Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kalle Valo | 5592 | 68.35% | 16 | 23.53% |
Vasanthakumar Thiagarajan | 1179 | 14.41% | 35 | 51.47% |
Thirumalai Pachamuthu | 933 | 11.40% | 1 | 1.47% |
Rishi Panjwani | 144 | 1.76% | 1 | 1.47% |
Naveen Gangadharan | 112 | 1.37% | 1 | 1.47% |
Jouni Malinen | 62 | 0.76% | 1 | 1.47% |
Raja Mani | 54 | 0.66% | 3 | 4.41% |
Tobias Klauser | 30 | 0.37% | 1 | 1.47% |
Pandiyarajan Pitchaimuthu | 18 | 0.22% | 1 | 1.47% |
Pierre Le Magourou | 17 | 0.21% | 1 | 1.47% |
Kees Cook | 14 | 0.17% | 1 | 1.47% |
Chilam Ng | 8 | 0.10% | 1 | 1.47% |
Joe Perches | 7 | 0.09% | 1 | 1.47% |
Arend Van Spriel | 6 | 0.07% | 1 | 1.47% |
Allen Pais | 3 | 0.04% | 1 | 1.47% |
Kenneth Lu | 1 | 0.01% | 1 | 1.47% |
Luc Van Oostenryck | 1 | 0.01% | 1 | 1.47% |
Total | 8181 | 68 |
/* * Copyright (c) 2004-2011 Atheros Communications Inc. * Copyright (c) 2011-2012 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include "core.h" #include "debug.h" #include "htc-ops.h" #include "trace.h" /* * tid - tid_mux0..tid_mux3 * aid - tid_mux4..tid_mux7 */ #define ATH6KL_TID_MASK 0xf #define ATH6KL_AID_SHIFT 4 static inline u8 ath6kl_get_tid(u8 tid_mux) { return tid_mux & ATH6KL_TID_MASK; } static inline u8 ath6kl_get_aid(u8 tid_mux) { return tid_mux >> ATH6KL_AID_SHIFT; } static u8 ath6kl_ibss_map_epid(struct sk_buff *skb, struct net_device *dev, u32 *map_no) { struct ath6kl *ar = ath6kl_priv(dev); struct ethhdr *eth_hdr; u32 i, ep_map = -1; u8 *datap; *map_no = 0; datap = skb->data; eth_hdr = (struct ethhdr *) (datap + sizeof(struct wmi_data_hdr)); if (is_multicast_ether_addr(eth_hdr->h_dest)) return ENDPOINT_2; for (i = 0; i < ar->node_num; i++) { if (memcmp(eth_hdr->h_dest, ar->node_map[i].mac_addr, ETH_ALEN) == 0) { *map_no = i + 1; ar->node_map[i].tx_pend++; return ar->node_map[i].ep_id; } if ((ep_map == -1) && !ar->node_map[i].tx_pend) ep_map = i; } if (ep_map == -1) { ep_map = ar->node_num; ar->node_num++; if (ar->node_num > MAX_NODE_NUM) return ENDPOINT_UNUSED; } memcpy(ar->node_map[ep_map].mac_addr, eth_hdr->h_dest, ETH_ALEN); for (i = ENDPOINT_2; i <= ENDPOINT_5; i++) { if (!ar->tx_pending[i]) { ar->node_map[ep_map].ep_id = i; break; } /* * No free endpoint is available, start redistribution on * the inuse endpoints. */ if (i == ENDPOINT_5) { ar->node_map[ep_map].ep_id = ar->next_ep_id; ar->next_ep_id++; if (ar->next_ep_id > ENDPOINT_5) ar->next_ep_id = ENDPOINT_2; } } *map_no = ep_map + 1; ar->node_map[ep_map].tx_pend++; return ar->node_map[ep_map].ep_id; } static bool ath6kl_process_uapsdq(struct ath6kl_sta *conn, struct ath6kl_vif *vif, struct sk_buff *skb, u32 *flags) { struct ath6kl *ar = vif->ar; bool is_apsdq_empty = false; struct ethhdr *datap = (struct ethhdr *) skb->data; u8 up = 0, traffic_class, *ip_hdr; u16 ether_type; struct ath6kl_llc_snap_hdr *llc_hdr; if (conn->sta_flags & STA_PS_APSD_TRIGGER) { /* * This tx is because of a uAPSD trigger, determine * more and EOSP bit. Set EOSP if queue is empty * or sufficient frames are delivered for this trigger. */ spin_lock_bh(&conn->psq_lock); if (!skb_queue_empty(&conn->apsdq)) *flags |= WMI_DATA_HDR_FLAGS_MORE; else if (conn->sta_flags & STA_PS_APSD_EOSP) *flags |= WMI_DATA_HDR_FLAGS_EOSP; *flags |= WMI_DATA_HDR_FLAGS_UAPSD; spin_unlock_bh(&conn->psq_lock); return false; } else if (!conn->apsd_info) { return false; } if (test_bit(WMM_ENABLED, &vif->flags)) { ether_type = be16_to_cpu(datap->h_proto); if (is_ethertype(ether_type)) { /* packet is in DIX format */ ip_hdr = (u8 *)(datap + 1); } else { /* packet is in 802.3 format */ llc_hdr = (struct ath6kl_llc_snap_hdr *) (datap + 1); ether_type = be16_to_cpu(llc_hdr->eth_type); ip_hdr = (u8 *)(llc_hdr + 1); } if (ether_type == IP_ETHERTYPE) up = ath6kl_wmi_determine_user_priority( ip_hdr, 0); } traffic_class = ath6kl_wmi_get_traffic_class(up); if ((conn->apsd_info & (1 << traffic_class)) == 0) return false; /* Queue the frames if the STA is sleeping */ spin_lock_bh(&conn->psq_lock); is_apsdq_empty = skb_queue_empty(&conn->apsdq); skb_queue_tail(&conn->apsdq, skb); spin_unlock_bh(&conn->psq_lock); /* * If this is the first pkt getting queued * for this STA, update the PVB for this STA */ if (is_apsdq_empty) { ath6kl_wmi_set_apsd_bfrd_traf(ar->wmi, vif->fw_vif_idx, conn->aid, 1, 0); } *flags |= WMI_DATA_HDR_FLAGS_UAPSD; return true; } static bool ath6kl_process_psq(struct ath6kl_sta *conn, struct ath6kl_vif *vif, struct sk_buff *skb, u32 *flags) { bool is_psq_empty = false; struct ath6kl *ar = vif->ar; if (conn->sta_flags & STA_PS_POLLED) { spin_lock_bh(&conn->psq_lock); if (!skb_queue_empty(&conn->psq)) *flags |= WMI_DATA_HDR_FLAGS_MORE; spin_unlock_bh(&conn->psq_lock); return false; } /* Queue the frames if the STA is sleeping */ spin_lock_bh(&conn->psq_lock); is_psq_empty = skb_queue_empty(&conn->psq); skb_queue_tail(&conn->psq, skb); spin_unlock_bh(&conn->psq_lock); /* * If this is the first pkt getting queued * for this STA, update the PVB for this * STA. */ if (is_psq_empty) ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, conn->aid, 1); return true; } static bool ath6kl_powersave_ap(struct ath6kl_vif *vif, struct sk_buff *skb, u32 *flags) { struct ethhdr *datap = (struct ethhdr *) skb->data; struct ath6kl_sta *conn = NULL; bool ps_queued = false; struct ath6kl *ar = vif->ar; if (is_multicast_ether_addr(datap->h_dest)) { u8 ctr = 0; bool q_mcast = false; for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) { if (ar->sta_list[ctr].sta_flags & STA_PS_SLEEP) { q_mcast = true; break; } } if (q_mcast) { /* * If this transmit is not because of a Dtim Expiry * q it. */ if (!test_bit(DTIM_EXPIRED, &vif->flags)) { bool is_mcastq_empty = false; spin_lock_bh(&ar->mcastpsq_lock); is_mcastq_empty = skb_queue_empty(&ar->mcastpsq); skb_queue_tail(&ar->mcastpsq, skb); spin_unlock_bh(&ar->mcastpsq_lock); /* * If this is the first Mcast pkt getting * queued indicate to the target to set the * BitmapControl LSB of the TIM IE. */ if (is_mcastq_empty) ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, MCAST_AID, 1); ps_queued = true; } else { /* * This transmit is because of Dtim expiry. * Determine if MoreData bit has to be set. */ spin_lock_bh(&ar->mcastpsq_lock); if (!skb_queue_empty(&ar->mcastpsq)) *flags |= WMI_DATA_HDR_FLAGS_MORE; spin_unlock_bh(&ar->mcastpsq_lock); } } } else { conn = ath6kl_find_sta(vif, datap->h_dest); if (!conn) { dev_kfree_skb(skb); /* Inform the caller that the skb is consumed */ return true; } if (conn->sta_flags & STA_PS_SLEEP) { ps_queued = ath6kl_process_uapsdq(conn, vif, skb, flags); if (!(*flags & WMI_DATA_HDR_FLAGS_UAPSD)) ps_queued = ath6kl_process_psq(conn, vif, skb, flags); } } return ps_queued; } /* Tx functions */ int ath6kl_control_tx(void *devt, struct sk_buff *skb, enum htc_endpoint_id eid) { struct ath6kl *ar = devt; int status = 0; struct ath6kl_cookie *cookie = NULL; trace_ath6kl_wmi_cmd(skb->data, skb->len); if (WARN_ON_ONCE(ar->state == ATH6KL_STATE_WOW)) { dev_kfree_skb(skb); return -EACCES; } if (WARN_ON_ONCE(eid == ENDPOINT_UNUSED || eid >= ENDPOINT_MAX)) { status = -EINVAL; goto fail_ctrl_tx; } spin_lock_bh(&ar->lock); ath6kl_dbg(ATH6KL_DBG_WLAN_TX, "%s: skb=0x%p, len=0x%x eid =%d\n", __func__, skb, skb->len, eid); if (test_bit(WMI_CTRL_EP_FULL, &ar->flag) && (eid == ar->ctrl_ep)) { /* * Control endpoint is full, don't allocate resources, we * are just going to drop this packet. */ cookie = NULL; ath6kl_err("wmi ctrl ep full, dropping pkt : 0x%p, len:%d\n", skb, skb->len); } else { cookie = ath6kl_alloc_cookie(ar); } if (cookie == NULL) { spin_unlock_bh(&ar->lock); status = -ENOMEM; goto fail_ctrl_tx; } ar->tx_pending[eid]++; if (eid != ar->ctrl_ep) ar->total_tx_data_pend++; spin_unlock_bh(&ar->lock); cookie->skb = skb; cookie->map_no = 0; set_htc_pkt_info(&cookie->htc_pkt, cookie, skb->data, skb->len, eid, ATH6KL_CONTROL_PKT_TAG); cookie->htc_pkt.skb = skb; /* * This interface is asynchronous, if there is an error, cleanup * will happen in the TX completion callback. */ ath6kl_htc_tx(ar->htc_target, &cookie->htc_pkt); return 0; fail_ctrl_tx: dev_kfree_skb(skb); return status; } netdev_tx_t ath6kl_data_tx(struct sk_buff *skb, struct net_device *dev) { struct ath6kl *ar = ath6kl_priv(dev); struct ath6kl_cookie *cookie = NULL; enum htc_endpoint_id eid = ENDPOINT_UNUSED; struct ath6kl_vif *vif = netdev_priv(dev); u32 map_no = 0; u16 htc_tag = ATH6KL_DATA_PKT_TAG; u8 ac = 99; /* initialize to unmapped ac */ bool chk_adhoc_ps_mapping = false; int ret; struct wmi_tx_meta_v2 meta_v2; void *meta; u8 csum_start = 0, csum_dest = 0, csum = skb->ip_summed; u8 meta_ver = 0; u32 flags = 0; ath6kl_dbg(ATH6KL_DBG_WLAN_TX, "%s: skb=0x%p, data=0x%p, len=0x%x\n", __func__, skb, skb->data, skb->len); /* If target is not associated */ if (!test_bit(CONNECTED, &vif->flags)) goto fail_tx; if (WARN_ON_ONCE(ar->state != ATH6KL_STATE_ON)) goto fail_tx; if (!test_bit(WMI_READY, &ar->flag)) goto fail_tx; /* AP mode Power saving processing */ if (vif->nw_type == AP_NETWORK) { if (ath6kl_powersave_ap(vif, skb, &flags)) return 0; } if (test_bit(WMI_ENABLED, &ar->flag)) { if ((dev->features & NETIF_F_IP_CSUM) && (csum == CHECKSUM_PARTIAL)) { csum_start = skb->csum_start - (skb_network_header(skb) - skb->head) + sizeof(struct ath6kl_llc_snap_hdr); csum_dest = skb->csum_offset + csum_start; } if (skb_cow_head(skb, dev->needed_headroom)) { dev->stats.tx_dropped++; kfree_skb(skb); return 0; } if (ath6kl_wmi_dix_2_dot3(ar->wmi, skb)) { ath6kl_err("ath6kl_wmi_dix_2_dot3 failed\n"); goto fail_tx; } if ((dev->features & NETIF_F_IP_CSUM) && (csum == CHECKSUM_PARTIAL)) { meta_v2.csum_start = csum_start; meta_v2.csum_dest = csum_dest; /* instruct target to calculate checksum */ meta_v2.csum_flags = WMI_META_V2_FLAG_CSUM_OFFLOAD; meta_ver = WMI_META_VERSION_2; meta = &meta_v2; } else { meta_ver = 0; meta = NULL; } ret = ath6kl_wmi_data_hdr_add(ar->wmi, skb, DATA_MSGTYPE, flags, 0, meta_ver, meta, vif->fw_vif_idx); if (ret) { ath6kl_warn("failed to add wmi data header:%d\n" , ret); goto fail_tx; } if ((vif->nw_type == ADHOC_NETWORK) && ar->ibss_ps_enable && test_bit(CONNECTED, &vif->flags)) chk_adhoc_ps_mapping = true; else { /* get the stream mapping */ ret = ath6kl_wmi_implicit_create_pstream(ar->wmi, vif->fw_vif_idx, skb, 0, test_bit(WMM_ENABLED, &vif->flags), &ac); if (ret) goto fail_tx; } } else { goto fail_tx; } spin_lock_bh(&ar->lock); if (chk_adhoc_ps_mapping) eid = ath6kl_ibss_map_epid(skb, dev, &map_no); else eid = ar->ac2ep_map[ac]; if (eid == 0 || eid == ENDPOINT_UNUSED) { ath6kl_err("eid %d is not mapped!