI_DEVICE_ID_OLICOM_OC2325, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 9 }, { PCI_VENDOR_ID_OLICOM, PCI_DEVICE_ID_OLICOM_OC2326, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 10 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_NETELLIGENT_10_100_WS_5100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 11 }, { PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_NETELLIGENT_10_T2, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 12 }, { 0,} }; MODULE_DEVICE_TABLE(pci, tlan_pci_tbl); static void tlan_eisa_probe(void); static void tlan_eisa_cleanup(void); static int tlan_init(struct net_device *); static int tlan_open(struct net_device *dev); static netdev_tx_t tlan_start_tx(struct sk_buff *, struct net_device *); static irqreturn_t tlan_handle_interrupt(int, void *); static int tlan_close(struct net_device *); static struct net_device_stats *tlan_get_stats(struct net_device *); static void tlan_set_multicast_list(struct net_device *); static int tlan_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static int tlan_probe1(struct pci_dev *pdev, long ioaddr, int irq, int rev, const struct pci_device_id *ent); static void tlan_tx_timeout(struct net_device *dev, unsigned int txqueue); static void tlan_tx_timeout_work(struct work_struct *work); static int tlan_init_one(struct pci_dev *pdev, const struct pci_device_id *ent); static u32 tlan_handle_tx_eof(struct net_device *, u16); static u32 tlan_handle_stat_overflow(struct net_device *, u16); static u32 tlan_handle_rx_eof(struct net_device *, u16); static u32 tlan_handle_dummy(struct net_device *, u16); static u32 tlan_handle_tx_eoc(struct net_device *, u16); static u32 tlan_handle_status_check(struct net_device *, u16); static u32 tlan_handle_rx_eoc(struct net_device *, u16); static void tlan_timer(struct timer_list *t); static void tlan_phy_monitor(struct timer_list *t); static void tlan_reset_lists(struct net_device *); static void tlan_free_lists(struct net_device *); static void tlan_print_dio(u16); static void tlan_print_list(struct tlan_list *, char *, int); static void tlan_read_and_clear_stats(struct net_device *, int); static void tlan_reset_adapter(struct net_device *); static void tlan_finish_reset(struct net_device *); static void tlan_set_mac(struct net_device *, int areg, char *mac); static void tlan_phy_print(struct net_device *); static void tlan_phy_detect(struct net_device *); static void tlan_phy_power_down(struct net_device *); static void tlan_phy_power_up(struct net_device *); static void tlan_phy_reset(struct net_device *); static void tlan_phy_start_link(struct net_device *); static void tlan_phy_finish_auto_neg(struct net_device *); /* static int tlan_phy_nop(struct net_device *); static int tlan_phy_internal_check(struct net_device *); static int tlan_phy_internal_service(struct net_device *); static int tlan_phy_dp83840a_check(struct net_device *); */ static bool tlan_mii_read_reg(struct net_device *, u16, u16, u16 *); static void tlan_mii_send_data(u16, u32, unsigned); static void tlan_mii_sync(u16); static void tlan_mii_write_reg(struct net_device *, u16, u16, u16); static void tlan_ee_send_start(u16); static int tlan_ee_send_byte(u16, u8, int); static void tlan_ee_receive_byte(u16, u8 *, int); static int tlan_ee_read_byte(struct net_device *, u8, u8 *); static inline void tlan_store_skb(struct tlan_list *tag, struct sk_buff *skb) { unsigned long addr = (unsigned long)skb; tag->buffer[9].address = addr; tag->buffer[8].address = upper_32_bits(addr); } static inline struct sk_buff * tlan_get_skb(const struct tlan_list *tag) { unsigned long addr; addr = tag->buffer[9].address; addr |= ((unsigned long) tag->buffer[8].address << 16) << 16; return (struct sk_buff *) addr; } static u32 (*tlan_int_vector[TLAN_INT_NUMBER_OF_INTS])(struct net_device *, u16) = { NULL, tlan_handle_tx_eof, tlan_handle_stat_overflow, tlan_handle_rx_eof, tlan_handle_dummy, tlan_handle_tx_eoc, tlan_handle_status_check, tlan_handle_rx_eoc }; static inline void tlan_set_timer(struct net_device *dev, u32 ticks, u32 type) { struct tlan_priv *priv = netdev_priv(dev); unsigned long flags = 0; if (!in_irq()) spin_lock_irqsave(&priv->lock, flags); if (priv->timer.function != NULL && priv->timer_type != TLAN_TIMER_ACTIVITY) { if (!in_irq()) spin_unlock_irqrestore(&priv->lock, flags); return; } priv->timer.function = tlan_timer; if (!in_irq()) spin_unlock_irqrestore(&priv->lock, flags); priv->timer_set_at = jiffies; priv->timer_type = type; mod_timer(&priv->timer, jiffies + ticks); } /***************************************************************************** ****************************************************************************** ThunderLAN driver primary functions these functions are more or less common to all linux network drivers. ****************************************************************************** *****************************************************************************/ /*************************************************************** * tlan_remove_one * * Returns: * Nothing * Parms: * None * * Goes through the TLanDevices list and frees the device * structs and memory associated with each device (lists * and buffers). It also ureserves the IO port regions * associated with this device. * **************************************************************/ static void tlan_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct tlan_priv *priv = netdev_priv(dev); unregister_netdev(dev); if (priv->dma_storage) { pci_free_consistent(priv->pci_dev, priv->dma_size, priv->dma_storage, priv->dma_storage_dma); } #ifdef CONFIG_PCI pci_release_regions(pdev); #endif free_netdev(dev); cancel_work_sync(&priv->tlan_tqueue); } static void tlan_start(struct net_device *dev) { tlan_reset_lists(dev); /* NOTE: It might not be necessary to read the stats before a reset if you don't care what the values are. */ tlan_read_and_clear_stats(dev, TLAN_IGNORE); tlan_reset_adapter(dev); netif_wake_queue(dev); } static void tlan_stop(struct net_device *dev) { struct tlan_priv *priv = netdev_priv(dev); del_timer_sync(&priv->media_timer); tlan_read_and_clear_stats(dev, TLAN_RECORD); outl(TLAN_HC_AD_RST, dev->base_addr + TLAN_HOST_CMD); /* Reset and power down phy */ tlan_reset_adapter(dev); if (priv->timer.function != NULL) { del_timer_sync(&priv->timer); priv->timer.function = NULL; } } #ifdef CONFIG_PM static int tlan_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *dev = pci_get_drvdata(pdev); if (netif_running(dev)) tlan_stop(dev); netif_device_detach(dev); pci_save_state(pdev); pci_disable_device(pdev); pci_wake_from_d3(pdev, false); pci_set_power_state(pdev, PCI_D3hot); return 0; } static int tlan_resume(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); int rc = pci_enable_device(pdev); if (rc) return rc; pci_restore_state(pdev); pci_enable_wake(pdev, PCI_D0, 0); netif_device_attach(dev); if (netif_running(dev)) tlan_start(dev); return 0; } #else /* CONFIG_PM */ #define tlan_suspend NULL #define tlan_resume NULL #endif /* CONFIG_PM */ static struct pci_driver tlan_driver = { .name = "tlan", .id_table = tlan_pci_tbl, .probe = tlan_init_one, .remove = tlan_remove_one, .suspend = tlan_suspend, .resume = tlan_resume, }; static int __init tlan_probe(void) { int rc = -ENODEV; pr_info("%s", tlan_banner); TLAN_DBG(TLAN_DEBUG_PROBE, "Starting PCI Probe....\n"); /* Use new style PCI probing. Now the kernel will do most of this for us */ rc = pci_register_driver(&tlan_driver); if (rc != 0) { pr_err("Could not register pci driver\n"); goto err_out_pci_free; } TLAN_DBG(TLAN_DEBUG_PROBE, "Starting EISA Probe....\n"); tlan_eisa_probe(); pr_info("%d device%s installed, PCI: %d EISA: %d\n", tlan_devices_installed, tlan_devices_installed == 1 ? "" : "s", tlan_have_pci, tlan_have_eisa); if (tlan_devices_installed == 0) { rc = -ENODEV; goto err_out_pci_unreg; } return 0; err_out_pci_unreg: pci_unregister_driver(&tlan_driver); err_out_pci_free: return rc; } static int tlan_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { return tlan_probe1(pdev, -1, -1, 0, ent); } /* *************************************************************** * tlan_probe1 * * Returns: * 0 on success, error code on error * Parms: * none * * The name is lower case to fit in with all the rest of * the netcard_probe names. This function looks for * another TLan based adapter, setting it up with the * allocated device struct if one is found. * tlan_probe has been ported to the new net API and * now allocates its own device structure. This function * is also used by modules. * **************************************************************/ static int tlan_probe1(struct pci_dev *pdev, long ioaddr, int irq, int rev, const struct pci_device_id *ent) { struct net_device *dev; struct tlan_priv *priv; u16 device_id; int reg, rc = -ENODEV; #ifdef CONFIG_PCI if (pdev) { rc = pci_enable_device(pdev); if (rc) return rc; rc = pci_request_regions(pdev, tlan_signature); if (rc) { pr_err("Could not reserve IO regions\n"); goto err_out; } } #endif /* CONFIG_PCI */ dev = alloc_etherdev(sizeof(struct tlan_priv)); if (dev == NULL) { rc = -ENOMEM; goto err_out_regions; } SET_NETDEV_DEV(dev, &pdev->dev); priv = netdev_priv(dev); priv->pci_dev = pdev; priv->dev = dev; /* Is this a PCI device? */ if (pdev) { u32 pci_io_base = 0; priv->adapter = &board_info[ent->driver_data]; rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc) { pr_err("No suitable PCI mapping available\n"); goto err_out_free_dev; } for (reg = 0; reg <= 5; reg++) { if (pci_resource_flags(pdev, reg) & IORESOURCE_IO) { pci_io_base = pci_resource_start(pdev, reg); TLAN_DBG(TLAN_DEBUG_GNRL, "IO mapping is available at %x.