Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 5070 | 84.64% | 7 | 12.96% |
Stephen Hemminger | 607 | 10.13% | 7 | 12.96% |
Alexander Beregalov | 73 | 1.22% | 1 | 1.85% |
Al Viro | 45 | 0.75% | 2 | 3.70% |
Linus Torvalds | 30 | 0.50% | 3 | 5.56% |
Yue haibing | 30 | 0.50% | 1 | 1.85% |
Maciej W. Rozycki | 23 | 0.38% | 1 | 1.85% |
Jiri Pirko | 20 | 0.33% | 4 | 7.41% |
Randy Dunlap | 14 | 0.23% | 1 | 1.85% |
Andrew Morton | 11 | 0.18% | 1 | 1.85% |
Andy Shevchenko | 9 | 0.15% | 1 | 1.85% |
Roel Kluin | 8 | 0.13% | 1 | 1.85% |
Benoit Taine | 6 | 0.10% | 1 | 1.85% |
Dave Jones | 5 | 0.08% | 1 | 1.85% |
Arnaldo Carvalho de Melo | 5 | 0.08% | 2 | 3.70% |
Joe Perches | 4 | 0.07% | 2 | 3.70% |
Thomas Gleixner | 3 | 0.05% | 2 | 3.70% |
Alexey Dobriyan | 3 | 0.05% | 1 | 1.85% |
Hannes Eder | 3 | 0.05% | 1 | 1.85% |
Patrick McHardy | 3 | 0.05% | 3 | 5.56% |
Christoph Hellwig | 3 | 0.05% | 1 | 1.85% |
Tejun Heo | 3 | 0.05% | 1 | 1.85% |
Adrian Bunk | 2 | 0.03% | 1 | 1.85% |
Peter Hüwe | 2 | 0.03% | 1 | 1.85% |
H Hartley Sweeten | 2 | 0.03% | 1 | 1.85% |
Arjan van de Ven | 1 | 0.02% | 1 | 1.85% |
Dan Carpenter | 1 | 0.02% | 1 | 1.85% |
André Goddard Rosa | 1 | 0.02% | 1 | 1.85% |
Luis R. Rodriguez | 1 | 0.02% | 1 | 1.85% |
Steven Cole | 1 | 0.02% | 1 | 1.85% |
David Howells | 1 | 0.02% | 1 | 1.85% |
Total | 5990 | 54 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * File Name: * skfddi.c * * Copyright Information: * Copyright SysKonnect 1998,1999. * * The information in this file is provided "AS IS" without warranty. * * Abstract: * A Linux device driver supporting the SysKonnect FDDI PCI controller * familie. * * Maintainers: * CG Christoph Goos (cgoos@syskonnect.de) * * Contributors: * DM David S. Miller * * Address all question to: * linux@syskonnect.de * * The technical manual for the adapters is available from SysKonnect's * web pages: www.syskonnect.com * Goto "Support" and search Knowledge Base for "manual". * * Driver Architecture: * The driver architecture is based on the DEC FDDI driver by * Lawrence V. Stefani and several ethernet drivers. * I also used an existing Windows NT miniport driver. * All hardware dependent functions are handled by the SysKonnect * Hardware Module. * The only headerfiles that are directly related to this source * are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h. * The others belong to the SysKonnect FDDI Hardware Module and * should better not be changed. * * Modification History: * Date Name Description * 02-Mar-98 CG Created. * * 10-Mar-99 CG Support for 2.2.x added. * 25-Mar-99 CG Corrected IRQ routing for SMP (APIC) * 26-Oct-99 CG Fixed compilation error on 2.2.13 * 12-Nov-99 CG Source code release * 22-Nov-99 CG Included in kernel source. * 07-May-00 DM 64 bit fixes, new dma interface * 31-Jul-03 DB Audit copy_*_user in skfp_ioctl * Daniele Bellucci <bellucda@tiscali.it> * 03-Dec-03 SH Convert to PCI device model * * Compilation options (-Dxxx): * DRIVERDEBUG print lots of messages to log file * DUMPPACKETS print received/transmitted packets to logfile * * Tested cpu architectures: * - i386 * - sparc64 */ /* Version information string - should be updated prior to */ /* each new release!!! */ #define VERSION "2.07" static const char * const boot_msg = "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n" " SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)"; /* Include files */ #include <linux/capability.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/fddidevice.h> #include <linux/skbuff.h> #include <linux/bitops.h> #include <linux/gfp.h> #include <asm/byteorder.h> #include <asm/io.h> #include <linux/uaccess.h> #include "h/types.h" #undef ADDR // undo Linux definition #include "h/skfbi.h" #include "h/fddi.h" #include "h/smc.h" #include "h/smtstate.h" // Define module-wide (static) routines static int skfp_driver_init(struct net_device *dev); static int skfp_open(struct net_device *dev); static int skfp_close(struct net_device *dev); static irqreturn_t skfp_interrupt(int irq, void *dev_id); static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev); static void skfp_ctl_set_multicast_list(struct net_device *dev); static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev); static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr); static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static netdev_tx_t skfp_send_pkt(struct sk_buff *skb, struct net_device *dev); static void send_queued_packets(struct s_smc *smc); static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr); static void ResetAdapter(struct s_smc *smc); // Functions needed by the hardware module void *mac_drv_get_space(struct s_smc *smc, u_int size); void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size); unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt); unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag); void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag); void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd); void llc_restart_tx(struct s_smc *smc); void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, int frag_count, int len); void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, int frag_count); void mac_drv_fill_rxd(struct s_smc *smc); void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, int frag_count); int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead, int la_len); void dump_data(unsigned char *Data, int length); // External functions from the hardware module extern u_int mac_drv_check_space(void); extern int mac_drv_init(struct s_smc *smc); extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys, int len, int frame_status); extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count, int frame_len, int frame_status); extern void fddi_isr(struct s_smc *smc); extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys, int len, int frame_status); extern void mac_drv_rx_mode(struct s_smc *smc, int mode); extern void mac_drv_clear_rx_queue(struct s_smc *smc); extern void enable_tx_irq(struct s_smc *smc, u_short queue); static const struct pci_device_id skfddi_pci_tbl[] = { { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>"); // Define module-wide (static) variables static int num_boards; /* total number of adapters configured */ static const struct net_device_ops skfp_netdev_ops = { .ndo_open = skfp_open, .ndo_stop = skfp_close, .ndo_start_xmit = skfp_send_pkt, .ndo_get_stats = skfp_ctl_get_stats, .ndo_set_rx_mode = skfp_ctl_set_multicast_list, .ndo_set_mac_address = skfp_ctl_set_mac_address, .ndo_do_ioctl = skfp_ioctl, }; /* * ================= * = skfp_init_one = * ================= * * Overview: * Probes for supported FDDI PCI controllers * * Returns: * Condition code * * Arguments: * pdev - pointer to PCI device information * * Functional Description: * This is now called by PCI driver registration process * for each board found. * * Return Codes: * 0 - This device (fddi0, fddi1, etc) configured successfully * -ENODEV - No devices present, or no SysKonnect FDDI PCI device * present for this device name * * * Side Effects: * Device structures for FDDI adapters (fddi0, fddi1, etc) are * initialized and the board resources are read and stored in * the device structure. */ static int skfp_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev; struct s_smc *smc; /* board pointer */ void __iomem *mem; int err; pr_debug("entering skfp_init_one\n"); if (num_boards == 0) printk("%s\n", boot_msg); err = pci_enable_device(pdev); if (err) return err; err = pci_request_regions(pdev, "skfddi"); if (err) goto err_out1; pci_set_master(pdev); #ifdef MEM_MAPPED_IO if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { printk(KERN_ERR "skfp: region is not an MMIO resource\n"); err = -EIO; goto err_out2; } mem = ioremap(pci_resource_start(pdev, 0), 0x4000); #else if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) { printk(KERN_ERR "skfp: region is not PIO resource\n"); err = -EIO; goto err_out2; } mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN); #endif if (!mem) { printk(KERN_ERR "skfp: Unable to map register, " "FDDI adapter will be disabled.