Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sujith Manoharan | 3561 | 41.56% | 26 | 40.00% |
Luis R. Rodriguez | 2684 | 31.33% | 6 | 9.23% |
Rajkumar Manoharan | 1219 | 14.23% | 13 | 20.00% |
Vasanthakumar Thiagarajan | 825 | 9.63% | 4 | 6.15% |
Felix Fietkau | 170 | 1.98% | 8 | 12.31% |
Joe Perches | 74 | 0.86% | 3 | 4.62% |
John W. Linville | 17 | 0.20% | 1 | 1.54% |
Miaoqing Pan | 12 | 0.14% | 2 | 3.08% |
Mohammed Shafi Shajakhan | 5 | 0.06% | 1 | 1.54% |
Nikolay Martynov | 1 | 0.01% | 1 | 1.54% |
Total | 8568 | 65 |
/* * Copyright (c) 2010-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "hw.h" #include "hw-ops.h" #include "ar9003_phy.h" #include "ar9003_rtt.h" #include "ar9003_mci.h" #define MAX_MEASUREMENT MAX_IQCAL_MEASUREMENT #define MAX_MAG_DELTA 11 #define MAX_PHS_DELTA 10 #define MAXIQCAL 3 struct coeff { int mag_coeff[AR9300_MAX_CHAINS][MAX_MEASUREMENT][MAXIQCAL]; int phs_coeff[AR9300_MAX_CHAINS][MAX_MEASUREMENT][MAXIQCAL]; int iqc_coeff[2]; }; enum ar9003_cal_types { IQ_MISMATCH_CAL = BIT(0), }; static void ar9003_hw_setup_calibration(struct ath_hw *ah, struct ath9k_cal_list *currCal) { struct ath_common *common = ath9k_hw_common(ah); /* Select calibration to run */ switch (currCal->calData->calType) { case IQ_MISMATCH_CAL: /* * Start calibration with * 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */ REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX, currCal->calData->calCountMax); REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ); ath_dbg(common, CALIBRATE, "starting IQ Mismatch Calibration\n"); /* Kick-off cal */ REG_SET_BIT(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL); break; default: ath_err(common, "Invalid calibration type\n"); break; } } /* * Generic calibration routine. * Recalibrate the lower PHY chips to account for temperature/environment * changes. */ static bool ar9003_hw_per_calibration(struct ath_hw *ah, struct ath9k_channel *ichan, u8 rxchainmask, struct ath9k_cal_list *currCal) { struct ath9k_hw_cal_data *caldata = ah->caldata; const struct ath9k_percal_data *cur_caldata = currCal->calData; /* Calibration in progress. */ if (currCal->calState == CAL_RUNNING) { /* Check to see if it has finished. */ if (REG_READ(ah, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL) return false; /* * Accumulate cal measures for active chains */ cur_caldata->calCollect(ah); ah->cal_samples++; if (ah->cal_samples >= cur_caldata->calNumSamples) { unsigned int i, numChains = 0; for (i = 0; i < AR9300_MAX_CHAINS; i++) { if (rxchainmask & (1 << i)) numChains++; } /* * Process accumulated data */ cur_caldata->calPostProc(ah, numChains); /* Calibration has finished. */ caldata->CalValid |= cur_caldata->calType; currCal->calState = CAL_DONE; return true; } else { /* * Set-up collection of another sub-sample until we * get desired number */ ar9003_hw_setup_calibration(ah, currCal); } } else if (!