Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Grant C. Likely | 3508 | 47.55% | 4 | 4.49% |
Esben Haabendal | 2756 | 37.36% | 22 | 24.72% |
John Linn | 269 | 3.65% | 2 | 2.25% |
Brian Hill | 253 | 3.43% | 1 | 1.12% |
Denis Kirjanov | 228 | 3.09% | 4 | 4.49% |
Jiri Pirko | 104 | 1.41% | 4 | 4.49% |
Steven J. Magnani | 51 | 0.69% | 2 | 2.25% |
Ricardo Ribalda Delgado | 50 | 0.68% | 4 | 4.49% |
Philippe Reynes | 35 | 0.47% | 2 | 2.25% |
Richard Cochran | 18 | 0.24% | 2 | 2.25% |
Michal Simek | 9 | 0.12% | 4 | 4.49% |
Yue haibing | 9 | 0.12% | 2 | 2.25% |
Stephen Rothwell | 8 | 0.11% | 3 | 3.37% |
Eric Dumazet | 8 | 0.11% | 3 | 3.37% |
Dan Carpenter | 7 | 0.09% | 1 | 1.12% |
Jakub Kiciński | 7 | 0.09% | 1 | 1.12% |
Vasiliy Kulikov | 6 | 0.08% | 1 | 1.12% |
Julia Lawall | 6 | 0.08% | 2 | 2.25% |
Tobias Klauser | 5 | 0.07% | 1 | 1.12% |
Petr Štetiar | 4 | 0.05% | 2 | 2.25% |
Patrick McHardy | 4 | 0.05% | 2 | 2.25% |
Joe Perches | 3 | 0.04% | 2 | 2.25% |
Rob Herring | 3 | 0.04% | 1 | 1.12% |
Florian Westphal | 3 | 0.04% | 1 | 1.12% |
Tejun Heo | 3 | 0.04% | 1 | 1.12% |
Manuel Schölling | 3 | 0.04% | 1 | 1.12% |
Uwe Kleine-König | 2 | 0.03% | 2 | 2.25% |
Luis R. Rodriguez | 2 | 0.03% | 1 | 1.12% |
Jingoo Han | 2 | 0.03% | 1 | 1.12% |
Christoph Hellwig | 2 | 0.03% | 1 | 1.12% |
Fabian Frederick | 1 | 0.01% | 1 | 1.12% |
Thomas Meyer | 1 | 0.01% | 1 | 1.12% |
Thomas Gleixner | 1 | 0.01% | 1 | 1.12% |
Axel Lin | 1 | 0.01% | 1 | 1.12% |
Heiner Kallweit | 1 | 0.01% | 1 | 1.12% |
Michał Mirosław | 1 | 0.01% | 1 | 1.12% |
Ian Campbell | 1 | 0.01% | 1 | 1.12% |
Ben Hutchings | 1 | 0.01% | 1 | 1.12% |
Florian Fainelli | 1 | 0.01% | 1 | 1.12% |
Total | 7377 | 89 |
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for Xilinx TEMAC Ethernet device * * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net> * Copyright (c) 2008-2009 Secret Lab Technologies Ltd. * * This is a driver for the Xilinx ll_temac ipcore which is often used * in the Virtex and Spartan series of chips. * * Notes: * - The ll_temac hardware uses indirect access for many of the TEMAC * registers, include the MDIO bus. However, indirect access to MDIO * registers take considerably more clock cycles than to TEMAC registers. * MDIO accesses are long, so threads doing them should probably sleep * rather than busywait. However, since only one indirect access can be * in progress at any given time, that means that *all* indirect accesses * could end up sleeping (to wait for an MDIO access to complete). * Fortunately none of the indirect accesses are on the 'hot' path for tx * or rx, so this should be okay. * * TODO: * - Factor out locallink DMA code into separate driver * - Fix support for hardware checksumming. * - Testing. Lots and lots of testing. * */ #include <linux/delay.h> #include <linux/etherdevice.h> #include <linux/mii.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/netdevice.h> #include <linux/if_ether.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_irq.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include <linux/of_platform.h> #include <linux/of_address.h> #include <linux/skbuff.h> #include <linux/spinlock.h> #include <linux/tcp.h> /* needed for sizeof(tcphdr) */ #include <linux/udp.h> /* needed for sizeof(udphdr) */ #include <linux/phy.h> #include <linux/in.h> #include <linux/io.h> #include <linux/ip.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/workqueue.h> #include <linux/dma-mapping.h> #include <linux/processor.h> #include <linux/platform_data/xilinx-ll-temac.h> #include "ll_temac.h" /* Descriptors defines for Tx and Rx DMA */ #define TX_BD_NUM_DEFAULT 64 #define RX_BD_NUM_DEFAULT 1024 #define TX_BD_NUM_MAX 4096 #define RX_BD_NUM_MAX 4096 /* --------------------------------------------------------------------- * Low level register access functions */ static u32 _temac_ior_be(struct temac_local *lp, int offset) { return ioread32be(lp->regs + offset); } static void _temac_iow_be(struct temac_local *lp, int offset, u32 value) { return iowrite32be(value, lp->regs + offset); } static u32 _temac_ior_le(struct temac_local *lp, int offset) { return ioread32(lp->regs + offset); } static void _temac_iow_le(struct temac_local *lp, int offset, u32 value) { return iowrite32(value, lp->regs + offset); } static bool hard_acs_rdy(struct temac_local *lp) { return temac_ior(lp, XTE_RDY0_OFFSET) & XTE_RDY0_HARD_ACS_RDY_MASK; } static bool hard_acs_rdy_or_timeout(struct temac_local *lp, ktime_t timeout) { ktime_t cur = ktime_get(); return hard_acs_rdy(lp) || ktime_after(cur, timeout); } /* Poll for maximum 20 ms. This is similar to the 2 jiffies @ 100 Hz * that was used before, and should cover MDIO bus speed down to 3200 * Hz. */ #define HARD_ACS_RDY_POLL_NS (20 * NSEC_PER_MSEC) /** * temac_indirect_busywait - Wait for current indirect register access * to complete. */ int temac_indirect_busywait(struct temac_local *lp) { ktime_t timeout = ktime_add_ns(ktime_get(), HARD_ACS_RDY_POLL_NS); spin_until_cond(hard_acs_rdy_or_timeout(lp, timeout)); if (WARN_ON(!hard_acs_rdy(lp))) return -ETIMEDOUT; else return 0; } /** * temac_indirect_in32 - Indirect register read access. This function * must be called without lp->indirect_lock being held. */ u32 temac_indirect_in32(struct temac_local *lp, int reg) { unsigned long flags; int val; spin_lock_irqsave(lp->indirect_lock, flags); val = temac_indirect_in32_locked(lp, reg); spin_unlock_irqrestore(lp->indirect_lock, flags); return val; } /** * temac_indirect_in32_locked - Indirect