\n", pci_io_base); break; } } if (!pci_io_base) { pr_err("No IO mappings available\n"); rc = -EIO; goto err_out_free_dev; } dev->base_addr = pci_io_base; dev->irq = pdev->irq; priv->adapter_rev = pdev->revision; pci_set_master(pdev); pci_set_drvdata(pdev, dev); } else { /* EISA card */ /* This is a hack. We need to know which board structure * is suited for this adapter */ device_id = inw(ioaddr + EISA_ID2); if (device_id == 0x20F1) { priv->adapter = &board_info[13]; /* NetFlex-3/E */ priv->adapter_rev = 23; /* TLAN 2.3 */ } else { priv->adapter = &board_info[14]; priv->adapter_rev = 10; /* TLAN 1.0 */ } dev->base_addr = ioaddr; dev->irq = irq; } /* Kernel parameters */ if (dev->mem_start) { priv->aui = dev->mem_start & 0x01; priv->duplex = ((dev->mem_start & 0x06) == 0x06) ? 0 : (dev->mem_start & 0x06) >> 1; priv->speed = ((dev->mem_start & 0x18) == 0x18) ? 0 : (dev->mem_start & 0x18) >> 3; if (priv->speed == 0x1) priv->speed = TLAN_SPEED_10; else if (priv->speed == 0x2) priv->speed = TLAN_SPEED_100; debug = priv->debug = dev->mem_end; } else { priv->aui = aui[boards_found]; priv->speed = speed[boards_found]; priv->duplex = duplex[boards_found]; priv->debug = debug; } /* This will be used when we get an adapter error from * within our irq handler */ INIT_WORK(&priv->tlan_tqueue, tlan_tx_timeout_work); spin_lock_init(&priv->lock); rc = tlan_init(dev); if (rc) { pr_err("Could not set up device\n"); goto err_out_free_dev; } rc = register_netdev(dev); if (rc) { pr_err("Could not register device\n"); goto err_out_uninit; } tlan_devices_installed++; boards_found++; /* pdev is NULL if this is an EISA device */ if (pdev) tlan_have_pci++; else { priv->next_device = tlan_eisa_devices; tlan_eisa_devices = dev; tlan_have_eisa++; } netdev_info(dev, "irq=%2d, io=%04x, %s, Rev. %d\n", (int)dev->irq, (int)dev->base_addr, priv->adapter->device_label, priv->adapter_rev); return 0; err_out_uninit: pci_free_consistent(priv->pci_dev, priv->dma_size, priv->dma_storage, priv->dma_storage_dma); err_out_free_dev: free_netdev(dev); err_out_regions: #ifdef CONFIG_PCI if (pdev) pci_release_regions(pdev); err_out: #endif if (pdev) pci_disable_device(pdev); return rc; } static void tlan_eisa_cleanup(void) { struct net_device *dev; struct tlan_priv *priv; while (tlan_have_eisa) { dev = tlan_eisa_devices; priv = netdev_priv(dev); if (priv->dma_storage) { pci_free_consistent(priv->pci_dev, priv->dma_size, priv->dma_storage, priv->dma_storage_dma); } release_region(dev->base_addr, 0x10); unregister_netdev(dev); tlan_eisa_devices = priv->next_device; free_netdev(dev); tlan_have_eisa--; } } static void __exit tlan_exit(void) { pci_unregister_driver(&tlan_driver); if (tlan_have_eisa) tlan_eisa_cleanup(); } /* Module loading/unloading */ module_init(tlan_probe); module_exit(tlan_exit); /************************************************************** * tlan_eisa_probe * * Returns: 0 on success, 1 otherwise * * Parms: None * * * This functions probes for EISA devices and calls * TLan_probe1 when one is found. * *************************************************************/ static void __init tlan_eisa_probe(void) { long ioaddr; int rc = -ENODEV; int irq; u16 device_id; if (!EISA_bus) { TLAN_DBG(TLAN_DEBUG_PROBE, "No EISA bus present\n"); return; } /* Loop through all slots of the EISA bus */ for (ioaddr = 0x1000; ioaddr < 0x9000; ioaddr += 0x1000) { TLAN_DBG(TLAN_DEBUG_PROBE, "EISA_ID 0x%4x: 0x%4x\n", (int) ioaddr + 0xc80, inw(ioaddr + EISA_ID)); TLAN_DBG(TLAN_DEBUG_PROBE, "EISA_ID 0x%4x: 0x%4x\n", (int) ioaddr + 0xc82, inw(ioaddr + EISA_ID2)); TLAN_DBG(TLAN_DEBUG_PROBE, "Probing for EISA adapter at IO: 0x%4x : ", (int) ioaddr); if (request_region(ioaddr, 0x10, tlan_signature) == NULL) goto out; if (inw(ioaddr + EISA_ID) != 0x110E) { release_region(ioaddr, 0x10); goto out; } device_id = inw(ioaddr + EISA_ID2); if (device_id != 0x20F1 && device_id != 0x40F1) { release_region(ioaddr, 0x10); goto out; } /* check if adapter is enabled */ if (inb(ioaddr + EISA_CR) != 0x1) { release_region(ioaddr, 0x10); goto out2; } if (debug == 0x10) pr_info("Found one\n"); /* Get irq from board */ switch (inb(ioaddr + 0xcc0)) { case(0x10): irq = 5; break; case(0x20): irq = 9; break; case(0x40): irq = 10; break; case(0x80): irq = 11; break; default: goto out; } /* Setup the newly found eisa adapter */ rc = tlan_probe1(NULL, ioaddr, irq, 12, NULL); continue; out: if (debug == 0x10) pr_info("None found\n"); continue; out2: if (debug == 0x10) pr_info("Card found but it is not enabled, skipping\n"); continue; } } #ifdef CONFIG_NET_POLL_CONTROLLER static void tlan_poll(struct net_device *dev) { disable_irq(dev->irq); tlan_handle_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif static const struct net_device_ops tlan_netdev_ops = { .ndo_open = tlan_open, .ndo_stop = tlan_close, .ndo_start_xmit = tlan_start_tx, .ndo_tx_timeout = tlan_tx_timeout, .ndo_get_stats = tlan_get_stats, .ndo_set_rx_mode = tlan_set_multicast_list, .ndo_do_ioctl = tlan_ioctl, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = tlan_poll, #endif }; static void tlan_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct tlan_priv *priv = netdev_priv(dev); strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); if (priv->pci_dev) strlcpy(info->bus_info, pci_name(priv->pci_dev), sizeof(info->bus_info)); else strlcpy(info->bus_info, "EISA", sizeof(info->bus_info)); } static int tlan_get_eeprom_len(struct net_device *dev) { return TLAN_EEPROM_SIZE; } static int tlan_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { int i; for (i = 0; i < TLAN_EEPROM_SIZE; i++) if (tlan_ee_read_byte(dev, i, &data[i])) return -EIO; return 0; } static const struct ethtool_ops tlan_ethtool_ops = { .get_drvinfo = tlan_get_drvinfo, .get_link = ethtool_op_get_link, .get_eeprom_len = tlan_get_eeprom_len, .get_eeprom = tlan_get_eeprom, }; /*************************************************************** * tlan_init * * Returns: * 0 on success, error code otherwise. * Parms: * dev The structure of the device to be * init'ed. * * This function completes the initialization of the * device structure and driver. It reserves the IO * addresses, allocates memory for the lists and bounce * buffers, retrieves the MAC address from the eeprom * and assignes the device's methods. * **************************************************************/ static int tlan_init(struct net_device *dev) { int dma_size; int err; int i; struct tlan_priv *priv; priv = netdev_priv(dev); dma_size = (TLAN_NUM_RX_LISTS + TLAN_NUM_TX_LISTS) * (sizeof(struct tlan_list)); priv->dma_storage = pci_alloc_consistent(priv->pci_dev, dma_size, &priv->dma_storage_dma); priv->dma_size = dma_size; if (priv->dma_storage == NULL) { pr_err("Could not allocate lists and buffers for %s\n", dev->name); return -ENOMEM; } priv->rx_list = (struct tlan_list *) ALIGN((unsigned long)priv->dma_storage, 8); priv->rx_list_dma = ALIGN(priv->dma_storage_dma, 8); priv->tx_list = priv->rx_list + TLAN_NUM_RX_LISTS; priv->tx_list_dma = priv->rx_list_dma + sizeof(struct tlan_list)*TLAN_NUM_RX_LISTS; err = 0; for (i = 0; i < ETH_ALEN; i++) err |= tlan_ee_read_byte(dev, (u8) priv->adapter->addr_ofs + i, (u8 *) &dev->dev_addr[i]); if (err) { pr_err("%s: Error reading MAC from eeprom: %d\n", dev->name, err); } /* Olicom OC-2325/OC-2326 have the address byte-swapped */ if (priv->adapter->addr_ofs == 0xf8) { for (i = 0; i < ETH_ALEN; i += 2) { char tmp = dev->dev_addr[i]; dev->dev_addr[i] = dev->dev_addr[i + 1]; dev->dev_addr[i + 1] = tmp; } } netif_carrier_off(dev); /* Device methods */ dev->netdev_ops = &tlan_netdev_ops; dev->ethtool_ops = &tlan_ethtool_ops; dev->watchdog_timeo = TX_TIMEOUT; return 0; } /*************************************************************** * tlan_open * * Returns: * 0 on success, error code otherwise. * Parms: * dev Structure of device to be opened. * * This routine puts the driver and TLAN adapter in a * state where it is ready to send and receive packets. * It allocates the IRQ, resets and brings the adapter * out of reset, and allows interrupts. It also delays * the startup for autonegotiation or sends a Rx GO * command to the adapter, as appropriate. * **************************************************************/ static int tlan_open(struct net_device *dev) { struct tlan_priv *priv = netdev_priv(dev); int err; priv->tlan_rev = tlan_dio_read8(dev->base_addr, TLAN_DEF_REVISION); err = request_irq(dev->irq, tlan_handle_interrupt, IRQF_SHARED, dev->name, dev); if (err) { netdev_err(dev, "Cannot open because IRQ %d is already in use\n", dev->irq); return err; } timer_setup(&priv->timer, NULL, 0); timer_setup(&priv->media_timer, tlan_phy_monitor, 0); tlan_start(dev); TLAN_DBG(TLAN_DEBUG_GNRL, "%s: Opened. TLAN Chip Rev: %x\n", dev->name, priv->tlan_rev); return 0; } /************************************************************** * tlan_ioctl * * Returns: * 0 on success, error code otherwise * Params: * dev structure of device to receive ioctl. * * rq ifreq structure to hold userspace data. * * cmd ioctl command. * * *************************************************************/ static int tlan_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct tlan_priv *priv = netdev_priv(dev); struct mii_ioctl_data *data = if_mii(rq); u32 phy = priv->phy[priv->phy_num]; if (!priv->phy_online) return -EAGAIN; switch (cmd) { case SIOCGMIIPHY: /* get address of MII PHY in use. */ data->phy_id = phy; /* fall through */ case SIOCGMIIREG: /* read MII PHY register. */ tlan_mii_read_reg(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, &data->val_out); return 0; case SIOCSMIIREG: /* write MII PHY register. */ tlan_mii_write_reg(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in); return 0; default: return -EOPNOTSUPP; } } /*************************************************************** * tlan_tx_timeout * * Returns: nothing * * Params: * dev structure of device which timed out * during transmit. * **************************************************************/ static void tlan_tx_timeout(struct net_device *dev, unsigned int txqueue) { TLAN_DBG(TLAN_DEBUG_GNRL, "%s: Transmit timed out.