Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jens Osterkamp | 4860 | 54.98% | 8 | 7.08% |
Linas Vepstas | 2167 | 24.51% | 40 | 35.40% |
Ishizaki Kou | 1147 | 12.98% | 8 | 7.08% |
Arnd Bergmann | 192 | 2.17% | 5 | 4.42% |
Stephen Hemminger | 72 | 0.81% | 2 | 1.77% |
Jeff Garzik | 48 | 0.54% | 1 | 0.88% |
James K Lewis | 46 | 0.52% | 2 | 1.77% |
Yang Hongyang | 45 | 0.51% | 1 | 0.88% |
Kees Cook | 35 | 0.40% | 1 | 0.88% |
Michał Mirosław | 28 | 0.32% | 1 | 0.88% |
Antoine Tenart | 25 | 0.28% | 2 | 1.77% |
David Howells | 18 | 0.20% | 1 | 0.88% |
David S. Miller | 15 | 0.17% | 3 | 2.65% |
Jarod Wilson | 13 | 0.15% | 1 | 0.88% |
Ben Hutchings | 12 | 0.14% | 3 | 2.65% |
Jiri Pirko | 12 | 0.14% | 4 | 3.54% |
Gustavo A. R. Silva | 9 | 0.10% | 2 | 1.77% |
FUJITA Tomonori | 8 | 0.09% | 1 | 0.88% |
Joe Perches | 7 | 0.08% | 1 | 0.88% |
Benjamin Herrenschmidt | 7 | 0.08% | 1 | 0.88% |
Florin Malita | 6 | 0.07% | 1 | 0.88% |
Olof Johansson | 6 | 0.07% | 1 | 0.88% |
Allen Pais | 6 | 0.07% | 1 | 0.88% |
Benoit Taine | 6 | 0.07% | 1 | 0.88% |
Wei Yongjun | 6 | 0.07% | 1 | 0.88% |
Christoph Hellwig | 5 | 0.06% | 1 | 0.88% |
Qinghuang Feng | 4 | 0.05% | 1 | 0.88% |
Michael S. Tsirkin | 4 | 0.05% | 1 | 0.88% |
Eric Dumazet | 3 | 0.03% | 1 | 0.88% |
Arnaldo Carvalho de Melo | 3 | 0.03% | 1 | 0.88% |
Thomas Gleixner | 3 | 0.03% | 2 | 1.77% |
Tejun Heo | 3 | 0.03% | 1 | 0.88% |
Florian Westphal | 3 | 0.03% | 1 | 0.88% |
Alexey Dobriyan | 3 | 0.03% | 1 | 0.88% |
Daniel Mack | 2 | 0.02% | 1 | 0.88% |
Stephen Rothwell | 2 | 0.02% | 1 | 0.88% |
Yue haibing | 2 | 0.02% | 1 | 0.88% |
Jiri Slaby | 1 | 0.01% | 1 | 0.88% |
Patrick McHardy | 1 | 0.01% | 1 | 0.88% |
Jeremy Kerr | 1 | 0.01% | 1 | 0.88% |
Eric W. Biedermann | 1 | 0.01% | 1 | 0.88% |
André Goddard Rosa | 1 | 0.01% | 1 | 0.88% |
Bill Pemberton | 1 | 0.01% | 1 | 0.88% |
Nick Andrew | 1 | 0.01% | 1 | 0.88% |
Total | 8840 | 113 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Network device driver for Cell Processor-Based Blade and Celleb platform * * (C) Copyright IBM Corp. 2005 * (C) Copyright 2006 TOSHIBA CORPORATION * * Authors : Utz Bacher <utz.bacher@de.ibm.com> * Jens Osterkamp <Jens.Osterkamp@de.ibm.com> */ #include <linux/compiler.h> #include <linux/crc32.h> #include <linux/delay.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/firmware.h> #include <linux/if_vlan.h> #include <linux/in.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/gfp.h> #include <linux/ioport.h> #include <linux/ip.h> #include <linux/kernel.h> #include <linux/mii.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/device.h> #include <linux/pci.h> #include <linux/skbuff.h> #include <linux/tcp.h> #include <linux/types.h> #include <linux/vmalloc.h> #include <linux/wait.h> #include <linux/workqueue.h> #include <linux/bitops.h> #include <net/checksum.h> #include "spider_net.h" MODULE_AUTHOR("Utz Bacher <utz.bacher@de.ibm.com> and Jens Osterkamp " \ "<Jens.Osterkamp@de.ibm.com>"); MODULE_DESCRIPTION("Spider Southbridge Gigabit Ethernet driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(VERSION); MODULE_FIRMWARE(SPIDER_NET_FIRMWARE_NAME); static int rx_descriptors = SPIDER_NET_RX_DESCRIPTORS_DEFAULT; static int tx_descriptors = SPIDER_NET_TX_DESCRIPTORS_DEFAULT; module_param(rx_descriptors, int, 0444); module_param(tx_descriptors, int, 0444); MODULE_PARM_DESC(rx_descriptors, "number of descriptors used " \ "in rx chains"); MODULE_PARM_DESC(tx_descriptors, "number of descriptors used " \ "in tx chain"); char spider_net_driver_name[] = "spidernet"; static const struct pci_device_id spider_net_pci_tbl[] = { { PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_SPIDER_NET, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, { 0, } }; MODULE_DEVICE_TABLE(pci, spider_net_pci_tbl); /** * spider_net_read_reg - reads an SMMIO register of a card * @card: device structure * @reg: register to read from * * returns the content of the specified SMMIO register. */ static inline u32 spider_net_read_reg(struct spider_net_card *card, u32 reg) { /* We use the powerpc specific variants instead of readl_be() because * we know spidernet is not a real PCI device and we can thus avoid the * performance hit caused by the PCI workarounds. */ return in_be32(card->regs + reg); } /** * spider_net_write_reg - writes to an SMMIO register of a card * @card: device structure * @reg: register to write to * @value: value to write into the specified SMMIO register */ static inline void spider_net_write_reg(struct spider_net_card *card, u32 reg, u32 value) { /* We use the powerpc specific variants instead of writel_be() because * we know spidernet is not a real PCI device and we can thus avoid the * performance hit caused by the PCI workarounds. */ out_be32(card->regs + reg, value); } /** * spider_net_write_phy - write to phy register * @netdev: adapter to be written to * @mii_id: id of MII * @reg: PHY register * @val: value to be written to phy register * * spider_net_write_phy_register writes to an arbitrary PHY * register via the spider GPCWOPCMD register. We assume the queue does * not run full (not more than 15 commands outstanding). **/ static void spider_net_write_phy(struct net_device *netdev, int mii_id, int reg, int val) { struct spider_net_card *card = netdev_priv(netdev); u32 writevalue; writevalue = ((u32)mii_id << 21) | ((u32)reg << 16) | ((u32)val); spider_net_write_reg(card, SPIDER_NET_GPCWOPCMD, writevalue); } /** * spider_net_read_phy - read from phy register * @netdev: network device to be read from * @mii_id: id of MII * @reg: PHY register * * Returns value read from PHY register * * spider_net_write_phy reads from an arbitrary PHY * register via the spider GPCROPCMD register **/ static int spider_net_read_phy(struct net_device *netdev, int mii_id, int reg) { struct spider_net_card *card = netdev_priv(netdev); u32 readvalue; readvalue = ((u32)mii_id << 21) | ((u32)reg << 16); spider_net_write_reg(card, SPIDER_NET_GPCROPCMD, readvalue); /* we don't use semaphores to wait for an SPIDER_NET_GPROPCMPINT * interrupt, as we poll for the completion of the read operation * in spider_net_read_phy. Should take about 50 us */ do { readvalue = spider_net_read_reg(card, SPIDER_NET_GPCROPCMD); } while (readvalue & SPIDER_NET_GPREXEC); readvalue &= SPIDER_NET_GPRDAT_MASK; return readvalue; } /** * spider_net_setup_aneg - initial auto-negotiation setup * @card: device structure **/ static void spider_net_setup_aneg(struct spider_net_card *card) { struct mii_phy *phy = &card->phy; u32 advertise = 0; u16 bmsr, estat; bmsr = spider_net_read_phy(card->netdev, phy->mii_id, MII_BMSR); estat = spider_net_read_phy(card->netdev, phy->mii_id, MII_ESTATUS); if (bmsr & BMSR_10HALF) advertise |= ADVERTISED_10baseT_Half; if (bmsr & BMSR_10FULL) advertise |= ADVERTISED_10baseT_Full; if (bmsr & BMSR_100HALF) advertise |= ADVERTISED_100baseT_Half; if (bmsr & BMSR_100FULL) advertise |= ADVERTISED_100baseT_Full; if ((bmsr & BMSR_ESTATEN) && (estat & ESTATUS_1000_TFULL)) advertise |= SUPPORTED_1000baseT_Full; if ((bmsr & BMSR_ESTATEN) && (estat & ESTATUS_1000_THALF)) advertise |= SUPPORTED_1000baseT_Half; sungem_phy_probe(phy, phy->mii_id); phy->def->ops->setup_aneg(phy, advertise); } /** * spider_net_rx_irq_off - switch off rx irq on this spider card * @card: device structure * * switches off rx irq by masking them out in the GHIINTnMSK register */ static void spider_net_rx_irq_off(struct spider_net_card *card) { u32 regvalue; regvalue = SPIDER_NET_INT0_MASK_VALUE & (~SPIDER_NET_RXINT); spider_net_write_reg(card, SPIDER_NET_GHIINT0MSK, regvalue); } /** * spider_net_rx_irq_on - switch on rx irq on this spider card * @card: device structure * * switches on rx irq by enabling them in the GHIINTnMSK register */ static void spider_net_rx_irq_on(struct spider_net_card *card) { u32 regvalue; regvalue = SPIDER_NET_INT0_MASK_VALUE | SPIDER_NET_RXINT; spider_net_write_reg(card, SPIDER_NET_GHIINT0MSK, regvalue); } /** * spider_net_set_promisc - sets the unicast address or the promiscuous mode * @card: card structure * * spider_net_set_promisc sets the unicast destination address filter and * thus either allows for non-promisc mode or promisc mode */ static void spider_net_set_promisc(struct spider_net_card *card) { u32 macu, macl; struct net_device *netdev = card->netdev; if (netdev->flags & IFF_PROMISC) { /* clear destination entry 0 */ spider_net_write_reg(card, SPIDER_NET_GMRUAFILnR, 0); spider_net_write_reg(card, SPIDER_NET_GMRUAFILnR + 0x04, 0); spider_net_write_reg(card, SPIDER_NET_GMRUA0FIL15R, SPIDER_NET_PROMISC_VALUE); } else { macu = netdev->dev_addr[0]; macu <<= 8; macu |= netdev->dev_addr[1]; memcpy(&macl, &netdev->dev_addr[2], sizeof(macl)); macu |= SPIDER_NET_UA_DESCR_VALUE; spider_net_write_reg(card, SPIDER_NET_GMRUAFILnR, macu); spider_net_write_reg(card, SPIDER_NET_GMRUAFILnR + 0x04, macl); spider_net_write_reg(card, SPIDER_NET_GMRUA0FIL15R, SPIDER_NET_NONPROMISC_VALUE); } } /** * spider_net_get_descr_status -- returns the status of a descriptor * @descr: descriptor to look at * * returns the status as in the dmac_cmd_status field of the descriptor */ static inline int spider_net_get_descr_status(struct spider_net_hw_descr *hwdescr) { return hwdescr->dmac_cmd_status & SPIDER_NET_DESCR_IND_PROC_MASK; } /** * spider_net_free_chain - free descriptor chain * @card: card structure * @chain: address of chain * */ static void spider_net_free_chain(struct spider_net_card *card, struct spider_net_descr_chain *chain) { struct spider_net_descr *descr; descr = chain->ring; do { descr->bus_addr = 0; descr->hwdescr->next_descr_addr = 0; descr = descr->next; } while (descr != chain->ring); dma_free_coherent(&card->pdev->dev, chain->num_desc, chain->hwring, chain->dma_addr); } /** * spider_net_init_chain - alloc and link descriptor chain * @card: card structure * @chain: address of chain * * We manage a circular list that mirrors the hardware structure, * except that the hardware uses bus addresses. * * Returns 0 on success, <0 on failure */ static int spider_net_init_chain(struct spider_net_card *card, struct spider_net_descr_chain *chain) { int i; struct spider_net_descr *descr; struct spider_net_hw_descr *hwdescr; dma_addr_t buf; size_t alloc_size; alloc_size = chain->num_desc * sizeof(struct spider_net_hw_descr); chain->hwring = dma_alloc_coherent(&card->pdev->dev, alloc_size, &chain->dma_addr, GFP_KERNEL); if (!chain->hwring) return -ENOMEM; memset(chain->ring, 0, chain->num_desc * sizeof(struct spider_net_descr)); /* Set up the hardware pointers in each descriptor */ descr = chain->ring; hwdescr = chain->hwring; buf = chain->dma_addr; for (i=0; i < chain->num_desc; i++, descr++, hwdescr++) { hwdescr->dmac_cmd_status = SPIDER_NET_DESCR_NOT_IN_USE; hwdescr->next_descr_addr = 0; descr->hwdescr = hwdescr; descr->bus_addr = buf; descr->next = descr + 1; descr->prev = descr - 1; buf += sizeof(struct spider_net_hw_descr); } /* do actual circular list */ (descr-1)->next = chain->ring; chain->ring->prev = descr-1; spin_lock_init(&chain->lock); chain->head = chain->ring; chain->tail = chain->ring; return 0; } /** * spider_net_free_rx_chain_contents - frees descr contents in rx chain * @card: card structure * * returns 0 on success, <0 on failure */ static void spider_net_free_rx_chain_contents(struct spider_net_card *card) { struct spider_net_descr *descr; descr = card->rx_chain.head; do { if (descr->skb) { pci_unmap_single(card->pdev, descr->hwdescr->buf_addr, SPIDER_NET_MAX_FRAME, PCI_DMA_BIDIRECTIONAL); dev_kfree_skb(descr->skb); descr->skb = NULL; } descr = descr->next; } while (descr != card->rx_chain.head); } /** * spider_net_prepare_rx_descr - Reinitialize RX descriptor * @card: card structure * @descr: descriptor to re-init * * Return 0 on success, <0 on failure. * * Allocates a new rx skb, iommu-maps it and attaches it to the * descriptor. Mark the descriptor as activated, ready-to-use. */ static int spider_net_prepare_rx_descr(struct spider_net_card *card, struct spider_net_descr *descr) { struct spider_net_hw_descr *hwdescr = descr->hwdescr; dma_addr_t buf; int offset; int bufsize; /* we need to round up the buffer size to a multiple of 128 */ bufsize = (SPIDER_NET_MAX_FRAME + SPIDER_NET_RXBUF_ALIGN - 1) & (~(SPIDER_NET_RXBUF_ALIGN - 1)); /* and we need to have it 128 byte aligned, therefore we allocate a * bit more */ /* allocate an skb */ descr->skb = netdev_alloc_skb(card->netdev, bufsize + SPIDER_NET_RXBUF_ALIGN - 1); if (!descr->skb) { if (netif_msg_rx_err(card) && net_ratelimit()) dev_err(&card->netdev->dev, "Not enough memory to allocate rx buffer\n"); card->spider_stats.alloc_rx_skb_error++; return -ENOMEM; } hwdescr->buf_size = bufsize; hwdescr->result_size = 0; hwdescr->valid_size = 0; hwdescr->data_status = 0; hwdescr->data_error = 0; offset = ((unsigned long)descr->skb->data) & (SPIDER_NET_RXBUF_ALIGN - 1); if (offset) skb_reserve(descr->skb, SPIDER_NET_RXBUF_ALIGN - offset); /* iommu-map the skb */ buf = pci_map_single(card->pdev, descr->skb->data, SPIDER_NET_MAX_FRAME, PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(card->pdev, buf)) { dev_kfree_skb_any(descr->skb); descr->skb = NULL; if (netif_msg_rx_err(card) && net_ratelimit()) dev_err(&card->netdev->dev, "Could not iommu-map rx buffer\n"); card->spider_stats.rx_iommu_map_error++; hwdescr->dmac_cmd_status = SPIDER_NET_DESCR_NOT_IN_USE; } else { hwdescr->buf_addr = buf; wmb(); hwdescr->dmac_cmd_status = SPIDER_NET_DESCR_CARDOWNED | SPIDER_NET_DMAC_NOINTR_COMPLETE; } return 0; } /** * spider_net_enable_rxchtails - sets RX dmac chain tail addresses * @card: card structure * * spider_net_enable_rxchtails sets the RX DMAC chain tail addresses in the * chip by writing to the appropriate register. DMA is enabled in * spider_net_enable_rxdmac. */ static inline void spider_net_enable_rxchtails(struct spider_net_card *card) { /* assume chain is aligned correctly */ spider_net_write_reg(card, SPIDER_NET_GDADCHA , card->rx_chain.tail->bus_addr); } /** * spider_net_enable_rxdmac - enables a receive DMA controller * @card: card structure * * spider_net_enable_rxdmac enables the DMA controller by setting RX_DMA_EN * in the GDADMACCNTR register */ static inline void spider_net_enable_rxdmac(struct spider_net_card *card) { wmb(); spider_net_write_reg(card, SPIDER_NET_GDADMACCNTR, SPIDER_NET_DMA_RX_VALUE); } /** * spider_net_disable_rxdmac - disables the receive DMA controller * @card: card structure * * spider_net_disable_rxdmac terminates processing on the DMA controller * by turing off the DMA controller, with the force-end flag set. */ static inline void spider_net_disable_rxdmac(struct spider_net_card *card) { spider_net_write_reg(card, SPIDER_NET_GDADMACCNTR, SPIDER_NET_DMA_RX_FEND_VALUE); } /** * spider_net_refill_rx_chain - refills descriptors/skbs in the rx chains * @card: card structure * * refills descriptors in the rx chain: allocates skbs and iommu-maps them. */ static void spider_net_refill_rx_chain(struct spider_net_card *card) { struct spider_net_descr_chain *chain = &card->rx_chain; unsigned long flags; /* one context doing the refill (and a second context seeing that * and omitting it) is ok. If called by NAPI, we'll be called again * as spider_net_decode_one_descr is called several times. If some * interrupt calls us, the NAPI is about to clean up anyway. */ if (!spin_trylock_irqsave(&chain->lock, flags)) return; while (spider_net_get_descr_status(chain->head->hwdescr) == SPIDER_NET_DESCR_NOT_IN_USE) { if (spider_net_prepare_rx_descr(card, chain->head)) break; chain->head = chain->head->next; } spin_unlock_irqrestore(&chain->lock, flags); } /** * spider_net_alloc_rx_skbs - Allocates rx skbs in rx descriptor chains * @card: card structure * * Returns 0 on success, <0 on failure. */ static int spider_net_alloc_rx_skbs(struct spider_net_card *card) { struct spider_net_descr_chain *chain = &card->rx_chain; struct spider_net_descr *start = chain->tail; struct spider_net_descr *descr = start; /* Link up the hardware chain pointers */ do { descr->prev->hwdescr->next_descr_addr = descr->bus_addr; descr = descr->next; } while (descr != start); /* Put at least one buffer into the chain. if this fails, * we've got a problem. If not, spider_net_refill_rx_chain * will do the rest at the end of this function. */ if (spider_net_prepare_rx_descr(card, chain->head)) goto error; else chain->head = chain->head->next; /* This will allocate the rest of the rx buffers; * if not, it's business as usual later on. */ spider_net_refill_rx_chain(card); spider_net_enable_rxdmac(card); return 0; error: spider_net_free_rx_chain_contents(card); return -ENOMEM; } /** * spider_net_get_multicast_hash - generates hash for multicast filter table * @addr: multicast address * * returns the hash value. * * spider_net_get_multicast_hash calculates a hash value for a given multicast * address, that is used to set the multicast filter tables */ static u8 spider_net_get_multicast_hash(struct net_device *netdev, __u8 *addr) { u32 crc; u8 hash; char addr_for_crc[ETH_ALEN] = { 0, }; int i, bit; for (i = 0; i < ETH_ALEN * 