register read access. This * function must be called with lp->indirect_lock being held. Use * this together with spin_lock_irqsave/spin_lock_irqrestore to avoid * repeated lock/unlock and to ensure uninterrupted access to indirect * registers. */ u32 temac_indirect_in32_locked(struct temac_local *lp, int reg) { /* This initial wait should normally not spin, as we always * try to wait for indirect access to complete before * releasing the indirect_lock. */ if (WARN_ON(temac_indirect_busywait(lp))) return -ETIMEDOUT; /* Initiate read from indirect register */ temac_iow(lp, XTE_CTL0_OFFSET, reg); /* Wait for indirect register access to complete. We really * should not see timeouts, and could even end up causing * problem for following indirect access, so let's make a bit * of WARN noise. */ if (WARN_ON(temac_indirect_busywait(lp))) return -ETIMEDOUT; /* Value is ready now */ return temac_ior(lp, XTE_LSW0_OFFSET); } /** * temac_indirect_out32 - Indirect register write access. This function * must be called without lp->indirect_lock being held. */ void temac_indirect_out32(struct temac_local *lp, int reg, u32 value) { unsigned long flags; spin_lock_irqsave(lp->indirect_lock, flags); temac_indirect_out32_locked(lp, reg, value); spin_unlock_irqrestore(lp->indirect_lock, flags); } /** * temac_indirect_out32_locked - Indirect register write access. This * function must be called with lp->indirect_lock being held. Use * this together with spin_lock_irqsave/spin_lock_irqrestore to avoid * repeated lock/unlock and to ensure uninterrupted access to indirect * registers. */ void temac_indirect_out32_locked(struct temac_local *lp, int reg, u32 value) { /* As in temac_indirect_in32_locked(), we should normally not * spin here. And if it happens, we actually end up silently * ignoring the write request. Ouch. */ if (WARN_ON(temac_indirect_busywait(lp))) return; /* Initiate write to indirect register */ temac_iow(lp, XTE_LSW0_OFFSET, value); temac_iow(lp, XTE_CTL0_OFFSET, CNTLREG_WRITE_ENABLE_MASK | reg); /* As in temac_indirect_in32_locked(), we should not see timeouts * here. And if it happens, we continue before the write has * completed. Not good. */ WARN_ON(temac_indirect_busywait(lp)); } /** * temac_dma_in32_* - Memory mapped DMA read, these function expects a * register input that is based on DCR word addresses which are then * converted to memory mapped byte addresses. To be assigned to * lp->dma_in32. */ static u32 temac_dma_in32_be(struct temac_local *lp, int reg) { return ioread32be(lp->sdma_regs + (reg << 2)); } static u32 temac_dma_in32_le(struct temac_local *lp, int reg) { return ioread32(lp->sdma_regs + (reg << 2)); } /** * temac_dma_out32_* - Memory mapped DMA read, these function expects * a register input that is based on DCR word addresses which are then * converted to memory mapped byte addresses. To be assigned to * lp->dma_out32. */ static void temac_dma_out32_be(struct temac_local *lp, int reg, u32 value) { iowrite32be(value, lp->sdma_regs + (reg << 2)); } static void temac_dma_out32_le(struct temac_local *lp, int reg, u32 value) { iowrite32(value, lp->sdma_regs + (reg << 2)); } /* DMA register access functions can be DCR based or memory mapped. * The PowerPC 440 is DCR based, the PowerPC 405 and MicroBlaze are both * memory mapped. */ #ifdef CONFIG_PPC_DCR /** * temac_dma_dcr_in32 - DCR based DMA read */ static u32 temac_dma_dcr_in(struct temac_local *lp, int reg) { return dcr_read(lp->sdma_dcrs, reg); } /** * temac_dma_dcr_out32 - DCR based DMA write */ static void temac_dma_dcr_out(struct temac_local *lp, int reg, u32 value) { dcr_write(lp->sdma_dcrs, reg, value); } /** * temac_dcr_setup - If the DMA is DCR based, then setup the address and * I/O functions */ static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op, struct device_node *np) { unsigned int dcrs; /* setup the dcr address mapping if it's in the device tree */ dcrs = dcr_resource_start(np, 0); if (dcrs != 0) { lp->sdma_dcrs = dcr_map(np, dcrs, dcr_resource_len(np, 0)); lp->dma_in = temac_dma_dcr_in; lp->dma_out = temac_dma_dcr_out; dev_dbg(&op->dev, "DCR base: %x\n", dcrs); return 0; } /* no DCR in the device tree, indicate a failure */ return -1; } #else /* * temac_dcr_setup - This is a stub for when DCR is not supported, * such as with MicroBlaze and x86 */ static int temac_dcr_setup(struct temac_local *lp, struct platform_device *op, struct device_node *np) { return -1; } #endif /** * temac_dma_bd_release - Release buffer descriptor rings */ static void temac_dma_bd_release(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); int i; /* Reset Local Link (DMA) */ lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST); for (i = 0; i < lp->rx_bd_num; i++) { if (!lp->rx_skb[i]) break; else { dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys, XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE); dev_kfree_skb(lp->rx_skb[i]); } } if (lp->rx_bd_v) dma_free_coherent(ndev->dev.parent, sizeof(*lp->rx_bd_v) * lp->rx_bd_num, lp->rx_bd_v, lp->rx_bd_p); if (lp->tx_bd_v) dma_free_coherent(ndev->dev.parent, sizeof(*lp->tx_bd_v) * lp->tx_bd_num, lp->tx_bd_v, lp->tx_bd_p); } /** * temac_dma_bd_init - Setup buffer descriptor rings */ static int temac_dma_bd_init(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); struct sk_buff *skb; dma_addr_t skb_dma_addr; int i; lp->rx_skb = devm_kcalloc(&ndev->dev, lp->rx_bd_num, sizeof(*lp->rx_skb), GFP_KERNEL); if (!lp->rx_skb) goto out; /* allocate the tx and rx ring buffer descriptors. */ /* returns a virtual address and a physical address. */ lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent, sizeof(*lp->tx_bd_v) * lp->tx_bd_num, &lp->tx_bd_p, GFP_KERNEL); if (!lp->tx_bd_v) goto out; lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent, sizeof(*lp->rx_bd_v) * lp->rx_bd_num, &lp->rx_bd_p, GFP_KERNEL); if (!lp->rx_bd_v) goto out; for (i = 0; i < lp->tx_bd_num; i++) { lp->tx_bd_v[i].next = cpu_to_be32(lp->tx_bd_p + sizeof(*lp->tx_bd_v) * ((i + 1) % lp->tx_bd_num)); } for (i = 0; i < lp->rx_bd_num; i++) { lp->rx_bd_v[i].next = cpu_to_be32(lp->rx_bd_p + sizeof(*lp->rx_bd_v) * ((i + 1) % lp->rx_bd_num)); skb = netdev_alloc_skb_ip_align(ndev, XTE_MAX_JUMBO_FRAME_SIZE); if (!skb) goto out; lp->rx_skb[i] = skb; /* returns physical address of skb->data */ skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data, XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(ndev->dev.parent, skb_dma_addr)) goto out; lp->rx_bd_v[i].phys = cpu_to_be32(skb_dma_addr); lp->rx_bd_v[i].len = cpu_to_be32(XTE_MAX_JUMBO_FRAME_SIZE); lp->rx_bd_v[i].app0 = cpu_to_be32(STS_CTRL_APP0_IRQONEND); } /* Configure DMA channel (irq setup) */ lp->dma_out(lp, TX_CHNL_CTRL, lp->coalesce_delay_tx << 24 | lp->coalesce_count_tx << 16 | 0x00000400 | // Use 1 Bit Wide Counters. Currently Not Used! CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_ERR_EN | CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN); lp->dma_out(lp, RX_CHNL_CTRL, lp->coalesce_delay_rx << 24 | lp->coalesce_count_rx << 16 | CHNL_CTRL_IRQ_IOE | CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_ERR_EN | CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN); /* Init descriptor indexes */ lp->tx_bd_ci = 0; lp->tx_bd_tail = 0; lp->rx_bd_ci = 0; lp->rx_bd_tail = lp->rx_bd_num - 1; /* Enable RX DMA transfers */ wmb(); lp->dma_out(lp, RX_CURDESC_PTR, lp->rx_bd_p); lp->dma_out(lp, RX_TAILDESC_PTR, lp->rx_bd_p + (sizeof(*lp->rx_bd_v) * lp->rx_bd_tail)); /* Prepare for TX DMA transfer */ lp->dma_out(lp, TX_CURDESC_PTR, lp->tx_bd_p); return 0; out: temac_dma_bd_release(ndev); return -ENOMEM; } /* --------------------------------------------------------------------- * net_device_ops */ static void temac_do_set_mac_address(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); unsigned long flags; /* set up unicast MAC address filter set its mac address */ spin_lock_irqsave(lp->indirect_lock, flags); temac_indirect_out32_locked(lp, XTE_UAW0_OFFSET, (ndev->dev_addr[0]) | (ndev->dev_addr[1] << 8) | (ndev->dev_addr[2] << 16) | (ndev->dev_addr[3] << 24)); /* There are reserved bits in EUAW1 * so don't affect them Set MAC bits [47:32] in EUAW1 */ temac_indirect_out32_locked(lp, XTE_UAW1_OFFSET, (ndev->dev_addr[4] & 0x000000ff) | (ndev->dev_addr[5] << 8)); spin_unlock_irqrestore(lp->indirect_lock, flags); } static int temac_init_mac_address(struct net_device *ndev, const void *address) { ether_addr_copy(ndev->dev_addr, address); if (!is_valid_ether_addr(ndev->dev_addr)) eth_hw_addr_random(ndev); temac_do_set_mac_address(ndev); return 0; } static int temac_set_mac_address(struct net_device *ndev, void *p) { struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(ndev->dev_addr, addr->sa_data, ETH_ALEN); temac_do_set_mac_address(ndev); return 0; } static void temac_set_multicast_list(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); u32 multi_addr_msw, multi_addr_lsw; int i = 0; unsigned long flags; bool promisc_mode_disabled = false; if (ndev->flags & (IFF_PROMISC | IFF_ALLMULTI) || (netdev_mc_count(ndev) > MULTICAST_CAM_TABLE_NUM)) { temac_indirect_out32(lp, XTE_AFM_OFFSET, XTE_AFM_EPPRM_MASK); dev_info(&ndev->dev, "Promiscuous mode enabled.\n"); return; } spin_lock_irqsave(lp->indirect_lock, flags); if (!netdev_mc_empty(ndev)) { struct netdev_hw_addr *ha; netdev_for_each_mc_addr(ha, ndev) { if (WARN_ON(i >= MULTICAST_CAM_TABLE_NUM)) break; multi_addr_msw = ((ha->addr[3] << 24) | (ha->addr[2] << 16) | (ha->addr[1] << 8) | (ha->addr[0])); temac_indirect_out32_locked(lp, XTE_MAW0_OFFSET, multi_addr_msw); multi_addr_lsw = ((ha->addr[5] << 8) | (ha->addr[4]) | (i << 16)); temac_indirect_out32_locked(lp, XTE_MAW1_OFFSET, multi_addr_lsw); i++; } } /* Clear all or remaining/unused address table entries */ while (i < MULTICAST_CAM_TABLE_NUM) { temac_indirect_out32_locked(lp, XTE_MAW0_OFFSET, 0); temac_indirect_out32_locked(lp, XTE_MAW1_OFFSET, i << 16); i++; } /* Enable address filter block if currently disabled */ if (temac_indirect_in32_locked(lp, XTE_AFM_OFFSET) & XTE_AFM_EPPRM_MASK) { temac_indirect_out32_locked(lp, XTE_AFM_OFFSET, 0); promisc_mode_disabled = true; } spin_unlock_irqrestore(lp->indirect_lock, flags); if (promisc_mode_disabled) dev_info(&ndev->dev, "Promiscuous mode disabled.