(caldata->CalValid & cur_caldata->calType)) { /* If current cal is marked invalid in channel, kick it off */ ath9k_hw_reset_calibration(ah, currCal); } return false; } static int ar9003_hw_calibrate(struct ath_hw *ah, struct ath9k_channel *chan, u8 rxchainmask, bool longcal) { bool iscaldone = true; struct ath9k_cal_list *currCal = ah->cal_list_curr; int ret; /* * For given calibration: * 1. Call generic cal routine * 2. When this cal is done (isCalDone) if we have more cals waiting * (eg after reset), mask this to upper layers by not propagating * isCalDone if it is set to TRUE. * Instead, change isCalDone to FALSE and setup the waiting cal(s) * to be run. */ if (currCal && (currCal->calState == CAL_RUNNING || currCal->calState == CAL_WAITING)) { iscaldone = ar9003_hw_per_calibration(ah, chan, rxchainmask, currCal); if (iscaldone) { ah->cal_list_curr = currCal = currCal->calNext; if (currCal->calState == CAL_WAITING) { iscaldone = false; ath9k_hw_reset_calibration(ah, currCal); } } } /* * Do NF cal only at longer intervals. Get the value from * the previous NF cal and update history buffer. */ if (longcal && ath9k_hw_getnf(ah, chan)) { /* * Load the NF from history buffer of the current channel. * NF is slow time-variant, so it is OK to use a historical * value. */ ret = ath9k_hw_loadnf(ah, ah->curchan); if (ret < 0) return ret; /* start NF calibration, without updating BB NF register */ ath9k_hw_start_nfcal(ah, false); } return iscaldone; } static void ar9003_hw_iqcal_collect(struct ath_hw *ah) { int i; /* Accumulate IQ cal measures for active chains */ for (i = 0; i < AR5416_MAX_CHAINS; i++) { if (ah->txchainmask & BIT(i)) { ah->totalPowerMeasI[i] += REG_READ(ah, AR_PHY_CAL_MEAS_0(i)); ah->totalPowerMeasQ[i] += REG_READ(ah, AR_PHY_CAL_MEAS_1(i)); ah->totalIqCorrMeas[i] += (int32_t) REG_READ(ah, AR_PHY_CAL_MEAS_2(i)); ath_dbg(ath9k_hw_common(ah), CALIBRATE, "%d: Chn %d pmi=0x%08x;pmq=0x%08x;iqcm=0x%08x;\n", ah->cal_samples, i, ah->totalPowerMeasI[i], ah->totalPowerMeasQ[i], ah->totalIqCorrMeas[i]); } } } static void ar9003_hw_iqcalibrate(struct ath_hw *ah, u8 numChains) { struct ath_common *common = ath9k_hw_common(ah); u32 powerMeasQ, powerMeasI, iqCorrMeas; u32 qCoffDenom, iCoffDenom; int32_t qCoff, iCoff; int iqCorrNeg, i; static const u_int32_t offset_array[3] = { AR_PHY_RX_IQCAL_CORR_B0, AR_PHY_RX_IQCAL_CORR_B1, AR_PHY_RX_IQCAL_CORR_B2, }; for (i = 0; i < numChains; i++) { powerMeasI = ah->totalPowerMeasI[i]; powerMeasQ = ah->totalPowerMeasQ[i]; iqCorrMeas = ah->totalIqCorrMeas[i]; ath_dbg(common, CALIBRATE, "Starting IQ Cal and Correction for Chain %d\n", i); ath_dbg(common, CALIBRATE, "Original: Chn %d iq_corr_meas = 0x%08x\n", i, ah->totalIqCorrMeas[i]); iqCorrNeg = 0; if (iqCorrMeas > 0x80000000) { iqCorrMeas = (0xffffffff - iqCorrMeas) + 1; iqCorrNeg = 1; } ath_dbg(common, CALIBRATE, "Chn %d pwr_meas_i = 0x%08x\n", i, powerMeasI); ath_dbg(common, CALIBRATE, "Chn %d pwr_meas_q = 0x%08x\n", i, powerMeasQ); ath_dbg(common, CALIBRATE, "iqCorrNeg is 0x%08x\n", iqCorrNeg); iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 256; qCoffDenom = powerMeasQ / 64; if ((iCoffDenom != 