Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nick Kossifidis | 1921 | 84.25% | 4 | 17.39% |
Bruno Randolf | 178 | 7.81% | 7 | 30.43% |
Felix Fietkau | 141 | 6.18% | 5 | 21.74% |
Bob Copeland | 12 | 0.53% | 1 | 4.35% |
Joe Perches | 10 | 0.44% | 2 | 8.70% |
Benoit Papillault | 9 | 0.39% | 1 | 4.35% |
Mark Rutland | 4 | 0.18% | 1 | 4.35% |
Lucas De Marchi | 3 | 0.13% | 1 | 4.35% |
John W. Linville | 2 | 0.09% | 1 | 4.35% |
Total | 2280 | 23 |
/* * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org> * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com> * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * */ /******************************\ Hardware Descriptor Functions \******************************/ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "ath5k.h" #include "reg.h" #include "debug.h" /** * DOC: Hardware descriptor functions * * Here we handle the processing of the low-level hw descriptors * that hw reads and writes via DMA for each TX and RX attempt (that means * we can also have descriptors for failed TX/RX tries). We have two kind of * descriptors for RX and TX, control descriptors tell the hw how to send or * receive a packet where to read/write it from/to etc and status descriptors * that contain information about how the packet was sent or received (errors * included). * * Descriptor format is not exactly the same for each MAC chip version so we * have function pointers on &struct ath5k_hw we initialize at runtime based on * the chip used. */ /************************\ * TX Control descriptors * \************************/ /** * ath5k_hw_setup_2word_tx_desc() - Initialize a 2-word tx control descriptor * @ah: The &struct ath5k_hw * @desc: The &struct ath5k_desc * @pkt_len: Frame length in bytes * @hdr_len: Header length in bytes (only used on AR5210) * @padsize: Any padding we've added to the frame length * @type: One of enum ath5k_pkt_type * @tx_power: Tx power in 0.5dB steps * @tx_rate0: HW idx for transmission rate * @tx_tries0: Max number of retransmissions * @key_index: Index on key table to use for encryption * @antenna_mode: Which antenna to use (0 for auto) * @flags: One of AR5K_TXDESC_* flags (desc.h) * @rtscts_rate: HW idx for RTS/CTS transmission rate * @rtscts_duration: What to put on duration field on the header of RTS/CTS * * Internal function to initialize a 2-Word TX control descriptor * found on AR5210 and AR5211 MACs chips. * * Returns 0 on success or -EINVAL on false input */ static int ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc, unsigned int pkt_len, unsigned int hdr_len, int padsize, enum ath5k_pkt_type type, unsigned int tx_power, unsigned int tx_rate0, unsigned int tx_tries0, unsigned int key_index, unsigned int antenna_mode, unsigned int flags, unsigned int rtscts_rate, unsigned int rtscts_duration) { u32 frame_type; struct ath5k_hw_2w_tx_ctl *tx_ctl; unsigned int frame_len; tx_ctl = &desc->ud.ds_tx5210.tx_ctl; /* * Validate input * - Zero retries don't make sense. * - A zero rate will put the HW into a mode where it