\n"); } static struct temac_option { int flg; u32 opt; u32 reg; u32 m_or; u32 m_and; } temac_options[] = { /* Turn on jumbo packet support for both Rx and Tx */ { .opt = XTE_OPTION_JUMBO, .reg = XTE_TXC_OFFSET, .m_or = XTE_TXC_TXJMBO_MASK, }, { .opt = XTE_OPTION_JUMBO, .reg = XTE_RXC1_OFFSET, .m_or =XTE_RXC1_RXJMBO_MASK, }, /* Turn on VLAN packet support for both Rx and Tx */ { .opt = XTE_OPTION_VLAN, .reg = XTE_TXC_OFFSET, .m_or =XTE_TXC_TXVLAN_MASK, }, { .opt = XTE_OPTION_VLAN, .reg = XTE_RXC1_OFFSET, .m_or =XTE_RXC1_RXVLAN_MASK, }, /* Turn on FCS stripping on receive packets */ { .opt = XTE_OPTION_FCS_STRIP, .reg = XTE_RXC1_OFFSET, .m_or =XTE_RXC1_RXFCS_MASK, }, /* Turn on FCS insertion on transmit packets */ { .opt = XTE_OPTION_FCS_INSERT, .reg = XTE_TXC_OFFSET, .m_or =XTE_TXC_TXFCS_MASK, }, /* Turn on length/type field checking on receive packets */ { .opt = XTE_OPTION_LENTYPE_ERR, .reg = XTE_RXC1_OFFSET, .m_or =XTE_RXC1_RXLT_MASK, }, /* Turn on flow control */ { .opt = XTE_OPTION_FLOW_CONTROL, .reg = XTE_FCC_OFFSET, .m_or =XTE_FCC_RXFLO_MASK, }, /* Turn on flow control */ { .opt = XTE_OPTION_FLOW_CONTROL, .reg = XTE_FCC_OFFSET, .m_or =XTE_FCC_TXFLO_MASK, }, /* Turn on promiscuous frame filtering (all frames are received ) */ { .opt = XTE_OPTION_PROMISC, .reg = XTE_AFM_OFFSET, .m_or =XTE_AFM_EPPRM_MASK, }, /* Enable transmitter if not already enabled */ { .opt = XTE_OPTION_TXEN, .reg = XTE_TXC_OFFSET, .m_or =XTE_TXC_TXEN_MASK, }, /* Enable receiver? */ { .opt = XTE_OPTION_RXEN, .reg = XTE_RXC1_OFFSET, .m_or =XTE_RXC1_RXEN_MASK, }, {} }; /** * temac_setoptions */ static u32 temac_setoptions(struct net_device *ndev, u32 options) { struct temac_local *lp = netdev_priv(ndev); struct temac_option *tp = &temac_options[0]; int reg; unsigned long flags; spin_lock_irqsave(lp->indirect_lock, flags); while (tp->opt) { reg = temac_indirect_in32_locked(lp, tp->reg) & ~tp->m_or; if (options & tp->opt) { reg |= tp->m_or; temac_indirect_out32_locked(lp, tp->reg, reg); } tp++; } spin_unlock_irqrestore(lp->indirect_lock, flags); lp->options |= options; return 0; } /* Initialize temac */ static void temac_device_reset(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); u32 timeout; u32 val; unsigned long flags; /* Perform a software reset */ /* 0x300 host enable bit ? */ /* reset PHY through control register ?:1 */ dev_dbg(&ndev->dev, "%s()\n", __func__); /* Reset the receiver and wait for it to finish reset */ temac_indirect_out32(lp, XTE_RXC1_OFFSET, XTE_RXC1_RXRST_MASK); timeout = 1000; while (temac_indirect_in32(lp, XTE_RXC1_OFFSET) & XTE_RXC1_RXRST_MASK) { udelay(1); if (--timeout == 0) { dev_err(&ndev->dev, "temac_device_reset RX reset timeout!!\n"); break; } } /* Reset the transmitter and wait for it to finish reset */ temac_indirect_out32(lp, XTE_TXC_OFFSET, XTE_TXC_TXRST_MASK); timeout = 1000; while (temac_indirect_in32(lp, XTE_TXC_OFFSET) & XTE_TXC_TXRST_MASK) { udelay(1); if (--timeout == 0) { dev_err(&ndev->dev, "temac_device_reset TX reset timeout!!\n"); break; } } /* Disable the receiver */ spin_lock_irqsave(lp->indirect_lock, flags); val = temac_indirect_in32_locked(lp, XTE_RXC1_OFFSET); temac_indirect_out32_locked(lp, XTE_RXC1_OFFSET, val & ~XTE_RXC1_RXEN_MASK); spin_unlock_irqrestore(lp->indirect_lock, flags); /* Reset Local Link (DMA) */ lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST); timeout = 1000; while (lp->dma_in(lp, DMA_CONTROL_REG) & DMA_CONTROL_RST) { udelay(1); if (--timeout == 0) { dev_err(&ndev->dev, "temac_device_reset DMA reset timeout!!\n"); break; } } lp->dma_out(lp, DMA_CONTROL_REG, DMA_TAIL_ENABLE); if (temac_dma_bd_init(ndev)) { dev_err(&ndev->dev, "temac_device_reset descriptor allocation failed\n"); } spin_lock_irqsave(lp->indirect_lock, flags); temac_indirect_out32_locked(lp, XTE_RXC0_OFFSET, 0); temac_indirect_out32_locked(lp, XTE_RXC1_OFFSET, 0); temac_indirect_out32_locked(lp, XTE_TXC_OFFSET, 0); temac_indirect_out32_locked(lp, XTE_FCC_OFFSET, XTE_FCC_RXFLO_MASK); spin_unlock_irqrestore(lp->indirect_lock, flags); /* Sync default options with HW * but leave receiver and transmitter disabled. */ temac_setoptions(ndev, lp->options & ~(XTE_OPTION_TXEN | XTE_OPTION_RXEN)); temac_do_set_mac_address(ndev); /* Set address filter table */ temac_set_multicast_list(ndev); if (temac_setoptions(ndev, lp->options)) dev_err(&ndev->dev, "Error setting TEMAC options\n"); /* Init Driver variable */ netif_trans_update(ndev); /* prevent tx timeout */ } static void temac_adjust_link(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); struct phy_device *phy = ndev->phydev; u32 mii_speed; int link_state; unsigned long flags; /* hash together the state values to decide if something has changed */ link_state = phy->speed | (phy->duplex << 1) | phy->link; if (lp->last_link != link_state) { spin_lock_irqsave(lp->indirect_lock, flags); mii_speed = temac_indirect_in32_locked(lp, XTE_EMCFG_OFFSET); mii_speed &= ~XTE_EMCFG_LINKSPD_MASK; switch (phy->speed) { case SPEED_1000: mii_speed |= XTE_EMCFG_LINKSPD_1000; break; case SPEED_100: mii_speed |= XTE_EMCFG_LINKSPD_100; break; case SPEED_10: mii_speed |= XTE_EMCFG_LINKSPD_10; break; } /* Write new speed setting out to TEMAC */ temac_indirect_out32_locked(lp, XTE_EMCFG_OFFSET, mii_speed); spin_unlock_irqrestore(lp->indirect_lock, flags); lp->last_link = link_state; phy_print_status(phy); } } #ifdef CONFIG_64BIT static void ptr_to_txbd(void *p, struct cdmac_bd *bd) { bd->app3 = (u32)(((u64)p) >> 32); bd->app4 = (u32)((u64)p & 0xFFFFFFFF); } static void *ptr_from_txbd(struct cdmac_bd *bd) { return (void *)(((u64)(bd->app3) << 32) | bd->app4); } #else static void ptr_to_txbd(void *p, struct cdmac_bd *bd) { bd->app4 = (u32)p; } static void *ptr_from_txbd(struct cdmac_bd *bd) { return (void *)(bd->app4); } #endif static void temac_start_xmit_done(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); struct cdmac_bd *cur_p; unsigned int stat = 0; struct sk_buff *skb; cur_p = &lp->tx_bd_v[lp->tx_bd_ci]; stat = be32_to_cpu(cur_p->app0); while (stat & STS_CTRL_APP0_CMPLT) { dma_unmap_single(ndev->dev.parent, be32_to_cpu(cur_p->phys), be32_to_cpu(cur_p->len), DMA_TO_DEVICE); skb = (struct sk_buff *)ptr_from_txbd(cur_p); if (skb) dev_consume_skb_irq(skb); cur_p->app0 = 0; cur_p->app1 = 