0) && (qCoffDenom != 0)) { iCoff = iqCorrMeas / iCoffDenom; qCoff = powerMeasI / qCoffDenom - 64; ath_dbg(common, CALIBRATE, "Chn %d iCoff = 0x%08x\n", i, iCoff); ath_dbg(common, CALIBRATE, "Chn %d qCoff = 0x%08x\n", i, qCoff); /* Force bounds on iCoff */ if (iCoff >= 63) iCoff = 63; else if (iCoff <= -63) iCoff = -63; /* Negate iCoff if iqCorrNeg == 0 */ if (iqCorrNeg == 0x0) iCoff = -iCoff; /* Force bounds on qCoff */ if (qCoff >= 63) qCoff = 63; else if (qCoff <= -63) qCoff = -63; iCoff = iCoff & 0x7f; qCoff = qCoff & 0x7f; ath_dbg(common, CALIBRATE, "Chn %d : iCoff = 0x%x qCoff = 0x%x\n", i, iCoff, qCoff); ath_dbg(common, CALIBRATE, "Register offset (0x%04x) before update = 0x%x\n", offset_array[i], REG_READ(ah, offset_array[i])); if (AR_SREV_9565(ah) && (iCoff == 63 || qCoff == 63 || iCoff == -63 || qCoff == -63)) return; REG_RMW_FIELD(ah, offset_array[i], AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, iCoff); REG_RMW_FIELD(ah, offset_array[i], AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, qCoff); ath_dbg(common, CALIBRATE, "Register offset (0x%04x) QI COFF (bitfields 0x%08x) after update = 0x%x\n", offset_array[i], AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, REG_READ(ah, offset_array[i])); ath_dbg(common, CALIBRATE, "Register offset (0x%04x) QQ COFF (bitfields 0x%08x) after update = 0x%x\n", offset_array[i], AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, REG_READ(ah, offset_array[i])); ath_dbg(common, CALIBRATE, "IQ Cal and Correction done for Chain %d\n", i); } } REG_SET_BIT(ah, AR_PHY_RX_IQCAL_CORR_B0, AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE); ath_dbg(common, CALIBRATE, "IQ Cal and Correction (offset 0x%04x) enabled (bit position 0x%08x). New Value 0x%08x\n", (unsigned) (AR_PHY_RX_IQCAL_CORR_B0), AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE, REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B0)); } static const struct ath9k_percal_data iq_cal_single_sample = { IQ_MISMATCH_CAL, MIN_CAL_SAMPLES, PER_MAX_LOG_COUNT, ar9003_hw_iqcal_collect, ar9003_hw_iqcalibrate }; static void ar9003_hw_init_cal_settings(struct ath_hw *ah) { ah->iq_caldata.calData = &iq_cal_single_sample; if (AR_SREV_9300_20_OR_LATER(ah)) { ah->enabled_cals |= TX_IQ_CAL; if (AR_SREV_9485_OR_LATER(ah) && !AR_SREV_9340(ah)) ah->enabled_cals |= TX_IQ_ON_AGC_CAL; } ah->supp_cals = IQ_MISMATCH_CAL; } #define OFF_UPPER_LT 24 #define OFF_LOWER_LT 7 static bool ar9003_hw_dynamic_osdac_selection(struct ath_hw *ah, bool txiqcal_done) { struct ath_common *common = ath9k_hw_common(ah); int ch0_done, osdac_ch0, dc_off_ch0_i1, dc_off_ch0_q1, dc_off_ch0_i2, dc_off_ch0_q2, dc_off_ch0_i3, dc_off_ch0_q3; int ch1_done, osdac_ch1, dc_off_ch1_i1, dc_off_ch1_q1, dc_off_ch1_i2, dc_off_ch1_q2, dc_off_ch1_i3, dc_off_ch1_q3; int ch2_done, osdac_ch2, dc_off_ch2_i1, dc_off_ch2_q1, dc_off_ch2_i2, dc_off_ch2_q2, dc_off_ch2_i3, dc_off_ch2_q3; bool status; u32 temp, val; /* * Clear offset and IQ calibration, run AGC cal. */ REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_OFFSET_CAL); REG_CLR_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0, AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL); REG_WRITE(ah, AR_PHY_AGC_CONTROL, REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL); status = ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0, AH_WAIT_TIMEOUT); if (!status) { ath_dbg(common, CALIBRATE, "AGC cal without offset cal failed to complete in 1ms"); return false; } /* * Allow only offset calibration and disable the others * (Carrier Leak calibration, TX Filter calibration and * Peak Detector offset calibration). */ REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_OFFSET_CAL); REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_PKDET_CAL); ch0_done = 0; ch1_done = 0; ch2_done = 0; while ((ch0_done == 0) || (ch1_done == 0) || (ch2_done == 0)) { osdac_ch0 = (REG_READ(ah, AR_PHY_65NM_CH0_BB1) >> 30) & 0x3; osdac_ch1 = (REG_READ(ah, AR_PHY_65NM_CH1_BB1) >> 30) & 0x3; osdac_ch2 = (REG_READ(ah, AR_PHY_65NM_CH2_BB1) >> 30) & 0x3; REG_SET_BIT(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); REG_WRITE(ah, AR_PHY_AGC_CONTROL, REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL); status = ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0, AH_WAIT_TIMEOUT); if (!status) { ath_dbg(common, CALIBRATE, "DC offset cal failed to complete in 1ms"); return false; } REG_CLR_BIT(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); /* * High gain. */ REG_WRITE(ah, AR_PHY_65NM_CH0_BB3, ((REG_READ(ah, AR_PHY_65NM_CH0_BB3) & 0xfffffcff) | (1 << 8))); REG_WRITE(ah, AR_PHY_65NM_CH1_BB3, ((REG_READ(ah, AR_PHY_65NM_CH1_BB3) & 0xfffffcff) | (1 << 8))); REG_WRITE(ah, AR_PHY_65NM_CH2_BB3, ((REG_READ(ah, AR_PHY_65NM_CH2_BB3) & 0xfffffcff) | (1 << 8))); temp = REG_READ(ah, AR_PHY_65NM_CH0_BB3); dc_off_ch0_i1 = (temp >> 26) & 0x1f; dc_off_ch0_q1 = (temp >> 21) & 0x1f; temp = REG_READ(ah, AR_PHY_65NM_CH1_BB3); dc_off_ch1_i1 = (temp >> 26) & 0x1f; dc_off_ch1_q1 = (temp >> 21) & 0x1f; temp = REG_READ(ah, AR_PHY_65NM_CH2_BB3); dc_off_ch2_i1 = (temp >> 26) & 0x1f; dc_off_ch2_q1 = (temp >> 21) & 0x1f; /* * Low gain. */ REG_WRITE(ah, AR_PHY_65NM_CH0_BB3, ((REG_READ(ah, AR_PHY_65NM_CH0_BB3) & 0xfffffcff) | (2 << 8))); REG_WRITE(ah, AR_PHY_65NM_CH1_BB3, ((REG_READ(ah, AR_PHY_65NM_CH1_BB3) & 0xfffffcff) | (2 << 8))); REG_WRITE(ah, AR_PHY_65NM_CH2_BB3, ((REG_READ(ah, AR_PHY_65NM_CH2_BB3) & 0xfffffcff) | (2 << 8))); temp = REG_READ(ah, AR_PHY_65NM_CH0_BB3); dc_off_ch0_i2 = (temp >> 26) & 0x1f; dc_off_ch0_q2 = (temp >> 21) & 0x1f; temp = REG_READ(ah, AR_PHY_65NM_CH1_BB3); dc_off_ch1_i2 = (temp >> 26) & 0x1f; dc_off_ch1_q2 = (temp >> 21) & 0x1f; temp = REG_READ(ah, AR_PHY_65NM_CH2_BB3); dc_off_ch2_i2 = (temp >> 26) & 0x1f; dc_off_ch2_q2 = (temp >> 21) & 0x1f; /* * Loopback. */ REG_WRITE(ah, AR_PHY_65NM_CH0_BB3, ((REG_READ(ah, AR_PHY_65NM_CH0_BB3) & 0xfffffcff) | (3 << 8))); REG_WRITE(ah, AR_PHY_65NM_CH1_BB3, ((REG_READ(ah, AR_PHY_65NM_CH1_BB3) & 0xfffffcff) | (3 << 8))); REG_WRITE(ah, AR_PHY_65NM_CH2_BB3, ((REG_READ(ah, AR_PHY_65NM_CH2_BB3) & 