\n", dev->name); /* Ok so we timed out, lets see what we can do about it...*/ tlan_free_lists(dev); tlan_reset_lists(dev); tlan_read_and_clear_stats(dev, TLAN_IGNORE); tlan_reset_adapter(dev); netif_trans_update(dev); /* prevent tx timeout */ netif_wake_queue(dev); } /*************************************************************** * tlan_tx_timeout_work * * Returns: nothing * * Params: * work work item of device which timed out * **************************************************************/ static void tlan_tx_timeout_work(struct work_struct *work) { struct tlan_priv *priv = container_of(work, struct tlan_priv, tlan_tqueue); tlan_tx_timeout(priv->dev, UINT_MAX); } /*************************************************************** * tlan_start_tx * * Returns: * 0 on success, non-zero on failure. * Parms: * skb A pointer to the sk_buff containing the * frame to be sent. * dev The device to send the data on. * * This function adds a frame to the Tx list to be sent * ASAP. First it verifies that the adapter is ready and * there is room in the queue. Then it sets up the next * available list, copies the frame to the corresponding * buffer. If the adapter Tx channel is idle, it gives * the adapter a Tx Go command on the list, otherwise it * sets the forward address of the previous list to point * to this one. Then it frees the sk_buff. * **************************************************************/ static netdev_tx_t tlan_start_tx(struct sk_buff *skb, struct net_device *dev) { struct tlan_priv *priv = netdev_priv(dev); dma_addr_t tail_list_phys; struct tlan_list *tail_list; unsigned long flags; unsigned int txlen; if (!priv->phy_online) { TLAN_DBG(TLAN_DEBUG_TX, "TRANSMIT: %s PHY is not ready\n", dev->name); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } if (skb_padto(skb, TLAN_MIN_FRAME_SIZE)) return NETDEV_TX_OK; txlen = max(skb->len, (unsigned int)TLAN_MIN_FRAME_SIZE); tail_list = priv->tx_list + priv->tx_tail; tail_list_phys = priv->tx_list_dma + sizeof(struct tlan_list)*priv->tx_tail; if (tail_list->c_stat != TLAN_CSTAT_UNUSED) { TLAN_DBG(TLAN_DEBUG_TX, "TRANSMIT: %s is busy (Head=%d Tail=%d)\n", dev->name, priv->tx_head, priv->tx_tail); netif_stop_queue(dev); priv->tx_busy_count++; return NETDEV_TX_BUSY; } tail_list->forward = 0; tail_list->buffer[0].address = pci_map_single(priv->pci_dev, skb->data, txlen, PCI_DMA_TODEVICE); tlan_store_skb(tail_list, skb); tail_list->frame_size = (u16) txlen; tail_list->buffer[0].count = TLAN_LAST_BUFFER | (u32) txlen; tail_list->buffer[1].count = 0; tail_list->buffer[1].address = 0; spin_lock_irqsave(&priv->lock, flags); tail_list->c_stat = TLAN_CSTAT_READY; if (!priv->tx_in_progress) { priv->tx_in_progress = 1; TLAN_DBG(TLAN_DEBUG_TX, "TRANSMIT: Starting TX on buffer %d\n", priv->tx_tail); outl(tail_list_phys, dev->base_addr + TLAN_CH_PARM); outl(TLAN_HC_GO, dev->base_addr + TLAN_HOST_CMD); } else { TLAN_DBG(TLAN_DEBUG_TX, "TRANSMIT: Adding buffer %d to TX channel\n", priv->tx_tail); if (priv->tx_tail == 0) { (priv->tx_list + (TLAN_NUM_TX_LISTS - 1))->forward = tail_list_phys; } else { (priv->tx_list + (priv->tx_tail - 1))->forward = tail_list_phys; } } spin_unlock_irqrestore(&priv->lock, flags); CIRC_INC(priv->tx_tail, TLAN_NUM_TX_LISTS); return NETDEV_TX_OK; } /*************************************************************** * tlan_handle_interrupt * * Returns: * Nothing * Parms: * irq The line on which the interrupt * occurred. * dev_id A pointer to the device assigned to * this irq line. * * This function handles an interrupt generated by its * assigned TLAN adapter. The function deactivates * interrupts on its adapter, records the type of * interrupt, executes the appropriate subhandler, and * acknowdges the interrupt to the adapter (thus * re-enabling adapter interrupts. * **************************************************************/ static irqreturn_t tlan_handle_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct tlan_priv *priv = netdev_priv(dev); u16 host_int; u16 type; spin_lock(&priv->lock); host_int = inw(dev->base_addr + TLAN_HOST_INT); type = (host_int & TLAN_HI_IT_MASK) >> 2; if (type) { u32 ack; u32 host_cmd; outw(host_int, dev->base_addr + TLAN_HOST_INT); ack = tlan_int_vector[type](dev, host_int); if (ack) { host_cmd = TLAN_HC_ACK | ack | (type << 18); outl(host_cmd, dev->base_addr + TLAN_HOST_CMD); } } spin_unlock(&priv->lock); return IRQ_RETVAL(type); } /*************************************************************** * tlan_close * * Returns: * An error code. * Parms: * dev The device structure of the device to * close. * * This function shuts down the adapter. It records any * stats, puts the adapter into reset state, deactivates * its time as needed, and frees the irq it is using. * **************************************************************/ static int tlan_close(struct net_device *dev) { tlan_stop(dev); free_irq(dev->irq, dev); tlan_free_lists(dev); TLAN_DBG(TLAN_DEBUG_GNRL, "Device %s closed.\n", dev->name); return 0; } /*************************************************************** * tlan_get_stats * * Returns: * A pointer to the device's statistics structure. * Parms: * dev The device structure to return the * stats for. * * This function updates the devices statistics by reading * the TLAN chip's onboard registers. Then it returns the * address of the statistics structure. * **************************************************************/ static struct net_device_stats *tlan_get_stats(struct net_device *dev) { struct tlan_priv *priv = netdev_priv(dev); int i; /* Should only read stats if open ? */ tlan_read_and_clear_stats(dev, TLAN_RECORD); TLAN_DBG(TLAN_DEBUG_RX, "RECEIVE: %s EOC count = %d\n", dev->name, priv->rx_eoc_count); TLAN_DBG(TLAN_DEBUG_TX, "TRANSMIT: %s Busy count = %d\n", dev->name, priv->tx_busy_count); if (debug & TLAN_DEBUG_GNRL) { tlan_print_dio(dev->base_addr); tlan_phy_print(dev); } if (debug & TLAN_DEBUG_LIST) { for (i = 0; i < TLAN_NUM_RX_LISTS; i++) tlan_print_list(priv->rx_list + i, "RX", i); for (i = 0; i < TLAN_NUM_TX_LISTS; i++) tlan_print_list(priv->tx_list + i, "TX", i); } return &dev->stats; } /*************************************************************** * tlan_set_multicast_list * * Returns: * Nothing * Parms: * dev The device structure to set the * multicast list for. * * This function sets the TLAN adaptor to various receive * modes. If the IFF_PROMISC flag is set, promiscuous * mode is acitviated. Otherwise, promiscuous mode is * turned off. If the IFF_ALLMULTI flag is set, then * the hash table is set to receive all group addresses. * Otherwise, the first three multicast addresses are * stored in AREG_1-3, and the rest are selected via the * hash table, as necessary. * **************************************************************/ static void tlan_set_multicast_list(struct net_device *dev) { struct netdev_hw_addr *ha; u32 hash1 = 0; u32 hash2 = 0; int i; u32 offset; u8 tmp; if (dev->flags & IFF_PROMISC) { tmp = tlan_dio_read8(dev->base_addr, TLAN_NET_CMD); tlan_dio_write8(dev->base_addr, TLAN_NET_CMD, tmp | TLAN_NET_CMD_CAF); } else { tmp = tlan_dio_read8(dev->base_addr, TLAN_NET_CMD); tlan_dio_write8(dev->base_addr, TLAN_NET_CMD, tmp & ~TLAN_NET_CMD_CAF); if (dev->flags & IFF_ALLMULTI) { for (i = 0; i < 3; i++) tlan_set_mac(dev, i + 1, NULL); tlan_dio_write32(dev->base_addr, TLAN_HASH_1, 0xffffffff); tlan_dio_write32(dev->base_addr, TLAN_HASH_2, 0xffffffff); } else { i = 0; netdev_for_each_mc_addr(ha, dev) { if (i < 3) { tlan_set_mac(dev, i + 1, (char *) &ha->addr); } else { offset = tlan_hash_func((u8 *)&ha->addr); if (offset < 32) hash1 |= (1 << offset); else hash2 |= (1 << (offset - 32)); } i++; } for ( ; i < 3; i++) tlan_set_mac(dev, i + 1, NULL); tlan_dio_write32(dev->base_addr, TLAN_HASH_1, hash1); tlan_dio_write32(dev->base_addr, TLAN_HASH_2, hash2); } } } /***************************************************************************** ****************************************************************************** ThunderLAN driver interrupt vectors and table please see chap. 4, "Interrupt Handling" of the "ThunderLAN Programmer's Guide" for more informations on handling interrupts generated by TLAN based adapters. ****************************************************************************** *****************************************************************************/ /*************************************************************** * tlan_handle_tx_eof * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This function handles Tx EOF interrupts which are raised * by the adapter when it has completed sending the * contents of a buffer. If detemines which list/buffer * was completed and resets it. If the buffer was the last * in the channel (EOC), then the function checks to see if * another buffer is ready to send, and if so, sends a Tx * Go command. Finally, the driver activates/continues the * activity LED. * **************************************************************/ static u32 tlan_handle_tx_eof(struct net_device *dev, u16 host_int) { struct tlan_priv *priv = netdev_priv(dev); int eoc = 0; struct tlan_list *head_list; dma_addr_t head_list_phys; u32 ack = 0; u16 tmp_c_stat; TLAN_DBG(TLAN_DEBUG_TX, "TRANSMIT: Handling TX EOF (Head=%d Tail=%d)\n", priv->tx_head, priv->tx_tail); head_list = priv->tx_list + priv->tx_head; while (((tmp_c_stat = head_list->c_stat) & TLAN_CSTAT_FRM_CMP) && (ack < 255)) { struct sk_buff *skb = tlan_get_skb(head_list); ack++; pci_unmap_single(priv->pci_dev, head_list->buffer[0].address, max(skb->len, (unsigned int)TLAN_MIN_FRAME_SIZE), PCI_DMA_TODEVICE); dev_kfree_skb_any(skb); head_list->buffer[8].address = 0; head_list->buffer[9].address = 0; if (tmp_c_stat & TLAN_CSTAT_EOC) eoc = 1; dev->stats.tx_bytes += head_list->frame_size; head_list->c_stat = TLAN_CSTAT_UNUSED; netif_start_queue(dev); CIRC_INC(priv->tx_head, TLAN_NUM_TX_LISTS); head_list = priv->tx_list + priv->tx_head; } if (!ack) netdev_info(dev, "Received interrupt for uncompleted TX frame\n"); if (eoc) { TLAN_DBG(TLAN_DEBUG_TX, "TRANSMIT: handling TX EOC (Head=%d Tail=%d)\n", priv->tx_head, priv->tx_tail); head_list = priv->tx_list + priv->tx_head; head_list_phys = priv->tx_list_dma + sizeof(struct tlan_list)*priv->tx_head; if ((head_list->c_stat & TLAN_CSTAT_READY) == TLAN_CSTAT_READY) { outl(head_list_phys, dev->base_addr + TLAN_CH_PARM); ack |= TLAN_HC_GO; } else { priv->tx_in_progress = 0; } } if (priv->adapter->flags & TLAN_ADAPTER_ACTIVITY_LED) { tlan_dio_write8(dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK | TLAN_LED_ACT); if (priv->timer.function == NULL) { priv->timer.function = tlan_timer; priv->timer.expires = jiffies + TLAN_TIMER_ACT_DELAY; priv->timer_set_at = jiffies; priv->timer_type = TLAN_TIMER_ACTIVITY; add_timer(&priv->timer); } else if (priv->timer_type == TLAN_TIMER_ACTIVITY) { priv->timer_set_at = jiffies; } } return ack; } /*************************************************************** * TLan_HandleStatOverflow * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This function handles the Statistics Overflow interrupt * which means that one or more of the TLAN statistics * registers has reached 1/2 capacity and needs to be read. * **************************************************************/ static u32 tlan_handle_stat_overflow(struct net_device *dev, u16 host_int) { tlan_read_and_clear_stats(dev, TLAN_RECORD); return 1; } /*************************************************************** * TLan_HandleRxEOF * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This function handles the Rx EOF interrupt which * indicates a frame has been received by the adapter from * the net and the frame has been transferred to memory. * The function determines the bounce buffer the frame has * been loaded into, creates a new sk_buff big enough to * hold the frame, and sends it to protocol stack. It * then resets the used buffer and appends it to the end * of the list. If the frame was the last in the Rx * channel (EOC), the function restarts the receive channel * by sending an Rx Go command to the adapter. Then it * activates/continues the activity LED. * **************************************************************/ static u32 tlan_handle_rx_eof(struct net_device *dev, u16 host_int) { struct tlan_priv *priv = netdev_priv(dev); u32 ack = 0; int eoc = 0; struct tlan_list *head_list; struct sk_buff *skb; struct tlan_list *tail_list; u16 tmp_c_stat; dma_addr_t head_list_phys; TLAN_DBG(TLAN_DEBUG_RX, "RECEIVE: handling RX EOF (Head=%d Tail=%d)\n", priv->rx_head, priv->rx_tail); head_list = priv->rx_list + priv->rx_head; head_list_phys = priv->rx_list_dma + sizeof(struct tlan_list)*priv->rx_head; while (((tmp_c_stat = head_list->c_stat) & TLAN_CSTAT_FRM_CMP) && (ack < 255)) { dma_addr_t frame_dma = head_list->buffer[0].address; u32 frame_size = head_list->frame_size; struct sk_buff *new_skb; ack++; if (tmp_c_stat & TLAN_CSTAT_EOC) eoc = 1; new_skb = netdev_alloc_skb_ip_align(dev, TLAN_MAX_FRAME_SIZE + 5); if (!new_skb) goto drop_and_reuse; skb = tlan_get_skb(head_list); pci_unmap_single(priv->pci_dev, frame_dma, TLAN_MAX_FRAME_SIZE, PCI_DMA_FROMDEVICE); skb_put(skb, frame_size); dev->stats.rx_bytes += frame_size; skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); head_list->buffer[0].address = pci_map_single(priv->pci_dev, new_skb->data, TLAN_MAX_FRAME_SIZE, PCI_DMA_FROMDEVICE); tlan_store_skb(head_list, new_skb); drop_and_reuse: head_list->forward = 0; head_list->c_stat = 0; tail_list = priv->rx_list + priv->rx_tail; tail_list->forward = head_list_phys; CIRC_INC(priv->rx_head, TLAN_NUM_RX_LISTS); CIRC_INC(priv->rx_tail, TLAN_NUM_RX_LISTS); head_list = priv->rx_list + priv->rx_head; head_list_phys = priv->rx_list_dma + sizeof(struct tlan_list)*priv->rx_head; } if (!ack) netdev_info(dev, "Received interrupt for uncompleted RX frame\n"); if (eoc) { TLAN_DBG(TLAN_DEBUG_RX, "RECEIVE: handling RX EOC (Head=%d Tail=%d)\n", priv->rx_head, priv->rx_tail); head_list = priv->rx_list + priv->rx_head; head_list_phys = priv->rx_list_dma + sizeof(struct tlan_list)*priv->rx_head; outl(head_list_phys, dev->base_addr + TLAN_CH_PARM); ack |= TLAN_HC_GO | TLAN_HC_RT; priv->rx_eoc_count++; } if (priv->adapter->flags & TLAN_ADAPTER_ACTIVITY_LED) { tlan_dio_write8(dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK | TLAN_LED_ACT); if (priv->timer.function == NULL) { priv->timer.function = tlan_timer; priv->timer.expires = jiffies + TLAN_TIMER_ACT_DELAY; priv->timer_set_at = jiffies; priv->timer_type = TLAN_TIMER_ACTIVITY; add_timer(&priv->timer); } else if (priv->timer_type == TLAN_TIMER_ACTIVITY) { priv->timer_set_at = jiffies; } } return ack; } /*************************************************************** * tlan_handle_dummy * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This function handles the Dummy interrupt, which is * raised whenever a test interrupt is generated by setting * the Req_Int bit of HOST_CMD to 1. * **************************************************************/ static u32 tlan_handle_dummy(struct net_device *dev, u16 host_int) { netdev_info(dev, "Test interrupt\n"); return 1; } /*************************************************************** * tlan_handle_tx_eoc * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This driver is structured to determine EOC occurrences by * reading the CSTAT member of the list structure. Tx EOC * interrupts are disabled via the DIO INTDIS register. * However, TLAN chips before revision 3.0 didn't have this * functionality, so process EOC events if this is the * case. * **************************************************************/ static u32 tlan_handle_tx_eoc(struct net_device *dev, u16 host_int) { struct tlan_priv *priv = netdev_priv(dev); struct tlan_list *head_list; dma_addr_t head_list_phys; u32 ack = 1; if (priv->tlan_rev < 0x30) { TLAN_DBG(TLAN_DEBUG_TX, "TRANSMIT: handling TX EOC (Head=%d Tail=%d) -- IRQ\n", priv->tx_head, priv->tx_tail); head_list = priv->tx_list + priv->tx_head; head_list_phys = priv->tx_list_dma + sizeof(struct tlan_list)*priv->tx_head; if ((head_list->c_stat & TLAN_CSTAT_READY) == TLAN_CSTAT_READY) { netif_stop_queue(dev); outl(head_list_phys, dev->base_addr + TLAN_CH_PARM); ack |= TLAN_HC_GO; } else { priv->tx_in_progress = 0; } } return ack; } /*************************************************************** * tlan_handle_status_check * * Returns: * 0 if Adapter check, 1 if Network Status check. * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This function handles Adapter Check/Network Status * interrupts generated by the adapter. It checks the * vector in the HOST_INT register to determine if it is * an Adapter Check interrupt. If so, it resets the * adapter. Otherwise it clears the status registers * and services the PHY. * **************************************************************/ static u32 tlan_handle_status_check(struct net_device *dev, u16 host_int) { struct tlan_priv *priv = netdev_priv(dev); u32 ack; u32 error; u8 net_sts; u32 phy; u16 tlphy_ctl; u16 tlphy_sts; ack = 1; if (host_int & TLAN_HI_IV_MASK) { netif_stop_queue(dev); error = inl(dev->base_addr + TLAN_CH_PARM); netdev_info(dev, "Adaptor Error = 0x%x\n", error); tlan_read_and_clear_stats(dev, TLAN_RECORD); outl(TLAN_HC_AD_RST, dev->base_addr + TLAN_HOST_CMD); schedule_work(&priv->tlan_tqueue); netif_wake_queue(dev); ack = 0; } else { TLAN_DBG(TLAN_DEBUG_GNRL, "%s: Status Check\n", dev->name); phy = priv->phy[priv->phy_num]; net_sts = tlan_dio_read8(dev->base_addr, TLAN_NET_STS); if (net_sts) { tlan_dio_write8(dev->base_addr, TLAN_NET_STS, net_sts); TLAN_DBG(TLAN_DEBUG_GNRL, "%s: Net_Sts = %x\n", dev->name, (unsigned) net_sts); } if ((net_sts & TLAN_NET_STS_MIRQ) && (priv->phy_num == 0)) { tlan_mii_read_reg(dev, phy, TLAN_TLPHY_STS, &tlphy_sts); tlan_mii_read_reg(dev, phy, TLAN_TLPHY_CTL, &tlphy_ctl); if (!(tlphy_sts & TLAN_TS_POLOK) && !