\n"); err = -EIO; goto err_out2; } dev = alloc_fddidev(sizeof(struct s_smc)); if (!dev) { printk(KERN_ERR "skfp: Unable to allocate fddi device, " "FDDI adapter will be disabled.\n"); err = -ENOMEM; goto err_out3; } dev->irq = pdev->irq; dev->netdev_ops = &skfp_netdev_ops; SET_NETDEV_DEV(dev, &pdev->dev); /* Initialize board structure with bus-specific info */ smc = netdev_priv(dev); smc->os.dev = dev; smc->os.bus_type = SK_BUS_TYPE_PCI; smc->os.pdev = *pdev; smc->os.QueueSkb = MAX_TX_QUEUE_LEN; smc->os.MaxFrameSize = MAX_FRAME_SIZE; smc->os.dev = dev; smc->hw.slot = -1; smc->hw.iop = mem; smc->os.ResetRequested = FALSE; skb_queue_head_init(&smc->os.SendSkbQueue); dev->base_addr = (unsigned long)mem; err = skfp_driver_init(dev); if (err) goto err_out4; err = register_netdev(dev); if (err) goto err_out5; ++num_boards; pci_set_drvdata(pdev, dev); if ((pdev->subsystem_device & 0xff00) == 0x5500 || (pdev->subsystem_device & 0xff00) == 0x5800) printk("%s: SysKonnect FDDI PCI adapter" " found (SK-%04X)\n", dev->name, pdev->subsystem_device); else printk("%s: FDDI PCI adapter found\n", dev->name); return 0; err_out5: if (smc->os.SharedMemAddr) dma_free_coherent(&pdev->dev, smc->os.SharedMemSize, smc->os.SharedMemAddr, smc->os.SharedMemDMA); dma_free_coherent(&pdev->dev, MAX_FRAME_SIZE, smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA); err_out4: free_netdev(dev); err_out3: #ifdef MEM_MAPPED_IO iounmap(mem); #else ioport_unmap(mem); #endif err_out2: pci_release_regions(pdev); err_out1: pci_disable_device(pdev); return err; } /* * Called for each adapter board from pci_unregister_driver */ static void skfp_remove_one(struct pci_dev *pdev) { struct net_device *p = pci_get_drvdata(pdev); struct s_smc *lp = netdev_priv(p); unregister_netdev(p); if (lp->os.SharedMemAddr) { dma_free_coherent(&pdev->dev, lp->os.SharedMemSize, lp->os.SharedMemAddr, lp->os.SharedMemDMA); lp->os.SharedMemAddr = NULL; } if (lp->os.LocalRxBuffer) { dma_free_coherent(&pdev->dev, MAX_FRAME_SIZE, lp->os.LocalRxBuffer, lp->os.LocalRxBufferDMA); lp->os.LocalRxBuffer = NULL; } #ifdef MEM_MAPPED_IO iounmap(lp->hw.iop); #else ioport_unmap(lp->hw.iop); #endif pci_release_regions(pdev); free_netdev(p); pci_disable_device(pdev); } /* * ==================== * = skfp_driver_init = * ==================== * * Overview: * Initializes remaining adapter board structure information * and makes sure adapter is in a safe state prior to skfp_open(). * * Returns: * Condition code * * Arguments: * dev - pointer to device information * * Functional Description: * This function allocates additional resources such as the host memory * blocks needed by the adapter. * The adapter is also reset. The OS must call skfp_open() to open * the adapter and bring it on-line. * * Return Codes: * 0 - initialization succeeded * -1 - initialization failed */ static int skfp_driver_init(struct net_device *dev) { struct s_smc *smc = netdev_priv(dev); skfddi_priv *bp = &smc->os; int err = -EIO; pr_debug("entering skfp_driver_init\n"); // set the io address in private structures bp->base_addr = dev->base_addr; // Get the interrupt level from the PCI Configuration Table smc->hw.irq = dev->irq; spin_lock_init(&bp->DriverLock); // Allocate invalid frame bp->LocalRxBuffer = dma_alloc_coherent(&bp->pdev.dev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA, GFP_ATOMIC); if (!bp->LocalRxBuffer) { printk("could not allocate mem for "); printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE); goto fail; } // Determine the required size of the 'shared' memory area. bp->SharedMemSize = mac_drv_check_space(); pr_debug("Memory for HWM: %ld\n", bp->SharedMemSize); if (bp->SharedMemSize > 0) { bp->SharedMemSize += 16; // for descriptor alignment bp->SharedMemAddr = dma_alloc_coherent(&bp->pdev.dev, bp->SharedMemSize, &bp->SharedMemDMA, GFP_ATOMIC); if (!bp->SharedMemAddr) { printk("could not allocate mem for "); printk("hardware module: %ld byte\n", bp->SharedMemSize); goto fail; } } else { bp->SharedMemAddr = NULL; } bp->SharedMemHeap = 0; card_stop(smc); // Reset adapter. pr_debug("mac_drv_init()..\n"); if (mac_drv_init(smc) != 0) { pr_debug("mac_drv_init() failed\n"); goto fail; } read_address(smc, NULL); pr_debug("HW-Addr: %pMF\n", smc->hw.fddi_canon_addr.a); memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN); smt_reset_defaults(smc, 0); return 0; fail: if (bp->SharedMemAddr) { dma_free_coherent(&bp->pdev.dev, bp->SharedMemSize, bp->SharedMemAddr, bp->SharedMemDMA); bp->SharedMemAddr = NULL; } if (bp->LocalRxBuffer) { dma_free_coherent(&bp->pdev.dev, MAX_FRAME_SIZE, bp->LocalRxBuffer, bp->LocalRxBufferDMA); bp->LocalRxBuffer = NULL; } return err; } // skfp_driver_init /* * ============= * = skfp_open = * ============= * * Overview: * Opens the adapter * * Returns: * Condition code * * Arguments: * dev - pointer to device information * * Functional Description: * This function brings the adapter to an operational state. * * Return Codes: * 0 - Adapter was successfully opened * -EAGAIN - Could not register IRQ */ static int skfp_open(struct net_device *dev) { struct s_smc *smc = netdev_priv(dev); int err; pr_debug("entering skfp_open\n"); /* Register IRQ - support shared interrupts by passing device ptr */ err = request_irq(dev->irq, skfp_interrupt, IRQF_SHARED, dev->name, dev); if (err) return err; /* * Set current address to factory MAC address * * Note: We've already done this step in skfp_driver_init. * However, it's possible that a user has set a node * address override, then closed and reopened the * adapter. Unless we reset the device address field * now, we'll continue to use the existing modified * address. */ read_address(smc, NULL); memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, ETH_ALEN); init_smt(smc, NULL); smt_online(smc, 1); STI_FBI(); /* Clear local multicast address tables */ mac_clear_multicast(smc); /* Disable promiscuous filter settings */ mac_drv_rx_mode(smc, RX_DISABLE_PROMISC); netif_start_queue(dev); return 0; } // skfp_open /* * ============== * = skfp_close = * ============== * * Overview: * Closes the device/module. * * Returns: * Condition code * * Arguments: * dev - pointer to device information * * Functional Description: * This routine closes the adapter and brings it to a safe state. * The interrupt service routine is deregistered with the OS. * The adapter can be opened again with another call to skfp_open(). * * Return Codes: * Always return 0. * * Assumptions: * No further requests for this adapter are made after this routine is * called. skfp_open() can be called to reset and reinitialize the * adapter. */ static int skfp_close(struct net_device *dev) { struct s_smc *smc = netdev_priv(dev); skfddi_priv *bp = &smc->os; CLI_FBI(); smt_reset_defaults(smc, 1); card_stop(smc); mac_drv_clear_tx_queue(smc); mac_drv_clear_rx_queue(smc); netif_stop_queue(dev); /* Deregister (free) IRQ */ free_irq(dev->irq, dev); skb_queue_purge(&bp->SendSkbQueue); bp->QueueSkb = MAX_TX_QUEUE_LEN; return 0; } // skfp_close /* * ================== * = skfp_interrupt = * ================== * * Overview: * Interrupt processing routine * * Returns: * None * * Arguments: * irq - interrupt vector * dev_id - pointer to device information * * Functional Description: * This routine calls the interrupt processing routine for this adapter. It * disables and reenables adapter interrupts, as appropriate. We can support * shared interrupts since the incoming dev_id pointer provides our device * structure context. All the real work is done in the hardware module. * * Return Codes: * None * * Assumptions: * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC * on Intel-based systems) is done by the operating system outside this * routine. * * System interrupts are enabled through this call. * * Side Effects: * Interrupts are disabled, then reenabled at the adapter. */ static irqreturn_t skfp_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct s_smc *smc; /* private board structure pointer */ skfddi_priv *bp; smc = netdev_priv(dev); bp = &smc->os; // IRQs enabled or disabled ? if (inpd(ADDR(B0_IMSK)) == 0) { // IRQs are disabled: must be shared interrupt return IRQ_NONE; } // Note: At this point, IRQs are enabled. if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ? // Adapter did not issue an IRQ: must be shared interrupt return IRQ_NONE; } CLI_FBI(); // Disable IRQs from our adapter. spin_lock(&bp->DriverLock); // Call interrupt handler in hardware module (HWM). fddi_isr(smc); if (smc->os.ResetRequested) { ResetAdapter(smc); smc->os.ResetRequested = FALSE; } spin_unlock(&bp->DriverLock); STI_FBI(); // Enable IRQs from our adapter. return IRQ_HANDLED; } // skfp_interrupt /* * ====================== * = skfp_ctl_get_stats = * ====================== * * Overview: * Get statistics for FDDI adapter * * Returns: * Pointer to FDDI statistics structure * * Arguments: * dev - pointer to device information * * Functional Description: * Gets current MIB objects from adapter, then * returns FDDI statistics structure as defined * in if_fddi.h. * * Note: Since the FDDI statistics structure is * still new and the device structure doesn't * have an FDDI-specific get statistics handler, * we'll return the FDDI statistics structure as * a pointer to an Ethernet statistics structure. * That way, at least the first part of the statistics * structure can be decoded properly. * We'll have to pay attention to this routine as the * device structure becomes more mature and LAN media * independent. * */ static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev) { struct s_smc *bp = netdev_priv(dev); /* Fill the bp->stats structure with driver-maintained counters */ bp->os.MacStat.port_bs_flag[0] = 0x1234; bp->os.MacStat.port_bs_flag[1] = 0x5678; // goos: need to fill out fddi statistic #if 0 /* Get FDDI SMT MIB objects */ /* Fill the bp->stats structure with the SMT MIB object values */ memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id)); bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id; bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id; bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id; memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data)); bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id; bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct; bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct; bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct; bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths; bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities; bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy; bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy; bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify; bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy; bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration; bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present; bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state; bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state; bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag; bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status; bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag; bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls; bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls; bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions; bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability; bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability; bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths; bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path; memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN); memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN); memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN); memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN); bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test; bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths; bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type; memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN); bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req; bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg; bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max; bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value; bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold; bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio; bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state; bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag; bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag; bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag; bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available; bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present; bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable; bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound; bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound; bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req; memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration)); bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0]; bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1]; bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0]; bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1]; bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0]; bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1]; bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0]; bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1]; bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0]; bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