0xfffffcff) | (3 << 8))); temp = REG_READ(ah, AR_PHY_65NM_CH0_BB3); dc_off_ch0_i3 = (temp >> 26) & 0x1f; dc_off_ch0_q3 = (temp >> 21) & 0x1f; temp = REG_READ(ah, AR_PHY_65NM_CH1_BB3); dc_off_ch1_i3 = (temp >> 26) & 0x1f; dc_off_ch1_q3 = (temp >> 21) & 0x1f; temp = REG_READ(ah, AR_PHY_65NM_CH2_BB3); dc_off_ch2_i3 = (temp >> 26) & 0x1f; dc_off_ch2_q3 = (temp >> 21) & 0x1f; if ((dc_off_ch0_i1 > OFF_UPPER_LT) || (dc_off_ch0_i1 < OFF_LOWER_LT) || (dc_off_ch0_i2 > OFF_UPPER_LT) || (dc_off_ch0_i2 < OFF_LOWER_LT) || (dc_off_ch0_i3 > OFF_UPPER_LT) || (dc_off_ch0_i3 < OFF_LOWER_LT) || (dc_off_ch0_q1 > OFF_UPPER_LT) || (dc_off_ch0_q1 < OFF_LOWER_LT) || (dc_off_ch0_q2 > OFF_UPPER_LT) || (dc_off_ch0_q2 < OFF_LOWER_LT) || (dc_off_ch0_q3 > OFF_UPPER_LT) || (dc_off_ch0_q3 < OFF_LOWER_LT)) { if (osdac_ch0 == 3) { ch0_done = 1; } else { osdac_ch0++; val = REG_READ(ah, AR_PHY_65NM_CH0_BB1) & 0x3fffffff; val |= (osdac_ch0 << 30); REG_WRITE(ah, AR_PHY_65NM_CH0_BB1, val); ch0_done = 0; } } else { ch0_done = 1; } if ((dc_off_ch1_i1 > OFF_UPPER_LT) || (dc_off_ch1_i1 < OFF_LOWER_LT) || (dc_off_ch1_i2 > OFF_UPPER_LT) || (dc_off_ch1_i2 < OFF_LOWER_LT) || (dc_off_ch1_i3 > OFF_UPPER_LT) || (dc_off_ch1_i3 < OFF_LOWER_LT) || (dc_off_ch1_q1 > OFF_UPPER_LT) || (dc_off_ch1_q1 < OFF_LOWER_LT) || (dc_off_ch1_q2 > OFF_UPPER_LT) || (dc_off_ch1_q2 < OFF_LOWER_LT) || (dc_off_ch1_q3 > OFF_UPPER_LT) || (dc_off_ch1_q3 < OFF_LOWER_LT)) { if (osdac_ch1 == 3) { ch1_done = 1; } else { osdac_ch1++; val = REG_READ(ah, AR_PHY_65NM_CH1_BB1) & 0x3fffffff; val |= (osdac_ch1 << 30); REG_WRITE(ah, AR_PHY_65NM_CH1_BB1, val); ch1_done = 0; } } else { ch1_done = 1; } if ((dc_off_ch2_i1 > OFF_UPPER_LT) || (dc_off_ch2_i1 < OFF_LOWER_LT) || (dc_off_ch2_i2 > OFF_UPPER_LT) || (dc_off_ch2_i2 < OFF_LOWER_LT) || (dc_off_ch2_i3 > OFF_UPPER_LT) || (dc_off_ch2_i3 < OFF_LOWER_LT) || (dc_off_ch2_q1 > OFF_UPPER_LT) || (dc_off_ch2_q1 < OFF_LOWER_LT) || (dc_off_ch2_q2 > OFF_UPPER_LT) || (dc_off_ch2_q2 < OFF_LOWER_LT) || (dc_off_ch2_q3 > OFF_UPPER_LT) || (dc_off_ch2_q3 < OFF_LOWER_LT)) { if (osdac_ch2 == 3) { ch2_done = 1; } else { osdac_ch2++; val = REG_READ(ah, AR_PHY_65NM_CH2_BB1) & 0x3fffffff; val |= (osdac_ch2 << 30); REG_WRITE(ah, AR_PHY_65NM_CH2_BB1, val); ch2_done = 0; } } else { ch2_done = 1; } } REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_OFFSET_CAL); REG_SET_BIT(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); /* * We don't need to check txiqcal_done here since it is always * set for AR9550. */ REG_SET_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0, AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL); return true; } /* * solve 4x4 linear equation used in loopback iq cal. */ static bool ar9003_hw_solve_iq_cal(struct ath_hw *ah, s32 sin_2phi_1, s32 cos_2phi_1, s32 sin_2phi_2, s32 cos_2phi_2, s32 mag_a0_d0, s32 phs_a0_d0, s32 mag_a1_d0, s32 phs_a1_d0, s32 solved_eq[]) { s32 f1 = cos_2phi_1 - cos_2phi_2, f3 = sin_2phi_1 - sin_2phi_2, f2; s32 mag_tx, phs_tx, mag_rx, phs_rx; const