8; i++) { bit = (addr[i / 8] >> (i % 8)) & 1; addr_for_crc[ETH_ALEN - 1 - i / 8] += bit << (7 - (i % 8)); } crc = crc32_be(~0, addr_for_crc, netdev->addr_len); hash = (crc >> 27); hash <<= 3; hash |= crc & 7; hash &= 0xff; return hash; } /** * spider_net_set_multi - sets multicast addresses and promisc flags * @netdev: interface device structure * * spider_net_set_multi configures multicast addresses as needed for the * netdev interface. It also sets up multicast, allmulti and promisc * flags appropriately */ static void spider_net_set_multi(struct net_device *netdev) { struct netdev_hw_addr *ha; u8 hash; int i; u32 reg; struct spider_net_card *card = netdev_priv(netdev); DECLARE_BITMAP(bitmask, SPIDER_NET_MULTICAST_HASHES) = {}; spider_net_set_promisc(card); if (netdev->flags & IFF_ALLMULTI) { for (i = 0; i < SPIDER_NET_MULTICAST_HASHES; i++) { set_bit(i, bitmask); } goto write_hash; } /* well, we know, what the broadcast hash value is: it's xfd hash = spider_net_get_multicast_hash(netdev, netdev->broadcast); */ set_bit(0xfd, bitmask); netdev_for_each_mc_addr(ha, netdev) { hash = spider_net_get_multicast_hash(netdev, ha->addr); set_bit(hash, bitmask); } write_hash: for (i = 0; i < SPIDER_NET_MULTICAST_HASHES / 4; i++) { reg = 0; if (test_bit(i * 4, bitmask)) reg += 0x08; reg <<= 8; if (test_bit(i * 4 + 1, bitmask)) reg += 0x08; reg <<= 8; if (test_bit(i * 4 + 2, bitmask)) reg += 0x08; reg <<= 8; if (test_bit(i * 4 + 3, bitmask)) reg += 0x08; spider_net_write_reg(card, SPIDER_NET_GMRMHFILnR + i * 4, reg); } } /** * spider_net_prepare_tx_descr - fill tx descriptor with skb data * @card: card structure * @skb: packet to use * * returns 0 on success, <0 on failure. * * fills out the descriptor structure with skb data and len. Copies data, * if needed (32bit DMA!) */ static int spider_net_prepare_tx_descr(struct spider_net_card *card, struct sk_buff *skb) { struct spider_net_descr_chain *chain = &card->tx_chain; struct spider_net_descr *descr; struct spider_net_hw_descr *hwdescr; dma_addr_t buf; unsigned long flags; buf = pci_map_single(card->pdev, skb->data, skb->len, PCI_DMA_TODEVICE); if (pci_dma_mapping_error(card->pdev, buf)) { if (netif_msg_tx_err(card) && net_ratelimit()) dev_err(&card->netdev->dev, "could not iommu-map packet (%p, %i). " "Dropping packet\n", skb->data, skb->len); card->spider_stats.tx_iommu_map_error++; return -ENOMEM; } spin_lock_irqsave(&chain->lock, flags); descr = card->tx_chain.head; if (descr->next == chain->tail->prev) { spin_unlock_irqrestore(&chain->lock, flags); pci_unmap_single(card->pdev, buf, skb->len, PCI_DMA_TODEVICE); return -ENOMEM; } hwdescr = descr->hwdescr; chain->head = descr->next; descr->skb = skb; hwdescr->buf_addr = buf; hwdescr->buf_size = skb->len; hwdescr->next_descr_addr = 0; hwdescr->data_status = 0; hwdescr->dmac_cmd_status = SPIDER_NET_DESCR_CARDOWNED | SPIDER_NET_DMAC_TXFRMTL; spin_unlock_irqrestore(&chain->lock, flags); if (skb->ip_summed == CHECKSUM_PARTIAL) switch (ip_hdr(skb)->protocol) { case IPPROTO_TCP: hwdescr->dmac_cmd_status |= SPIDER_NET_DMAC_TCP; break; case IPPROTO_UDP: hwdescr->dmac_cmd_status |= SPIDER_NET_DMAC_UDP; break; } /* Chain the bus address, so that the DMA engine finds this descr. */ wmb(); descr->prev->hwdescr->next_descr_addr = descr->bus_addr; netif_trans_update(card->netdev); /* set netdev watchdog timer */ return 0; } static int spider_net_set_low_watermark(struct spider_net_card *card) { struct spider_net_descr *descr = card->tx_chain.tail; struct spider_net_hw_descr *hwdescr; unsigned long flags; int status; int cnt=0; int i; /* Measure the length of the queue. Measurement does not * need to be precise -- does not need a lock. */ while (descr != card->tx_chain.head) { status = descr->hwdescr->dmac_cmd_status & SPIDER_NET_DESCR_NOT_IN_USE; if (status == SPIDER_NET_DESCR_NOT_IN_USE) break; descr = descr->next; cnt++; } /* If TX queue is short, don't even bother with interrupts */ if (cnt < card->tx_chain.num_desc/4) return cnt; /* Set low-watermark 3/4th's of the way into the queue. */ descr = card->tx_chain.tail; cnt = (cnt*3)/4; for (i=0;i<cnt; i++) descr = descr->next; /* Set the new watermark, clear the old watermark */ spin_lock_irqsave(&card->tx_chain.lock, flags); descr->hwdescr->dmac_cmd_status |= SPIDER_NET_DESCR_TXDESFLG; if (card->low_watermark && card->low_watermark != descr) { hwdescr = card->low_watermark->hwdescr; hwdescr->dmac_cmd_status = hwdescr->dmac_cmd_status & ~SPIDER_NET_DESCR_TXDESFLG; } card->low_watermark = descr; spin_unlock_irqrestore(&card->tx_chain.lock, flags); return cnt; } /** * spider_net_release_tx_chain - processes sent tx descriptors * @card: adapter structure * @brutal: if set, don't care about whether descriptor seems to be in use * * returns 0 if the tx ring is empty, otherwise 1. * * spider_net_release_tx_chain releases the tx descriptors that spider has * finished with (if non-brutal) or simply release tx descriptors (if brutal). * If some other context is calling this function, we return 1 so that we're * scheduled again (if we were scheduled) and will not lose initiative. */ static int spider_net_release_tx_chain(struct spider_net_card *card, int brutal) { struct net_device *dev = card->netdev; struct spider_net_descr_chain *chain = &card->tx_chain; struct spider_net_descr *descr; struct spider_net_hw_descr *hwdescr; struct sk_buff *skb; u32 buf_addr; unsigned long flags; int status; while (1) { spin_lock_irqsave(&chain->lock, flags); if (chain->tail == chain->head) { spin_unlock_irqrestore(&chain->lock, flags); return 0; } descr = chain->tail; hwdescr = descr->hwdescr; status = spider_net_get_descr_status(hwdescr); switch (status) { case SPIDER_NET_DESCR_COMPLETE: dev->stats.tx_packets++; dev->stats.tx_bytes += descr->skb->len; break; case SPIDER_NET_DESCR_CARDOWNED: if (!brutal) { spin_unlock_irqrestore(&chain->lock, flags); return 1; } /* fallthrough, if we release the descriptors * brutally (then we don't care about * SPIDER_NET_DESCR_CARDOWNED) */ /* Fall through */ case SPIDER_NET_DESCR_RESPONSE_ERROR: case SPIDER_NET_DESCR_PROTECTION_ERROR: case SPIDER_NET_DESCR_FORCE_END: if (netif_msg_tx_err(card)) dev_err(&card->netdev->dev, "forcing end of tx descriptor " "with status x%02x\n", status); dev->stats.tx_errors++; break; default: dev->stats.tx_dropped++; if (!brutal) { spin_unlock_irqrestore(&chain->lock, flags); return 1; } } chain->tail = descr->next; hwdescr->dmac_cmd_status |= SPIDER_NET_DESCR_NOT_IN_USE; skb = descr->skb; descr->skb = NULL; buf_addr = hwdescr->buf_addr; spin_unlock_irqrestore(&chain->lock, flags); /* unmap the skb */ if (skb) { pci_unmap_single(card->pdev, buf_addr, skb->len, PCI_DMA_TODEVICE); dev_consume_skb_any(skb); } } return 0; } /** * spider_net_kick_tx_dma - enables TX DMA processing * @card: card structure * * This routine will start the transmit DMA running if * it is not already running. This routine ned only be * called when queueing a new packet to an empty tx queue. * Writes the current tx chain head as start address * of the tx descriptor chain and enables the transmission * DMA engine. */ static inline void spider_net_kick_tx_dma(struct spider_net_card *card) { struct spider_net_descr *descr; if (spider_net_read_reg(card, SPIDER_NET_GDTDMACCNTR) & SPIDER_NET_TX_DMA_EN) goto out; descr = card->tx_chain.tail; for (;;) { if (spider_net_get_descr_status(descr->hwdescr) == SPIDER_NET_DESCR_CARDOWNED) { spider_net_write_reg(card, SPIDER_NET_GDTDCHA, descr->bus_addr); spider_net_write_reg(card, SPIDER_NET_GDTDMACCNTR, SPIDER_NET_DMA_TX_VALUE); break; } if (descr == card->tx_chain.head) break; descr = descr->next; } out: mod_timer(&card->tx_timer, jiffies + SPIDER_NET_TX_TIMER); } /** * spider_net_xmit - transmits a frame over the device * @skb: packet to send out * @netdev: interface device structure * * returns NETDEV_TX_OK on success, NETDEV_TX_BUSY on failure */ static netdev_tx_t spider_net_xmit(struct sk_buff *skb, struct net_device *netdev) { int cnt; struct spider_net_card *card = netdev_priv(netdev); spider_net_release_tx_chain(card, 0); if (spider_net_prepare_tx_descr(card, skb) != 0) { netdev->stats.tx_dropped++; netif_stop_queue(netdev); return NETDEV_TX_BUSY; } cnt = spider_net_set_low_watermark(card); if (cnt < 5) spider_net_kick_tx_dma(card); return NETDEV_TX_OK; } /** * spider_net_cleanup_tx_ring - cleans up the TX ring * @card: card structure * * spider_net_cleanup_tx_ring is called by either the tx_timer * or from the NAPI polling routine. * This routine releases resources associted with transmitted * packets, including updating the queue tail pointer. */ static void spider_net_cleanup_tx_ring(struct timer_list *t) { struct spider_net_card *card = from_timer(card, t, tx_timer); if ((spider_net_release_tx_chain(card, 0) != 0) && (card->netdev->flags & IFF_UP)) { spider_net_kick_tx_dma(card); netif_wake_queue(card->netdev); } } /** * spider_net_do_ioctl - called for device ioctls * @netdev: interface device structure * @ifr: request parameter structure for ioctl * @cmd: command code for ioctl * * returns 0 on success, <0 on failure. Currently, we have no special ioctls. * -EOPNOTSUPP is returned, if an unknown ioctl was requested */ static int spider_net_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { switch (cmd) { default: return -EOPNOTSUPP; } } /** * spider_net_pass_skb_up - takes an skb from a descriptor and passes it on * @descr: descriptor to process * @card: card structure * * Fills out skb structure and passes the data to the stack. * The descriptor state is not changed. */ static void spider_net_pass_skb_up(struct spider_net_descr *descr, struct spider_net_card *card) { struct spider_net_hw_descr *hwdescr = descr->hwdescr; struct sk_buff *skb = descr->skb; struct net_device *netdev = card->netdev; u32 data_status = hwdescr->data_status; u32 data_error = hwdescr->data_error; skb_put(skb, hwdescr->valid_size); /* the card seems to add 2 bytes of junk in front * of the ethernet frame */ #define SPIDER_MISALIGN 2 skb_pull(skb, SPIDER_MISALIGN); skb->protocol = eth_type_trans(skb, netdev); /* checksum offload */ skb_checksum_none_assert(skb); if (netdev->features & NETIF_F_RXCSUM) { if ( ( (data_status & SPIDER_NET_DATA_STATUS_CKSUM_MASK) == SPIDER_NET_DATA_STATUS_CKSUM_MASK) && !(data_error & SPIDER_NET_DATA_ERR_CKSUM_MASK)) skb->ip_summed = CHECKSUM_UNNECESSARY; } if (data_status & SPIDER_NET_VLAN_PACKET) { /* further enhancements: HW-accel VLAN */ } /* update netdevice statistics */ netdev->stats.rx_packets++; netdev->stats.rx_bytes += skb->len; /* pass skb up to stack */ netif_receive_skb(skb); } static void show_rx_chain(struct spider_net_card *card) { struct spider_net_descr_chain *chain = &card->rx_chain; struct spider_net_descr *start= chain->tail; struct spider_net_descr *descr= start; struct spider_net_hw_descr *hwd = start->hwdescr; struct device *dev = &card->netdev->dev; u32 curr_desc, next_desc; int status; int tot = 0; int cnt = 0; int off = start - chain->ring; int cstat = hwd->dmac_cmd_status; dev_info(dev, "Total number of descrs=%d\n", chain->num_desc); dev_info(dev, "Chain tail located at descr=%d, status=0x%x\n", off, cstat); curr_desc = spider_net_read_reg(card, SPIDER_NET_GDACTDPA); next_desc = spider_net_read_reg(card, SPIDER_NET_GDACNEXTDA); status = cstat; do { hwd = descr->hwdescr; off = descr - chain->ring; status = hwd->dmac_cmd_status; if (descr == chain->head) dev_info(dev, "Chain head is at %d, head status=0x%x\n", off, status); if (curr_desc == descr->bus_addr) dev_info(dev, "HW curr desc (GDACTDPA) is at %d, status=0x%x\n", off, status); if (next_desc == descr->bus_addr) dev_info(dev, "HW next desc (GDACNEXTDA) is at %d, status=0x%x\n", off, status); if (hwd->next_descr_addr == 0) dev_info(dev, "chain is cut at %d\n", off); if (cstat != status) { int from = (chain->num_desc + off - cnt) % chain->num_desc; int to = (chain->num_desc + off - 1) % chain->num_desc; dev_info(dev, "Have %d (from %d to %d) descrs " "with stat=0x%08x\n", cnt, from, to, cstat); cstat = status; cnt = 0; } cnt ++; tot ++; descr = descr->next; } while (descr != start); dev_info(dev, "Last %d descrs with stat=0x%08x " "for a total of %d descrs\n", cnt, cstat, tot); #ifdef DEBUG /* Now dump the whole ring */ descr = start; do { struct spider_net_hw_descr *hwd = descr->hwdescr; status = spider_net_get_descr_status(hwd); cnt = descr - chain->ring; dev_info(dev, "Descr %d stat=0x%08x skb=%p\n", cnt, status, descr->skb); dev_info(dev, "bus addr=%08x buf addr=%08x sz=%d\n", descr->bus_addr, hwd->buf_addr, hwd->buf_size); dev_info(dev, "next=%08x result sz=%d valid sz=%d\n", hwd->next_descr_addr, hwd->result_size, hwd->valid_size); dev_info(dev, "dmac=%08x data stat=%08x data err=%08x\n", hwd->dmac_cmd_status, hwd->data_status, hwd->data_error); dev_info(dev, "\n"); descr = descr->next; } while (descr != start); #endif } /** * spider_net_resync_head_ptr - Advance head ptr past empty descrs * * If the driver fails to keep up and empty the queue, then the * hardware wil run out of room to put incoming packets. This * will cause the hardware to skip descrs that are full (instead * of halting/retrying). Thus, once the driver runs, it wil need * to "catch up" to where the hardware chain pointer is at. */ static void spider_net_resync_head_ptr(struct spider_net_card *card) { unsigned long flags; struct spider_net_descr_chain *chain = &card->rx_chain; struct spider_net_descr *descr; int i, status; /* Advance head pointer past any empty descrs */ descr = chain->head; status = spider_net_get_descr_status(descr->hwdescr); if (status == SPIDER_NET_DESCR_NOT_IN_USE) return; spin_lock_irqsave(&chain->lock, flags); descr = chain->head; status = spider_net_get_descr_status(descr->hwdescr); for (i=0; i<chain->num_desc; i++) { if (status != SPIDER_NET_DESCR_CARDOWNED) break; descr = descr->next; status = spider_net_get_descr_status(descr->hwdescr); } chain->head = descr; spin_unlock_irqrestore(&chain->lock, flags); } static int spider_net_resync_tail_ptr(struct spider_net_card *card) { struct spider_net_descr_chain *chain = &card->rx_chain; struct spider_net_descr *descr; int i, status; /* Advance tail pointer past any empty and reaped descrs */ descr = chain->tail; status = spider_net_get_descr_status(descr->hwdescr); for (i=0; i<chain->num_desc; i++) { if ((status != SPIDER_NET_DESCR_CARDOWNED) && (status != SPIDER_NET_DESCR_NOT_IN_USE)) break; descr = descr->next; status = spider_net_get_descr_status(descr->hwdescr); } chain->tail = descr; if ((i == chain->num_desc) || (i == 0)) return 1; return 0; } /** * spider_net_decode_one_descr - processes an RX descriptor * @card: card structure * * Returns 1 if a packet has been sent to the stack, otherwise 0. * * Processes an RX descriptor by iommu-unmapping the data buffer * and passing the packet up to the stack. This function is called * in softirq context, e.g. either bottom half from interrupt or * NAPI polling context. */ static int spider_net_decode_one_descr(struct spider_net_card *card) { struct net_device *dev = card->netdev; struct spider_net_descr_chain *chain = &card->rx_chain; struct spider_net_descr *descr = chain->tail; struct spider_net_hw_descr *hwdescr = descr->hwdescr; u32 hw_buf_addr; int status; status = spider_net_get_descr_status(hwdescr); /* Nothing in the descriptor, or ring must be empty */ if ((status == SPIDER_NET_DESCR_CARDOWNED) || (status == SPIDER_NET_DESCR_NOT_IN_USE)) return 0; /* descriptor definitively used -- move on tail */ chain->tail = descr->next; /* unmap descriptor */ hw_buf_addr = hwdescr->buf_addr; hwdescr->buf_addr = 0xffffffff; pci_unmap_single(card->pdev, hw_buf_addr, SPIDER_NET_MAX_FRAME, PCI_DMA_FROMDEVICE); if ( (status == SPIDER_NET_DESCR_RESPONSE_ERROR) || (status == SPIDER_NET_DESCR_PROTECTION_ERROR) || (status == SPIDER_NET_DESCR_FORCE_END) ) { if (netif_msg_rx_err(card)) dev_err(&dev->dev, "dropping RX descriptor with state %d\n", status); dev->stats.rx_dropped++; goto bad_desc; } if ( (status != SPIDER_NET_DESCR_COMPLETE) && (status != SPIDER_NET_DESCR_FRAME_END) ) { if (netif_msg_rx_err(card)) dev_err(&card->netdev->dev, "RX descriptor with unknown state %d\n", status); card->spider_stats.rx_desc_unk_state++; goto bad_desc; } /* The cases we'll throw away the packet immediately */ if (hwdescr->data_error & SPIDER_NET_DESTROY_RX_FLAGS) { if (netif_msg_rx_err(card)) dev_err(&card->netdev->dev, "error in received descriptor found, " "data_status=x%08x, data_error=x%08x\n", hwdescr->data_status, hwdescr->data_error); goto bad_desc; } if (hwdescr->dmac_cmd_status & SPIDER_NET_DESCR_BAD_STATUS) { dev_err(&card->netdev->dev, "bad status, cmd_status=x%08x\n", hwdescr->dmac_cmd_status); pr_err("buf_addr=x%08x\n", hw_buf_addr); pr_err("buf_size=x%08x\n", hwdescr->buf_size); pr_err("next_descr_addr=x%08x\n", hwdescr->next_descr_addr); pr_err("result_size=x%08x\n", hwdescr->result_size); pr_err("valid_size=x%08x\n", hwdescr->valid_size); pr_err("data_status=x%08x\n", hwdescr->data_status); pr_err("data_error=x%08x\n", hwdescr->data_error); pr_err("which=%ld\n", descr - card->rx_chain.ring); card->spider_stats.rx_desc_error++; goto bad_desc; } /* Ok, we've got a packet in descr */ spider_net_pass_skb_up(descr, card); descr->skb = NULL; hwdescr->dmac_cmd_status = SPIDER_NET_DESCR_NOT_IN_USE; return 1; bad_desc: if (netif_msg_rx_err(card)) show_rx_chain(card); dev_kfree_skb_irq(descr->skb); descr->skb = NULL; hwdescr->dmac_cmd_status = SPIDER_NET_DESCR_NOT_IN_USE; return 0; } /** * spider_net_poll - NAPI poll function called by the stack to return packets * @netdev: interface device structure * @budget: number of packets we can pass to the stack at most * * returns 0 if no more packets available to the driver/stack. Returns 1, * if the quota is exceeded, but the driver has still packets. * * spider_net_poll returns all packets from the rx descriptors to the stack * (using netif_receive_skb). If all/enough packets are up, the driver * reenables interrupts and returns 0. If not, 1 is returned. */ static int spider_net_poll(struct napi_struct *napi, int budget) { struct spider_net_card *card = container_of(napi, struct spider_net_card, napi); int packets_done = 0; while (packets_done < budget) { if (!spider_net_decode_one_descr(card)) break; packets_done++; } if ((packets_done == 0) && (card->num_rx_ints != 0)) { if (!spider_net_resync_tail_ptr(card)) packets_done = budget; spider_net_resync_head_ptr(card); } card->num_rx_ints = 0; spider_net_refill_rx_chain(card); spider_net_enable_rxdmac(card); spider_net_cleanup_tx_ring(&card->tx_timer); /* if all packets are in the stack, enable interrupts and return 0 */ /* if not, return 1 */ if (packets_done < budget) { napi_complete_done(napi, packets_done); spider_net_rx_irq_on(card); card->ignore_rx_ramfull = 0; } return packets_done; } /** * spider_net_set_mac - sets the MAC of an interface * @netdev: interface device structure * @ptr: pointer to new MAC address * * Returns 0 on success, <0 on failure. Currently, we don't support this * and will always return EOPNOTSUPP. */ static int spider_net_set_mac(struct net_device *netdev, void *p) { struct spider_net_card *card = netdev_priv(netdev); u32 macl, macu, regvalue; struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(netdev->dev_addr, addr->sa_data, ETH_ALEN); /* switch off GMACTPE and GMACRPE */ regvalue = spider_net_read_reg(card, SPIDER_NET_GMACOPEMD); regvalue &= ~((1 << 5) | (1 << 6)); spider_net_write_reg(card, SPIDER_NET_GMACOPEMD, regvalue); /* write mac */ macu = (netdev->dev_addr[0]<<24) + (netdev->dev_addr[1]<<16) + (netdev->dev_addr[2]<<8) + (netdev->dev_addr[3]); macl = (netdev->dev_addr[4]<<8) + (netdev->dev_addr[5]); spider_net_write_reg(card, SPIDER_NET_GMACUNIMACU, macu); spider_net_write_reg(card, SPIDER_NET_GMACUNIMACL, macl); /* switch GMACTPE and GMACRPE back on */ regvalue = spider_net_read_reg(card, SPIDER_NET_GMACOPEMD); regvalue |= ((1 << 5) | (1 << 6)); spider_net_write_reg(card, SPIDER_NET_GMACOPEMD, regvalue); spider_net_set_promisc(card); return 0; } /** * spider_net_link_reset * @netdev: net device structure * * This is called when the PHY_LINK signal is asserted. For the blade this is * not connected so we should never get here. * */ static void spider_net_link_reset(struct net_device *netdev) { struct spider_net_card *card = netdev_priv(netdev); del_timer_sync(&card->aneg_timer); /* clear interrupt, block further interrupts */ spider_net_write_reg(card, SPIDER_NET_GMACST, spider_net_read_reg(card, SPIDER_NET_GMACST)); spider_net_write_reg(card, SPIDER_NET_GMACINTEN, 0); /* reset phy and setup aneg */ card->aneg_count = 0; card->medium = BCM54XX_COPPER; spider_net_setup_aneg(card); mod_timer(&card->aneg_timer, jiffies + SPIDER_NET_ANEG_TIMER); } /** * spider_net_handle_error_irq - handles errors raised by an interrupt * @card: card structure * @status_reg: interrupt status register 0 (GHIINT0STS) * * spider_net_handle_error_irq treats or ignores all error conditions * found when an interrupt is presented */ static void spider_net_handle_error_irq(struct spider_net_card *card, u32 status_reg, u32 error_reg1, u32 error_reg2) { u32 i; int show_error = 1; /* check GHIINT0STS ************************************/ if (status_reg) for (i = 0; i < 32; i++) if (status_reg & (1<<i)) switch (i) { /* let error_reg1 and error_reg2 evaluation decide, what to do case SPIDER_NET_PHYINT: case SPIDER_NET_GMAC2INT: case SPIDER_NET_GMAC1INT: case SPIDER_NET_GFIFOINT: case SPIDER_NET_DMACINT: case SPIDER_NET_GSYSINT: break; */ case SPIDER_NET_GIPSINT: show_error = 0; break; case SPIDER_NET_GPWOPCMPINT: /* PHY write operation completed */ show_error = 0; break; case SPIDER_NET_GPROPCMPINT: /* PHY read operation completed */ /* we don't use semaphores, as we poll for the completion * of the read operation in spider_net_read_phy. Should take * about 50 us */ show_error = 0; break; case SPIDER_NET_GPWFFINT: /* PHY command queue full */ if (netif_msg_intr(card)) dev_err(&card->netdev->dev, "PHY write queue full\n"); show_error = 0; break; /* case SPIDER_NET_GRMDADRINT: not used. print a message */ /* case SPIDER_NET_GRMARPINT: not used. print a message */ /* case SPIDER_NET_GRMMPINT: not used. print a message */ case SPIDER_NET_GDTDEN0INT: /* someone has set TX_DMA_EN to 0 */ show_error = 0; break; case SPIDER_NET_GDDDEN0INT: /* fallthrough */ case SPIDER_NET_GDCDEN0INT: /* fallthrough */ case SPIDER_NET_GDBDEN0INT: /* fallthrough */ case SPIDER_NET_GDADEN0INT: /* someone has set RX_DMA_EN to 0 */ show_error = 0; break; /* RX interrupts */ case SPIDER_NET_GDDFDCINT: case SPIDER_NET_GDCFDCINT: case SPIDER_NET_GDBFDCINT: case SPIDER_NET_GDAFDCINT: /* case SPIDER_NET_GDNMINT: not used. print a message */ /* case SPIDER_NET_GCNMINT: not used. print a message */ /* case SPIDER_NET_GBNMINT: not used. print a message */ /* case SPIDER_NET_GANMINT: not used. print a message */ /* case SPIDER_NET_GRFNMINT: not used. print a message */ show_error = 0; break; /* TX interrupts */ case SPIDER_NET_GDTFDCINT: show_error = 0; break; case SPIDER_NET_GTTEDINT: show_error = 0; break; case SPIDER_NET_GDTDCEINT: /* chain end. If a descriptor should be sent, kick off * tx dma if (card->tx_chain.tail != card->tx_chain.head) spider_net_kick_tx_dma(card); */ show_error = 0; break; /* case SPIDER_NET_G1TMCNTINT: not used. print a message */ /* case SPIDER_NET_GFREECNTINT: not used. print a message */ } /* check GHIINT1STS ************************************/ if (error_reg1) for (i = 0; i < 32; i++) if (error_reg1 & (1<<i)) switch (i) { case SPIDER_NET_GTMFLLINT: /* TX RAM full may happen on a usual case. * Logging is not needed. */ show_error = 0; break; case SPIDER_NET_GRFDFLLINT: /* fallthrough */ case SPIDER_NET_GRFCFLLINT: /* fallthrough */ case SPIDER_NET_GRFBFLLINT: /* fallthrough */ case SPIDER_NET_GRFAFLLINT: /* fallthrough */ case SPIDER_NET_GRMFLLINT: /* Could happen when rx chain is full */ if (card->ignore_rx_ramfull == 0) { card->ignore_rx_ramfull = 1; spider_net_resync_head_ptr(card); spider_net_refill_rx_chain(card); spider_net_enable_rxdmac(card); card->num_rx_ints ++; napi_schedule(&card->napi); } show_error = 0; break; /* case SPIDER_NET_GTMSHTINT: problem, print a message */ case SPIDER_NET_GDTINVDINT: /* allrighty. tx from previous descr ok */ show_error = 0; break; /* chain end */ case SPIDER_NET_GDDDCEINT: /* fallthrough */ case SPIDER_NET_GDCDCEINT: /* fallthrough */ case SPIDER_NET_GDBDCEINT: /* fallthrough */ case SPIDER_NET_GDADCEINT: spider_net_resync_head_ptr(card); spider_net_refill_rx_chain(card); spider_net_enable_rxdmac(card); card->num_rx_ints ++; napi_schedule(&card->napi); show_error = 0; break; /* invalid descriptor */ case SPIDER_NET_GDDINVDINT: /* fallthrough */ case SPIDER_NET_GDCINVDINT: /* fallthrough */ case SPIDER_NET_GDBINVDINT: /* fallthrough */ case SPIDER_NET_GDAINVDINT: /* Could happen when rx chain is full */ spider_net_resync_head_ptr(card); spider_net_refill_rx_chain(card); spider_net_enable_rxdmac(card); card->num_rx_ints ++; napi_schedule(&card->napi); show_error = 0; break; /* case SPIDER_NET_GDTRSERINT: problem, print a message */ /* case SPIDER_NET_GDDRSERINT: problem, print a message */ /* case SPIDER_NET_GDCRSERINT: problem, print a message */ /* case SPIDER_NET_GDBRSERINT: problem, print a message */ /* case SPIDER_NET_GDARSERINT: problem, print a message */ /* case SPIDER_NET_GDSERINT: problem, print a message */ /* case SPIDER_NET_GDTPTERINT: problem, print a message */ /* case SPIDER_NET_GDDPTERINT: problem, print a message */ /* case SPIDER_NET_GDCPTERINT: problem, print a message */ /* case SPIDER_NET_GDBPTERINT: problem, print a message */ /* case SPIDER_NET_GDAPTERINT: problem, print a message */ default: show_error = 1; break; } /* check GHIINT2STS ************************************/ if (error_reg2) for (i = 0; i < 32; i++) if (error_reg2 & (1<<i)) switch (i) { /* there is nothing we can (want to) do at this time. Log a * message, we can switch on and off the specific values later on case SPIDER_NET_GPROPERINT: case SPIDER_NET_GMCTCRSNGINT: case SPIDER_NET_GMCTLCOLINT: case SPIDER_NET_GMCTTMOTINT: case SPIDER_NET_GMCRCAERINT: case SPIDER_NET_GMCRCALERINT: case SPIDER_NET_GMCRALNERINT: case SPIDER_NET_GMCROVRINT: case SPIDER_NET_GMCRRNTINT: case SPIDER_NET_GMCRRXERINT: case SPIDER_NET_GTITCSERINT: case SPIDER_NET_GTIFMTERINT: case SPIDER_NET_GTIPKTRVKINT: case SPIDER_NET_GTISPINGINT: case SPIDER_NET_GTISADNGINT: case SPIDER_NET_GTISPDNGINT: case SPIDER_NET_GRIFMTERINT: case SPIDER_NET_GRIPKTRVKINT: case SPIDER_NET_GRISPINGINT: case SPIDER_NET_GRISADNGINT: case SPIDER_NET_GRISPDNGINT: break; */ default: break; } if ((show_error) && (netif_msg_intr(card)) && net_ratelimit()) dev_err(&card->netdev->dev, "Error interrupt, GHIINT0STS = 0x%08x, " "GHIINT1STS = 0x%08x, GHIINT2STS = 0x%08x\n", status_reg, error_reg1, error_reg2); /* clear interrupt sources */ spider_net_write_reg(card, SPIDER_NET_GHIINT1STS, error_reg1); spider_net_write_reg(card, SPIDER_NET_GHIINT2STS, error_reg2); } /** * spider_net_interrupt - interrupt handler for spider_net * @irq: interrupt number * @ptr: pointer to net_device * * returns IRQ_HANDLED, if interrupt was for driver, or IRQ_NONE, if no * interrupt found raised by card. * * This is the interrupt handler, that turns off * interrupts for this device and makes the stack poll the driver */ static irqreturn_t spider_net_interrupt(int irq, void *ptr) { struct net_device *netdev = ptr; struct spider_net_card *card = netdev_priv(netdev); u32 status_reg, error_reg1, error_reg2; status_reg = spider_net_read_reg(card, SPIDER_NET_GHIINT0STS); error_reg1 = spider_net_read_reg(card, SPIDER_NET_GHIINT1STS); error_reg2 = spider_net_read_reg(card, SPIDER_NET_GHIINT2STS); if (!(status_reg & SPIDER_NET_INT0_MASK_VALUE) && !(error_reg1 & SPIDER_NET_INT1_MASK_VALUE) && !(error_reg2 & SPIDER_NET_INT2_MASK_VALUE)) return IRQ_NONE; if (status_reg & SPIDER_NET_RXINT ) { spider_net_rx_irq_off(card); napi_schedule(&card->napi); card->num_rx_ints ++; } if (status_reg & SPIDER_NET_TXINT) napi_schedule(&card->napi); if (status_reg & SPIDER_NET_LINKINT) spider_net_link_reset(netdev); if (status_reg & SPIDER_NET_ERRINT ) spider_net_handle_error_irq(card, status_reg, error_reg1, error_reg2); /* clear interrupt sources */ spider_net_write_reg(card, SPIDER_NET_GHIINT0STS, status_reg); return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER /** * spider_net_poll_controller - artificial interrupt for netconsole etc. * @netdev: interface device structure * * see Documentation/networking/netconsole.txt */ static void spider_net_poll_controller(struct net_device *netdev) { disable_irq(netdev->irq); spider_net_interrupt(netdev->irq, netdev); enable_irq(netdev->irq); } #endif /* CONFIG_NET_POLL_CONTROLLER */ /** * spider_net_enable_interrupts - enable interrupts * @card: card structure * * spider_net_enable_interrupt enables several interrupts */ static void spider_net_enable_interrupts(struct spider_net_card *card) { spider_net_write_reg(card, SPIDER_NET_GHIINT0MSK, SPIDER_NET_INT0_MASK_VALUE); spider_net_write_reg(card, SPIDER_NET_GHIINT1MSK, SPIDER_NET_INT1_MASK_VALUE); spider_net_write_reg(card, SPIDER_NET_GHIINT2MSK, SPIDER_NET_INT2_MASK_VALUE); } /** * spider_net_disable_interrupts - disable interrupts * @card: card structure * * spider_net_disable_interrupts disables all the interrupts */ static void spider_net_disable_interrupts(struct spider_net_card *card) { spider_net_write_reg(card, SPIDER_NET_GHIINT0MSK, 0); spider_net_write_reg(card, SPIDER_NET_GHIINT1MSK, 0); spider_net_write_reg(card, SPIDER_NET_GHIINT2MSK, 0); spider_net_write_reg(card, SPIDER_NET_GMACINTEN, 0); } /** * spider_net_init_card - initializes the card * @card: card structure * * spider_net_init_card initializes the card so that other registers can * be used */ static void spider_net_init_card(struct spider_net_card *card) { spider_net_write_reg(card, SPIDER_NET_CKRCTRL, SPIDER_NET_CKRCTRL_STOP_VALUE); spider_net_write_reg(card, SPIDER_NET_CKRCTRL, SPIDER_NET_CKRCTRL_RUN_VALUE); /* trigger ETOMOD signal */ spider_net_write_reg(card, SPIDER_NET_GMACOPEMD, spider_net_read_reg(card, SPIDER_NET_GMACOPEMD) | 0x4); spider_net_disable_interrupts(card); } /** * spider_net_enable_card - enables the card by setting all kinds of regs * @card: card structure * * spider_net_enable_card sets a lot of SMMIO registers to enable the device */ static void spider_net_enable_card(struct spider_net_card *card) { int i; /* the following array consists of (register),(value) pairs * that are set in this function. A register of 0 ends the list */ u32 regs[][2] = { { SPIDER_NET_GRESUMINTNUM, 0 }, { SPIDER_NET_GREINTNUM, 0 }, /* set interrupt frame number registers */ /* clear the single DMA engine registers first */ { SPIDER_NET_GFAFRMNUM, SPIDER_NET_GFXFRAMES_VALUE }, { SPIDER_NET_GFBFRMNUM, SPIDER_NET_GFXFRAMES_VALUE }, { SPIDER_NET_GFCFRMNUM, SPIDER_NET_GFXFRAMES_VALUE }, { SPIDER_NET_GFDFRMNUM, SPIDER_NET_GFXFRAMES_VALUE }, /* then set, what we really need */ { SPIDER_NET_GFFRMNUM, SPIDER_NET_FRAMENUM_VALUE }, /* timer counter registers and stuff */ { SPIDER_NET_GFREECNNUM, 0 }, { SPIDER_NET_GONETIMENUM, 0 }, { SPIDER_NET_GTOUTFRMNUM, 0 }, /* RX mode setting */ { SPIDER_NET_GRXMDSET, SPIDER_NET_RXMODE_VALUE }, /* TX mode setting */ { SPIDER_NET_GTXMDSET, SPIDER_NET_TXMODE_VALUE }, /* IPSEC mode setting */ { SPIDER_NET_GIPSECINIT, SPIDER_NET_IPSECINIT_VALUE }, { SPIDER_NET_GFTRESTRT, SPIDER_NET_RESTART_VALUE }, { SPIDER_NET_GMRWOLCTRL, 0 }, { SPIDER_NET_GTESTMD, 0x10000000 }, { SPIDER_NET_GTTQMSK, 0x00400040 }, { SPIDER_NET_GMACINTEN, 0 }, /* flow control stuff */ { SPIDER_NET_GMACAPAUSE, SPIDER_NET_MACAPAUSE_VALUE }, { SPIDER_NET_GMACTXPAUSE, SPIDER_NET_TXPAUSE_VALUE }, { SPIDER_NET_GMACBSTLMT, SPIDER_NET_BURSTLMT_VALUE }, { 0, 0} }; i = 0; while (regs[i][0]) { spider_net_write_reg(card, regs[i][0], regs[i][1]); i++; } /* clear unicast filter table entries 1 to 14 */ for (i = 1; i <= 14; i++) { spider_net_write_reg(card, SPIDER_NET_GMRUAFILnR + i * 8, 0x00080000); spider_net_write_reg(card, SPIDER_NET_GMRUAFILnR + i * 8 + 4, 0x00000000); } spider_net_write_reg(card, SPIDER_NET_GMRUA0FIL15R, 0x08080000); spider_net_write_reg(card, SPIDER_NET_ECMODE, SPIDER_NET_ECMODE_VALUE); /* set chain tail address for RX chains and * enable DMA */ spider_net_enable_rxchtails(card); spider_net_enable_rxdmac(card); spider_net_write_reg(card, SPIDER_NET_GRXDMAEN, SPIDER_NET_WOL_VALUE); spider_net_write_reg(card, SPIDER_NET_GMACLENLMT, SPIDER_NET_LENLMT_VALUE); spider_net_write_reg(card, SPIDER_NET_GMACOPEMD, SPIDER_NET_OPMODE_VALUE); spider_net_write_reg(card, SPIDER_NET_GDTDMACCNTR, SPIDER_NET_GDTBSTA); } /** * spider_net_download_firmware - loads firmware into the adapter * @card: card structure * @firmware_ptr: pointer to firmware data * * spider_net_download_firmware loads the firmware data into the * adapter. It assumes the length etc. to be allright. */ static int spider_net_download_firmware(struct spider_net_card *card, const void *firmware_ptr) { int sequencer, i; const u32 *fw_ptr = firmware_ptr; /* stop sequencers */ spider_net_write_reg(card, SPIDER_NET_GSINIT, SPIDER_NET_STOP_SEQ_VALUE); for (sequencer = 0; sequencer < SPIDER_NET_FIRMWARE_SEQS; sequencer++) { spider_net_write_reg(card, SPIDER_NET_GSnPRGADR + sequencer * 8, 0); for (i = 0; i < SPIDER_NET_FIRMWARE_SEQWORDS; i++) { spider_net_write_reg(card, SPIDER_NET_GSnPRGDAT + sequencer * 8, *fw_ptr); fw_ptr++; } } if (spider_net_read_reg(card, SPIDER_NET_GSINIT)) return -EIO; spider_net_write_reg(card, SPIDER_NET_GSINIT, SPIDER_NET_RUN_SEQ_VALUE); return 0; } /** * spider_net_init_firmware - reads in firmware parts * @card: card structure * * Returns 0 on success, <0 on failure * * spider_net_init_firmware opens the sequencer firmware and does some basic * checks. This function opens and releases the firmware structure. A call * to download the firmware is performed before the release. * * Firmware format * =============== * spider_fw.bin is expected to be a file containing 6*1024*4 bytes, 4k being * the program for each sequencer. Use the command * tail -q -n +2 Seq_code1_0x088.txt Seq_code2_0x090.txt \ * Seq_code3_0x098.txt Seq_code4_0x0A0.txt Seq_code5_0x0A8.txt \ * Seq_code6_0x0B0.txt | xxd -r -p -c4 > spider_fw.bin * * to generate spider_fw.bin, if you have sequencer programs with something * like the following contents for each sequencer: * <ONE LINE COMMENT> * <FIRST 4-BYTES-WORD FOR SEQUENCER> * <SECOND 4-BYTES-WORD FOR SEQUENCER> * ... * <1024th 4-BYTES-WORD FOR SEQUENCER> */ static int spider_net_init_firmware(struct spider_net_card *card) { struct firmware *firmware = NULL; struct device_node *dn; const u8 *fw_prop = NULL; int err = -ENOENT; int fw_size; if (request_firmware((const struct firmware **)&firmware, SPIDER_NET_FIRMWARE_NAME, &card->pdev->dev) == 0) { if ( (firmware->size != SPIDER_NET_FIRMWARE_LEN) && netif_msg_probe(card) ) { dev_err(&card->netdev->dev, "Incorrect size of spidernet firmware in " \ "filesystem. Looking in host firmware...