0; cur_p->app2 = 0; cur_p->app3 = 0; cur_p->app4 = 0; ndev->stats.tx_packets++; ndev->stats.tx_bytes += be32_to_cpu(cur_p->len); lp->tx_bd_ci++; if (lp->tx_bd_ci >= lp->tx_bd_num) lp->tx_bd_ci = 0; cur_p = &lp->tx_bd_v[lp->tx_bd_ci]; stat = be32_to_cpu(cur_p->app0); } /* Matches barrier in temac_start_xmit */ smp_mb(); netif_wake_queue(ndev); } static inline int temac_check_tx_bd_space(struct temac_local *lp, int num_frag) { struct cdmac_bd *cur_p; int tail; tail = lp->tx_bd_tail; cur_p = &lp->tx_bd_v[tail]; do { if (cur_p->app0) return NETDEV_TX_BUSY; tail++; if (tail >= lp->tx_bd_num) tail = 0; cur_p = &lp->tx_bd_v[tail]; num_frag--; } while (num_frag >= 0); return 0; } static netdev_tx_t temac_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); struct cdmac_bd *cur_p; dma_addr_t tail_p, skb_dma_addr; int ii; unsigned long num_frag; skb_frag_t *frag; num_frag = skb_shinfo(skb)->nr_frags; frag = &skb_shinfo(skb)->frags[0]; cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; if (temac_check_tx_bd_space(lp, num_frag + 1)) { if (netif_queue_stopped(ndev)) return NETDEV_TX_BUSY; netif_stop_queue(ndev); /* Matches barrier in temac_start_xmit_done */ smp_mb(); /* Space might have just been freed - check again */ if (temac_check_tx_bd_space(lp, num_frag)) return NETDEV_TX_BUSY; netif_wake_queue(ndev); } cur_p->app0 = 0; if (skb->ip_summed == CHECKSUM_PARTIAL) { unsigned int csum_start_off = skb_checksum_start_offset(skb); unsigned int csum_index_off = csum_start_off + skb->csum_offset; cur_p->app0 |= cpu_to_be32(0x000001); /* TX Checksum Enabled */ cur_p->app1 = cpu_to_be32((csum_start_off << 16) | csum_index_off); cur_p->app2 = 0; /* initial checksum seed */ } cur_p->app0 |= cpu_to_be32(STS_CTRL_APP0_SOP); skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb_headlen(skb), DMA_TO_DEVICE); cur_p->len = cpu_to_be32(skb_headlen(skb)); if (WARN_ON_ONCE(dma_mapping_error(ndev->dev.parent, skb_dma_addr))) { dev_kfree_skb_any(skb); ndev->stats.tx_dropped++; return NETDEV_TX_OK; } cur_p->phys = cpu_to_be32(skb_dma_addr); ptr_to_txbd((void *)skb, cur_p); for (ii = 0; ii < num_frag; ii++) { if (++lp->tx_bd_tail >= lp->tx_bd_num) lp->tx_bd_tail = 0; cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; skb_dma_addr = dma_map_single(ndev->dev.parent, skb_frag_address(frag), skb_frag_size(frag), DMA_TO_DEVICE); if (dma_mapping_error(ndev->dev.parent, skb_dma_addr)) { if (--lp->tx_bd_tail < 0) lp->tx_bd_tail = lp->tx_bd_num - 1; cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; while (--ii >= 0) { --frag; dma_unmap_single(ndev->dev.parent, be32_to_cpu(cur_p->phys), skb_frag_size(frag), DMA_TO_DEVICE); if (--lp->tx_bd_tail < 0) lp->tx_bd_tail = lp->tx_bd_num - 1; cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; } dma_unmap_single(ndev->dev.parent, be32_to_cpu(cur_p->phys), skb_headlen(skb), DMA_TO_DEVICE); dev_kfree_skb_any(skb); ndev->stats.tx_dropped++; return NETDEV_TX_OK; } cur_p->phys = cpu_to_be32(skb_dma_addr); cur_p->len = cpu_to_be32(skb_frag_size(frag)); cur_p->app0 = 0; frag++; } cur_p->app0 |= cpu_to_be32(STS_CTRL_APP0_EOP); tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail; lp->tx_bd_tail++; if (lp->tx_bd_tail >= lp->tx_bd_num) lp->tx_bd_tail = 0; skb_tx_timestamp(skb); /* Kick off the transfer */ wmb(); lp->dma_out(lp, TX_TAILDESC_PTR, tail_p); /* DMA start */ return NETDEV_TX_OK; } static int ll_temac_recv_buffers_available(struct temac_local *lp) { int available; if (!lp->rx_skb[lp->rx_bd_ci]) return 0; available = 1 + lp->rx_bd_tail - lp->rx_bd_ci; if (available <= 0) available += lp->rx_bd_num; return available; } static void ll_temac_recv(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); unsigned long flags; int rx_bd; bool update_tail = false; spin_lock_irqsave(&lp->rx_lock, flags); /* Process all received buffers, passing them on network * stack. After this, the buffer descriptors will be in an * un-allocated stage, where no skb is allocated for it, and * they are therefore not available for TEMAC/DMA. */ do { struct cdmac_bd *bd = &lp->rx_bd_v[lp->rx_bd_ci]; struct sk_buff *skb = lp->rx_skb[lp->rx_bd_ci]; unsigned int bdstat = be32_to_cpu(bd->app0); int length; /* While this should not normally happen, we can end * here when GFP_ATOMIC allocations fail, and we * therefore have un-allocated buffers. */ if (!skb) break; /* Loop over all completed buffer descriptors */ if (!(bdstat & STS_CTRL_APP0_CMPLT)) break; dma_unmap_single(ndev->dev.parent, be32_to_cpu(bd->phys), XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE); /* The buffer is not valid for DMA anymore */ bd->phys = 0; bd->len = 0; length = be32_to_cpu(bd->app4) & 0x3FFF; skb_put(skb, length); skb->protocol = eth_type_trans(skb, ndev); skb_checksum_none_assert(skb); /* if we're doing rx csum offload, set it up */ if (((lp->temac_features & TEMAC_FEATURE_RX_CSUM) != 0) && (skb->protocol == htons(ETH_P_IP)) && (skb->len > 64)) { /* Convert from device endianness (be32) to cpu * endiannes, and if necessary swap the bytes * (back) for proper IP checksum byte order * (be16). */ skb->csum = htons(be32_to_cpu(bd->app3) & 0xFFFF); skb->ip_summed = CHECKSUM_COMPLETE; } if (!skb_defer_rx_timestamp(skb)) netif_rx(skb); /* The skb buffer is now owned by network stack above */ lp->rx_skb[lp->rx_bd_ci] = NULL; ndev->stats.rx_packets++; ndev->stats.rx_bytes += length; rx_bd = lp->rx_bd_ci; if (++lp->rx_bd_ci >= lp->rx_bd_num) lp->rx_bd_ci = 0; } while (rx_bd != lp->rx_bd_tail); /* DMA operations will halt when