1]; memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3); memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3); bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0]; bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1]; bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0]; bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1]; bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0]; bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1]; bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0]; bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1]; bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0]; bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1]; bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0]; bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1]; bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0]; bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1]; bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0]; bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1]; bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0]; bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1]; bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0]; bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1]; bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0]; bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1]; bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0]; bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1]; bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0]; bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1]; /* Fill the bp->stats structure with the FDDI counter values */ bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls; bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls; bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls; bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls; bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls; bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls; bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls; bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls; bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls; bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls; bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls; #endif return (struct net_device_stats *)&bp->os.MacStat; } // ctl_get_stat /* * ============================== * = skfp_ctl_set_multicast_list = * ============================== * * Overview: * Enable/Disable LLC frame promiscuous mode reception * on the adapter and/or update multicast address table. * * Returns: * None * * Arguments: * dev - pointer to device information * * Functional Description: * This function acquires the driver lock and only calls * skfp_ctl_set_multicast_list_wo_lock then. * This routine follows a fairly simple algorithm for setting the * adapter filters and CAM: * * if IFF_PROMISC flag is set * enable promiscuous mode * else * disable promiscuous mode * if number of multicast addresses <= max. multicast number * add mc addresses to adapter table * else * enable promiscuous mode * update adapter filters * * Assumptions: * Multicast addresses are presented in canonical (LSB) format. * * Side Effects: * On-board adapter filters are updated. */ static void skfp_ctl_set_multicast_list(struct net_device *dev) { struct s_smc *smc = netdev_priv(dev); skfddi_priv *bp = &smc->os; unsigned long Flags; spin_lock_irqsave(&bp->DriverLock, Flags); skfp_ctl_set_multicast_list_wo_lock(dev); spin_unlock_irqrestore(&bp->DriverLock, Flags); } // skfp_ctl_set_multicast_list static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev) { struct s_smc *smc = netdev_priv(dev); struct netdev_hw_addr *ha; /* Enable promiscuous mode, if necessary */ if (dev->flags & IFF_PROMISC) { mac_drv_rx_mode(smc, RX_ENABLE_PROMISC); pr_debug("PROMISCUOUS MODE ENABLED\n"); } /* Else, update multicast address table */ else { mac_drv_rx_mode(smc, RX_DISABLE_PROMISC); pr_debug("PROMISCUOUS MODE DISABLED\n"); // Reset all MC addresses mac_clear_multicast(smc); mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI); if (dev->flags & IFF_ALLMULTI) { mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI); pr_debug("ENABLE ALL MC ADDRESSES\n"); } else if (!netdev_mc_empty(dev)) { if (netdev_mc_count(dev) <= FPMAX_MULTICAST) { /* use exact filtering */ // point to first multicast addr netdev_for_each_mc_addr(ha, dev) { mac_add_multicast(smc, (struct fddi_addr *)ha->addr, 1); pr_debug("ENABLE MC ADDRESS: %pMF\n", ha->addr); } } else { // more MC addresses than HW supports mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI); pr_debug("ENABLE ALL MC ADDRESSES\n"); } } else { // no MC addresses pr_debug("DISABLE ALL MC ADDRESSES\n"); } /* Update adapter filters */ mac_update_multicast(smc); } } // skfp_ctl_set_multicast_list_wo_lock /* * =========================== * = skfp_ctl_set_mac_address = * =========================== * * Overview: * set new mac address on adapter and update dev_addr field in device table. * * Returns: * None * * Arguments: * dev - pointer to device information * addr - pointer to sockaddr structure containing unicast address to set * * Assumptions: * The address pointed to by addr->sa_data is a valid unicast * address and is presented in canonical (LSB) format. */ static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr) { struct s_smc *smc = netdev_priv(dev); struct sockaddr *p_sockaddr = (struct sockaddr *) addr; skfddi_priv *bp = &smc->os; unsigned long Flags; memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); spin_lock_irqsave(&bp->DriverLock, Flags); ResetAdapter(smc); spin_unlock_irqrestore(&bp->DriverLock, Flags); return 0; /* always return zero */ } // skfp_ctl_set_mac_address /* * ============== * = skfp_ioctl = * ============== * * Overview: * * Perform IOCTL call functions here. Some are privileged operations and the * effective uid is checked in those cases. * * Returns: * status value * 0 - success * other - failure * * Arguments: * dev - pointer to device information * rq - pointer to ioctl request structure * cmd - ? * */ static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct s_smc *smc = netdev_priv(dev); skfddi_priv *lp = &smc->os; struct s_skfp_ioctl ioc; int status = 0; if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl))) return -EFAULT; switch (ioc.cmd) { case SKFP_GET_STATS: /* Get the driver statistics */ ioc.len = sizeof(lp->MacStat); status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len) ? -EFAULT : 0; break; case SKFP_CLR_STATS: /* Zero out the driver statistics */ if (!capable(CAP_NET_ADMIN)) { status = -EPERM; } else { memset(&lp->MacStat, 0, sizeof(lp->MacStat)); } break; default: printk("ioctl for %s: unknown cmd: %04x\n", dev->name, ioc.cmd); status = -EOPNOTSUPP; } // switch return status; } // skfp_ioctl /* * ===================== * = skfp_send_pkt = * ===================== * * Overview: * Queues a packet for transmission and try to transmit it. * * Returns: * Condition code * * Arguments: * skb - pointer to sk_buff to queue for transmission * dev - pointer to device information * * Functional Description: * Here we assume that an incoming skb transmit request * is contained in a single physically contiguous buffer * in which the virtual address of the start of packet * (skb->data) can be converted to a physical address * by using pci_map_single(). * * We have an internal queue for packets we can not send * immediately. Packets in this queue can be given to the * adapter if transmit buffers are freed. * * We can't free the skb until after it's been DMA'd * out by the adapter, so we'll keep it in the driver and * return it in mac_drv_tx_complete. * * Return Codes: * 0 - driver has queued and/or sent packet * 1 - caller should requeue the sk_buff for later transmission * * Assumptions: * The entire packet is stored in one physically * contiguous buffer which is not cached and whose * 32-bit physical address can be determined. * * It's vital that this routine is NOT reentered for the * same board and that the OS is not in another section of * code (eg. skfp_interrupt) for the same board on a * different thread. * * Side Effects: * None */ static netdev_tx_t skfp_send_pkt(struct sk_buff *skb, struct net_device *dev) { struct s_smc *smc = netdev_priv(dev); skfddi_priv *bp = &smc->os; pr_debug("skfp_send_pkt\n"); /* * Verify that incoming transmit request is OK * * Note: The packet size check is consistent with other * Linux device drivers, although the correct packet * size should be verified before calling the * transmit routine. */ if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) { bp->MacStat.gen.tx_errors++; /* bump error counter */ // dequeue packets from xmt queue and send them netif_start_queue(dev); dev_kfree_skb(skb); return NETDEV_TX_OK; /* return "success" */ } if (bp->QueueSkb == 0) { // return with tbusy set: queue full netif_stop_queue(dev); return NETDEV_TX_BUSY; } bp->QueueSkb--; skb_queue_tail(&bp->SendSkbQueue, skb); send_queued_packets(netdev_priv(dev)); if (bp->QueueSkb == 0) { netif_stop_queue(dev); } return NETDEV_TX_OK; } // skfp_send_pkt /* * ======================= * = send_queued_packets = * ======================= * * Overview: * Send packets from the driver queue as long as there are some and * transmit resources are available. * * Returns: * None * * Arguments: * smc - pointer to smc (adapter) structure * * Functional Description: * Take a packet from queue if there is any. If not, then we are done. * Check if there are resources to send the packet. If not, requeue it * and exit. * Set packet descriptor flags and give packet to adapter. * Check if any send resources can be freed (we do not use the * transmit complete interrupt). */ static void send_queued_packets(struct s_smc *smc) { skfddi_priv *bp = &smc->os; struct sk_buff *skb; unsigned char fc; int queue; struct s_smt_fp_txd *txd; // Current TxD. dma_addr_t dma_address; unsigned long Flags; int frame_status; // HWM tx frame status. pr_debug("send queued packets\n"); for (;;) { // send first buffer from queue skb = skb_dequeue(&bp->SendSkbQueue); if (!skb) { pr_debug("queue empty\n"); return; } // queue empty ! spin_lock_irqsave(&bp->DriverLock, Flags); fc = skb->data[0]; queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0; #ifdef ESS // Check if the frame may/must be sent as a synchronous frame. if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) { // It's an LLC frame. if (!smc->ess.sync_bw_available) fc &= ~FC_SYNC_BIT; // No bandwidth available. else { // Bandwidth is available. if (smc->mib.fddiESSSynchTxMode) { // Send as sync. frame. fc |= FC_SYNC_BIT; } } } #endif // ESS frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue); if ((frame_status & (LOC_TX | LAN_TX)) == 0) { // Unable to send the frame. if ((frame_status & RING_DOWN) != 0) { // Ring is down. pr_debug("Tx attempt while ring down.\n"); } else if ((frame_status & OUT_OF_TXD) != 0) { pr_debug("%s: out of TXDs.\n", bp->dev->name); } else { pr_debug("%s: out of transmit resources", bp->dev->name); } // Note: We will retry the operation as soon as // transmit resources become available. skb_queue_head(&bp->SendSkbQueue, skb); spin_unlock_irqrestore(&bp->DriverLock, Flags); return; // Packet has been queued. } // if (unable to send frame) bp->QueueSkb++; // one packet less in local queue // source address in packet ? CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a); txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue); dma_address = pci_map_single(&bp->pdev, skb->data, skb->len, PCI_DMA_TODEVICE); if (frame_status & LAN_TX) { txd->txd_os.skb = skb; // save skb txd->txd_os.dma_addr = dma_address; // save dma mapping } hwm_tx_frag(smc, skb->data, dma_address, skb->len, frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF); if (!(frame_status & LAN_TX)) { // local only frame pci_unmap_single(&bp->pdev, dma_address, skb->len, PCI_DMA_TODEVICE); dev_kfree_skb_irq(skb); } spin_unlock_irqrestore(&bp->DriverLock, Flags); } // for return; // never reached } // send_queued_packets /************************ * * CheckSourceAddress * * Verify if the source address is set. Insert it if necessary. * ************************/ static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr) { unsigned char SRBit; if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit return; if ((unsigned short) frame[1 + 10] != 0) return; SRBit = frame[1 + 6] & 0x01; memcpy(&frame[1 + 6], hw_addr, ETH_ALEN); frame[8] |= SRBit; } // CheckSourceAddress /************************ * * ResetAdapter * * Reset the adapter and bring it back to operational mode. * Args * smc - A pointer to the SMT context struct. * Out * Nothing. * ************************/ static void ResetAdapter(struct s_smc *smc) { pr_debug("[fddi: ResetAdapter]\n"); // Stop the adapter. card_stop(smc); // Stop all activity. // Clear the transmit and receive descriptor queues. mac_drv_clear_tx_queue(smc); mac_drv_clear_rx_queue(smc); // Restart the adapter. smt_reset_defaults(smc, 1); // Initialize the SMT module. init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware. smt_online(smc, 1); // Insert into the ring again. STI_FBI(); // Restore original receive mode (multicasts, promiscuous, etc.). skfp_ctl_set_multicast_list_wo_lock(smc->os.dev); } // ResetAdapter //--------------- functions called by hardware module ---------------- /************************ * * llc_restart_tx * * The hardware driver calls this routine when the transmit complete * interrupt bits (end of frame) for the synchronous or asynchronous * queue is set. * * NOTE The hardware driver calls this function also if no packets are queued. * The routine must be able to handle this case. * Args * smc - A pointer to the SMT context struct. * Out * Nothing. * ************************/ void llc_restart_tx(struct s_smc *smc) { skfddi_priv *bp = &smc->os; pr_debug("[llc_restart_tx]\n"); // Try to send queued packets spin_unlock(&bp->DriverLock); send_queued_packets(smc); spin_lock(&bp->DriverLock); netif_start_queue(bp->dev);// system may send again if it was blocked } // llc_restart_tx /************************ * * mac_drv_get_space * * The hardware module calls this function to allocate the memory * for the SMT MBufs if the define MB_OUTSIDE_SMC is specified. * Args * smc - A pointer to the SMT context struct. * * size - Size of memory in bytes to allocate. * Out * != 0 A pointer to the virtual address of the