\n"); goto try_host_fw; } err = spider_net_download_firmware(card, firmware->data); release_firmware(firmware); if (err) goto try_host_fw; goto done; } try_host_fw: dn = pci_device_to_OF_node(card->pdev); if (!dn) goto out_err; fw_prop = of_get_property(dn, "firmware", &fw_size); if (!fw_prop) goto out_err; if ( (fw_size != SPIDER_NET_FIRMWARE_LEN) && netif_msg_probe(card) ) { dev_err(&card->netdev->dev, "Incorrect size of spidernet firmware in host firmware\n"); goto done; } err = spider_net_download_firmware(card, fw_prop); done: return err; out_err: if (netif_msg_probe(card)) dev_err(&card->netdev->dev, "Couldn't find spidernet firmware in filesystem " \ "or host firmware\n"); return err; } /** * spider_net_open - called upon ifonfig up * @netdev: interface device structure * * returns 0 on success, <0 on failure * * spider_net_open allocates all the descriptors and memory needed for * operation, sets up multicast list and enables interrupts */ int spider_net_open(struct net_device *netdev) { struct spider_net_card *card = netdev_priv(netdev); int result; result = spider_net_init_firmware(card); if (result) goto init_firmware_failed; /* start probing with copper */ card->aneg_count = 0; card->medium = BCM54XX_COPPER; spider_net_setup_aneg(card); if (card->phy.def->phy_id) mod_timer(&card->aneg_timer, jiffies + SPIDER_NET_ANEG_TIMER); result = spider_net_init_chain(card, &card->tx_chain); if (result) goto alloc_tx_failed; card->low_watermark = NULL; result = spider_net_init_chain(card, &card->rx_chain); if (result) goto alloc_rx_failed; /* Allocate rx skbs */ result = spider_net_alloc_rx_skbs(card); if (result) goto alloc_skbs_failed; spider_net_set_multi(netdev); /* further enhancement: setup hw vlan, if needed */ result = -EBUSY; if (request_irq(netdev->irq, spider_net_interrupt, IRQF_SHARED, netdev->name, netdev)) goto register_int_failed; spider_net_enable_card(card); netif_start_queue(netdev); netif_carrier_on(netdev); napi_enable(&card->napi); spider_net_enable_interrupts(card); return 0; register_int_failed: spider_net_free_rx_chain_contents(card); alloc_skbs_failed: spider_net_free_chain(card, &card->rx_chain); alloc_rx_failed: spider_net_free_chain(card, &card->tx_chain); alloc_tx_failed: del_timer_sync(&card->aneg_timer); init_firmware_failed: return result; } /** * spider_net_link_phy * @data: used for pointer to card structure * */ static void spider_net_link_phy(struct timer_list *t) { struct spider_net_card *card = from_timer(card, t, aneg_timer); struct mii_phy *phy = &card->phy; /* if link didn't come up after SPIDER_NET_ANEG_TIMEOUT tries, setup phy again */ if (card->aneg_count > SPIDER_NET_ANEG_TIMEOUT) { pr_debug("%s: link is down trying to bring it up\n", card->netdev->name); switch (card->medium) { case BCM54XX_COPPER: /* enable fiber with autonegotiation first */ if (phy->def->ops->enable_fiber) phy->def->ops->enable_fiber(phy, 1); card->medium = BCM54XX_FIBER; break; case BCM54XX_FIBER: /* fiber didn't come up, try to disable fiber autoneg */ if (phy->def->ops->enable_fiber) phy->def->ops->enable_fiber(phy, 0); card->medium = BCM54XX_UNKNOWN; break; case BCM54XX_UNKNOWN: /* copper, fiber with and without failed, * retry from beginning */ spider_net_setup_aneg(card); card->medium = BCM54XX_COPPER; break; } card->aneg_count = 0; mod_timer(&card->aneg_timer, jiffies + SPIDER_NET_ANEG_TIMER); return; } /* link still not up, try again later */ if (!(phy->def->ops->poll_link(phy))) { card->aneg_count++; mod_timer(&card->aneg_timer, jiffies + SPIDER_NET_ANEG_TIMER); return; } /* link came up, get abilities */ phy->def->ops->read_link(phy); spider_net_write_reg(card, SPIDER_NET_GMACST, spider_net_read_reg(card, SPIDER_NET_GMACST)); spider_net_write_reg(card, SPIDER_NET_GMACINTEN, 0x4); if (phy->speed == 1000) spider_net_write_reg(card, SPIDER_NET_GMACMODE, 0x00000001); else spider_net_write_reg(card, SPIDER_NET_GMACMODE, 0); card->aneg_count = 0; pr_info("%s: link up, %i Mbps, %s-duplex %sautoneg.\n", card->netdev->name, phy->speed, phy->duplex == 1 ? "Full" : "Half", phy->autoneg == 1 ? "" : "no "); } /** * spider_net_setup_phy - setup PHY * @card: card structure * * returns 0 on success, <0 on failure * * spider_net_setup_phy is used as part of spider_net_probe. **/ static int spider_net_setup_phy(struct spider_net_card *card) { struct mii_phy *phy = &card->phy; spider_net_write_reg(card, SPIDER_NET_GDTDMASEL, SPIDER_NET_DMASEL_VALUE); spider_net_write_reg(card, SPIDER_NET_GPCCTRL, SPIDER_NET_PHY_CTRL_VALUE); phy->dev = card->netdev; phy->mdio_read = spider_net_read_phy; phy->mdio_write = spider_net_write_phy; for (phy->mii_id = 1; phy->mii_id <= 31; phy->mii_id++) { unsigned short id; id = spider_net_read_phy(card->netdev, phy->mii_id, MII_BMSR); if (id != 0x0000 && id != 0xffff) { if (!sungem_phy_probe(phy, phy->mii_id)) { pr_info("Found %s.\n", phy->def->name); break; } } } return 0; } /** * spider_net_workaround_rxramfull - work around firmware bug * @card: card structure * * no return value **/ static void spider_net_workaround_rxramfull(struct spider_net_card *card) { int i, sequencer = 0; /* cancel reset */ spider_net_write_reg(card, SPIDER_NET_CKRCTRL, SPIDER_NET_CKRCTRL_RUN_VALUE); /* empty sequencer data */ for (sequencer = 0; sequencer < SPIDER_NET_FIRMWARE_SEQS; sequencer++) { spider_net_write_reg(card, SPIDER_NET_GSnPRGADR + sequencer * 8, 0x0); for (i = 0; i < SPIDER_NET_FIRMWARE_SEQWORDS; i++) { spider_net_write_reg(card, SPIDER_NET_GSnPRGDAT + sequencer * 8, 0x0); } } /* set sequencer operation */ spider_net_write_reg(card, SPIDER_NET_GSINIT, 0x000000fe); /* reset */ spider_net_write_reg(card, SPIDER_NET_CKRCTRL, SPIDER_NET_CKRCTRL_STOP_VALUE); } /** * spider_net_stop - called upon ifconfig down * @netdev: interface device structure * * always returns 0 */ int spider_net_stop(struct net_device *netdev) { struct spider_net_card *card = netdev_priv(netdev); napi_disable(&card->napi); netif_carrier_off(netdev); netif_stop_queue(netdev); del_timer_sync(&card->tx_timer); del_timer_sync(&card->aneg_timer); spider_net_disable_interrupts(card); free_irq(netdev->irq, netdev); spider_net_write_reg(card, SPIDER_NET_GDTDMACCNTR, SPIDER_NET_DMA_TX_FEND_VALUE); /* turn off DMA, force end */ spider_net_disable_rxdmac(card); /* release chains */ spider_net_release_tx_chain(card, 1); spider_net_free_rx_chain_contents(card); spider_net_free_chain(card, &card->tx_chain); spider_net_free_chain(card, &card->rx_chain); return 0; } /** * spider_net_tx_timeout_task - task scheduled by the watchdog timeout * function (to be called not under interrupt status) * @data: data, is interface device structure * * called as task when tx hangs, resets interface (if interface is up) */ static void spider_net_tx_timeout_task(struct work_struct *work) { struct spider_net_card *card = container_of(work, struct spider_net_card, tx_timeout_task); struct net_device *netdev = card->netdev; if (!