(tlphy_ctl & TLAN_TC_SWAPOL)) { tlphy_ctl |= TLAN_TC_SWAPOL; tlan_mii_write_reg(dev, phy, TLAN_TLPHY_CTL, tlphy_ctl); } else if ((tlphy_sts & TLAN_TS_POLOK) && (tlphy_ctl & TLAN_TC_SWAPOL)) { tlphy_ctl &= ~TLAN_TC_SWAPOL; tlan_mii_write_reg(dev, phy, TLAN_TLPHY_CTL, tlphy_ctl); } if (debug) tlan_phy_print(dev); } } return ack; } /*************************************************************** * tlan_handle_rx_eoc * * Returns: * 1 * Parms: * dev Device assigned the IRQ that was * raised. * host_int The contents of the HOST_INT * port. * * This driver is structured to determine EOC occurrences by * reading the CSTAT member of the list structure. Rx EOC * interrupts are disabled via the DIO INTDIS register. * However, TLAN chips before revision 3.0 didn't have this * CSTAT member or a INTDIS register, so if this chip is * pre-3.0, process EOC interrupts normally. * **************************************************************/ static u32 tlan_handle_rx_eoc(struct net_device *dev, u16 host_int) { struct tlan_priv *priv = netdev_priv(dev); dma_addr_t head_list_phys; u32 ack = 1; if (priv->tlan_rev < 0x30) { TLAN_DBG(TLAN_DEBUG_RX, "RECEIVE: Handling RX EOC (head=%d tail=%d) -- IRQ\n", priv->rx_head, priv->rx_tail); head_list_phys = priv->rx_list_dma + sizeof(struct tlan_list)*priv->rx_head; outl(head_list_phys, dev->base_addr + TLAN_CH_PARM); ack |= TLAN_HC_GO | TLAN_HC_RT; priv->rx_eoc_count++; } return ack; } /***************************************************************************** ****************************************************************************** ThunderLAN driver timer function ****************************************************************************** *****************************************************************************/ /*************************************************************** * tlan_timer * * Returns: * Nothing * Parms: * data A value given to add timer when * add_timer was called. * * This function handles timed functionality for the * TLAN driver. The two current timer uses are for * delaying for autonegotionation and driving the ACT LED. * - Autonegotiation requires being allowed about * 2 1/2 seconds before attempting to transmit a * packet. It would be a very bad thing to hang * the kernel this long, so the driver doesn't * allow transmission 'til after this time, for * certain PHYs. It would be much nicer if all * PHYs were interrupt-capable like the internal * PHY. * - The ACT LED, which shows adapter activity, is * driven by the driver, and so must be left on * for a short period to power up the LED so it * can be seen. This delay can be changed by * changing the TLAN_TIMER_ACT_DELAY in tlan.h, * if desired. 100 ms produces a slightly * sluggish response. * **************************************************************/ static void tlan_timer(struct timer_list *t) { struct tlan_priv *priv = from_timer(priv, t, timer); struct net_device *dev = priv->dev; u32 elapsed; unsigned long flags = 0; priv->timer.function = NULL; switch (priv->timer_type) { case TLAN_TIMER_PHY_PDOWN: tlan_phy_power_down(dev); break; case TLAN_TIMER_PHY_PUP: tlan_phy_power_up(dev); break; case TLAN_TIMER_PHY_RESET: tlan_phy_reset(dev); break; case TLAN_TIMER_PHY_START_LINK: tlan_phy_start_link(dev); break; case TLAN_TIMER_PHY_FINISH_AN: tlan_phy_finish_auto_neg(dev); break; case TLAN_TIMER_FINISH_RESET: tlan_finish_reset(dev); break; case TLAN_TIMER_ACTIVITY: spin_lock_irqsave(&priv->lock, flags); if (priv->timer.function == NULL) { elapsed = jiffies - priv->timer_set_at; if (elapsed >= TLAN_TIMER_ACT_DELAY) { tlan_dio_write8(dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK); } else { priv->timer.expires = priv->timer_set_at + TLAN_TIMER_ACT_DELAY; spin_unlock_irqrestore(&priv->lock, flags); add_timer(&priv->timer); break; } } spin_unlock_irqrestore(&priv->lock, flags); break; default: break; } } /***************************************************************************** ****************************************************************************** ThunderLAN driver adapter related routines ****************************************************************************** *****************************************************************************/ /*************************************************************** * tlan_reset_lists * * Returns: * Nothing * Parms: * dev The device structure with the list * structures to be reset. * * This routine sets the variables associated with managing * the TLAN lists to their initial values. * **************************************************************/ static void tlan_reset_lists(struct net_device *dev) { struct tlan_priv *priv = netdev_priv(dev); int i; struct tlan_list *list; dma_addr_t list_phys; struct sk_buff *skb; priv->tx_head = 0; priv->tx_tail = 0; for (i = 0; i < TLAN_NUM_TX_LISTS; i++) { list = priv->tx_list + i; list->c_stat = TLAN_CSTAT_UNUSED; list->buffer[0].address = 0; list->buffer[2].count = 0; list->buffer[2].address = 0; list->buffer[8].address = 0; list->buffer[9].address = 0; } priv->rx_head = 0; priv->rx_tail = TLAN_NUM_RX_LISTS - 1; for (i = 0; i < TLAN_NUM_RX_LISTS; i++) { list = priv->rx_list + i; list_phys = priv->rx_list_dma + sizeof(struct tlan_list)*i; list->c_stat = TLAN_CSTAT_READY; list->frame_size = TLAN_MAX_FRAME_SIZE; list->buffer[0].count = TLAN_MAX_FRAME_SIZE | TLAN_LAST_BUFFER; skb = netdev_alloc_skb_ip_align(dev, TLAN_MAX_FRAME_SIZE + 5); if (!skb) break; list->buffer[0].address = pci_map_single(priv->pci_dev, skb->data, TLAN_MAX_FRAME_SIZE, PCI_DMA_FROMDEVICE); tlan_store_skb(list, skb); list->buffer[1].count = 0; list->buffer[1].address = 0; list->forward = list_phys + sizeof(struct tlan_list); } /* in case ran out of memory early, clear bits */ while (i < TLAN_NUM_RX_LISTS) { tlan_store_skb(priv->rx_list + i, NULL); ++i; } list->forward = 0; } static void tlan_free_lists(struct net_device *dev) { struct tlan_priv *priv = netdev_priv(dev); int i; struct tlan_list *list; struct sk_buff *skb; for (i = 0; i < TLAN_NUM_TX_LISTS; i++) { list = priv->tx_list + i; skb = tlan_get_skb(list); if (skb) { pci_unmap_single( priv->pci_dev, list->buffer[0].address, max(skb->len, (unsigned int)TLAN_MIN_FRAME_SIZE), PCI_DMA_TODEVICE); dev_kfree_skb_any(skb); list->buffer[8].address = 0; list->buffer[9].address = 0; } } for (i = 0; i < TLAN_NUM_RX_LISTS; i++) { list = priv->rx_list + i; skb = tlan_get_skb(list); if (skb) { pci_unmap_single(priv->pci_dev, list->buffer[0].address, TLAN_MAX_FRAME_SIZE, PCI_DMA_FROMDEVICE); dev_kfree_skb_any(skb); list->buffer[8].address = 0; list->buffer[9].address = 0; } } } /*************************************************************** * tlan_print_dio * * Returns: * Nothing * Parms: * io_base Base IO port of the device of * which to print DIO registers. * * This function prints out all the internal (DIO) * registers of a TLAN chip. * **************************************************************/ static void tlan_print_dio(u16 io_base) { u32 data0, data1; int i; pr_info("Contents of internal registers for io base 0x%04hx\n", io_base); pr_info("Off. +0 +4\n"); for (i = 0; i < 0x4C; i += 8) { data0 = tlan_dio_read32(io_base, i); data1 = tlan_dio_read32(io_base, i + 0x4); pr_info("0x%02x 0x%08x 0x%08x\n", i, data0, data1); } } /*************************************************************** * TLan_PrintList * * Returns: * Nothing * Parms: * list A pointer to the struct tlan_list structure to * be printed. * type A string to designate type of list, * "Rx" or "Tx". * num The index of the list. * * This function prints out the contents of the list * pointed to by the list parameter. * **************************************************************/ static void tlan_print_list(struct tlan_list *list, char *type, int num) { int i; pr_info("%s List %d at %p\n", type, num, list); pr_info(" Forward = 0x%08x\n", list->forward); pr_info(" CSTAT = 0x%04hx\n", list->c_stat); pr_info(" Frame Size = 0x%04hx\n", list->frame_size); /* for (i = 0; i < 10; i++) { */ for (i = 0; i < 2; i++) { pr_info(" Buffer[%d].count, addr = 0x%08x, 0x%08x\n", i, list->buffer[i].count, list->buffer[i].address); } } /*************************************************************** * tlan_read_and_clear_stats * * Returns: * Nothing * Parms: * dev Pointer to device structure of adapter * to which to read stats. * record Flag indicating whether to add * * This functions reads all the internal status registers * of the TLAN chip, which clears them as a side effect. * It then either adds the values to the device's status * struct, or discards them, depending on whether record * is TLAN_RECORD (!=0) or TLAN_IGNORE (==0). * **************************************************************/ static void tlan_read_and_clear_stats(struct net_device *dev, int record) { u32 tx_good, tx_under; u32 rx_good, rx_over; u32 def_tx, crc, code; u32 multi_col, single_col; u32 excess_col, late_col, loss; outw(TLAN_GOOD_TX_FRMS, dev->base_addr + TLAN_DIO_ADR); tx_good = inb(dev->base_addr + TLAN_DIO_DATA); tx_good += inb(dev->base_addr + TLAN_DIO_DATA + 1) << 8; tx_good += inb(dev->base_addr + TLAN_DIO_DATA + 2) << 16; tx_under = inb(dev->base_addr + TLAN_DIO_DATA + 3); outw(TLAN_GOOD_RX_FRMS, dev->base_addr + TLAN_DIO_ADR); rx_good = inb(dev->base_addr + TLAN_DIO_DATA); rx_good += inb(dev->base_addr + TLAN_DIO_DATA + 1) << 8; rx_good += inb(dev->base_addr + TLAN_DIO_DATA + 2) << 16; rx_over = inb(dev->base_addr + TLAN_DIO_DATA + 3); outw(TLAN_DEFERRED_TX, dev->base_addr + TLAN_DIO_ADR); def_tx = inb(dev->base_addr + TLAN_DIO_DATA); def_tx += inb(dev->base_addr + TLAN_DIO_DATA + 1) << 8; crc = inb(dev->base_addr + TLAN_DIO_DATA + 2); code = inb(dev->base_addr + TLAN_DIO_DATA + 3); outw(TLAN_MULTICOL_FRMS, dev->base_addr + TLAN_DIO_ADR); multi_col = inb(dev->base_addr + TLAN_DIO_DATA); multi_col += inb(dev->base_addr + TLAN_DIO_DATA + 1) << 8; single_col = inb(dev->base_addr + TLAN_DIO_DATA + 2); single_col += inb(dev->base_addr + TLAN_DIO_DATA + 3) << 8; outw(TLAN_EXCESSCOL_FRMS, dev->base_addr + TLAN_DIO_ADR); excess_col = inb(dev->base_addr + TLAN_DIO_DATA); late_col = inb(dev->base_addr + TLAN_DIO_DATA + 1); loss = inb(dev->base_addr + TLAN_DIO_DATA + 2); if (record) { dev->stats.rx_packets += rx_good; dev->stats.rx_errors += rx_over + crc + code; dev->stats.tx_packets += tx_good; dev->stats.tx_errors += tx_under + loss; dev->stats.collisions += multi_col + single_col + excess_col + late_col; dev->stats.rx_over_errors += rx_over; dev->stats.rx_crc_errors += crc; dev->stats.rx_frame_errors += code; dev->stats.tx_aborted_errors += tx_under; dev->stats.tx_carrier_errors += loss; } } /*************************************************************** * TLan_Reset * * Returns: * 0 * Parms: * dev Pointer to device structure of adapter * to be reset. * * This function resets the adapter and it's physical * device. See Chap. 3, pp. 9-10 of the "ThunderLAN * Programmer's Guide" for details. The routine tries to * implement what is detailed there, though adjustments * have been made. * **************************************************************/ static void tlan_reset_adapter(struct net_device *dev) { struct tlan_priv *priv = netdev_priv(dev); int i; u32 addr; u32 data; u8 data8; priv->tlan_full_duplex = false; priv->phy_online = 0; netif_carrier_off(dev); /* 1. Assert reset bit. */ data = inl(dev->base_addr + TLAN_HOST_CMD); data |= TLAN_HC_AD_RST; outl(data, dev->base_addr + TLAN_HOST_CMD); udelay(1000); /* 2. Turn off interrupts. (Probably isn't necessary) */ data = inl(dev->base_addr + TLAN_HOST_CMD); data |= TLAN_HC_INT_OFF; outl(data, dev->base_addr + TLAN_HOST_CMD); /* 3. Clear AREGs and HASHs. */ for (i = TLAN_AREG_0; i <= TLAN_HASH_2; i += 4) tlan_dio_write32(dev->base_addr, (u16) i, 0); /* 4. Setup NetConfig register. */ data = TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN | TLAN_NET_CFG_PHY_EN; tlan_dio_write16(dev->base_addr, TLAN_NET_CONFIG, (u16) data); /* 5. Load Ld_Tmr and Ld_Thr in HOST_CMD. */ outl(TLAN_HC_LD_TMR | 0x3f, dev->base_addr + TLAN_HOST_CMD); outl(TLAN_HC_LD_THR | 0x9, dev->base_addr + TLAN_HOST_CMD); /* 6. Unreset the MII by setting NMRST (in NetSio) to 1. */ outw(TLAN_NET_SIO, dev->base_addr + TLAN_DIO_ADR); addr = dev->base_addr + TLAN_DIO_DATA + TLAN_NET_SIO; tlan_set_bit(TLAN_NET_SIO_NMRST, addr); /* 7. Setup the remaining registers. */ if (priv->tlan_rev >= 0x30) { data8 = TLAN_ID_TX_EOC | TLAN_ID_RX_EOC; tlan_dio_write8(dev->base_addr, TLAN_INT_DIS, data8); } tlan_phy_detect(dev); data = TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN; if (priv->adapter->flags & TLAN_ADAPTER_BIT_RATE_PHY) { data |= TLAN_NET_CFG_BIT; if (priv->aui == 1) { tlan_dio_write8(dev->base_addr, TLAN_ACOMMIT, 0x0a); } else if (priv->duplex == TLAN_DUPLEX_FULL) { tlan_dio_write8(dev->base_addr, TLAN_ACOMMIT, 0x00); priv->tlan_full_duplex = true; } else { tlan_dio_write8(dev->base_addr, TLAN_ACOMMIT, 0x08); } } /* don't power down internal PHY if we're going to use it */ if (priv->phy_num == 0 || (priv->adapter->flags & TLAN_ADAPTER_USE_INTERN_10)) data |= TLAN_NET_CFG_PHY_EN; tlan_dio_write16(dev->base_addr, TLAN_NET_CONFIG, (u16) data); if (priv->adapter->flags & TLAN_ADAPTER_UNMANAGED_PHY) tlan_finish_reset(dev); else tlan_phy_power_down(dev); } static void tlan_finish_reset(struct net_device *dev) { struct tlan_priv *priv = netdev_priv(dev); u8 data; u32 phy; u8 sio; u16 status; u16 partner; u16 tlphy_ctl; u16 tlphy_par; u16 tlphy_id1, tlphy_id2; int i; phy = priv->phy[priv->phy_num]; data = TLAN_NET_CMD_NRESET | TLAN_NET_CMD_NWRAP; if (priv->tlan_full_duplex) data |= TLAN_NET_CMD_DUPLEX; tlan_dio_write8(dev->base_addr, TLAN_NET_CMD, data); data = TLAN_NET_MASK_MASK4 | TLAN_NET_MASK_MASK5; if (priv->phy_num == 0) data |= TLAN_NET_MASK_MASK7; tlan_dio_write8(dev->base_addr, TLAN_NET_MASK, data); tlan_dio_write16(dev->base_addr, TLAN_MAX_RX, ((1536)+7)&~7); tlan_mii_read_reg(dev, phy, MII_GEN_ID_HI, &tlphy_id1); tlan_mii_read_reg(dev, phy, MII_GEN_ID_LO, &tlphy_id2); if ((priv->adapter->flags & TLAN_ADAPTER_UNMANAGED_PHY) || (priv->aui)) { status = MII_GS_LINK; netdev_info(dev, "Link forced\n"); } else { tlan_mii_read_reg(dev, phy, MII_GEN_STS, &status); udelay(1000); tlan_mii_read_reg(dev, phy, MII_GEN_STS, &status); if (status & MII_GS_LINK) { /* We only support link info on Nat.Sem. PHY's */ if ((tlphy_id1 == NAT_SEM_ID1) && (tlphy_id2 == NAT_SEM_ID2)) { tlan_mii_read_reg(dev, phy, MII_AN_LPA, &partner); tlan_mii_read_reg(dev, phy, TLAN_TLPHY_PAR, &tlphy_par); netdev_info(dev, "Link active, %s %uMbps %s-Duplex\n", !(tlphy_par & TLAN_PHY_AN_EN_STAT) ? "forced" : "Autonegotiation enabled,", tlphy_par & TLAN_PHY_SPEED_100 ? 100 : 10, tlphy_par & TLAN_PHY_DUPLEX_FULL ? "Full" : "Half"); if (tlphy_par & TLAN_PHY_AN_EN_STAT) { netdev_info(dev, "Partner capability:"); for (i = 5; i < 10; i++) if (partner & (1 << i)) pr_cont(" %s", media[i-5]); pr_cont("\n"); } } else netdev_info(dev, "Link active\n"); /* Enabling link beat monitoring */ priv->media_timer.expires = jiffies + HZ; add_timer(&priv->media_timer); } } if (priv->phy_num == 0) { tlan_mii_read_reg(dev, phy, TLAN_TLPHY_CTL, &tlphy_ctl); tlphy_ctl |= TLAN_TC_INTEN; tlan_mii_write_reg(dev, phy, TLAN_TLPHY_CTL, tlphy_ctl); sio = tlan_dio_read8(dev->base_addr, TLAN_NET_SIO); sio |= TLAN_NET_SIO_MINTEN; tlan_dio_write8(dev->base_addr, TLAN_NET_SIO, sio); } if (status & MII_GS_LINK) { tlan_set_mac(dev, 0, dev->dev_addr); priv->phy_online = 1; outb((TLAN_HC_INT_ON >> 8), dev->base_addr + TLAN_HOST_CMD + 1); if (debug >= 1 && debug != TLAN_DEBUG_PROBE) outb((TLAN_HC_REQ_INT >> 8), dev->base_addr + TLAN_HOST_CMD + 1); outl(priv->rx_list_dma, dev->base_addr + TLAN_CH_PARM); outl(TLAN_HC_GO | TLAN_HC_RT, dev->base_addr + TLAN_HOST_CMD); tlan_dio_write8(dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK); netif_carrier_on(dev); } else { netdev_info(dev, "Link inactive, will retry in 10 secs...\n"); tlan_set_timer(dev, (10*HZ), TLAN_TIMER_FINISH_RESET); return; } tlan_set_multicast_list(dev); } /*************************************************************** * tlan_set_mac * * Returns: * Nothing * Parms: * dev Pointer to device structure of adapter * on which to change the AREG. * areg The AREG to set the address in (0 - 3). * mac A pointer to an array of chars. Each * element stores one byte of the address. * IE, it isn't in ascii. * * This function transfers a MAC address to one of the * TLAN AREGs (address registers). The TLAN chip locks * the register on writing to offset 0 and unlocks the * register after writing to offset 5. If NULL is passed * in mac, then the AREG is filled with 0's. * **************************************************************/ static void tlan_set_mac(struct net_device *dev, int areg, char *mac) { int i; areg *= 6; if (mac != NULL) { for (i = 0; i < 6; i++) tlan_dio_write8(dev->base_addr, TLAN_AREG_0 + areg + i, mac[i]); } else { for (i = 0; i < 6; i++) tlan_dio_write8(dev->base_addr, TLAN_AREG_0 + areg + i, 0); } } /***************************************************************************** ****************************************************************************** ThunderLAN driver PHY layer routines ****************************************************************************** *****************************************************************************/ /********************************************************************* * tlan_phy_print * * Returns: * Nothing * Parms: * dev A pointer to the device structure of the * TLAN device having the PHYs to be detailed. * * This function prints the registers a PHY (aka transceiver). * ********************************************************************/ static void tlan_phy_print(struct net_device *dev) { struct tlan_priv *priv = netdev_priv(dev); u16 i, data0, data1, data2, data3, phy; phy = priv->phy[priv->phy_num]; if (priv->adapter->flags & TLAN_ADAPTER_UNMANAGED_PHY) { netdev_info(dev, "Unmanaged PHY\n"); } else if (phy <= TLAN_PHY_MAX_ADDR) { netdev_info(dev, "PHY 0x%02x\n", phy); pr_info(" Off. +0 +1 +2 +3\n"); for (i = 0; i < 0x20; i += 4) { tlan_mii_read_reg(dev, phy, i, &data0); tlan_mii_read_reg(dev, phy, i + 1, &data1); tlan_mii_read_reg(dev, phy, i + 2, &data2); tlan_mii_read_reg(dev, phy, i + 3, &data3); pr_info(" 0x%02x 0x%04hx 0x%04hx 0x%04hx 0x%04hx\n", i, data0, data1, data2, data3); } } else { netdev_info(dev, "Invalid PHY\n"); } } /********************************************************************* * tlan_phy_detect * * Returns: * Nothing * Parms: * dev A pointer to the device structure of the adapter * for which the PHY needs determined. * * So far I've found that adapters which have external PHYs * may also use the internal PHY for part of the functionality. * (eg, AUI/Thinnet). This function finds out if this TLAN * chip has an internal PHY, and then finds the first external * PHY (starting from address 0) if it exists). * ********************************************************************/ static void tlan_phy_detect(struct net_device *dev) { struct tlan_priv *priv = netdev_priv(dev); u16 control; u16 hi; u16 lo; u32 phy; if (priv->adapter->flags & TLAN_ADAPTER_UNMANAGED_PHY) { priv->phy_num = 0xffff; return; } tlan_mii_read_reg(dev, TLAN_PHY_MAX_ADDR, MII_GEN_ID_HI, &hi); if (hi != 0xffff) priv->phy[0] = TLAN_PHY_MAX_ADDR; else priv->phy[0] = TLAN_PHY_NONE; priv->phy[1] = TLAN_PHY_NONE; for (phy = 0; phy <= TLAN_PHY_MAX_ADDR; phy++) { tlan_mii_read_reg(dev, phy, MII_GEN_CTL, &control); tlan_mii_read_reg(dev, phy, MII_GEN_ID_HI, &hi); tlan_mii_read_reg(dev, phy, MII_GEN_ID_LO, &lo); if ((control != 0xffff) || (hi != 0xffff) || (lo != 0xffff)) { TLAN_DBG(TLAN_DEBUG_GNRL, "PHY found at %02x %04x %04x %04x\n", phy, control, hi, lo); if ((priv->phy[1] == TLAN_PHY_NONE) && (phy != TLAN_PHY_MAX_ADDR)) { priv->phy[1] = phy; } } } if (priv->phy[1] != TLAN_PHY_NONE) priv->phy_num = 1; else if (priv->phy[0] != TLAN_PHY_NONE) priv->phy_num = 0; else netdev_info(dev, "Cannot initialize device, no PHY was found!\n"); } static void tlan_phy_power_down(struct net_device *dev) { struct tlan_priv *priv = netdev_priv(dev); u16 value; TLAN_DBG(TLAN_DEBUG_GNRL, "%s: Powering down PHY(s).