allocated memory. * == 0 Allocation error. * ************************/ void *mac_drv_get_space(struct s_smc *smc, unsigned int size) { void *virt; pr_debug("mac_drv_get_space (%d bytes), ", size); virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap); if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) { printk("Unexpected SMT memory size requested: %d\n", size); return NULL; } smc->os.SharedMemHeap += size; // Move heap pointer. pr_debug("mac_drv_get_space end\n"); pr_debug("virt addr: %lx\n", (ulong) virt); pr_debug("bus addr: %lx\n", (ulong) (smc->os.SharedMemDMA + ((char *) virt - (char *)smc->os.SharedMemAddr))); return virt; } // mac_drv_get_space /************************ * * mac_drv_get_desc_mem * * This function is called by the hardware dependent module. * It allocates the memory for the RxD and TxD descriptors. * * This memory must be non-cached, non-movable and non-swappable. * This memory should start at a physical page boundary. * Args * smc - A pointer to the SMT context struct. * * size - Size of memory in bytes to allocate. * Out * != 0 A pointer to the virtual address of the allocated memory. * == 0 Allocation error. * ************************/ void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size) { char *virt; pr_debug("mac_drv_get_desc_mem\n"); // Descriptor memory must be aligned on 16-byte boundary. virt = mac_drv_get_space(smc, size); size = (u_int) (16 - (((unsigned long) virt) & 15UL)); size = size % 16; pr_debug("Allocate %u bytes alignment gap ", size); pr_debug("for descriptor memory.\n"); if (!mac_drv_get_space(smc, size)) { printk("fddi: Unable to align descriptor memory.\n"); return NULL; } return virt + size; } // mac_drv_get_desc_mem /************************ * * mac_drv_virt2phys * * Get the physical address of a given virtual address. * Args * smc - A pointer to the SMT context struct. * * virt - A (virtual) pointer into our 'shared' memory area. * Out * Physical address of the given virtual address. * ************************/ unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt) { return smc->os.SharedMemDMA + ((char *) virt - (char *)smc->os.SharedMemAddr); } // mac_drv_virt2phys /************************ * * dma_master * * The HWM calls this function, when the driver leads through a DMA * transfer. If the OS-specific module must prepare the system hardware * for the DMA transfer, it should do it in this function. * * The hardware module calls this dma_master if it wants to send an SMT * frame. This means that the virt address passed in here is part of * the 'shared' memory area. * Args * smc - A pointer to the SMT context struct. * * virt - The virtual address of the data. * * len - The length in bytes of the data. * * flag - Indicates the transmit direction and the buffer type: * DMA_RD (0x01) system RAM ==> adapter buffer memory * DMA_WR (0x02) adapter buffer memory ==> system RAM * SMT_BUF (0x80) SMT buffer * * >> NOTE: SMT_BUF and DMA_RD are always set for PCI. << * Out * Returns the pyhsical address for the DMA transfer. * ************************/ u_long dma_master(struct s_smc * smc, void *virt, int len, int flag) { return smc->os.SharedMemDMA + ((char *) virt - (char *)smc->os.SharedMemAddr); } // dma_master /************************ * * dma_complete * * The hardware module calls this routine when it has completed a DMA * transfer. If the operating system dependent module has set up the DMA * channel via dma_master() (e.g. Windows NT or AIX) it should clean up * the DMA channel. * Args * smc - A pointer to the SMT context struct. * * descr - A pointer to a TxD or RxD, respectively. * * flag - Indicates the DMA transfer direction / SMT buffer: * DMA_RD (0x01) system RAM ==> adapter buffer memory * DMA_WR (0x02) adapter buffer memory ==> system RAM * SMT_BUF (0x80) SMT buffer (managed by HWM) * Out * Nothing. * ************************/ void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag) { /* For TX buffers, there are two cases. If it is an SMT transmit * buffer, there is nothing to do since we use consistent memory * for the 'shared' memory area. The other case is for normal * transmit packets given to us by the networking stack, and in * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete * below. * * For RX buffers, we have to unmap dynamic PCI DMA mappings here * because the hardware module is about to potentially look at * the contents of the buffer. If we did not call the PCI DMA * unmap first, the hardware module could read inconsistent data. */ if (flag & DMA_WR) { skfddi_priv *bp = &smc->os; volatile struct s_smt_fp_rxd *r = &descr->r; /* If SKB is NULL, we used the local buffer. */ if (r->rxd_os.skb && r->rxd_os.dma_addr) { int MaxFrameSize = bp->MaxFrameSize; pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr, MaxFrameSize, PCI_DMA_FROMDEVICE); r->rxd_os.dma_addr = 0; } } } // dma_complete /************************ * * mac_drv_tx_complete * * Transmit of a packet is complete. Release the tx staging buffer. * * Args * smc - A pointer to the SMT context struct. * * txd - A pointer to the last TxD which is used by the frame. * Out * Returns nothing. * ************************/ void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd) { struct sk_buff *skb; pr_debug("entering mac_drv_tx_complete\n"); // Check if this TxD points to a skb if (!(skb = txd->txd_os.skb)) { pr_debug("TXD with no skb assigned.\n"); return; } txd->txd_os.skb = NULL; // release the DMA mapping pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr, skb->len, PCI_DMA_TODEVICE); txd->txd_os.dma_addr = 0; smc->os.MacStat.gen.tx_packets++; // Count transmitted packets. smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes // free the skb dev_kfree_skb_irq(skb); pr_debug("leaving mac_drv_tx_complete\n"); } // mac_drv_tx_complete /************************ * * dump packets to logfile * ************************/ #ifdef DUMPPACKETS void dump_data(unsigned char *Data, int length) { printk(KERN_INFO "---Packet start---\n"); print_hex_dump(KERN_INFO, "", DUMP_PREFIX_NONE, 16, 1, Data, min_t(size_t, length, 64), false); printk(KERN_INFO "------------------\n"); } // dump_data #else #define dump_data(data,len) #endif // DUMPPACKETS /************************ * * mac_drv_rx_complete * * The hardware module calls this function if an LLC frame is received * in a receive buffer. Also the SMT, NSA, and directed beacon frames * from the network will be passed to the LLC layer by this function * if passing is enabled. * * mac_drv_rx_complete forwards the frame to the LLC layer if it should * be received. It also fills the RxD ring with new receive buffers if * some can be queued. * Args * smc - A pointer to the SMT context struct. * * rxd - A pointer to the first RxD which is used by the receive frame. * * frag_count - Count of RxDs used by the received frame. * * len - Frame length. * Out * Nothing. * ************************/ void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, int frag_count, int len) { skfddi_priv *bp = &smc->os; struct sk_buff *skb; unsigned char *virt, *cp; unsigned short ri; u_int RifLength; pr_debug("entering mac_drv_rx_complete (len=%d)\n", len); if (frag_count != 1) { // This is not allowed to happen. printk("fddi: Multi-fragment receive!