continuously sends * noise on the channel, so it is important to avoid this. */ if (unlikely(tx_tries0 == 0)) { ATH5K_ERR(ah, "zero retries\n"); WARN_ON(1); return -EINVAL; } if (unlikely(tx_rate0 == 0)) { ATH5K_ERR(ah, "zero rate\n"); WARN_ON(1); return -EINVAL; } /* Clear descriptor */ memset(&desc->ud.ds_tx5210, 0, sizeof(struct ath5k_hw_5210_tx_desc)); /* Setup control descriptor */ /* Verify and set frame length */ /* remove padding we might have added before */ frame_len = pkt_len - padsize + FCS_LEN; if (frame_len & ~AR5K_2W_TX_DESC_CTL0_FRAME_LEN) return -EINVAL; tx_ctl->tx_control_0 = frame_len & AR5K_2W_TX_DESC_CTL0_FRAME_LEN; /* Verify and set buffer length */ /* NB: beacon's BufLen must be a multiple of 4 bytes */ if (type == AR5K_PKT_TYPE_BEACON) pkt_len = roundup(pkt_len, 4); if (pkt_len & ~AR5K_2W_TX_DESC_CTL1_BUF_LEN) return -EINVAL; tx_ctl->tx_control_1 = pkt_len & AR5K_2W_TX_DESC_CTL1_BUF_LEN; /* * Verify and set header length (only 5210) */ if (ah->ah_version == AR5K_AR5210) { if (hdr_len & ~AR5K_2W_TX_DESC_CTL0_HEADER_LEN_5210) return -EINVAL; tx_ctl->tx_control_0 |= AR5K_REG_SM(hdr_len, AR5K_2W_TX_DESC_CTL0_HEADER_LEN_5210); } /*Differences between 5210-5211*/ if (ah->ah_version == AR5K_AR5210) { switch (type) { case AR5K_PKT_TYPE_BEACON: case AR5K_PKT_TYPE_PROBE_RESP: frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_NO_DELAY; break; case AR5K_PKT_TYPE_PIFS: frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_PIFS; break; default: frame_type = type; break; } tx_ctl->tx_control_0 |= AR5K_REG_SM(frame_type, AR5K_2W_TX_DESC_CTL0_FRAME_TYPE_5210) | AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE); } else { tx_ctl->tx_control_0 |= AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE) | AR5K_REG_SM(antenna_mode, AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT); tx_ctl->tx_control_1 |= AR5K_REG_SM(type, AR5K_2W_TX_DESC_CTL1_FRAME_TYPE_5211); } #define _TX_FLAGS(_c, _flag) \ if (flags & AR5K_TXDESC_##_flag) { \ tx_ctl->tx_control_##_c |= \ AR5K_2W_TX_DESC_CTL##_c##_##_flag; \ } #define _TX_FLAGS_5211(_c, _flag) \ if (flags & AR5K_TXDESC_##_flag) { \ tx_ctl->tx_control_##_c |= \ AR5K_2W_TX_DESC_CTL##_c##_##_flag##_5211; \ } _TX_FLAGS(0, CLRDMASK); _TX_FLAGS(0, INTREQ); _TX_FLAGS(0, RTSENA); if (ah->ah_version == AR5K_AR5211) { _TX_FLAGS_5211(0, VEOL); _TX_FLAGS_5211(1, NOACK); } #undef _TX_FLAGS #undef _TX_FLAGS_5211 /* * WEP crap */ if (key_index != AR5K_TXKEYIX_INVALID) { tx_ctl->tx_control_0 |= AR5K_2W_TX_DESC_CTL0_ENCRYPT_KEY_VALID; tx_ctl->tx_control_1 |= AR5K_REG_SM(key_index, AR5K_2W_TX_DESC_CTL1_ENC_KEY_IDX); } /* * RTS/CTS Duration [5210 ?] */ if ((ah->ah_version == AR5K_AR5210) && (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA))) tx_ctl->tx_control_1 |= rtscts_duration & AR5K_2W_TX_DESC_CTL1_RTS_DURATION_5210; return 0; } /** * ath5k_hw_setup_4word_tx_desc() - Initialize a 4-word tx control descriptor * @ah: The &struct ath5k_hw * @desc: The &struct ath5k_desc * @pkt_len: Frame length in bytes * @hdr_len: Header length in bytes (only