s32 result_shift = 1 << 15; struct ath_common *common = ath9k_hw_common(ah); f2 = ((f1 >> 3) * (f1 >> 3) + (f3 >> 3) * (f3 >> 3)) >> 9; if (!f2) { ath_dbg(common, CALIBRATE, "Divide by 0\n"); return false; } /* mag mismatch, tx */ mag_tx = f1 * (mag_a0_d0 - mag_a1_d0) + f3 * (phs_a0_d0 - phs_a1_d0); /* phs mismatch, tx */ phs_tx = f3 * (-mag_a0_d0 + mag_a1_d0) + f1 * (phs_a0_d0 - phs_a1_d0); mag_tx = (mag_tx / f2); phs_tx = (phs_tx / f2); /* mag mismatch, rx */ mag_rx = mag_a0_d0 - (cos_2phi_1 * mag_tx + sin_2phi_1 * phs_tx) / result_shift; /* phs mismatch, rx */ phs_rx = phs_a0_d0 + (sin_2phi_1 * mag_tx - cos_2phi_1 * phs_tx) / result_shift; solved_eq[0] = mag_tx; solved_eq[1] = phs_tx; solved_eq[2] = mag_rx; solved_eq[3] = phs_rx; return true; } static s32 ar9003_hw_find_mag_approx(struct ath_hw *ah, s32 in_re, s32 in_im) { s32 abs_i = abs(in_re), abs_q = abs(in_im), max_abs, min_abs; if (abs_i > abs_q) { max_abs = abs_i; min_abs = abs_q; } else { max_abs = abs_q; min_abs = abs_i; } return max_abs - (max_abs / 32) + (min_abs / 8) + (min_abs / 4); } #define DELPT 32 static bool ar9003_hw_calc_iq_corr(struct ath_hw *ah, s32 chain_idx, const s32 iq_res[], s32 iqc_coeff[]) { s32 i2_m_q2_a0_d0, i2_p_q2_a0_d0, iq_corr_a0_d0, i2_m_q2_a0_d1, i2_p_q2_a0_d1, iq_corr_a0_d1, i2_m_q2_a1_d0, i2_p_q2_a1_d0, iq_corr_a1_d0, i2_m_q2_a1_d1, i2_p_q2_a1_d1, iq_corr_a1_d1; s32 mag_a0_d0, mag_a1_d0, mag_a0_d1, mag_a1_d1, phs_a0_d0, phs_a1_d0, phs_a0_d1, phs_a1_d1, sin_2phi_1, cos_2phi_1, sin_2phi_2, cos_2phi_2; s32 mag_tx, phs_tx, mag_rx, phs_rx; s32 solved_eq[4], mag_corr_tx, phs_corr_tx, mag_corr_rx, phs_corr_rx, q_q_coff, q_i_coff; const s32 res_scale = 1 << 15; const s32 delpt_shift = 1 << 8; s32 mag1, mag2; struct ath_common *common = ath9k_hw_common(ah); i2_m_q2_a0_d0 = iq_res[0] & 0xfff; i2_p_q2_a0_d0 = (iq_res[0] >> 12) & 0xfff; iq_corr_a0_d0 = ((iq_res[0] >> 24) & 0xff) + ((iq_res[1] & 0xf) << 8); if (i2_m_q2_a0_d0 > 0x800) i2_m_q2_a0_d0 = -((0xfff - i2_m_q2_a0_d0) + 1); if (i2_p_q2_a0_d0 > 0x800) i2_p_q2_a0_d0 = -((0xfff - i2_p_q2_a0_d0) + 1); if (iq_corr_a0_d0 > 0x800) iq_corr_a0_d0 = -((0xfff - iq_corr_a0_d0) + 1); i2_m_q2_a0_d1 = (iq_res[1] >> 4) & 0xfff; i2_p_q2_a0_d1 = (iq_res[2] & 0xfff); iq_corr_a0_d1 = (iq_res[2] >> 12) & 0xfff; if (i2_m_q2_a0_d1 > 0x800) i2_m_q2_a0_d1 = -((0xfff - i2_m_q2_a0_d1) + 1); if (iq_corr_a0_d1 > 0x800) iq_corr_a0_d1 = -((0xfff - iq_corr_a0_d1) + 1); i2_m_q2_a1_d0 = ((iq_res[2] >> 24) & 0xff) + ((iq_res[3] & 0xf) << 8); i2_p_q2_a1_d0 = (iq_res[3] >> 4) & 0xfff; iq_corr_a1_d0 = iq_res[4] & 0xfff; if (i2_m_q2_a1_d0 > 0x800) i2_m_q2_a1_d0 = -((0xfff - i2_m_q2_a1_d0) + 1); if (i2_p_q2_a1_d0 > 0x800) i2_p_q2_a1_d0 = -((0xfff - i2_p_q2_a1_d0) + 1); if (iq_corr_a1_d0 > 0x800) iq_corr_a1_d0 = -((0xfff - iq_corr_a1_d0) + 1); i2_m_q2_a1_d1 = (iq_res[4] >> 12) & 0xfff; i2_p_q2_a1_d1 = ((iq_res[4] >> 24) & 0xff) + ((iq_res[5] & 0xf) << 8); iq_corr_a1_d1 = (iq_res[5] >> 4) & 0xfff; if (i2_m_q2_a1_d1 > 0x800) i2_m_q2_a1_d1 = -((0xfff - i2_m_q2_a1_d1) + 