\n", eid); spin_unlock_bh(&ar->lock); goto fail_tx; } /* allocate resource for this packet */ cookie = ath6kl_alloc_cookie(ar); if (!cookie) { spin_unlock_bh(&ar->lock); goto fail_tx; } /* update counts while the lock is held */ ar->tx_pending[eid]++; ar->total_tx_data_pend++; spin_unlock_bh(&ar->lock); if (!IS_ALIGNED((unsigned long) skb->data - HTC_HDR_LENGTH, 4) && skb_cloned(skb)) { /* * We will touch (move the buffer data to align it. Since the * skb buffer is cloned and not only the header is changed, we * have to copy it to allow the changes. Since we are copying * the data here, we may as well align it by reserving suitable * headroom to avoid the memmove in ath6kl_htc_tx_buf_align(). */ struct sk_buff *nskb; nskb = skb_copy_expand(skb, HTC_HDR_LENGTH, 0, GFP_ATOMIC); if (nskb == NULL) goto fail_tx; kfree_skb(skb); skb = nskb; } cookie->skb = skb; cookie->map_no = map_no; set_htc_pkt_info(&cookie->htc_pkt, cookie, skb->data, skb->len, eid, htc_tag); cookie->htc_pkt.skb = skb; ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "tx ", skb->data, skb->len); /* * HTC interface is asynchronous, if this fails, cleanup will * happen in the ath6kl_tx_complete callback. */ ath6kl_htc_tx(ar->htc_target, &cookie->htc_pkt); return 0; fail_tx: dev_kfree_skb(skb); dev->stats.tx_dropped++; dev->stats.tx_aborted_errors++; return 0; } /* indicate tx activity or inactivity on a WMI stream */ void ath6kl_indicate_tx_activity(void *devt, u8 traffic_class, bool active) { struct ath6kl *ar = devt; enum htc_endpoint_id eid; int i; eid = ar->ac2ep_map[traffic_class]; if (!test_bit(WMI_ENABLED, &ar->flag)) goto notify_htc; spin_lock_bh(&ar->lock); ar->ac_stream_active[traffic_class] = active; if (active) { /* * Keep track of the active stream with the highest * priority. */ if (ar->ac_stream_pri_map[traffic_class] > ar->hiac_stream_active_pri) /* set the new highest active priority */ ar->hiac_stream_active_pri = ar->ac_stream_pri_map[traffic_class]; } else { /* * We may have to search for the next active stream * that is the highest priority. */ if (ar->hiac_stream_active_pri == ar->ac_stream_pri_map[traffic_class]) { /* * The highest priority stream just went inactive * reset and search for the "next" highest "active" * priority stream. */ ar->hiac_stream_active_pri = 0; for (i = 0; i < WMM_NUM_AC; i++) { if (ar->ac_stream_active[i] && (ar->ac_stream_pri_map[i] > ar->hiac_stream_active_pri)) /* * Set the new highest active * priority. */ ar->hiac_stream_active_pri = ar->ac_stream_pri_map[i]; } } } spin_unlock_bh(&ar->lock); notify_htc: /* notify HTC, this may cause credit distribution changes */ ath6kl_htc_activity_changed(ar->htc_target, eid, active); } enum htc_send_full_action ath6kl_tx_queue_full(struct htc_target *target, struct htc_packet *packet) { struct ath6kl *ar = target->dev->ar; struct ath6kl_vif *vif; enum htc_endpoint_id endpoint = packet->endpoint; enum htc_send_full_action action = HTC_SEND_FULL_KEEP; if (endpoint == ar->ctrl_ep) { /* * Under normal WMI if this is getting full, then something * is running rampant the host should not be exhausting the * WMI queue with too many commands the only exception to * this is during testing using endpointping. */ set_bit(WMI_CTRL_EP_FULL, &ar->flag); ath6kl_err("wmi ctrl ep is full\n"); ath6kl_recovery_err_notify(ar, ATH6KL_FW_EP_FULL); return action; } if (packet->info.tx.tag == ATH6KL_CONTROL_PKT_TAG) return action; /* * The last MAX_HI_COOKIE_NUM "batch" of cookies are reserved for * the highest active stream. */ if (ar->ac_stream_pri_map[ar->ep2ac_map[endpoint]] < ar->hiac_stream_active_pri && ar->cookie_count <= target->endpoint[endpoint].tx_drop_packet_threshold) /* * Give preference to the highest priority stream by * dropping the packets which overflowed. */ action = HTC_SEND_FULL_DROP; /* FIXME: Locking */ spin_lock_bh(&ar->list_lock); list_for_each_entry(vif, &ar->vif_list, list) { if (vif->nw_type == ADHOC_NETWORK || action != HTC_SEND_FULL_DROP) { spin_unlock_bh(&ar->list_lock); set_bit(NETQ_STOPPED, &vif->flags); netif_stop_queue(vif->ndev); return action; } } spin_unlock_bh(&ar->list_lock); return action; } /* TODO this needs to be looked at */ static void ath6kl_tx_clear_node_map(struct ath6kl_vif *vif, enum htc_endpoint_id eid, u32 map_no) { struct ath6kl *ar = vif->ar; u32 i; if (vif->nw_type != ADHOC_NETWORK) return; if (!ar->ibss_ps_enable) return; if (eid == ar->ctrl_ep) return; if (map_no == 0) return; map_no--; ar->node_map[map_no].tx_pend--; if (ar->node_map[map_no].tx_pend) return; if (map_no != (ar->node_num - 1)) return; for (i = ar->node_num; i > 0; i--) { if (ar->node_map[i - 1].tx_pend) break; memset(&ar->node_map[i - 1], 0, sizeof(struct ath6kl_node_mapping)); ar->node_num--; } } void ath6kl_tx_complete(struct htc_target *target, struct list_head *packet_queue) { struct ath6kl *ar = target->dev->ar; struct sk_buff_head skb_queue; struct htc_packet *packet; struct sk_buff *skb; struct ath6kl_cookie *ath6kl_cookie; u32 map_no = 0; int status; enum htc_endpoint_id eid; bool wake_event = false; bool flushing[ATH6KL_VIF_MAX] = {false}; u8 if_idx; struct ath6kl_vif *vif; skb_queue_head_init(&skb_queue); /* lock the driver as we update internal