used on AR5210) * @padsize: Any padding we've added to the frame length * @type: One of enum ath5k_pkt_type * @tx_power: Tx power in 0.5dB steps * @tx_rate0: HW idx for transmission rate * @tx_tries0: Max number of retransmissions * @key_index: Index on key table to use for encryption * @antenna_mode: Which antenna to use (0 for auto) * @flags: One of AR5K_TXDESC_* flags (desc.h) * @rtscts_rate: HW idx for RTS/CTS transmission rate * @rtscts_duration: What to put on duration field on the header of RTS/CTS * * Internal function to initialize a 4-Word TX control descriptor * found on AR5212 and later MACs chips. * * Returns 0 on success or -EINVAL on false input */ static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc, unsigned int pkt_len, unsigned int hdr_len, int padsize, enum ath5k_pkt_type type, unsigned int tx_power, unsigned int tx_rate0, unsigned int tx_tries0, unsigned int key_index, unsigned int antenna_mode, unsigned int flags, unsigned int rtscts_rate, unsigned int rtscts_duration) { struct ath5k_hw_4w_tx_ctl *tx_ctl; unsigned int frame_len; /* * Use local variables for these to reduce load/store access on * uncached memory */ u32 txctl0 = 0, txctl1 = 0, txctl2 = 0, txctl3 = 0; tx_ctl = &desc->ud.ds_tx5212.tx_ctl; /* * Validate input * - Zero retries don't make sense. * - A zero rate will put the HW into a mode where it continuously sends * noise on the channel, so it is important to avoid this. */ if (unlikely(tx_tries0 == 0)) { ATH5K_ERR(ah, "zero retries\n"); WARN_ON(1); return -EINVAL; } if (unlikely(tx_rate0 == 0)) { ATH5K_ERR(ah, "zero rate\n"); WARN_ON(1); return -EINVAL; } tx_power += ah->ah_txpower.txp_offset; if (tx_power > AR5K_TUNE_MAX_TXPOWER) tx_power = AR5K_TUNE_MAX_TXPOWER; /* Clear descriptor status area */ memset(&desc->ud.ds_tx5212.tx_stat, 0, sizeof(desc->ud.ds_tx5212.tx_stat)); /* Setup control descriptor */ /* Verify and set frame length */ /* remove padding we might have added before */ frame_len = pkt_len - padsize + FCS_LEN; if (frame_len & ~AR5K_4W_TX_DESC_CTL0_FRAME_LEN) return -EINVAL; txctl0 = frame_len & AR5K_4W_TX_DESC_CTL0_FRAME_LEN; /* Verify and set buffer length */ /* NB: beacon's BufLen must be a multiple of 4 bytes */ if (type == AR5K_PKT_TYPE_BEACON) pkt_len = roundup(pkt_len, 4); if (pkt_len & ~AR5K_4W_TX_DESC_CTL1_BUF_LEN) return -EINVAL; txctl1 = pkt_len & AR5K_4W_TX_DESC_CTL1_BUF_LEN; txctl0 |= AR5K_REG_SM(tx_power, AR5K_4W_TX_DESC_CTL0_XMIT_POWER) | AR5K_REG_SM(antenna_mode, AR5K_4W_TX_DESC_CTL0_ANT_MODE_XMIT); txctl1 |= AR5K_REG_SM(type, AR5K_4W_TX_DESC_CTL1_FRAME_TYPE); txctl2 = AR5K_REG_SM(tx_tries0, AR5K_4W_TX_DESC_CTL2_XMIT_TRIES0); txctl3 = tx_rate0 & AR5K_4W_TX_DESC_CTL3_XMIT_RATE0; #define _TX_FLAGS(_c, _flag) \ if (flags & AR5K_TXDESC_##_flag) { \ txctl##_c |= AR5K_4W_TX_DESC_CTL##_c##_##_flag; \ } _TX_FLAGS(0, CLRDMASK); _TX_FLAGS(0, VEOL); _TX_FLAGS(0, INTREQ); _TX_FLAGS(0, RTSENA); _TX_FLAGS(0, CTSENA); _TX_FLAGS(1, NOACK); #undef _TX_FLAGS /* * WEP crap */ if (key_index != AR5K_TXKEYIX_INVALID) { txctl0 |= AR5K_4W_TX_DESC_CTL0_ENCRYPT_KEY_VALID; txctl1 |= AR5K_REG_SM(key_index, AR5K_4W_TX_DESC_CTL1_ENCRYPT_KEY_IDX); } /* * RTS/CTS */ if (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)) { if ((flags & AR5K_TXDESC_RTSENA) && (flags & AR5K_TXDESC_CTSENA)) return -EINVAL; txctl2 |= rtscts_duration & AR5K_4W_TX_DESC_CTL2_RTS_DURATION; txctl3 |= AR5K_REG_SM(rtscts_rate, AR5K_4W_TX_DESC_CTL3_RTS_CTS_RATE); } tx_ctl->tx_control_0 = txctl0; tx_ctl->tx_control_1 = txctl1; tx_ctl->tx_control_2 = txctl2; tx_ctl->tx_control_3 = txctl3; return 0; } /** * ath5k_hw_setup_mrr_tx_desc() - Initialize an MRR tx control descriptor * @ah: The &struct ath5k_hw * @desc: The &struct ath5k_desc * @tx_rate1: HW idx for rate used on transmission series 1 * @tx_tries1: Max number of retransmissions for transmission series 1 * @tx_rate2: HW idx for rate used on transmission series 2 * @tx_tries2: Max number of retransmissions for transmission series 2 * @tx_rate3: HW idx for rate used on transmission series 3 * @tx_tries3: Max number of retransmissions for transmission series 3 * * Multi rate retry (MRR) tx control descriptors are available only on AR5212 * MACs, they are part of the normal 4-word tx control descriptor (see above) * but we handle them through a separate function for better abstraction. * * Returns 0 on success or -EINVAL on invalid input */ int ath5k_hw_setup_mrr_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc, u_int tx_rate1, u_int tx_tries1, u_int tx_rate2, u_int tx_tries2, u_int tx_rate3, u_int tx_tries3) { struct ath5k_hw_4w_tx_ctl *tx_ctl; /* no mrr support for cards older than 5212 */ if (ah->ah_version < AR5K_AR5212) return 0; /* * Rates can be 0 as long as the retry count is 0 too. * A zero rate and nonzero retry count will put the HW into a mode where * it continuously sends noise on the channel, so it is important to * avoid this. */ if (unlikely((tx_rate1 == 0 && tx_tries1 != 0) || (tx_rate2 == 0 && tx_tries2 != 0) || (tx_rate3 == 0 && tx_tries3 != 0))) { ATH5K_ERR(ah, "zero rate\n"); WARN_ON(1); return -EINVAL; } if (ah->ah_version == AR5K_AR5212) { tx_ctl = &desc->ud.ds_tx5212.tx_ctl; #define _XTX_TRIES(_n) \ if (tx_tries##_n) { \ tx_ctl->tx_control_2 |= \ AR5K_REG_SM(tx_tries##_n, \ AR5K_4W_TX_DESC_CTL2_XMIT_TRIES##_n); \ tx_ctl->tx_control_3 |= \ AR5K_REG_SM(tx_rate##_n, \ AR5K_4W_TX_DESC_CTL3_XMIT_RATE##_n); \ } _XTX_TRIES(1); _XTX_TRIES(2); _XTX_TRIES(3); #undef _XTX_TRIES return 1; } return 0; } /***********************\ * TX Status descriptors * \***********************/ /** * ath5k_hw_proc_2word_tx_status() - Process a tx status descriptor on 5210/1 * @ah: The &struct ath5k_hw * @desc: The &struct ath5k_desc * @ts: The &struct ath5k_tx_status */ static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *ah, struct ath5k_desc *desc, struct ath5k_tx_status *ts) { struct ath5k_hw_tx_status *tx_status; tx_status = &desc->ud.ds_tx5210.tx_stat; /* No frame has been send or error */ if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0)) return -EINPROGRESS; /* * Get descriptor status */ ts->ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0, AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP); ts->ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0, AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT); ts->ts_final_retry = AR5K_REG_MS(tx_status->tx_status_0, AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT); /*TODO: ts->ts_virtcol + test*/ ts->ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1, AR5K_DESC_TX_STATUS1_SEQ_NUM); ts->ts_rssi = AR5K_REG_MS(tx_status->tx_status_1, AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH); ts->ts_antenna = 1; ts->ts_status = 0; ts->ts_final_idx = 0; if (!(tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK)) { if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES) ts->ts_status |= AR5K_TXERR_XRETRY; if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN) ts->ts_status |= AR5K_TXERR_FIFO; if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED) ts->ts_status |= AR5K_TXERR_FILT; } return 0; } /** * ath5k_hw_proc_4word_tx_status() - Process a tx status descriptor on 5212 * @ah: The &struct ath5k_hw * @desc: The &struct ath5k_desc * @ts: The &struct ath5k_tx_status */ static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *ah, struct ath5k_desc *desc, struct ath5k_tx_status *ts) { struct ath5k_hw_tx_status *tx_status; u32 txstat0, txstat1; tx_status = &desc->ud.ds_tx5212.tx_stat; txstat1 = READ_ONCE(tx_status->tx_status_1); /* No frame has been send or error */ if (unlikely(!(txstat1 & AR5K_DESC_TX_STATUS1_DONE))) return -EINPROGRESS; txstat0 = READ_ONCE(tx_status->tx_status_0); /* * Get descriptor status */ ts->ts_tstamp = AR5K_REG_MS(txstat0, AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP); ts->ts_shortretry = AR5K_REG_MS(txstat0, AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT); ts->ts_final_retry = AR5K_REG_MS(txstat0, AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT); ts->ts_seqnum = AR5K_REG_MS(txstat1, AR5K_DESC_TX_STATUS1_SEQ_NUM); ts->ts_rssi = AR5K_REG_MS(txstat1, AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH); ts->ts_antenna = (txstat1 & AR5K_DESC_TX_STATUS1_XMIT_ANTENNA_5212) ? 2 : 1; ts->ts_status = 0; ts->ts_final_idx = AR5K_REG_MS(txstat1, AR5K_DESC_TX_STATUS1_FINAL_TS_IX_5212); /* TX error */ if (!(txstat0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK)) { if (txstat0 & AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES) ts->ts_status |= AR5K_TXERR_XRETRY; if (txstat0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN) ts->ts_status |= AR5K_TXERR_FIFO; if (txstat0 & AR5K_DESC_TX_STATUS0_FILTERED) ts->ts_status |= AR5K_TXERR_FILT; } return 0; } /****************\ * RX Descriptors * \****************/ /** * ath5k_hw_setup_rx_desc() - Initialize an rx control descriptor * @ah: The &struct ath5k_hw * @desc: The &struct ath5k_desc * @size: RX buffer length in bytes * @flags: One of AR5K_RXDESC_* flags */ int ath5k_hw_setup_rx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc, u32 size, unsigned int flags) { struct ath5k_hw_rx_ctl *rx_ctl; rx_ctl = &desc->ud.ds_rx.rx_ctl; /* * Clear the descriptor * If we don't clean the status descriptor, * while scanning we get too many results, * most of them virtual, after some secs * of scanning system hangs. M.F. */ memset(&desc->ud.ds_rx, 0, sizeof(struct ath5k_hw_all_rx_desc)); if (unlikely(size & ~AR5K_DESC_RX_CTL1_BUF_LEN)) return -EINVAL; /* Setup descriptor */ rx_ctl->rx_control_1 = size & AR5K_DESC_RX_CTL1_BUF_LEN; if (flags & AR5K_RXDESC_INTREQ) rx_ctl->rx_control_1 |= AR5K_DESC_RX_CTL1_INTREQ; return 0; } /** * ath5k_hw_proc_5210_rx_status() - Process the rx status descriptor on 5210/1 * @ah: The &struct ath5k_hw * @desc: The &struct ath5k_desc * @rs: The &struct ath5k_rx_status * * Internal function used to process an RX status descriptor * on AR5210/5211 MAC. * * Returns 0 on success or -EINPROGRESS in case we haven't received the who;e * frame yet. */ static int ath5k_hw_proc_5210_rx_status(struct ath5k_hw *ah, struct ath5k_desc *desc, struct ath5k_rx_status *rs) { struct ath5k_hw_rx_status *rx_status; rx_status = &desc->ud.ds_rx.rx_stat; /* No frame received / not ready */ if (unlikely(!(rx_status->rx_status_1 & AR5K_5210_RX_DESC_STATUS1_DONE))) return -EINPROGRESS; memset(rs, 0, sizeof(struct ath5k_rx_status)); /* * Frame receive status */ rs->rs_datalen = rx_status->rx_status_0 & AR5K_5210_RX_DESC_STATUS0_DATA_LEN; rs->rs_rssi = AR5K_REG_MS(rx_status->rx_status_0, AR5K_5210_RX_DESC_STATUS0_RECEIVE_SIGNAL); rs->rs_rate = AR5K_REG_MS(rx_status->rx_status_0, AR5K_5210_RX_DESC_STATUS0_RECEIVE_RATE); rs->rs_more = !!(rx_status->rx_status_0 & AR5K_5210_RX_DESC_STATUS0_MORE); /* TODO: this timestamp is 13 bit, later on we assume 15 bit! * also the HAL code for 5210 says the timestamp is bits [10..22] of the * TSF, and extends the timestamp here to 15 bit. * we need to check on 5210... */ rs->rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1, AR5K_5210_RX_DESC_STATUS1_RECEIVE_TIMESTAMP); if (ah->ah_version == AR5K_AR5211) rs->rs_antenna = AR5K_REG_MS(rx_status->rx_status_0, AR5K_5210_RX_DESC_STATUS0_RECEIVE_ANT_5211); else rs->rs_antenna = (rx_status->rx_status_0 & AR5K_5210_RX_DESC_STATUS0_RECEIVE_ANT_5210) ? 2 : 1; /* * Key table status */ if (rx_status->rx_status_1 & AR5K_5210_RX_DESC_STATUS1_KEY_INDEX_VALID) rs->rs_keyix = AR5K_REG_MS(rx_status->rx_status_1, AR5K_5210_RX_DESC_STATUS1_KEY_INDEX); else rs->rs_keyix = AR5K_RXKEYIX_INVALID; /* * Receive/descriptor errors */ if (!(rx_status->rx_status_1 & AR5K_5210_RX_DESC_STATUS1_FRAME_RECEIVE_OK)) { if (rx_status->rx_status_1 & AR5K_5210_RX_DESC_STATUS1_CRC_ERROR) rs->rs_status |= AR5K_RXERR_CRC; /* only on 5210 */ if ((ah->ah_version == AR5K_AR5210) && (rx_status->rx_status_1 & AR5K_5210_RX_DESC_STATUS1_FIFO_OVERRUN_5210)) rs->rs_status |= AR5K_RXERR_FIFO; if (rx_status->rx_status_1 & AR5K_5210_RX_DESC_STATUS1_PHY_ERROR) { rs->rs_status |= AR5K_RXERR_PHY; rs->rs_phyerr = AR5K_REG_MS(rx_status->rx_status_1, AR5K_5210_RX_DESC_STATUS1_PHY_ERROR); } if (rx_status->rx_status_1 & AR5K_5210_RX_DESC_STATUS1_DECRYPT_CRC_ERROR) rs->rs_status |= AR5K_RXERR_DECRYPT; } return 0; } /** * ath5k_hw_proc_5212_rx_status() - Process the rx status descriptor on 5212 * @ah: The &struct ath5k_hw * @desc: The &struct ath5k_desc * @rs: The &struct ath5k_rx_status * * Internal function used to process an RX status descriptor * on AR5212 and later MAC. * * Returns 0 on success or -EINPROGRESS in case we haven't received the who;e * frame yet. */ static int ath5k_hw_proc_5212_rx_status(struct ath5k_hw *ah, struct ath5k_desc *desc, struct ath5k_rx_status *rs) { struct ath5k_hw_rx_status *rx_status; u32 rxstat0, rxstat1; rx_status = &desc->ud.ds_rx.rx_stat; rxstat1 = READ_ONCE(rx_status->rx_status_1); /* No frame received / not ready */ if (unlikely(!(rxstat1 & AR5K_5212_RX_DESC_STATUS1_DONE))) return -EINPROGRESS; memset(rs, 0, sizeof(struct ath5k_rx_status)); rxstat0 = READ_ONCE(rx_status->rx_status_0); /* * Frame receive status */ rs->rs_datalen = rxstat0 & AR5K_5212_RX_DESC_STATUS0_DATA_LEN; rs->rs_rssi = AR5K_REG_MS(rxstat0, AR5K_5212_RX_DESC_STATUS0_RECEIVE_SIGNAL); rs->rs_rate = AR5K_REG_MS(rxstat0, AR5K_5212_RX_DESC_STATUS0_RECEIVE_RATE); rs->rs_antenna = AR5K_REG_MS(rxstat0, AR5K_5212_RX_DESC_STATUS0_RECEIVE_ANTENNA); rs->rs_more = !!(rxstat0 & AR5K_5212_RX_DESC_STATUS0_MORE); rs->rs_tstamp = AR5K_REG_MS(rxstat1, AR5K_5212_RX_DESC_STATUS1_RECEIVE_TIMESTAMP); /* * Key table status */ if (rxstat1 & AR5K_5212_RX_DESC_STATUS1_KEY_INDEX_VALID) rs->rs_keyix = AR5K_REG_MS(rxstat1, AR5K_5212_RX_DESC_STATUS1_KEY_INDEX); else rs->rs_keyix = AR5K_RXKEYIX_INVALID; /* * Receive/descriptor errors */ if (!(rxstat1 & AR5K_5212_RX_DESC_STATUS1_FRAME_RECEIVE_OK)) { if (rxstat1 & AR5K_5212_RX_DESC_STATUS1_CRC_ERROR) rs->rs_status |= AR5K_RXERR_CRC; if (rxstat1 & AR5K_5212_RX_DESC_STATUS1_PHY_ERROR) { rs->rs_status |= AR5K_RXERR_PHY; rs->rs_phyerr = AR5K_REG_MS(rxstat1, AR5K_5212_RX_DESC_STATUS1_PHY_ERROR_CODE); if (!ah->ah_capabilities.cap_has_phyerr_counters) ath5k_ani_phy_error_report(ah, rs->rs_phyerr); } if (rxstat1 & AR5K_5212_RX_DESC_STATUS1_DECRYPT_CRC_ERROR) rs->rs_status |= AR5K_RXERR_DECRYPT; if (rxstat1 & AR5K_5212_RX_DESC_STATUS1_MIC_ERROR) rs->rs_status |= AR5K_RXERR_MIC; } return 0; } /********\ * Attach * \********/ /** * ath5k_hw_init_desc_functions() - Init function pointers inside ah * @ah: The &struct ath5k_hw * * Maps the internal descriptor functions to the function pointers on ah, used * from above. This is used as an abstraction layer to handle the various chips * the same way. */ int ath5k_hw_init_desc_functions(struct ath5k_hw *ah) { if (ah->ah_version == AR5K_AR5212) { ah->ah_setup_tx_desc = ath5k_hw_setup_4word_tx_desc; ah->ah_proc_tx_desc = ath5k_hw_proc_4word_tx_status; ah->ah_proc_rx_desc = ath5k_hw_proc_5212_rx_status; } else if (ah->ah_version <= AR5K_AR5211) { ah->ah_setup_tx_desc = ath5k_hw_setup_2word_tx_desc; ah->ah_proc_tx_desc = ath5k_hw_proc_2word_tx_status; ah->ah_proc_rx_desc = ath5k_hw_proc_5210_rx_status; } else return -ENOTSUPP; return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1