the last buffer descriptor is * processed (ie. the one pointed to by RX_TAILDESC_PTR). * When that happens, no more interrupt events will be * generated. No IRQ_COAL or IRQ_DLY, and not even an * IRQ_ERR. To avoid stalling, we schedule a delayed work * when there is a potential risk of that happening. The work * will call this function, and thus re-schedule itself until * enough buffers are available again. */ if (ll_temac_recv_buffers_available(lp) < lp->coalesce_count_rx) schedule_delayed_work(&lp->restart_work, HZ / 1000); /* Allocate new buffers for those buffer descriptors that were * passed to network stack. Note that GFP_ATOMIC allocations * can fail (e.g. when a larger burst of GFP_ATOMIC * allocations occurs), so while we try to allocate all * buffers in the same interrupt where they were processed, we * continue with what we could get in case of allocation * failure. Allocation of remaining buffers will be retried * in following calls. */ while (1) { struct sk_buff *skb; struct cdmac_bd *bd; dma_addr_t skb_dma_addr; rx_bd = lp->rx_bd_tail + 1; if (rx_bd >= lp->rx_bd_num) rx_bd = 0; bd = &lp->rx_bd_v[rx_bd]; if (bd->phys) break; /* All skb's allocated */ skb = netdev_alloc_skb_ip_align(ndev, XTE_MAX_JUMBO_FRAME_SIZE); if (!skb) { dev_warn(&ndev->dev, "skb alloc failed\n"); break; } skb_dma_addr = dma_map_single(ndev->dev.parent, skb->data, XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE); if (WARN_ON_ONCE(dma_mapping_error(ndev->dev.parent, skb_dma_addr))) { dev_kfree_skb_any(skb); break; } bd->phys = cpu_to_be32(skb_dma_addr); bd->len = cpu_to_be32(XTE_MAX_JUMBO_FRAME_SIZE); bd->app0 = cpu_to_be32(STS_CTRL_APP0_IRQONEND); lp->rx_skb[rx_bd] = skb; lp->rx_bd_tail = rx_bd; update_tail = true; } /* Move tail pointer when buffers have been allocated */ if (update_tail) { lp->dma_out(lp, RX_TAILDESC_PTR, lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_tail); } spin_unlock_irqrestore(&lp->rx_lock, flags); } /* Function scheduled to ensure a restart in case of DMA halt * condition caused by running out of buffer descriptors. */ static void ll_temac_restart_work_func(struct work_struct *work) { struct temac_local *lp = container_of(work, struct temac_local, restart_work.work); struct net_device *ndev = lp->ndev; ll_temac_recv(ndev); } static irqreturn_t ll_temac_tx_irq(int irq, void *_ndev) { struct net_device *ndev = _ndev; struct temac_local *lp = netdev_priv(ndev); unsigned int status; status = lp->dma_in(lp, TX_IRQ_REG); lp->dma_out(lp, TX_IRQ_REG, status); if (status & (IRQ_COAL | IRQ_DLY)) temac_start_xmit_done(lp->ndev); if (status & (IRQ_ERR | IRQ_DMAERR)) dev_err_ratelimited(&ndev->dev, "TX error 0x%x TX_CHNL_STS=0x%08x\n", status, lp->dma_in(lp, TX_CHNL_STS)); return IRQ_HANDLED; } static irqreturn_t ll_temac_rx_irq(int irq, void *_ndev) { struct net_device *ndev = _ndev; struct temac_local *lp = netdev_priv(ndev); unsigned int status; /* Read and clear the status registers */ status = lp->dma_in(lp, RX_IRQ_REG); lp->dma_out(lp, RX_IRQ_REG, status); if (status & (IRQ_COAL | IRQ_DLY)) ll_temac_recv(lp->ndev); if (status & (IRQ_ERR | IRQ_DMAERR)) dev_err_ratelimited(&ndev->dev, "RX error 0x%x RX_CHNL_STS=0x%08x\n", status, lp->dma_in(lp, RX_CHNL_STS)); return IRQ_HANDLED; } static int temac_open(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); struct phy_device *phydev = NULL; int rc; dev_dbg(&ndev->dev, "temac_open()\n"); if (lp->phy_node) { phydev = of_phy_connect(lp->ndev, lp->phy_node, temac_adjust_link, 0, 0); if (!phydev) { dev_err(lp->dev, "of_phy_connect() failed\n"); return -ENODEV; } phy_start(phydev); } else if (strlen(lp->phy_name) > 0) { phydev = phy_connect(lp->ndev, lp->phy_name, temac_adjust_link, lp->phy_interface); if (IS_ERR(phydev)) { dev_err(lp->dev, "phy_connect() failed\n"); return PTR_ERR(phydev); } phy_start(phydev); } temac_device_reset(ndev); rc = request_irq(lp->tx_irq, ll_temac_tx_irq, 0, ndev->name, ndev); if (rc) goto err_tx_irq; rc = request_irq(lp->rx_irq, ll_temac_rx_irq, 0, ndev->name, ndev); if (rc) goto err_rx_irq; return 0; err_rx_irq: free_irq(lp->tx_irq, ndev); err_tx_irq: if (phydev) phy_disconnect(phydev); dev_err(lp->dev, "request_irq() failed\n"); return rc; } static int temac_stop(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); struct phy_device *phydev = ndev->phydev; dev_dbg(&ndev->dev, "temac_close()\n"); cancel_delayed_work_sync(&lp->restart_work); free_irq(lp->tx_irq, ndev); free_irq(lp->rx_irq, ndev); if (phydev) phy_disconnect(phydev); temac_dma_bd_release(ndev); return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER static void temac_poll_controller(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); disable_irq(lp->tx_irq); disable_irq(lp->rx_irq); ll_temac_rx_irq(lp->tx_irq, ndev); ll_temac_tx_irq(lp->rx_irq, ndev); enable_irq(lp->tx_irq); enable_irq(lp->rx_irq); } #endif static const struct net_device_ops temac_netdev_ops = { .ndo_open = temac_open, .ndo_stop = temac_stop, .ndo_start_xmit = temac_start_xmit, .ndo_set_rx_mode = temac_set_multicast_list, .ndo_set_mac_address = temac_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = phy_do_ioctl_running, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = temac_poll_controller, #endif }; /* --------------------------------------------------------------------- * SYSFS device attributes */ static ssize_t temac_show_llink_regs(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *ndev = dev_get_drvdata(dev); struct temac_local *lp = netdev_priv(ndev); int