\n", dev->name); value = MII_GC_PDOWN | MII_GC_LOOPBK | MII_GC_ISOLATE; tlan_mii_sync(dev->base_addr); tlan_mii_write_reg(dev, priv->phy[priv->phy_num], MII_GEN_CTL, value); if ((priv->phy_num == 0) && (priv->phy[1] != TLAN_PHY_NONE)) { /* if using internal PHY, the external PHY must be powered on */ if (priv->adapter->flags & TLAN_ADAPTER_USE_INTERN_10) value = MII_GC_ISOLATE; /* just isolate it from MII */ tlan_mii_sync(dev->base_addr); tlan_mii_write_reg(dev, priv->phy[1], MII_GEN_CTL, value); } /* Wait for 50 ms and powerup * This is abitrary. It is intended to make sure the * transceiver settles. */ tlan_set_timer(dev, msecs_to_jiffies(50), TLAN_TIMER_PHY_PUP); } static void tlan_phy_power_up(struct net_device *dev) { struct tlan_priv *priv = netdev_priv(dev); u16 value; TLAN_DBG(TLAN_DEBUG_GNRL, "%s: Powering up PHY.\n", dev->name); tlan_mii_sync(dev->base_addr); value = MII_GC_LOOPBK; tlan_mii_write_reg(dev, priv->phy[priv->phy_num], MII_GEN_CTL, value); tlan_mii_sync(dev->base_addr); /* Wait for 500 ms and reset the * transceiver. The TLAN docs say both 50 ms and * 500 ms, so do the longer, just in case. */ tlan_set_timer(dev, msecs_to_jiffies(500), TLAN_TIMER_PHY_RESET); } static void tlan_phy_reset(struct net_device *dev) { struct tlan_priv *priv = netdev_priv(dev); u16 phy; u16 value; unsigned long timeout = jiffies + HZ; phy = priv->phy[priv->phy_num]; TLAN_DBG(TLAN_DEBUG_GNRL, "%s: Resetting PHY.\n", dev->name); tlan_mii_sync(dev->base_addr); value = MII_GC_LOOPBK | MII_GC_RESET; tlan_mii_write_reg(dev, phy, MII_GEN_CTL, value); do { tlan_mii_read_reg(dev, phy, MII_GEN_CTL, &value); if (time_after(jiffies, timeout)) { netdev_err(dev, "PHY reset timeout\n"); return; } } while (value & MII_GC_RESET); /* Wait for 500 ms and initialize. * I don't remember why I wait this long. * I've changed this to 50ms, as it seems long enough. */ tlan_set_timer(dev, msecs_to_jiffies(50), TLAN_TIMER_PHY_START_LINK); } static void tlan_phy_start_link(struct net_device *dev) { struct tlan_priv *priv = netdev_priv(dev); u16 ability; u16 control; u16 data; u16 phy; u16 status; u16 tctl; phy = priv->phy[priv->phy_num]; TLAN_DBG(TLAN_DEBUG_GNRL, "%s: Trying to activate link.\n", dev->name); tlan_mii_read_reg(dev, phy, MII_GEN_STS, &status); tlan_mii_read_reg(dev, phy, MII_GEN_STS, &ability); if ((status & MII_GS_AUTONEG) && (!priv->aui)) { ability = status >> 11; if (priv->speed == TLAN_SPEED_10 && priv->duplex == TLAN_DUPLEX_HALF) { tlan_mii_write_reg(dev, phy, MII_GEN_CTL, 0x0000); } else if (priv->speed == TLAN_SPEED_10 && priv->duplex == TLAN_DUPLEX_FULL) { priv->tlan_full_duplex = true; tlan_mii_write_reg(dev, phy, MII_GEN_CTL, 0x0100); } else if (priv->speed == TLAN_SPEED_100 && priv->duplex == TLAN_DUPLEX_HALF) { tlan_mii_write_reg(dev, phy, MII_GEN_CTL, 0x2000); } else if (priv->speed == TLAN_SPEED_100 && priv->duplex == TLAN_DUPLEX_FULL) { priv->tlan_full_duplex = true; tlan_mii_write_reg(dev, phy, MII_GEN_CTL, 0x2100); } else { /* Set Auto-Neg advertisement */ tlan_mii_write_reg(dev, phy, MII_AN_ADV, (ability << 5) | 1); /* Enablee Auto-Neg */ tlan_mii_write_reg(dev, phy, MII_GEN_CTL, 0x1000); /* Restart Auto-Neg */ tlan_mii_write_reg(dev, phy, MII_GEN_CTL, 0x1200); /* Wait for 4 sec for autonegotiation * to complete. The max spec time is less than this * but the card need additional time to start AN. * .5 sec should be plenty extra. */ netdev_info(dev, "Starting autonegotiation\n"); tlan_set_timer(dev, (2*HZ), TLAN_TIMER_PHY_FINISH_AN); return; } } if ((priv->aui) && (priv->phy_num != 0)) { priv->phy_num = 0; data = TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN | TLAN_NET_CFG_PHY_EN; tlan_dio_write16(dev->base_addr, TLAN_NET_CONFIG, data); tlan_set_timer(dev, msecs_to_jiffies(40), TLAN_TIMER_PHY_PDOWN); return; } else if (priv->phy_num == 0) { control = 0; tlan_mii_read_reg(dev, phy, TLAN_TLPHY_CTL, &tctl); if (priv->aui) { tctl |= TLAN_TC_AUISEL; } else { tctl &= ~TLAN_TC_AUISEL; if (priv->duplex == TLAN_DUPLEX_FULL) { control |= MII_GC_DUPLEX; priv->tlan_full_duplex = true; } if (priv->speed == TLAN_SPEED_100) control |= MII_GC_SPEEDSEL; } tlan_mii_write_reg(dev, phy, MII_GEN_CTL, control); tlan_mii_write_reg(dev, phy, TLAN_TLPHY_CTL, tctl); } /* Wait for 2 sec to give the transceiver time * to establish link. */ tlan_set_timer(dev, (4*HZ), TLAN_TIMER_FINISH_RESET); } static void tlan_phy_finish_auto_neg(struct net_device *dev) { struct tlan_priv *priv = netdev_priv(dev); u16 an_adv; u16 an_lpa; u16 mode; u16 phy; u16 status; phy = priv->phy[priv->phy_num]; tlan_mii_read_reg(dev, phy, MII_GEN_STS, &status); udelay(1000); tlan_mii_read_reg(dev, phy, MII_GEN_STS, &status); if (!(status & MII_GS_AUTOCMPLT)) { /* Wait for 8 sec to give the process * more time. Perhaps we should fail after a while. */ tlan_set_timer(dev, 2 * HZ, TLAN_TIMER_PHY_FINISH_AN); return; } netdev_info(dev, "Autonegotiation complete\n"); tlan_mii_read_reg(dev, phy, MII_AN_ADV, &an_adv); tlan_mii_read_reg(dev, phy, MII_AN_LPA, &an_lpa); mode = an_adv & an_lpa & 0x03E0; if (mode & 0x0100) priv->tlan_full_duplex = true; else if (!(mode & 0x0080) && (mode & 0x0040)) priv->tlan_full_duplex = true; /* switch to internal PHY for 10 Mbps */ if ((!(mode & 0x0180)) && (priv->adapter->flags & TLAN_ADAPTER_USE_INTERN_10) && (priv->phy_num != 0)) { priv->phy_num = 0; tlan_set_timer(dev, msecs_to_jiffies(400), TLAN_TIMER_PHY_PDOWN); return; } if (priv->phy_num == 0) { if ((priv->duplex == TLAN_DUPLEX_FULL) || (an_adv & an_lpa & 0x0040)) { tlan_mii_write_reg(dev, phy, MII_GEN_CTL, MII_GC_AUTOENB | MII_GC_DUPLEX); netdev_info(dev, "Starting internal PHY with FULL-DUPLEX\n"); } else { tlan_mii_write_reg(dev, phy, MII_GEN_CTL, MII_GC_AUTOENB); netdev_info(dev, "Starting internal PHY with HALF-DUPLEX\n"); } } /* Wait for 100 ms. No reason in partiticular. */ tlan_set_timer(dev, msecs_to_jiffies(100), TLAN_TIMER_FINISH_RESET); } /********************************************************************* * * tlan_phy_monitor * * Returns: * None * * Params: * data The device structure of this device. * * * This function monitors PHY condition by reading the status * register via the MII bus, controls LINK LED and notifies the * kernel about link state. * *******************************************************************/ static void tlan_phy_monitor(struct timer_list *t) { struct tlan_priv *priv = from_timer(priv, t, media_timer); struct net_device *dev = priv->dev; u16 phy; u16 phy_status; phy = priv->phy[priv->phy_num]; /* Get PHY status register */ tlan_mii_read_reg(dev, phy, MII_GEN_STS, &phy_status); /* Check if link has been lost */ if (!(phy_status & MII_GS_LINK)) { if (netif_carrier_ok(dev)) { printk(KERN_DEBUG "TLAN: %s has lost link\n", dev->name); tlan_dio_write8(dev->base_addr, TLAN_LED_REG, 0); netif_carrier_off(dev); if (priv->adapter->flags & TLAN_ADAPTER_USE_INTERN_10) { /* power down internal PHY */ u16 data = MII_GC_PDOWN | MII_GC_LOOPBK | MII_GC_ISOLATE; tlan_mii_sync(dev->base_addr); tlan_mii_write_reg(dev, priv->phy[0], MII_GEN_CTL, data); /* set to external PHY */ priv->phy_num = 1; /* restart autonegotiation */ tlan_set_timer(dev, msecs_to_jiffies(400), TLAN_TIMER_PHY_PDOWN); return; } } } /* Link restablished? */ if ((phy_status & MII_GS_LINK) && !netif_carrier_ok(dev)) { tlan_dio_write8(dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK); printk(KERN_DEBUG "TLAN: %s has reestablished link\n", dev->name); netif_carrier_on(dev); } priv->media_timer.expires = jiffies + HZ; add_timer(&priv->media_timer); } /***************************************************************************** ****************************************************************************** ThunderLAN driver MII routines these routines are based on the information in chap. 2 of the "ThunderLAN Programmer's Guide", pp. 15-24. ****************************************************************************** *****************************************************************************/ /*************************************************************** * tlan_mii_read_reg * * Returns: * false if ack received ok * true if no ack received or other error * * Parms: * dev The device structure containing * The io address and interrupt count * for this device. * phy The address of the PHY to be queried. * reg The register whose contents are to be * retrieved. * val A pointer to a variable to store the * retrieved value. * * This function uses the TLAN's MII bus to retrieve the contents * of a given register on a PHY. It sends the appropriate info * and then reads the 16-bit register value from the MII bus via * the TLAN SIO register. * **************************************************************/ static bool tlan_mii_read_reg(struct net_device *dev, u16 phy, u16 reg, u16 *val) { u8 nack; u16 sio, tmp; u32 i; bool err; int minten; struct tlan_priv *priv = netdev_priv(dev); unsigned long flags = 0; err = false; outw(TLAN_NET_SIO, dev->base_addr + TLAN_DIO_ADR); sio = dev->base_addr + TLAN_DIO_DATA + TLAN_NET_SIO; if (!in_irq()) spin_lock_irqsave(&priv->lock, flags); tlan_mii_sync(dev->base_addr); minten = tlan_get_bit(TLAN_NET_SIO_MINTEN, sio); if (minten) tlan_clear_bit(TLAN_NET_SIO_MINTEN, sio); tlan_mii_send_data(dev->base_addr, 0x1, 2); /* start (01b) */ tlan_mii_send_data(dev->base_addr, 0x2, 2); /* read (10b) */ tlan_mii_send_data(dev->base_addr, phy, 5); /* device # */ tlan_mii_send_data(dev->base_addr, reg, 5); /* register # */ tlan_clear_bit(TLAN_NET_SIO_MTXEN, sio); /* change direction */ tlan_clear_bit(TLAN_NET_SIO_MCLK, sio); /* clock idle bit */ tlan_set_bit(TLAN_NET_SIO_MCLK, sio); tlan_clear_bit(TLAN_NET_SIO_MCLK, sio); /* wait 300ns */ nack = tlan_get_bit(TLAN_NET_SIO_MDATA, sio); /* check for ACK */ tlan_set_bit(TLAN_NET_SIO_MCLK, sio); /* finish