state */ spin_lock_bh(&ar->lock); /* reap completed packets */ while (!list_empty(packet_queue)) { packet = list_first_entry(packet_queue, struct htc_packet, list); list_del(&packet->list); if (WARN_ON_ONCE(packet->endpoint == ENDPOINT_UNUSED || packet->endpoint >= ENDPOINT_MAX)) continue; ath6kl_cookie = (struct ath6kl_cookie *)packet->pkt_cntxt; if (WARN_ON_ONCE(!ath6kl_cookie)) continue; status = packet->status; skb = ath6kl_cookie->skb; eid = packet->endpoint; map_no = ath6kl_cookie->map_no; if (WARN_ON_ONCE(!skb || !skb->data)) { dev_kfree_skb(skb); ath6kl_free_cookie(ar, ath6kl_cookie); continue; } __skb_queue_tail(&skb_queue, skb); if (WARN_ON_ONCE(!status && (packet->act_len != skb->len))) { ath6kl_free_cookie(ar, ath6kl_cookie); continue; } ar->tx_pending[eid]--; if (eid != ar->ctrl_ep) ar->total_tx_data_pend--; if (eid == ar->ctrl_ep) { if (test_bit(WMI_CTRL_EP_FULL, &ar->flag)) clear_bit(WMI_CTRL_EP_FULL, &ar->flag); if (ar->tx_pending[eid] == 0) wake_event = true; } if (eid == ar->ctrl_ep) { if_idx = wmi_cmd_hdr_get_if_idx( (struct wmi_cmd_hdr *) packet->buf); } else { if_idx = wmi_data_hdr_get_if_idx( (struct wmi_data_hdr *) packet->buf); } vif = ath6kl_get_vif_by_index(ar, if_idx); if (!vif) { ath6kl_free_cookie(ar, ath6kl_cookie); continue; } if (status) { if (status == -ECANCELED) /* a packet was flushed */ flushing[if_idx] = true; vif->ndev->stats.tx_errors++; if (status != -ENOSPC && status != -ECANCELED) ath6kl_warn("tx complete error: %d\n", status); ath6kl_dbg(ATH6KL_DBG_WLAN_TX, "%s: skb=0x%p data=0x%p len=0x%x eid=%d %s\n", __func__, skb, packet->buf, packet->act_len, eid, "error!"); } else { ath6kl_dbg(ATH6KL_DBG_WLAN_TX, "%s: skb=0x%p data=0x%p len=0x%x eid=%d %s\n", __func__, skb, packet->buf, packet->act_len, eid, "OK"); flushing[if_idx] = false; vif->ndev->stats.tx_packets++; vif->ndev->stats.tx_bytes += skb->len; } ath6kl_tx_clear_node_map(vif, eid, map_no); ath6kl_free_cookie(ar, ath6kl_cookie); if (test_bit(NETQ_STOPPED, &vif->flags)) clear_bit(NETQ_STOPPED, &vif->flags); } spin_unlock_bh(&ar->lock); __skb_queue_purge(&skb_queue); /* FIXME: Locking */ spin_lock_bh(&ar->list_lock); list_for_each_entry(vif, &ar->vif_list, list) { if (test_bit(CONNECTED, &vif->flags) && !flushing[vif->fw_vif_idx]) { spin_unlock_bh(&ar->list_lock); netif_wake_queue(vif->ndev); spin_lock_bh(&ar->list_lock); } } spin_unlock_bh(&ar->list_lock); if (wake_event) wake_up(&ar->event_wq); return; } void ath6kl_tx_data_cleanup(struct ath6kl *ar) { int i; /* flush all the data (non-control) streams */ for (i = 0; i < WMM_NUM_AC; i++) ath6kl_htc_flush_txep(ar->htc_target, ar->ac2ep_map[i], ATH6KL_DATA_PKT_TAG); } /* Rx functions */ static void ath6kl_deliver_frames_to_nw_stack(struct net_device *dev, struct sk_buff *skb) { if (!skb) return; skb->dev = dev; if (!(skb->dev->flags & IFF_UP)) { dev_kfree_skb(skb); return; } skb->protocol = eth_type_trans(skb, skb->dev); netif_rx_ni(skb); } static void ath6kl_alloc_netbufs(struct sk_buff_head *q, u16 num) { struct sk_buff *skb; while (num) { skb = ath6kl_buf_alloc(ATH6KL_BUFFER_SIZE); if (!skb) { ath6kl_err("netbuf allocation failed\n"); return; } skb_queue_tail(q, skb); num--; } } static struct sk_buff *aggr_get_free_skb(struct aggr_info *p_aggr) { struct sk_buff *skb = NULL; if (skb_queue_len(&p_aggr->rx_amsdu_freeq) < (AGGR_NUM_OF_FREE_NETBUFS >> 2)) ath6kl_alloc_netbufs(&p_aggr->rx_amsdu_freeq, AGGR_NUM_OF_FREE_NETBUFS); skb = skb_dequeue(&p_aggr->rx_amsdu_freeq); return skb; } void ath6kl_rx_refill(struct htc_target *target, enum htc_endpoint_id endpoint) { struct ath6kl *ar = target->dev->ar; struct sk_buff *skb; int rx_buf; int n_buf_refill; struct htc_packet *packet; struct list_head queue; n_buf_refill = ATH6KL_MAX_RX_BUFFERS - ath6kl_htc_get_rxbuf_num(ar->htc_target, endpoint); if (n_buf_refill <= 0) return; INIT_LIST_HEAD(&queue); ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: providing htc with %d buffers at eid=%d\n", __func__, n_buf_refill, endpoint); for (rx_buf = 0; rx_buf < n_buf_refill; rx_buf++) { skb = ath6kl_buf_alloc(ATH6KL_BUFFER_SIZE); if (!skb) break; packet = (struct htc_packet *) skb->head; if (!IS_ALIGNED((unsigned long) skb->data, 4)) { size_t len = skb_headlen(skb); skb->data = PTR_ALIGN(skb->data - 4, 4); skb_set_tail_pointer(skb, len); } set_htc_rxpkt_info(packet, skb, skb->data, ATH6KL_BUFFER_SIZE, endpoint); packet->skb = skb; list_add_tail(&packet->list, &queue); } if (!list_empty(&queue)) ath6kl_htc_add_rxbuf_multiple(ar->htc_target, &queue); } void ath6kl_refill_amsdu_rxbufs(struct ath6kl *ar, int count) { struct htc_packet *packet; struct sk_buff *skb; while (count) { skb = ath6kl_buf_alloc(ATH6KL_AMSDU_BUFFER_SIZE); if (!skb) return; packet = (struct htc_packet *) skb->head; if (!IS_ALIGNED((unsigned long) skb->data, 4)) { size_t len = skb_headlen(skb); skb->data = PTR_ALIGN(skb->data - 4, 4); skb_set_tail_pointer(skb, len); } set_htc_rxpkt_info(packet, skb, skb->data, ATH6KL_AMSDU_BUFFER_SIZE, 0); packet->skb = skb; spin_lock_bh(&ar->lock); list_add_tail(&packet->list, &ar->amsdu_rx_buffer_queue); spin_unlock_bh(&ar->lock); count--; } } /* * Callback to allocate a receive buffer for a pending packet. We use a * pre-allocated list of buffers of maximum AMSDU size (4K). */ struct htc_packet *ath6kl_alloc_amsdu_rxbuf(struct htc_target *target, enum htc_endpoint_id endpoint, int len) { struct ath6kl *ar = target->dev->ar; struct htc_packet *packet = NULL; struct list_head *pkt_pos; int refill_cnt = 0, depth = 0; ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: eid=%d, len:%d\n", __func__, endpoint, len); if ((len <= ATH6KL_BUFFER_SIZE) || (len > ATH6KL_AMSDU_BUFFER_SIZE)) return NULL; spin_lock_bh(&ar->lock); if (list_empty(&ar->amsdu_rx_buffer_queue)) { spin_unlock_bh(&ar->lock); refill_cnt = ATH6KL_MAX_AMSDU_RX_BUFFERS; goto refill_buf; } packet = list_first_entry(&ar->amsdu_rx_buffer_queue, struct htc_packet, list); list_del(&packet->list); list_for_each(pkt_pos, &ar->amsdu_rx_buffer_queue) depth++; refill_cnt = ATH6KL_MAX_AMSDU_RX_BUFFERS - depth; spin_unlock_bh(&ar->lock); /* set actual endpoint ID */ packet->endpoint = endpoint; refill_buf: if (refill_cnt >= ATH6KL_AMSDU_REFILL_THRESHOLD) ath6kl_refill_amsdu_rxbufs(ar, refill_cnt); return packet; } static void aggr_slice_amsdu(struct aggr_info *p_aggr, struct rxtid *rxtid, struct sk_buff *skb) { struct sk_buff *new_skb; struct ethhdr *hdr; u16 frame_8023_len, payload_8023_len, mac_hdr_len, amsdu_len; u8 *framep; mac_hdr_len = sizeof(struct ethhdr); framep = skb->data + mac_hdr_len; amsdu_len = skb->len - mac_hdr_len; while (amsdu_len > mac_hdr_len) { hdr = (struct ethhdr *) framep; payload_8023_len = be16_to_cpu(hdr->h_proto); if (payload_8023_len < MIN_MSDU_SUBFRAME_PAYLOAD_LEN || payload_8023_len > MAX_MSDU_SUBFRAME_PAYLOAD_LEN) { ath6kl_err("802.3 AMSDU frame bound check failed. len %d\n", payload_8023_len); break; } frame_8023_len = payload_8023_len + mac_hdr_len; new_skb = aggr_get_free_skb(p_aggr); if (!new_skb) { ath6kl_err("no buffer available\n"); break; } memcpy(new_skb->data, framep, frame_8023_len); skb_put(new_skb, frame_8023_len); if (ath6kl_wmi_dot3_2_dix(new_skb)) { ath6kl_err("dot3_2_dix error\n"); dev_kfree_skb(new_skb); break; } skb_queue_tail(&rxtid->q, new_skb); /* Is this the last subframe within this aggregate ? */ if ((amsdu_len - frame_8023_len) == 0) break; /* Add the length of A-MSDU subframe padding bytes - * Round to nearest word. */ frame_8023_len = ALIGN(frame_8023_len, 4); framep += frame_8023_len; amsdu_len -= frame_8023_len; } dev_kfree_skb(skb); } static void aggr_deque_frms(struct aggr_info_conn *agg_conn, u8 tid, u16 seq_no, u8 order) { struct sk_buff *skb; struct rxtid *rxtid; struct skb_hold_q *node; u16 idx, idx_end, seq_end; struct rxtid_stats *stats; rxtid = &agg_conn->rx_tid[tid]; stats = &agg_conn->stat[tid]; spin_lock_bh(&rxtid->lock); idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz); /* * idx_end is typically the last possible frame in the window, * but changes to 'the' seq_no, when BAR comes. If seq_no * is non-zero, we will go up to that and stop. * Note: last seq no in current window will occupy the same * index position as index that is just previous to start. * An imp point : if win_sz is 7, for seq_no space of 4095, * then, there would be holes when sequence wrap around occurs. * Target should judiciously choose the win_sz, based on * this condition. For 4095, (TID_WINDOW_SZ = 2 x win_sz * 2, 4, 8, 16 win_sz works fine). * We must deque from "idx" to "idx_end", including both. */ seq_end = seq_no ? seq_no : rxtid->seq_next; idx_end = AGGR_WIN_IDX(seq_end, rxtid->hold_q_sz); do { node = &rxtid->hold_q[idx]; if ((order == 1) && (!node->skb)) break; if (node->skb) { if (node->is_amsdu) aggr_slice_amsdu(agg_conn->aggr_info, rxtid, node->skb); else skb_queue_tail(&rxtid->q, node->skb); node->skb = NULL; } else { stats->num_hole++; } rxtid->seq_next = ATH6KL_NEXT_SEQ_NO(rxtid->seq_next); idx = AGGR_WIN_IDX(rxtid->seq_next, rxtid->hold_q_sz); } while (idx != idx_end); spin_unlock_bh(&rxtid->lock); stats->num_delivered += skb_queue_len(&rxtid->q); while ((skb = skb_dequeue(&rxtid->q))) ath6kl_deliver_frames_to_nw_stack(agg_conn->dev, skb); } static bool aggr_process_recv_frm(struct aggr_info_conn *agg_conn, u8 tid, u16 seq_no, bool is_amsdu, struct sk_buff *frame) { struct rxtid *rxtid; struct rxtid_stats *stats; struct sk_buff *skb; struct skb_hold_q *node; u16 idx, st, cur, end; bool is_queued = false; u16 extended_end; rxtid = &agg_conn->rx_tid[tid]; stats = &agg_conn->stat[tid]; stats->num_into_aggr++; if (!rxtid->aggr) { if (is_amsdu) { aggr_slice_amsdu(agg_conn->aggr_info, rxtid, frame); is_queued = true; stats->num_amsdu++; while ((skb = skb_dequeue(&rxtid->q))) ath6kl_deliver_frames_to_nw_stack(agg_conn->dev, skb); } return is_queued; } /* Check the incoming sequence no, if it's in the window */ st = rxtid->seq_next; cur = seq_no; end = (st + rxtid->hold_q_sz-1) & ATH6KL_MAX_SEQ_NO; if (((st < end) && (cur < st || cur > end)) || ((st > end) && (cur > end) && (cur < st))) { extended_end = (end + rxtid->hold_q_sz - 1) & ATH6KL_MAX_SEQ_NO; if (((end < extended_end) && (cur < end || cur > extended_end)) || ((end > extended_end) && (cur > extended_end) && (cur < end))) { aggr_deque_frms(agg_conn, tid, 0, 0); spin_lock_bh(&rxtid->lock); if (cur >= rxtid->hold_q_sz - 1) rxtid->seq_next = cur - (rxtid->hold_q_sz - 1); else rxtid->seq_next = ATH6KL_MAX_SEQ_NO - (rxtid->hold_q_sz - 2 - cur); spin_unlock_bh(&rxtid->lock); } else { /* * Dequeue only those frames that are outside the * new shifted window. */ if (cur >= rxtid->hold_q_sz - 1) st = cur - (rxtid->hold_q_sz - 1); else st = ATH6KL_MAX_SEQ_NO - (rxtid->hold_q_sz - 2 - cur); aggr_deque_frms(agg_conn, tid, st, 0); } stats->num_oow++; } idx = AGGR_WIN_IDX(seq_no, rxtid->hold_q_sz); node = &rxtid->hold_q[idx]; spin_lock_bh(&rxtid->lock); /* * Is the cur frame duplicate or something beyond our window(hold_q * -> which is 2x, already)? * * 1. Duplicate is easy - drop incoming frame. * 2. Not falling in current sliding window. * 2a. is the frame_seq_no preceding current tid_seq_no? * -> drop the frame. perhaps sender did not get our ACK. * this is taken care of above. * 2b. is the frame_seq_no beyond window(st, TID_WINDOW_SZ); * -> Taken care of it above, by moving window forward. */ dev_kfree_skb(node->skb); stats->num_dups++; node->skb = frame; is_queued = true; node->is_amsdu = is_amsdu; node->seq_no = seq_no; if (node->is_amsdu) stats->num_amsdu++; else stats->num_mpdu++; spin_unlock_bh(&rxtid->lock); aggr_deque_frms(agg_conn, tid, 0, 1); if (agg_conn->timer_scheduled) return is_queued; spin_lock_bh(&rxtid->lock); for (idx = 0; idx < rxtid->hold_q_sz; idx++) { if (rxtid->hold_q[idx].skb) { /* * There is a frame in the queue and no * timer so start a timer to ensure that * the frame doesn't remain stuck * forever. */ agg_conn->timer_scheduled = true; mod_timer(&agg_conn->timer, (jiffies + (HZ * AGGR_RX_TIMEOUT) / 1000)); rxtid->timer_mon = true; break; } } spin_unlock_bh(&rxtid->lock); return is_queued; } static void ath6kl_uapsd_trigger_frame_rx(struct ath6kl_vif *vif, struct ath6kl_sta *conn) { struct ath6kl *ar = vif->ar; bool is_apsdq_empty, is_apsdq_empty_at_start; u32 num_frames_to_deliver, flags; struct sk_buff *skb = NULL; /* * If the APSD q for this STA is not empty, dequeue and * send a pkt from the head of the q. Also update the * More data bit in the WMI_DATA_HDR if there are * more pkts for this STA in the APSD q. * If there are no more pkts for this STA, * update the APSD bitmap for this STA. */ num_frames_to_deliver = (conn->apsd_info >> ATH6KL_APSD_NUM_OF_AC) & ATH6KL_APSD_FRAME_MASK; /* * Number of frames to send in a service period is * indicated by the station * in the QOS_INFO of the association request * If it is zero, send all frames */ if (!num_frames_to_deliver) num_frames_to_deliver = ATH6KL_APSD_ALL_FRAME; spin_lock_bh(&conn->psq_lock); is_apsdq_empty = skb_queue_empty(&conn->apsdq); spin_unlock_bh(&conn->psq_lock); is_apsdq_empty_at_start = is_apsdq_empty; while ((!is_apsdq_empty) && (num_frames_to_deliver)) { spin_lock_bh(&conn->psq_lock); skb = skb_dequeue(&conn->apsdq); is_apsdq_empty = skb_queue_empty(&conn->apsdq); spin_unlock_bh(&conn->psq_lock); /* * Set the STA flag to Trigger delivery, * so that the frame will go out */ conn->sta_flags |= STA_PS_APSD_TRIGGER; num_frames_to_deliver--; /* Last frame in the service period, set EOSP or queue empty */ if ((is_apsdq_empty) || (!num_frames_to_deliver)) conn->sta_flags |= STA_PS_APSD_EOSP; ath6kl_data_tx(skb, vif->ndev); conn->sta_flags &= ~(STA_PS_APSD_TRIGGER); conn->sta_flags &= ~(STA_PS_APSD_EOSP); } if (is_apsdq_empty) { if (is_apsdq_empty_at_start) flags = WMI_AP_APSD_NO_DELIVERY_FRAMES; else flags = 0; ath6kl_wmi_set_apsd_bfrd_traf(ar->wmi, vif->fw_vif_idx, conn->aid, 0, flags); } return; } void ath6kl_rx(struct htc_target *target, struct htc_packet *packet) { struct ath6kl *ar = target->dev->ar; struct sk_buff *skb = packet->pkt_cntxt; struct wmi_rx_meta_v2 *meta; struct wmi_data_hdr *dhdr; int min_hdr_len; u8 meta_type, dot11_hdr = 0; u8 pad_before_data_start; int status = packet->status; enum htc_endpoint_id ept = packet->endpoint; bool is_amsdu, prev_ps, ps_state = false; bool trig_state = false; struct ath6kl_sta *conn = NULL; struct sk_buff *skb1 = NULL; struct ethhdr *datap = NULL; struct ath6kl_vif *vif; struct aggr_info_conn *aggr_conn; u16 seq_no, offset; u8 tid, if_idx; ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: ar=0x%p eid=%d, skb=0x%p, data=0x%p, len=0x%x status:%d", __func__, ar, ept, skb, packet->buf, packet->act_len, status); if (status || packet->act_len < HTC_HDR_LENGTH) { dev_kfree_skb(skb); return; } skb_put(skb, packet->act_len + HTC_HDR_LENGTH); skb_pull(skb, HTC_HDR_LENGTH); ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, __func__, "rx ", skb->data, skb->len); if (ept == ar->ctrl_ep) { if (test_bit(WMI_ENABLED, &ar->flag)) { ath6kl_check_wow_status(ar); ath6kl_wmi_control_rx(ar->wmi, skb); return; } if_idx = wmi_cmd_hdr_get_if_idx((struct wmi_cmd_hdr *) skb->data); } else { if_idx = wmi_data_hdr_get_if_idx((struct wmi_data_hdr *) skb->data); } vif = ath6kl_get_vif_by_index(ar, if_idx); if (!vif) { dev_kfree_skb(skb); return; } /* * Take lock to protect buffer counts and adaptive power throughput * state. */ spin_lock_bh(&vif->if_lock); vif->ndev->stats.rx_packets++; vif->ndev->stats.rx_bytes += packet->act_len; spin_unlock_bh(&vif->if_lock); skb->dev = vif->ndev; if (!test_bit(WMI_ENABLED, &ar->flag)) { if (EPPING_ALIGNMENT_PAD > 0) skb_pull(skb, EPPING_ALIGNMENT_PAD); ath6kl_deliver_frames_to_nw_stack(vif->ndev, skb); return; } ath6kl_check_wow_status(ar); min_hdr_len = sizeof(struct ethhdr) + sizeof(struct wmi_data_hdr) + sizeof(struct ath6kl_llc_snap_hdr); dhdr = (struct wmi_data_hdr *) skb->data; /* * In the case of AP mode we may receive NULL data frames * that do not have LLC hdr. They are 16 bytes in size. * Allow these frames in the AP mode. */ if (vif->nw_type != AP_NETWORK && ((packet->act_len < min_hdr_len) || (packet->act_len > WMI_MAX_AMSDU_RX_DATA_FRAME_LENGTH))) { ath6kl_info("frame len is too short or too long\n"); vif->ndev->stats.rx_errors++; vif->ndev->stats.rx_length_errors++; dev_kfree_skb(skb); return; } pad_before_data_start = (le16_to_cpu(dhdr->info3) >> WMI_DATA_HDR_PAD_BEFORE_DATA_SHIFT) & WMI_DATA_HDR_PAD_BEFORE_DATA_MASK; /* Get the Power save state of the STA */ if (vif->nw_type == AP_NETWORK) { meta_type = wmi_data_hdr_get_meta(dhdr); ps_state = !!((dhdr->info >> WMI_DATA_HDR_PS_SHIFT) & WMI_DATA_HDR_PS_MASK); offset = sizeof(struct wmi_data_hdr) + pad_before_data_start; trig_state = !!(le16_to_cpu(dhdr->info3) & WMI_DATA_HDR_TRIG); switch (meta_type) { case 0: break; case WMI_META_VERSION_1: offset += sizeof(struct wmi_rx_meta_v1); break; case WMI_META_VERSION_2: offset += sizeof(struct wmi_rx_meta_v2); break; default: break; } datap = (struct ethhdr *) (skb->data + offset); conn = ath6kl_find_sta(vif, datap->h_source); if (!conn) { dev_kfree_skb(skb); return; } /* * If there is a change in PS state of the STA, * take appropriate steps: * * 1. If Sleep-->Awake, flush the psq for the STA * Clear the PVB for the STA. * 2. If Awake-->Sleep, Starting queueing frames * the STA. */ prev_ps = !!(conn->sta_flags & STA_PS_SLEEP); if (ps_state) conn->sta_flags |= STA_PS_SLEEP; else conn->sta_flags &= ~STA_PS_SLEEP; /* Accept trigger only when the station is in sleep */ if ((conn->sta_flags & STA_PS_SLEEP) && trig_state) ath6kl_uapsd_trigger_frame_rx(vif, conn); if (prev_ps ^ !!(conn->sta_flags & STA_PS_SLEEP)) { if (!(conn->sta_flags & STA_PS_SLEEP)) { struct sk_buff *skbuff = NULL; bool is_apsdq_empty; struct ath6kl_mgmt_buff *mgmt; u8 idx; spin_lock_bh(&conn->psq_lock); while (conn->mgmt_psq_len > 0) { mgmt = list_first_entry( &conn->mgmt_psq, struct ath6kl_mgmt_buff, list); list_del(&mgmt->list); conn->mgmt_psq_len--; spin_unlock_bh(&conn->psq_lock); idx = vif->fw_vif_idx; ath6kl_wmi_send_mgmt_cmd(ar->wmi, idx, mgmt->id, mgmt->freq, mgmt->wait, mgmt->buf, mgmt->len, mgmt->no_cck); kfree(mgmt); spin_lock_bh(&conn->psq_lock); } conn->mgmt_psq_len = 0; while ((skbuff = skb_dequeue(&conn->psq))) { spin_unlock_bh(&conn->psq_lock); ath6kl_data_tx(skbuff, vif->ndev); spin_lock_bh(&conn->psq_lock); } is_apsdq_empty = skb_queue_empty(&conn->apsdq); while ((skbuff = skb_dequeue(&conn->apsdq))) { spin_unlock_bh(&conn->psq_lock); ath6kl_data_tx(skbuff, vif->ndev); spin_lock_bh(&conn->psq_lock); } spin_unlock_bh(&conn->psq_lock); if (!is_apsdq_empty) ath6kl_wmi_set_apsd_bfrd_traf( ar->wmi, vif->fw_vif_idx, conn->aid, 0, 0); /* Clear the PVB for this STA */ ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, conn->aid, 0); } } /* drop NULL data frames here */ if ((packet->act_len < min_hdr_len) || (packet->act_len > WMI_MAX_AMSDU_RX_DATA_FRAME_LENGTH)) { dev_kfree_skb(skb); return; } } is_amsdu = wmi_data_hdr_is_amsdu(dhdr) ? true : false; tid = wmi_data_hdr_get_up(dhdr); seq_no = wmi_data_hdr_get_seqno(dhdr); meta_type = wmi_data_hdr_get_meta(dhdr); dot11_hdr = wmi_data_hdr_get_dot11(dhdr); skb_pull(skb, sizeof(struct wmi_data_hdr)); switch (meta_type) { case WMI_META_VERSION_1: skb_pull(skb, sizeof(struct wmi_rx_meta_v1)); break; case WMI_META_VERSION_2: meta = (struct wmi_rx_meta_v2 *) skb->data; if (meta->csum_flags & 0x1) { skb->ip_summed = CHECKSUM_COMPLETE; skb->csum = (__force __wsum) meta->csum; } skb_pull(skb, sizeof(struct wmi_rx_meta_v2)); break; default: break; } skb_pull(skb, pad_before_data_start); if (dot11_hdr) status = ath6kl_wmi_dot11_hdr_remove(ar->wmi, skb); else if (!is_amsdu) status = ath6kl_wmi_dot3_2_dix(skb); if (status) { /* * Drop frames that could not be processed (lack of * memory, etc.) */ dev_kfree_skb(skb); return; } if (!(vif->ndev->flags & IFF_UP)) { dev_kfree_skb(skb); return; } if (vif->nw_type == AP_NETWORK) { datap = (struct ethhdr *) skb->data; if (is_multicast_ether_addr(datap->h_dest)) /* * Bcast/Mcast frames should be sent to the * OS stack as well as on the air. */ skb1 = skb_copy(skb, GFP_ATOMIC); else { /* * Search for a connected STA with dstMac * as the Mac address. If found send the * frame to it on the air else send the * frame up the stack. */ conn = ath6kl_find_sta(vif, datap->h_dest); if (conn && ar->intra_bss) { skb1 = skb; skb = NULL; } else if (conn && !ar->intra_bss) { dev_kfree_skb(skb); skb = NULL; } } if (skb1) ath6kl_data_tx(skb1, vif->ndev); if (skb == NULL) { /* nothing to deliver up the stack */ return; } } datap = (struct ethhdr *) skb->data; if (is_unicast_ether_addr(datap->h_dest)) { if (vif->nw_type == AP_NETWORK) { conn = ath6kl_find_sta(vif, datap->h_source); if (!conn) return; aggr_conn = conn->aggr_conn; } else { aggr_conn = vif->aggr_cntxt->aggr_conn; } if (aggr_process_recv_frm(aggr_conn, tid, seq_no, is_amsdu, skb)) { /* aggregation code will handle the skb */ return; } } else if (!is_broadcast_ether_addr(datap->h_dest)) { vif->ndev->stats.multicast++; } ath6kl_deliver_frames_to_nw_stack(vif->ndev, skb); } static void aggr_timeout(struct timer_list *t) { u8 i, j; struct aggr_info_conn *aggr_conn = from_timer(aggr_conn, t, timer); struct rxtid *rxtid; struct rxtid_stats *stats; for (i = 0; i < NUM_OF_TIDS; i++) { rxtid = &aggr_conn->rx_tid[i]; stats = &aggr_conn->stat[i]; if (!rxtid->aggr || !rxtid->timer_mon) continue; stats->num_timeouts++; ath6kl_dbg(ATH6KL_DBG_AGGR, "aggr timeout (st %d end %d)\n", rxtid->seq_next, ((rxtid->seq_next + rxtid->hold_q_sz-1) & ATH6KL_MAX_SEQ_NO)); aggr_deque_frms(aggr_conn, i, 0, 0); } aggr_conn->timer_scheduled = false; for (i = 0; i < NUM_OF_TIDS; i++) { rxtid = &aggr_conn->rx_tid[i]; if (rxtid->aggr && rxtid->hold_q) { spin_lock_bh(&rxtid->lock); for (j = 0; j < rxtid->hold_q_sz; j++) { if (rxtid->hold_q[j].skb) { aggr_conn->timer_scheduled = true; rxtid->timer_mon = true; break; } } spin_unlock_bh(&rxtid->lock); if (j >= rxtid->hold_q_sz) rxtid->timer_mon = false; } } if (aggr_conn->timer_scheduled) mod_timer(&aggr_conn->timer, jiffies + msecs_to_jiffies(AGGR_RX_TIMEOUT)); } static void aggr_delete_tid_state(struct aggr_info_conn *aggr_conn, u8 tid) { struct rxtid *rxtid; struct rxtid_stats *stats; if (!aggr_conn || tid >= NUM_OF_TIDS) return; rxtid = &aggr_conn->rx_tid[tid]; stats = &aggr_conn->stat[tid]; if (rxtid->aggr) aggr_deque_frms(aggr_conn, tid, 0, 0); rxtid->aggr = false; rxtid->timer_mon = false; rxtid->win_sz = 0; rxtid->seq_next = 0; rxtid->hold_q_sz = 0; kfree(rxtid->hold_q); rxtid->hold_q = NULL; memset(stats, 0, sizeof(struct rxtid_stats)); } void aggr_recv_addba_req_evt(struct ath6kl_vif *vif, u8 tid_mux, u16 seq_no, u8 win_sz) { struct ath6kl_sta *sta; struct aggr_info_conn *aggr_conn = NULL; struct rxtid *rxtid; u16 hold_q_size; u8 tid, aid; if (vif->nw_type == AP_NETWORK) { aid = ath6kl_get_aid(tid_mux); sta = ath6kl_find_sta_by_aid(vif->ar, aid); if (sta) aggr_conn = sta->aggr_conn; } else { aggr_conn = vif->aggr_cntxt->aggr_conn; } if (!aggr_conn) return; tid = ath6kl_get_tid(tid_mux); if (tid >= NUM_OF_TIDS) return; rxtid = &aggr_conn->rx_tid[tid]; if (win_sz < AGGR_WIN_SZ_MIN || win_sz > AGGR_WIN_SZ_MAX) ath6kl_dbg(ATH6KL_DBG_WLAN_RX, "%s: win_sz %d, tid %d\n", __func__, win_sz, tid); if (rxtid->aggr) aggr_delete_tid_state(aggr_conn, tid); rxtid->seq_next = seq_no; hold_q_size = TID_WINDOW_SZ(win_sz) * sizeof(struct skb_hold_q); rxtid->hold_q = kzalloc(hold_q_size, GFP_KERNEL); if (!rxtid->hold_q) return; rxtid->win_sz = win_sz; rxtid->hold_q_sz = TID_WINDOW_SZ(win_sz); if (!skb_queue_empty(&rxtid->q)) return; rxtid->aggr = true; } void aggr_conn_init(struct ath6kl_vif *vif, struct aggr_info *aggr_info, struct aggr_info_conn *aggr_conn) { struct rxtid *rxtid; u8 i; aggr_conn->aggr_sz = AGGR_SZ_DEFAULT; aggr_conn->dev = vif->ndev; timer_setup(&aggr_conn->timer, aggr_timeout, 0); aggr_conn->aggr_info = aggr_info; aggr_conn->timer_scheduled = false; for (i = 0; i < NUM_OF_TIDS; i++) { rxtid = &aggr_conn->rx_tid[i]; rxtid->aggr = false; rxtid->timer_mon = false; skb_queue_head_init(&rxtid->q); spin_lock_init(&rxtid->lock); } } struct aggr_info *aggr_init(struct ath6kl_vif *vif) { struct aggr_info *p_aggr = NULL; p_aggr = kzalloc(sizeof(struct aggr_info), GFP_KERNEL); if (!p_aggr) { ath6kl_err("failed to alloc memory for aggr_node\n"); return NULL; } p_aggr->aggr_conn = kzalloc(sizeof(struct aggr_info_conn), GFP_KERNEL); if (!p_aggr->aggr_conn) { ath6kl_err("failed to alloc memory for connection specific aggr info\n"); kfree(p_aggr); return NULL; } aggr_conn_init(vif, p_aggr, p_aggr->aggr_conn); skb_queue_head_init(&p_aggr->rx_amsdu_freeq); ath6kl_alloc_netbufs(&p_aggr->rx_amsdu_freeq, AGGR_NUM_OF_FREE_NETBUFS); return p_aggr; } void aggr_recv_delba_req_evt(struct ath6kl_vif *vif, u8 tid_mux) { struct ath6kl_sta *sta; struct rxtid *rxtid; struct aggr_info_conn *aggr_conn = NULL; u8 tid, aid; if (vif->nw_type == AP_NETWORK) { aid = ath6kl_get_aid(tid_mux); sta = ath6kl_find_sta_by_aid(vif->ar, aid); if (sta) aggr_conn = sta->aggr_conn; } else { aggr_conn = vif->aggr_cntxt->aggr_conn; } if (!aggr_conn) return; tid = ath6kl_get_tid(tid_mux); if (tid >= NUM_OF_TIDS) return; rxtid = &aggr_conn->rx_tid[tid]; if (rxtid->aggr) aggr_delete_tid_state(aggr_conn, tid); } void aggr_reset_state(struct aggr_info_conn *aggr_conn) { u8 tid; if (!aggr_conn) return; if (aggr_conn->timer_scheduled) { del_timer(&aggr_conn->timer); aggr_conn->timer_scheduled = false; } for (tid = 0; tid < NUM_OF_TIDS; tid++) aggr_delete_tid_state(aggr_conn, tid); } /* clean up our amsdu buffer list */ void ath6kl_cleanup_amsdu_rxbufs(struct ath6kl *ar) { struct htc_packet *packet, *tmp_pkt; spin_lock_bh(&ar->lock); if (list_empty(&ar->amsdu_rx_buffer_queue)) { spin_unlock_bh(&ar->lock); return; } list_for_each_entry_safe(packet, tmp_pkt, &ar->amsdu_rx_buffer_queue, list) { list_del(&packet->list); spin_unlock_bh(&ar->lock); dev_kfree_skb(packet->pkt_cntxt); spin_lock_bh(&ar->lock); } spin_unlock_bh(&ar->lock); } void aggr_module_destroy(struct aggr_info *aggr_info) { if (!aggr_info) return; aggr_reset_state(aggr_info->aggr_conn); skb_queue_purge(&aggr_info->rx_amsdu_freeq); kfree(aggr_info->aggr_conn); kfree(aggr_info); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1