i, len = 0; for (i = 0; i < 0x11; i++) len += sprintf(buf + len, "%.8x%s", lp->dma_in(lp, i), (i % 8) == 7 ? "\n" : " "); len += sprintf(buf + len, "\n"); return len; } static DEVICE_ATTR(llink_regs, 0440, temac_show_llink_regs, NULL); static struct attribute *temac_device_attrs[] = { &dev_attr_llink_regs.attr, NULL, }; static const struct attribute_group temac_attr_group = { .attrs = temac_device_attrs, }; /* --------------------------------------------------------------------- * ethtool support */ static void ll_temac_ethtools_get_ringparam(struct net_device *ndev, struct ethtool_ringparam *ering) { struct temac_local *lp = netdev_priv(ndev); ering->rx_max_pending = RX_BD_NUM_MAX; ering->rx_mini_max_pending = 0; ering->rx_jumbo_max_pending = 0; ering->tx_max_pending = TX_BD_NUM_MAX; ering->rx_pending = lp->rx_bd_num; ering->rx_mini_pending = 0; ering->rx_jumbo_pending = 0; ering->tx_pending = lp->tx_bd_num; } static int ll_temac_ethtools_set_ringparam(struct net_device *ndev, struct ethtool_ringparam *ering) { struct temac_local *lp = netdev_priv(ndev); if (ering->rx_pending > RX_BD_NUM_MAX || ering->rx_mini_pending || ering->rx_jumbo_pending || ering->rx_pending > TX_BD_NUM_MAX) return -EINVAL; if (netif_running(ndev)) return -EBUSY; lp->rx_bd_num = ering->rx_pending; lp->tx_bd_num = ering->tx_pending; return 0; } static int ll_temac_ethtools_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) { struct temac_local *lp = netdev_priv(ndev); ec->rx_max_coalesced_frames = lp->coalesce_count_rx; ec->tx_max_coalesced_frames = lp->coalesce_count_tx; ec->rx_coalesce_usecs = (lp->coalesce_delay_rx * 512) / 100; ec->tx_coalesce_usecs = (lp->coalesce_delay_tx * 512) / 100; return 0; } static int ll_temac_ethtools_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) { struct temac_local *lp = netdev_priv(ndev); if (netif_running(ndev)) { netdev_err(ndev, "Please stop netif before applying configuration\n"); return -EFAULT; } if (ec->rx_max_coalesced_frames) lp->coalesce_count_rx = ec->rx_max_coalesced_frames; if (ec->tx_max_coalesced_frames) lp->coalesce_count_tx = ec->tx_max_coalesced_frames; /* With typical LocalLink clock speed of 200 MHz and * C_PRESCALAR=1023, each delay count corresponds to 5.12 us. */ if (ec->rx_coalesce_usecs) lp->coalesce_delay_rx = min(255U, (ec->rx_coalesce_usecs * 100) / 512); if (ec->tx_coalesce_usecs) lp->coalesce_delay_tx = min(255U, (ec->tx_coalesce_usecs * 100) / 512); return 0; } static const struct ethtool_ops temac_ethtool_ops = { .supported_coalesce_params = ETHTOOL_COALESCE_USECS | ETHTOOL_COALESCE_MAX_FRAMES, .nway_reset = phy_ethtool_nway_reset, .get_link = ethtool_op_get_link, .get_ts_info = ethtool_op_get_ts_info, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, .get_ringparam = ll_temac_ethtools_get_ringparam, .set_ringparam = ll_temac_ethtools_set_ringparam, .get_coalesce = ll_temac_ethtools_get_coalesce, .set_coalesce = ll_temac_ethtools_set_coalesce, }; static int temac_probe(struct platform_device *pdev) { struct ll_temac_platform_data *pdata = dev_get_platdata(&pdev->dev); struct device_node *temac_np = dev_of_node(&pdev->dev), *dma_np; struct temac_local *lp; struct net_device *ndev; struct resource *res; const void *addr; __be32 *p; bool little_endian; int rc = 0; /* Init network device structure */ ndev = devm_alloc_etherdev(&pdev->dev, sizeof(*lp)); if (!ndev) return -ENOMEM; platform_set_drvdata(pdev, ndev); SET_NETDEV_DEV(ndev, &pdev->dev); ndev->features = NETIF_F_SG; ndev->netdev_ops = &temac_netdev_ops; ndev->ethtool_ops = &temac_ethtool_ops; #if 0 ndev->features |= NETIF_F_IP_CSUM; /* Can checksum TCP/UDP over IPv4. */ ndev->features |= NETIF_F_HW_CSUM; /* Can checksum all the packets. */ ndev->features |= NETIF_F_IPV6_CSUM; /* Can checksum IPV6 TCP/UDP */ ndev->features |= NETIF_F_HIGHDMA; /* Can DMA to high memory. */ ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; /* Transmit VLAN hw accel */ ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; /* Receive VLAN hw acceleration */ ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; /* Receive VLAN filtering */ ndev->features |= NETIF_F_VLAN_CHALLENGED; /* cannot handle VLAN pkts */ ndev->features |= NETIF_F_GSO; /* Enable software GSO. */ ndev->features |= NETIF_F_MULTI_QUEUE; /* Has multiple TX/RX queues */ ndev->features |= NETIF_F_LRO; /* large receive offload */ #endif /* setup temac private info structure */ lp = netdev_priv(ndev); lp->ndev = ndev; lp->dev = &pdev->dev; lp->options = XTE_OPTION_DEFAULTS; lp->rx_bd_num = RX_BD_NUM_DEFAULT; lp->tx_bd_num = TX_BD_NUM_DEFAULT; spin_lock_init(&lp->rx_lock); INIT_DELAYED_WORK(&lp->restart_work, ll_temac_restart_work_func); /* Setup mutex for synchronization of indirect register access */ if (pdata) { if (!pdata->indirect_lock) { dev_err(&pdev->dev, "indirect_lock missing in platform_data\n"); return -EINVAL; } lp->indirect_lock = pdata->indirect_lock; } else { lp->indirect_lock = devm_kmalloc(&pdev->dev, sizeof(*lp->indirect_lock), GFP_KERNEL); spin_lock_init(lp->indirect_lock); } /* map device registers */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); lp->regs = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (IS_ERR(lp->regs)) { dev_err(&pdev->dev, "could not map TEMAC registers\n"); return PTR_ERR(lp->regs); } /* Select register access functions with the specified * endianness mode. Default for OF devices is big-endian. */ little_endian = false; if (temac_np) { if (of_get_property(temac_np, "little-endian", NULL)) little_endian = true; } else if (pdata) { little_endian = pdata->reg_little_endian; } if (little_endian) { lp->temac_ior = _temac_ior_le; lp->temac_iow = _temac_iow_le; } else { lp->temac_ior = _temac_ior_be; lp->temac_iow = _temac_iow_be; } /* Setup checksum offload, but default to off if not specified */ lp->temac_features = 0; if (temac_np) { p = (__be32 *)of_get_property(temac_np, "xlnx,txcsum", NULL); if (p && be32_to_cpu(*p)) lp->temac_features |= TEMAC_FEATURE_TX_CSUM; p = (__be32 *)of_get_property(temac_np, "xlnx,rxcsum", NULL); if (p && be32_to_cpu(*p)) lp->temac_features |= TEMAC_FEATURE_RX_CSUM; } else if (pdata) { if (pdata->txcsum) lp->temac_features |= TEMAC_FEATURE_TX_CSUM; if (pdata->rxcsum) lp->temac_features |= TEMAC_FEATURE_RX_CSUM; } if (lp->temac_features & TEMAC_FEATURE_TX_CSUM) /* Can checksum TCP/UDP over IPv4. */ ndev->features |= NETIF_F_IP_CSUM; /* Defaults for IRQ delay/coalescing setup. These are * configuration values, so does not belong in device-tree. */ lp->coalesce_delay_tx = 0x10; lp->coalesce_count_tx = 0x22; lp->coalesce_delay_rx = 0xff; lp->coalesce_count_rx = 0x07; /* Setup LocalLink DMA */ if (temac_np) { /* Find the DMA node, map the DMA registers, and * decode the DMA IRQs. */ dma_np = of_parse_phandle(temac_np, "llink-connected", 0); if (!dma_np) { dev_err(&pdev->dev, "could not find DMA node\n"); return -ENODEV; } /* Setup the DMA register accesses, could be DCR or * memory mapped. */ if (temac_dcr_setup(lp, pdev, dma_np)) { /* no DCR in the device tree, try non-DCR */ lp->sdma_regs = devm_of_iomap(&pdev->dev, dma_np, 0, NULL); if (IS_ERR(lp->sdma_regs)) { dev_err(&pdev->dev, "unable to map DMA registers\n"); of_node_put(dma_np); return PTR_ERR(lp->sdma_regs); } if (of_get_property(dma_np, "little-endian", NULL)) { lp->dma_in = temac_dma_in32_le; lp->dma_out = temac_dma_out32_le; } else { lp->dma_in = temac_dma_in32_be; lp->dma_out = temac_dma_out32_be; } dev_dbg(&pdev->dev, "MEM base: %p\n", lp->sdma_regs); } /* Get DMA RX and TX interrupts */ lp->rx_irq = irq_of_parse_and_map(dma_np, 0); lp->tx_irq = irq_of_parse_and_map(dma_np, 1); /* Finished with the DMA node; drop the reference */ of_node_put(dma_np); } else if (pdata) { /* 2nd memory resource specifies DMA registers */ res = platform_get_resource(pdev, IORESOURCE_MEM, 1); lp->sdma_regs = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (IS_ERR(lp->sdma_regs)) { dev_err(&pdev->dev, "could not map DMA registers\n"); return PTR_ERR(lp->sdma_regs); } if (pdata->dma_little_endian) { lp->dma_in = temac_dma_in32_le; lp->dma_out = temac_dma_out32_le; } else { lp->dma_in = temac_dma_in32_be; lp->dma_out = temac_dma_out32_be; } /* Get DMA RX and TX interrupts */ lp->rx_irq = platform_get_irq(pdev, 0); lp->tx_irq = platform_get_irq(pdev, 1); /* IRQ delay/coalescing setup */ if (pdata->tx_irq_timeout || pdata->tx_irq_count) { lp->coalesce_delay_tx = pdata->tx_irq_timeout; lp->coalesce_count_tx = pdata->tx_irq_count; } if (pdata->rx_irq_timeout || pdata->rx_irq_count) { lp->coalesce_delay_rx = pdata->rx_irq_timeout; lp->coalesce_count_rx = pdata->rx_irq_count; } } /* Error handle returned DMA RX and TX interrupts */ if (lp->rx_irq < 0) { if (lp->rx_irq != -EPROBE_DEFER) dev_err(&pdev->dev, "could not get DMA RX irq\n"); return lp->rx_irq; } if (lp->tx_irq < 0) { if (lp->tx_irq != -EPROBE_DEFER) dev_err(&pdev->dev, "could not get DMA TX irq\n"); return lp->tx_irq; } if (temac_np) { /* Retrieve the MAC address */ addr = of_get_mac_address(temac_np); if (IS_ERR(addr)) { dev_err(&pdev->dev, "could not find MAC address\n"); return -ENODEV; } temac_init_mac_address(ndev, addr); } else if (pdata) { temac_init_mac_address(ndev, pdata->mac_addr); } rc = temac_mdio_setup(lp, pdev); if (rc) dev_warn(&pdev->dev, "error registering MDIO bus\n"); if (temac_np) { lp->phy_node = of_parse_phandle(temac_np, "phy-handle", 0); if (lp->phy_node) dev_dbg(lp->dev, "using PHY node %pOF\n", temac_np); } else if (pdata) { snprintf(lp->phy_name, sizeof(lp->phy_name), PHY_ID_FMT, lp->mii_bus->id, pdata->phy_addr); lp->phy_interface = pdata->phy_interface; } /* Add the device attributes */ rc = sysfs_create_group(&lp->dev->kobj, &temac_attr_group); if (rc) { dev_err(lp->dev, "Error creating sysfs files\n"); goto err_sysfs_create; } rc = register_netdev(lp->ndev); if (rc) { dev_err(lp->dev, "register_netdev() error (%i)\n", rc); goto err_register_ndev; } return 0; err_register_ndev: sysfs_remove_group(&lp->dev->kobj, &temac_attr_group); err_sysfs_create: if (lp->phy_node) of_node_put(lp->phy_node); temac_mdio_teardown(lp); return rc; } static int temac_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct temac_local *lp = netdev_priv(ndev); unregister_netdev(ndev); sysfs_remove_group(&lp->dev->kobj, &temac_attr_group); if (lp->phy_node) of_node_put(lp->phy_node); temac_mdio_teardown(lp); return 0; } static const struct of_device_id temac_of_match[] = { { .compatible = "xlnx,xps-ll-temac-1.01.b", }, { .compatible = "xlnx,xps-ll-temac-2.00.a", }, { .compatible = "xlnx,xps-ll-temac-2.02.a", }, { .compatible = "xlnx,xps-ll-temac-2.03.a", }, {}, }; MODULE_DEVICE_TABLE(of, temac_of_match); static struct platform_driver temac_driver = { .probe = temac_probe, .remove = temac_remove, .driver = { .name = "xilinx_temac", .of_match_table = temac_of_match, }, }; module_platform_driver(temac_driver); MODULE_DESCRIPTION("Xilinx LL_TEMAC Ethernet driver"); MODULE_AUTHOR("Yoshio Kashiwagi"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1