(netdev->flags & IFF_UP)) goto out; netif_device_detach(netdev); spider_net_stop(netdev); spider_net_workaround_rxramfull(card); spider_net_init_card(card); if (spider_net_setup_phy(card)) goto out; spider_net_open(netdev); spider_net_kick_tx_dma(card); netif_device_attach(netdev); out: atomic_dec(&card->tx_timeout_task_counter); } /** * spider_net_tx_timeout - called when the tx timeout watchdog kicks in. * @netdev: interface device structure * * called, if tx hangs. Schedules a task that resets the interface */ static void spider_net_tx_timeout(struct net_device *netdev, unsigned int txqueue) { struct spider_net_card *card; card = netdev_priv(netdev); atomic_inc(&card->tx_timeout_task_counter); if (netdev->flags & IFF_UP) schedule_work(&card->tx_timeout_task); else atomic_dec(&card->tx_timeout_task_counter); card->spider_stats.tx_timeouts++; } static const struct net_device_ops spider_net_ops = { .ndo_open = spider_net_open, .ndo_stop = spider_net_stop, .ndo_start_xmit = spider_net_xmit, .ndo_set_rx_mode = spider_net_set_multi, .ndo_set_mac_address = spider_net_set_mac, .ndo_do_ioctl = spider_net_do_ioctl, .ndo_tx_timeout = spider_net_tx_timeout, .ndo_validate_addr = eth_validate_addr, /* HW VLAN */ #ifdef CONFIG_NET_POLL_CONTROLLER /* poll controller */ .ndo_poll_controller = spider_net_poll_controller, #endif /* CONFIG_NET_POLL_CONTROLLER */ }; /** * spider_net_setup_netdev_ops - initialization of net_device operations * @netdev: net_device structure * * fills out function pointers in the net_device structure */ static void spider_net_setup_netdev_ops(struct net_device *netdev) { netdev->netdev_ops = &spider_net_ops; netdev->watchdog_timeo = SPIDER_NET_WATCHDOG_TIMEOUT; /* ethtool ops */ netdev->ethtool_ops = &spider_net_ethtool_ops; } /** * spider_net_setup_netdev - initialization of net_device * @card: card structure * * Returns 0 on success or <0 on failure * * spider_net_setup_netdev initializes the net_device structure **/ static int spider_net_setup_netdev(struct spider_net_card *card) { int result; struct net_device *netdev = card->netdev; struct device_node *dn; struct sockaddr addr; const u8 *mac; SET_NETDEV_DEV(netdev, &card->pdev->dev); pci_set_drvdata(card->pdev, netdev); timer_setup(&card->tx_timer, spider_net_cleanup_tx_ring, 0); netdev->irq = card->pdev->irq; card->aneg_count = 0; timer_setup(&card->aneg_timer, spider_net_link_phy, 0); netif_napi_add(netdev, &card->napi, spider_net_poll, SPIDER_NET_NAPI_WEIGHT); spider_net_setup_netdev_ops(netdev); netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM; if (SPIDER_NET_RX_CSUM_DEFAULT) netdev->features |= NETIF_F_RXCSUM; netdev->features |= NETIF_F_IP_CSUM | NETIF_F_LLTX; /* some time: NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | * NETIF_F_HW_VLAN_CTAG_FILTER */ /* MTU range: 64 - 2294 */ netdev->min_mtu = SPIDER_NET_MIN_MTU; netdev->max_mtu = SPIDER_NET_MAX_MTU; netdev->irq = card->pdev->irq; card->num_rx_ints = 0; card->ignore_rx_ramfull = 0; dn = pci_device_to_OF_node(card->pdev); if (!dn) return -EIO; mac = of_get_property(dn, "local-mac-address", NULL); if (!mac) return -EIO; memcpy(addr.sa_data, mac, ETH_ALEN); result = spider_net_set_mac(netdev, &addr); if ((result) && (netif_msg_probe(card))) dev_err(&card->netdev->dev, "Failed to set MAC address: %i\n", result); result = register_netdev(netdev); if (result) { if (netif_msg_probe(card)) dev_err(&card->netdev->dev, "Couldn't register net_device: %i\n", result); return result; } if (netif_msg_probe(card)) pr_info("Initialized device %s.\n", netdev->name); return 0; } /** * spider_net_alloc_card - allocates net_device and card structure * * returns the card structure or NULL in case of errors * * the card and net_device structures are linked to each other */ static struct spider_net_card * spider_net_alloc_card(void) { struct net_device *netdev; struct spider_net_card *card; netdev = alloc_etherdev(struct_size(card, darray, tx_descriptors + rx_descriptors)); if (!netdev) return NULL; card = netdev_priv(netdev); card->netdev = netdev; card->msg_enable = SPIDER_NET_DEFAULT_MSG; INIT_WORK(&card->tx_timeout_task, spider_net_tx_timeout_task); init_waitqueue_head(&card->waitq); atomic_set(&card->tx_timeout_task_counter, 0); card->rx_chain.num_desc = rx_descriptors; card->rx_chain.ring = card->darray; card->tx_chain.num_desc = tx_descriptors; card->tx_chain.ring = card->darray + rx_descriptors; return card; } /** * spider_net_undo_pci_setup - releases PCI ressources * @card: card structure * * spider_net_undo_pci_setup releases the mapped regions */ static void spider_net_undo_pci_setup(struct spider_net_card *card) { iounmap(card->regs); pci_release_regions(card->pdev); } /** * spider_net_setup_pci_dev - sets up the device in terms of PCI operations * @pdev: PCI device * * Returns the card structure or NULL if any errors occur * * spider_net_setup_pci_dev initializes pdev and together with the * functions called in spider_net_open configures the device so that * data can be transferred over it * The net_device structure is attached to the card structure, if the * function returns without error. **/ static struct spider_net_card * spider_net_setup_pci_dev(struct pci_dev *pdev) { struct spider_net_card *card; unsigned long mmio_start, mmio_len; if (pci_enable_device(pdev)) { dev_err(&pdev->dev, "Couldn't enable PCI device\n"); return NULL; } if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { dev_err(&pdev->dev, "Couldn't find proper PCI device base address.\n"); goto out_disable_dev; } if (pci_request_regions(pdev, spider_net_driver_name)) { dev_err(&pdev->dev, "Couldn't obtain PCI resources, aborting.\n"); goto out_disable_dev; } pci_set_master(pdev); card = spider_net_alloc_card(); if (!card) { dev_err(&pdev->dev, "Couldn't allocate net_device structure, aborting.\n"); goto out_release_regions; } card->pdev = pdev; /* fetch base address and length of first resource */ mmio_start = pci_resource_start(pdev, 0); mmio_len = pci_resource_len(pdev, 0); card->netdev->mem_start = mmio_start; card->netdev->mem_end = mmio_start + mmio_len; card->regs = ioremap(mmio_start, mmio_len); if (!card->regs) { dev_err(&pdev->dev, "Couldn't obtain PCI resources, aborting.\n"); goto out_release_regions; } return card; out_release_regions: pci_release_regions(pdev); out_disable_dev: pci_disable_device(pdev); return NULL; } /** * spider_net_probe - initialization of a device * @pdev: PCI device * @ent: entry in the device id list * * Returns 0 on success, <0 on failure * * spider_net_probe initializes pdev and registers a net_device * structure for it. After that, the device can be ifconfig'ed up **/ static int spider_net_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int err = -EIO; struct spider_net_card *card; card = spider_net_setup_pci_dev(pdev); if (!card) goto out; spider_net_workaround_rxramfull(card); spider_net_init_card(card); err = spider_net_setup_phy(card); if (err) goto out_undo_pci; err = spider_net_setup_netdev(card); if (err) goto out_undo_pci; return 0; out_undo_pci: spider_net_undo_pci_setup(card); free_netdev(card->netdev); out: return err; } /** * spider_net_remove - removal of a device * @pdev: PCI device * * Returns 0 on success, <0 on failure * * spider_net_remove is called to remove the device and unregisters the * net_device **/ static void spider_net_remove(struct pci_dev *pdev) { struct net_device *netdev; struct spider_net_card *card; netdev = pci_get_drvdata(pdev); card = netdev_priv(netdev); wait_event(card->waitq, atomic_read(&card->tx_timeout_task_counter) == 0); unregister_netdev(netdev); /* switch off card */ spider_net_write_reg(card, SPIDER_NET_CKRCTRL, SPIDER_NET_CKRCTRL_STOP_VALUE); spider_net_write_reg(card, SPIDER_NET_CKRCTRL, SPIDER_NET_CKRCTRL_RUN_VALUE); spider_net_undo_pci_setup(card); free_netdev(netdev); } static struct pci_driver spider_net_driver = { .name = spider_net_driver_name, .id_table = spider_net_pci_tbl, .probe = spider_net_probe, .remove = spider_net_remove }; /** * spider_net_init - init function when the driver is loaded * * spider_net_init registers the device driver */ static int __init spider_net_init(void) { printk(KERN_INFO "Spidernet version %s.\n", VERSION); if (rx_descriptors < SPIDER_NET_RX_DESCRIPTORS_MIN) { rx_descriptors = SPIDER_NET_RX_DESCRIPTORS_MIN; pr_info("adjusting rx descriptors to %i.\n", rx_descriptors); } if (rx_descriptors > SPIDER_NET_RX_DESCRIPTORS_MAX) { rx_descriptors = SPIDER_NET_RX_DESCRIPTORS_MAX; pr_info("adjusting rx descriptors to %i.\n", rx_descriptors); } if (tx_descriptors < SPIDER_NET_TX_DESCRIPTORS_MIN) { tx_descriptors = SPIDER_NET_TX_DESCRIPTORS_MIN; pr_info("adjusting tx descriptors to %i.\n", tx_descriptors); } if (tx_descriptors > SPIDER_NET_TX_DESCRIPTORS_MAX) { tx_descriptors = SPIDER_NET_TX_DESCRIPTORS_MAX; pr_info("adjusting tx descriptors to %i.\n", tx_descriptors); } return pci_register_driver(&spider_net_driver); } /** * spider_net_cleanup - exit function when driver is unloaded * * spider_net_cleanup unregisters the device driver */ static void __exit spider_net_cleanup(void) { pci_unregister_driver(&spider_net_driver); } module_init(spider_net_init); module_exit(spider_net_cleanup);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1