\n"); goto RequeueRxd; // Re-use the given RXD(s). } skb = rxd->rxd_os.skb; if (!skb) { pr_debug("No skb in rxd\n"); smc->os.MacStat.gen.rx_errors++; goto RequeueRxd; } virt = skb->data; // The DMA mapping was released in dma_complete above. dump_data(skb->data, len); /* * FDDI Frame format: * +-------+-------+-------+------------+--------+------------+ * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] | * +-------+-------+-------+------------+--------+------------+ * * FC = Frame Control * DA = Destination Address * SA = Source Address * RIF = Routing Information Field * LLC = Logical Link Control */ // Remove Routing Information Field (RIF), if present. if ((virt[1 + 6] & FDDI_RII) == 0) RifLength = 0; else { int n; // goos: RIF removal has still to be tested pr_debug("RIF found\n"); // Get RIF length from Routing Control (RC) field. cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header. ri = ntohs(*((__be16 *) cp)); RifLength = ri & FDDI_RCF_LEN_MASK; if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) { printk("fddi: Invalid RIF.\n"); goto RequeueRxd; // Discard the frame. } virt[1 + 6] &= ~FDDI_RII; // Clear RII bit. // regions overlap virt = cp + RifLength; for (n = FDDI_MAC_HDR_LEN; n; n--) *--virt = *--cp; // adjust sbd->data pointer skb_pull(skb, RifLength); len -= RifLength; RifLength = 0; } // Count statistics. smc->os.MacStat.gen.rx_packets++; // Count indicated receive // packets. smc->os.MacStat.gen.rx_bytes+=len; // Count bytes. // virt points to header again if (virt[1] & 0x01) { // Check group (multicast) bit. smc->os.MacStat.gen.multicast++; } // deliver frame to system rxd->rxd_os.skb = NULL; skb_trim(skb, len); skb->protocol = fddi_type_trans(skb, bp->dev); netif_rx(skb); HWM_RX_CHECK(smc, RX_LOW_WATERMARK); return; RequeueRxd: pr_debug("Rx: re-queue RXD.\n"); mac_drv_requeue_rxd(smc, rxd, frag_count); smc->os.MacStat.gen.rx_errors++; // Count receive packets // not indicated. } // mac_drv_rx_complete /************************ * * mac_drv_requeue_rxd * * The hardware module calls this function to request the OS-specific * module to queue the receive buffer(s) represented by the pointer * to the RxD and the frag_count into the receive queue again. This * buffer was filled with an invalid frame or an SMT frame. * Args * smc - A pointer to the SMT context struct. * * rxd - A pointer to the first RxD which is used by the receive frame. * * frag_count - Count of RxDs used by the received frame. * Out * Nothing. * ************************/ void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, int frag_count) { volatile struct s_smt_fp_rxd *next_rxd; volatile struct s_smt_fp_rxd *src_rxd; struct sk_buff *skb; int MaxFrameSize; unsigned char *v_addr; dma_addr_t b_addr; if (frag_count != 1) // This is not allowed to happen. printk("fddi: Multi-fragment requeue!\n"); MaxFrameSize = smc->os.MaxFrameSize; src_rxd = rxd; for (; frag_count > 0; frag_count--) { next_rxd = src_rxd->rxd_next; rxd = HWM_GET_CURR_RXD(smc); skb = src_rxd->rxd_os.skb; if (skb == NULL) { // this should not happen pr_debug("Requeue with no skb in rxd!\n"); skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC); if (skb) { // we got a skb rxd->rxd_os.skb = skb; skb_reserve(skb, 3); skb_put(skb, MaxFrameSize); v_addr = skb->data; b_addr = pci_map_single(&smc->os.pdev, v_addr, MaxFrameSize, PCI_DMA_FROMDEVICE); rxd->rxd_os.dma_addr = b_addr; } else { // no skb available, use local buffer pr_debug("Queueing invalid buffer!\n"); rxd->rxd_os.skb = NULL; v_addr = smc->os.LocalRxBuffer; b_addr = smc->os.LocalRxBufferDMA; } } else { // we use skb from old rxd rxd->rxd_os.skb = skb; v_addr = skb->data; b_addr = pci_map_single(&smc->os.pdev, v_addr, MaxFrameSize, PCI_DMA_FROMDEVICE); rxd->rxd_os.dma_addr = b_addr; } hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize, FIRST_FRAG | LAST_FRAG); src_rxd = next_rxd; } } // mac_drv_requeue_rxd /************************ * * mac_drv_fill_rxd * * The hardware module calls this function at initialization time * to fill the RxD ring with receive buffers. It is also called by * mac_drv_rx_complete if rx_free is large enough to queue some new * receive buffers into the RxD ring. mac_drv_fill_rxd queues new * receive buffers as long as enough RxDs and receive buffers are * available. * Args * smc - A pointer to the SMT context struct. * Out * Nothing. * ************************/ void mac_drv_fill_rxd(struct s_smc *smc) { int MaxFrameSize; unsigned char *v_addr; unsigned long b_addr; struct sk_buff *skb; volatile struct s_smt_fp_rxd *rxd; pr_debug("entering mac_drv_fill_rxd\n"); // Walk through the list of free receive buffers, passing receive // buffers to the HWM as long as RXDs are available. MaxFrameSize = smc->os.MaxFrameSize; // Check if there is any RXD left. while (HWM_GET_RX_FREE(smc) > 0) { pr_debug(".\n"); rxd = HWM_GET_CURR_RXD(smc); skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC); if (skb) { // we got a skb skb_reserve(skb, 3); skb_put(skb, MaxFrameSize); v_addr = skb->data; b_addr = pci_map_single(&smc->os.pdev, v_addr, MaxFrameSize, PCI_DMA_FROMDEVICE); rxd->rxd_os.dma_addr = b_addr; } else { // no skb available, use local buffer // System has run out of buffer memory, but we want to // keep the receiver running in hope of better times. // Multiple descriptors may point to this local buffer, // so data in it must be considered invalid. pr_debug("Queueing invalid buffer!\n"); v_addr = smc->os.LocalRxBuffer; b_addr = smc->os.LocalRxBufferDMA; } rxd->rxd_os.skb = skb; // Pass receive buffer to HWM. hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize, FIRST_FRAG | LAST_FRAG); } pr_debug("leaving mac_drv_fill_rxd\n"); } // mac_drv_fill_rxd /************************ * * mac_drv_clear_rxd * * The hardware module calls this function to release unused * receive buffers. * Args * smc - A pointer to the SMT context struct. * * rxd - A pointer to the first RxD which is used by the receive buffer. * * frag_count - Count of RxDs used by the receive buffer. * Out * Nothing. * ************************/ void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd, int frag_count) { struct sk_buff *skb; pr_debug("entering mac_drv_clear_rxd\n"); if (frag_count != 1) // This is not allowed to happen. printk("fddi: Multi-fragment clear!\n"); for (; frag_count > 0; frag_count--) { skb = rxd->rxd_os.skb; if (skb != NULL) { skfddi_priv *bp = &smc->os; int MaxFrameSize = bp->MaxFrameSize; pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr, MaxFrameSize, PCI_DMA_FROMDEVICE); dev_kfree_skb(skb); rxd->rxd_os.skb = NULL; } rxd = rxd->rxd_next; // Next RXD. } } // mac_drv_clear_rxd /************************ * * mac_drv_rx_init * * The hardware module calls this routine when an SMT or NSA frame of the * local SMT should be delivered to the LLC layer. * * It is necessary to have this function, because there is no other way to * copy the contents of SMT MBufs into receive buffers. * * mac_drv_rx_init allocates the required target memory for this frame, * and receives the frame fragment by fragment by calling mac_drv_rx_frag. * Args * smc - A pointer to the SMT context struct. * * len - The length (in bytes) of the received frame (FC, DA, SA, Data). * * fc - The Frame Control field of the received frame. * * look_ahead - A pointer to the lookahead data buffer (may be NULL). * * la_len - The length of the lookahead data stored in the lookahead * buffer (may be zero). * Out * Always returns zero (0). * ************************/ int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead, int la_len) { struct sk_buff *skb; pr_debug("entering mac_drv_rx_init(len=%d)\n", len); // "Received" a SMT or NSA frame of the local SMT. if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) { pr_debug("fddi: Discard invalid local SMT frame\n"); pr_debug(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n", len, la_len, (unsigned long) look_ahead); return 0; } skb = alloc_skb(len + 3, GFP_ATOMIC); if (!skb) { pr_debug("fddi: Local SMT: skb memory exhausted.