ACK */ if (nack) { /* no ACK, so fake it */ for (i = 0; i < 16; i++) { tlan_clear_bit(TLAN_NET_SIO_MCLK, sio); tlan_set_bit(TLAN_NET_SIO_MCLK, sio); } tmp = 0xffff; err = true; } else { /* ACK, so read data */ for (tmp = 0, i = 0x8000; i; i >>= 1) { tlan_clear_bit(TLAN_NET_SIO_MCLK, sio); if (tlan_get_bit(TLAN_NET_SIO_MDATA, sio)) tmp |= i; tlan_set_bit(TLAN_NET_SIO_MCLK, sio); } } tlan_clear_bit(TLAN_NET_SIO_MCLK, sio); /* idle cycle */ tlan_set_bit(TLAN_NET_SIO_MCLK, sio); if (minten) tlan_set_bit(TLAN_NET_SIO_MINTEN, sio); *val = tmp; if (!in_irq()) spin_unlock_irqrestore(&priv->lock, flags); return err; } /*************************************************************** * tlan_mii_send_data * * Returns: * Nothing * Parms: * base_port The base IO port of the adapter in * question. * dev The address of the PHY to be queried. * data The value to be placed on the MII bus. * num_bits The number of bits in data that are to * be placed on the MII bus. * * This function sends on sequence of bits on the MII * configuration bus. * **************************************************************/ static void tlan_mii_send_data(u16 base_port, u32 data, unsigned num_bits) { u16 sio; u32 i; if (num_bits == 0) return; outw(TLAN_NET_SIO, base_port + TLAN_DIO_ADR); sio = base_port + TLAN_DIO_DATA + TLAN_NET_SIO; tlan_set_bit(TLAN_NET_SIO_MTXEN, sio); for (i = (0x1 << (num_bits - 1)); i; i >>= 1) { tlan_clear_bit(TLAN_NET_SIO_MCLK, sio); (void) tlan_get_bit(TLAN_NET_SIO_MCLK, sio); if (data & i) tlan_set_bit(TLAN_NET_SIO_MDATA, sio); else tlan_clear_bit(TLAN_NET_SIO_MDATA, sio); tlan_set_bit(TLAN_NET_SIO_MCLK, sio); (void) tlan_get_bit(TLAN_NET_SIO_MCLK, sio); } } /*************************************************************** * TLan_MiiSync * * Returns: * Nothing * Parms: * base_port The base IO port of the adapter in * question. * * This functions syncs all PHYs in terms of the MII configuration * bus. * **************************************************************/ static void tlan_mii_sync(u16 base_port) { int i; u16 sio; outw(TLAN_NET_SIO, base_port + TLAN_DIO_ADR); sio = base_port + TLAN_DIO_DATA + TLAN_NET_SIO; tlan_clear_bit(TLAN_NET_SIO_MTXEN, sio); for (i = 0; i < 32; i++) { tlan_clear_bit(TLAN_NET_SIO_MCLK, sio); tlan_set_bit(TLAN_NET_SIO_MCLK, sio); } } /*************************************************************** * tlan_mii_write_reg * * Returns: * Nothing * Parms: * dev The device structure for the device * to write to. * phy The address of the PHY to be written to. * reg The register whose contents are to be * written. * val The value to be written to the register. * * This function uses the TLAN's MII bus to write the contents of a * given register on a PHY. It sends the appropriate info and then * writes the 16-bit register value from the MII configuration bus * via the TLAN SIO register. * **************************************************************/ static void tlan_mii_write_reg(struct net_device *dev, u16 phy, u16 reg, u16 val) { u16 sio; int minten; unsigned long flags = 0; struct tlan_priv *priv = netdev_priv(dev); outw(TLAN_NET_SIO, dev->base_addr + TLAN_DIO_ADR); sio = dev->base_addr + TLAN_DIO_DATA + TLAN_NET_SIO; if (!in_irq()) spin_lock_irqsave(&priv->lock, flags); tlan_mii_sync(dev->base_addr); minten = tlan_get_bit(TLAN_NET_SIO_MINTEN, sio); if (minten) tlan_clear_bit(TLAN_NET_SIO_MINTEN, sio); tlan_mii_send_data(dev->base_addr, 0x1, 2); /* start (01b) */ tlan_mii_send_data(dev->base_addr, 0x1, 2); /* write (01b) */ tlan_mii_send_data(dev->base_addr, phy, 5); /* device # */ tlan_mii_send_data(dev->base_addr, reg, 5); /* register # */ tlan_mii_send_data(dev->base_addr, 0x2, 2); /* send ACK */ tlan_mii_send_data(dev->base_addr, val, 16); /* send data */ tlan_clear_bit(TLAN_NET_SIO_MCLK, sio); /* idle cycle */ tlan_set_bit(TLAN_NET_SIO_MCLK, sio); if (minten) tlan_set_bit(TLAN_NET_SIO_MINTEN, sio); if (!in_irq()) spin_unlock_irqrestore(&priv->lock, flags); } /***************************************************************************** ****************************************************************************** ThunderLAN driver eeprom routines the Compaq netelligent 10 and 10/100 cards use a microchip 24C02A EEPROM. these functions are based on information in microchip's data sheet. I don't know how well this functions will work with other Eeproms. ****************************************************************************** *****************************************************************************/ /*************************************************************** * tlan_ee_send_start * * Returns: * Nothing * Parms: * io_base The IO port base address for the * TLAN device with the EEPROM to * use. * * This function sends a start cycle to an EEPROM attached * to a TLAN chip. * **************************************************************/ static void tlan_ee_send_start(u16 io_base) { u16 sio; outw(TLAN_NET_SIO, io_base + TLAN_DIO_ADR); sio = io_base + TLAN_DIO_DATA + TLAN_NET_SIO; tlan_set_bit(TLAN_NET_SIO_ECLOK, sio); tlan_set_bit(TLAN_NET_SIO_EDATA, sio); tlan_set_bit(TLAN_NET_SIO_ETXEN, sio); tlan_clear_bit(TLAN_NET_SIO_EDATA, sio); tlan_clear_bit(TLAN_NET_SIO_ECLOK, sio); } /*************************************************************** * tlan_ee_send_byte * * Returns: * If the correct ack was received, 0, otherwise 1 * Parms: io_base The IO port base address for the * TLAN device with the EEPROM to * use. * data The 8 bits of information to * send to the EEPROM. * stop If TLAN_EEPROM_STOP is passed, a * stop cycle is sent after the * byte is sent after the ack is * read. * * This function sends a byte on the serial EEPROM line, * driving the clock to send each bit. The function then * reverses transmission direction and reads an acknowledge * bit. * **************************************************************/ static int tlan_ee_send_byte(u16 io_base, u8 data, int stop) { int err; u8 place; u16 sio; outw(TLAN_NET_SIO, io_base + TLAN_DIO_ADR); sio = io_base + TLAN_DIO_DATA + TLAN_NET_SIO; /* Assume clock is low, tx is enabled; */ for (place = 0x80; place != 0; place >>= 1) { if (place & data) tlan_set_bit(TLAN_NET_SIO_EDATA, sio); else tlan_clear_bit(TLAN_NET_SIO_EDATA, sio); tlan_set_bit(TLAN_NET_SIO_ECLOK, sio); tlan_clear_bit(TLAN_NET_SIO_ECLOK, sio); } tlan_clear_bit(TLAN_NET_SIO_ETXEN, sio); tlan_set_bit(TLAN_NET_SIO_ECLOK, sio); err = tlan_get_bit(TLAN_NET_SIO_EDATA, sio); tlan_clear_bit(TLAN_NET_SIO_ECLOK, sio); tlan_set_bit(TLAN_NET_SIO_ETXEN, sio); if ((!err) && stop) { /* STOP, raise data while clock is high */ tlan_clear_bit(TLAN_NET_SIO_EDATA, sio); tlan_set_bit(TLAN_NET_SIO_ECLOK, sio); tlan_set_bit(TLAN_NET_SIO_EDATA, sio); } return err; } /*************************************************************** * tlan_ee_receive_byte * * Returns: * Nothing * Parms: * io_base The IO port base address for the * TLAN device with the EEPROM to * use. * data An address to a char to hold the * data sent from the EEPROM. * stop If TLAN_EEPROM_STOP is passed, a * stop cycle is sent after the * byte is received, and no ack is * sent. * * This function receives 8 bits of data from the EEPROM * over the serial link. It then sends and ack bit, or no * ack and a stop bit. This function is used to retrieve * data after the address of a byte in the EEPROM has been * sent. * **************************************************************/ static void tlan_ee_receive_byte(u16 io_base, u8 *data, int stop) { u8 place; u16 sio; outw(TLAN_NET_SIO, io_base + TLAN_DIO_ADR); sio = io_base + TLAN_DIO_DATA + TLAN_NET_SIO; *data = 0; /* Assume clock is low, tx is enabled; */ tlan_clear_bit(TLAN_NET_SIO_ETXEN, sio); for (place = 0x80; place; place >>= 1) { tlan_set_bit(TLAN_NET_SIO_ECLOK, sio); if (tlan_get_bit(TLAN_NET_SIO_EDATA, sio)) *data |= place; tlan_clear_bit(TLAN_NET_SIO_ECLOK, sio); } tlan_set_bit(TLAN_NET_SIO_ETXEN, sio); if (!stop) { tlan_clear_bit(TLAN_NET_SIO_EDATA, sio); /* ack = 0 */ tlan_set_bit(TLAN_NET_SIO_ECLOK, sio); tlan_clear_bit(TLAN_NET_SIO_ECLOK, sio); } else { tlan_set_bit(TLAN_NET_SIO_EDATA, sio); /* no ack = 1 (?) */ tlan_set_bit(TLAN_NET_SIO_ECLOK, sio); tlan_clear_bit(TLAN_NET_SIO_ECLOK, sio); /* STOP, raise data while clock is high */ tlan_clear_bit(TLAN_NET_SIO_EDATA, sio); tlan_set_bit(TLAN_NET_SIO_ECLOK, sio); tlan_set_bit(TLAN_NET_SIO_EDATA, sio); } } /*************************************************************** * tlan_ee_read_byte * * Returns: * No error = 0, else, the stage at which the error * occurred. * Parms: * io_base The IO port base address for the * TLAN device with the EEPROM to * use. * ee_addr The address of the byte in the * EEPROM whose contents are to be * retrieved. * data An address to a char to hold the * data obtained from the EEPROM. * * This function reads a byte of information from an byte * cell in the EEPROM. * **************************************************************/ static int tlan_ee_read_byte(struct net_device *dev, u8 ee_addr, u8 *data) { int err; struct tlan_priv *priv = netdev_priv(dev); unsigned long flags = 0; int ret = 0; spin_lock_irqsave(&priv->lock, flags); tlan_ee_send_start(dev->base_addr); err = tlan_ee_send_byte(dev->base_addr, 0xa0, TLAN_EEPROM_ACK); if (err) { ret = 1; goto fail; } err = tlan_ee_send_byte(dev->base_addr, ee_addr, TLAN_EEPROM_ACK); if (err) { ret = 2; goto fail; } tlan_ee_send_start(dev->base_addr); err = tlan_ee_send_byte(dev->base_addr, 0xa1, TLAN_EEPROM_ACK); if (err) { ret = 3; goto fail; } tlan_ee_receive_byte(dev->base_addr, data, TLAN_EEPROM_STOP); fail: spin_unlock_irqrestore(&priv->lock, flags); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1