\n"); return 0; } skb_reserve(skb, 3); skb_put(skb, len); skb_copy_to_linear_data(skb, look_ahead, len); // deliver frame to system skb->protocol = fddi_type_trans(skb, smc->os.dev); netif_rx(skb); return 0; } // mac_drv_rx_init /************************ * * smt_timer_poll * * This routine is called periodically by the SMT module to clean up the * driver. * * Return any queued frames back to the upper protocol layers if the ring * is down. * Args * smc - A pointer to the SMT context struct. * Out * Nothing. * ************************/ void smt_timer_poll(struct s_smc *smc) { } // smt_timer_poll /************************ * * ring_status_indication * * This function indicates a change of the ring state. * Args * smc - A pointer to the SMT context struct. * * status - The current ring status. * Out * Nothing. * ************************/ void ring_status_indication(struct s_smc *smc, u_long status) { pr_debug("ring_status_indication( "); if (status & RS_RES15) pr_debug("RS_RES15 "); if (status & RS_HARDERROR) pr_debug("RS_HARDERROR "); if (status & RS_SOFTERROR) pr_debug("RS_SOFTERROR "); if (status & RS_BEACON) pr_debug("RS_BEACON "); if (status & RS_PATHTEST) pr_debug("RS_PATHTEST "); if (status & RS_SELFTEST) pr_debug("RS_SELFTEST "); if (status & RS_RES9) pr_debug("RS_RES9 "); if (status & RS_DISCONNECT) pr_debug("RS_DISCONNECT "); if (status & RS_RES7) pr_debug("RS_RES7 "); if (status & RS_DUPADDR) pr_debug("RS_DUPADDR "); if (status & RS_NORINGOP) pr_debug("RS_NORINGOP "); if (status & RS_VERSION) pr_debug("RS_VERSION "); if (status & RS_STUCKBYPASSS) pr_debug("RS_STUCKBYPASSS "); if (status & RS_EVENT) pr_debug("RS_EVENT "); if (status & RS_RINGOPCHANGE) pr_debug("RS_RINGOPCHANGE "); if (status & RS_RES0) pr_debug("RS_RES0 "); pr_debug("]\n"); } // ring_status_indication /************************ * * smt_get_time * * Gets the current time from the system. * Args * None. * Out * The current time in TICKS_PER_SECOND. * * TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is * defined in "targetos.h". The definition of TICKS_PER_SECOND must comply * to the time returned by smt_get_time(). * ************************/ unsigned long smt_get_time(void) { return jiffies; } // smt_get_time /************************ * * smt_stat_counter * * Status counter update (ring_op, fifo full). * Args * smc - A pointer to the SMT context struct. * * stat - = 0: A ring operational change occurred. * = 1: The FORMAC FIFO buffer is full / FIFO overflow. * Out * Nothing. * ************************/ void smt_stat_counter(struct s_smc *smc, int stat) { // BOOLEAN RingIsUp ; pr_debug("smt_stat_counter\n"); switch (stat) { case 0: pr_debug("Ring operational change.\n"); break; case 1: pr_debug("Receive fifo overflow.\n"); smc->os.MacStat.gen.rx_errors++; break; default: pr_debug("Unknown status (%d).\n", stat); break; } } // smt_stat_counter /************************ * * cfm_state_change * * Sets CFM state in custom statistics. * Args * smc - A pointer to the SMT context struct. * * c_state - Possible values are: * * EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST, * EC5_INSERT, EC6_CHECK, EC7_DEINSERT * Out * Nothing. * ************************/ void cfm_state_change(struct s_smc *smc, int c_state) { #ifdef DRIVERDEBUG char *s; switch (c_state) { case SC0_ISOLATED: s = "SC0_ISOLATED"; break; case SC1_WRAP_A: s = "SC1_WRAP_A"; break; case SC2_WRAP_B: s = "SC2_WRAP_B"; break; case SC4_THRU_A: s = "SC4_THRU_A"; break; case SC5_THRU_B: s = "SC5_THRU_B"; break; case SC7_WRAP_S: s = "SC7_WRAP_S"; break; case SC9_C_WRAP_A: s = "SC9_C_WRAP_A"; break; case SC10_C_WRAP_B: s = "SC10_C_WRAP_B"; break; case SC11_C_WRAP_S: s = "SC11_C_WRAP_S"; break; default: pr_debug("cfm_state_change: unknown %d\n", c_state); return; } pr_debug("cfm_state_change: %s\n", s); #endif // DRIVERDEBUG } // cfm_state_change /************************ * * ecm_state_change * * Sets ECM state in custom statistics. * Args * smc - A pointer to the SMT context struct. * * e_state - Possible values are: * * SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12), * SC5_THRU_B (7), SC7_WRAP_S (8) * Out * Nothing. * ************************/ void ecm_state_change(struct s_smc *smc, int e_state) { #ifdef DRIVERDEBUG char *s; switch (e_state) { case EC0_OUT: s = "EC0_OUT"; break; case EC1_IN: s = "EC1_IN"; break; case EC2_TRACE: s = "EC2_TRACE"; break; case EC3_LEAVE: s = "EC3_LEAVE"; break; case EC4_PATH_TEST: s = "EC4_PATH_TEST"; break; case EC5_INSERT: s = "EC5_INSERT"; break; case EC6_CHECK: s = "EC6_CHECK"; break; case EC7_DEINSERT: s = "EC7_DEINSERT"; break; default: s = "unknown"; break; } pr_debug("ecm_state_change: %s\n", s); #endif //DRIVERDEBUG } // ecm_state_change /************************ * * rmt_state_change * * Sets RMT state in custom statistics. * Args * smc - A pointer to the SMT context struct. * * r_state - Possible values are: * * RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT, * RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE * Out * Nothing. * ************************/ void rmt_state_change(struct s_smc *smc, int r_state) { #ifdef DRIVERDEBUG char *s; switch (r_state) { case RM0_ISOLATED: s = "RM0_ISOLATED"; break; case RM1_NON_OP: s = "RM1_NON_OP - not operational"; break; case RM2_RING_OP: s = "RM2_RING_OP - ring operational"; break; case RM3_DETECT: s = "RM3_DETECT - detect dupl addresses"; break; case RM4_NON_OP_DUP: s = "RM4_NON_OP_DUP - dupl. addr detected"; break; case RM5_RING_OP_DUP: s = "RM5_RING_OP_DUP - ring oper. with dupl. addr"; break; case RM6_DIRECTED: s = "RM6_DIRECTED - sending directed beacons"; break; case RM7_TRACE: s = "RM7_TRACE - trace initiated"; break; default: s = "unknown"; break; } pr_debug("[rmt_state_change: %s]\n", s); #endif // DRIVERDEBUG } // rmt_state_change /************************ * * drv_reset_indication * * This function is called by the SMT when it has detected a severe * hardware problem. The driver should perform a reset on the adapter * as soon as possible, but not from within this function. * Args * smc - A pointer to the SMT context struct. * Out * Nothing. * ************************/ void drv_reset_indication(struct s_smc *smc) { pr_debug("entering drv_reset_indication\n"); smc->os.ResetRequested = TRUE; // Set flag. } // drv_reset_indication static struct pci_driver skfddi_pci_driver = { .name = "skfddi", .id_table = skfddi_pci_tbl, .probe = skfp_init_one, .remove = skfp_remove_one, }; module_pci_driver(skfddi_pci_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1