1); if (i2_p_q2_a1_d1 > 0x800) i2_p_q2_a1_d1 = -((0xfff - i2_p_q2_a1_d1) + 1); if (iq_corr_a1_d1 > 0x800) iq_corr_a1_d1 = -((0xfff - iq_corr_a1_d1) + 1); if ((i2_p_q2_a0_d0 == 0) || (i2_p_q2_a0_d1 == 0) || (i2_p_q2_a1_d0 == 0) || (i2_p_q2_a1_d1 == 0)) { ath_dbg(common, CALIBRATE, "Divide by 0:\n" "a0_d0=%d\n" "a0_d1=%d\n" "a2_d0=%d\n" "a1_d1=%d\n", i2_p_q2_a0_d0, i2_p_q2_a0_d1, i2_p_q2_a1_d0, i2_p_q2_a1_d1); return false; } if ((i2_p_q2_a0_d0 < 1024) || (i2_p_q2_a0_d0 > 2047) || (i2_p_q2_a1_d0 < 0) || (i2_p_q2_a1_d1 < 0) || (i2_p_q2_a0_d0 <= i2_m_q2_a0_d0) || (i2_p_q2_a0_d0 <= iq_corr_a0_d0) || (i2_p_q2_a0_d1 <= i2_m_q2_a0_d1) || (i2_p_q2_a0_d1 <= iq_corr_a0_d1) || (i2_p_q2_a1_d0 <= i2_m_q2_a1_d0) || (i2_p_q2_a1_d0 <= iq_corr_a1_d0) || (i2_p_q2_a1_d1 <= i2_m_q2_a1_d1) || (i2_p_q2_a1_d1 <= iq_corr_a1_d1)) { return false; } mag_a0_d0 = (i2_m_q2_a0_d0 * res_scale) / i2_p_q2_a0_d0; phs_a0_d0 = (iq_corr_a0_d0 * res_scale) / i2_p_q2_a0_d0; mag_a0_d1 = (i2_m_q2_a0_d1 * res_scale) / i2_p_q2_a0_d1; phs_a0_d1 = (iq_corr_a0_d1 * res_scale) / i2_p_q2_a0_d1; mag_a1_d0 = (i2_m_q2_a1_d0 * res_scale) / i2_p_q2_a1_d0; phs_a1_d0 = (iq_corr_a1_d0 * res_scale) / i2_p_q2_a1_d0; mag_a1_d1 = (i2_m_q2_a1_d1 * res_scale) / i2_p_q2_a1_d1; phs_a1_d1 = (iq_corr_a1_d1 * res_scale) / i2_p_q2_a1_d1; /* w/o analog phase shift */ sin_2phi_1 = (((mag_a0_d0 - mag_a0_d1) * delpt_shift) / DELPT); /* w/o analog phase shift */ cos_2phi_1 = (((phs_a0_d1 - phs_a0_d0) * delpt_shift) / DELPT); /* w/ analog phase shift */ sin_2phi_2 = (((mag_a1_d0 - mag_a1_d1) * delpt_shift) / DELPT); /* w/ analog phase shift */ cos_2phi_2 = (((phs_a1_d1 - phs_a1_d0) * delpt_shift) / DELPT); /* * force sin^2 + cos^2 = 1; * find magnitude by approximation */ mag1 = ar9003_hw_find_mag_approx(ah, cos_2phi_1, sin_2phi_1); mag2 = ar9003_hw_find_mag_approx(ah, cos_2phi_2, sin_2phi_2); if ((mag1 == 0) || (mag2 == 0)) { ath_dbg(common, CALIBRATE, "Divide by 0: mag1=%d, mag2=%d\n", mag1, mag2); return false; } /* normalization sin and cos by mag */ sin_2phi_1 = (sin_2phi_1 * res_scale / mag1); cos_2phi_1 = (cos_2phi_1 * res_scale / mag1); sin_2phi_2 = (sin_2phi_2 * res_scale / mag2); cos_2phi_2 = (cos_2phi_2 * res_scale / mag2); /* calculate IQ mismatch */ if (!ar9003_hw_solve_iq_cal(ah, sin_2phi_1, cos_2phi_1, sin_2phi_2, cos_2phi_2, mag_a0_d0, phs_a0_d0, mag_a1_d0, phs_a1_d0, solved_eq)) { ath_dbg(common, CALIBRATE, "Call to ar9003_hw_solve_iq_cal() failed\n"); return false; } mag_tx = solved_eq[0]; phs_tx = solved_eq[1]; mag_rx = solved_eq[2]; phs_rx = solved_eq[3]; ath_dbg(common, CALIBRATE, "chain %d: mag mismatch=%d phase mismatch=%d\n", chain_idx, mag_tx/res_scale, phs_tx/res_scale); if (res_scale == mag_tx) { ath_dbg(common, CALIBRATE, "Divide by 0: mag_tx=%d, res_scale=%d\n", mag_tx, res_scale); return false; } /* calculate and quantize Tx IQ correction factor */ mag_corr_tx = (mag_tx * res_scale) / (res_scale - mag_tx); phs_corr_tx = -phs_tx; q_q_coff = (mag_corr_tx * 128 / res_scale); q_i_coff = (phs_corr_tx * 256 / res_scale); ath_dbg(common, CALIBRATE, "tx chain %d: mag corr=%d phase corr=%d\n", chain_idx, q_q_coff, q_i_coff); if (q_i_coff < -63) q_i_coff = -63; if (q_i_coff > 63) q_i_coff = 63; if (q_q_coff < -63) q_q_coff = -63; if (q_q_coff > 63) q_q_coff = 63; iqc_coeff[0] = (q_q_coff * 128) + (0x7f & q_i_coff); ath_dbg(common, CALIBRATE, "tx chain %d: iq corr coeff=%x\n", chain_idx, iqc_coeff[0]); if (-mag_rx == res_scale) { ath_dbg(common, CALIBRATE, "Divide by 0: mag_rx=%d, res_scale=%d\n", mag_rx, res_scale); return false; } /* calculate and quantize Rx IQ correction factors */ mag_corr_rx = (-mag_rx * res_scale) / (res_scale + mag_rx); phs_corr_rx = -phs_rx; q_q_coff = (mag_corr_rx * 128 / res_scale); q_i_coff = (phs_corr_rx * 256 / res_scale); ath_dbg(common, CALIBRATE, "rx chain %d: mag corr=%d phase corr=%d\n", chain_idx, q_q_coff, q_i_coff); if (q_i_coff < -63) q_i_coff = -63; if (q_i_coff > 63) q_i_coff = 63; if (q_q_coff < -63) q_q_coff = -63; if (q_q_coff > 63) q_q_coff = 63; iqc_coeff[1] = (q_q_coff * 128) + (0x7f & q_i_coff); ath_dbg(common, CALIBRATE, "rx chain %d: iq corr coeff=%x\n", chain_idx, iqc_coeff[1]); return true; } static void ar9003_hw_detect_outlier(int mp_coeff[][MAXIQCAL], int nmeasurement, int max_delta) { int mp_max = -64, max_idx = 0; int mp_min = 63, min_idx = 0; int mp_avg = 0, i, outlier_idx = 0, mp_count = 0; /* find min/max mismatch across all calibrated gains */ for (i = 0; i < nmeasurement; i++) { if (mp_coeff[i][0] > mp_max) { mp_max = mp_coeff[i][0]; max_idx = i; } else if (mp_coeff[i][0] < mp_min) { mp_min = mp_coeff[i][0]; min_idx = i; } } /* find average (exclude max abs value) */ for (i = 0; i < nmeasurement; i++) { if ((abs(mp_coeff[i][0]) < abs(mp_max)) || (abs(mp_coeff[i][0]) < abs(mp_min))) { mp_avg += mp_coeff[i][0]; mp_count++; } } /* * finding mean magnitude/phase if possible, otherwise * just use the last value as the mean */ if (mp_count) mp_avg /= mp_count; else mp_avg = mp_coeff[nmeasurement - 1][0]; /* detect outlier */ if (abs(mp_max - mp_min) > max_delta) { if (abs(mp_max - mp_avg) > abs(mp_min - mp_avg)) outlier_idx = max_idx; else outlier_idx = min_idx; mp_coeff[outlier_idx][0] = mp_avg; } } static void ar9003_hw_tx_iq_cal_outlier_detection(struct ath_hw *ah, struct coeff *coeff, bool is_reusable) { int i, im, nmeasurement; int magnitude, phase; u32 tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS]; struct ath9k_hw_cal_data *caldata = ah->caldata; memset(tx_corr_coeff, 0, sizeof(tx_corr_coeff)); for (i = 0; i < MAX_MEASUREMENT / 2; i++) { tx_corr_coeff[i * 2][0] = tx_corr_coeff[(i * 2) + 1][0] = AR_PHY_TX_IQCAL_CORR_COEFF_B0(i); if (!AR_SREV_9485(ah)) { tx_corr_coeff[i * 2][1] = tx_corr_coeff[(i * 2) + 1][1] = AR_PHY_TX_IQCAL_CORR_COEFF_B1(i); tx_corr_coeff[i * 2][2] = tx_corr_coeff[(i * 2) + 1][2] = AR_PHY_TX_IQCAL_CORR_COEFF_B2(i); } } /* Load the average of 2 passes */ for (i = 0; i < AR9300_MAX_CHAINS; i++) { if (!(ah->txchainmask & (1 << i))) continue; nmeasurement = REG_READ_FIELD(ah, AR_PHY_TX_IQCAL_STATUS_B0, AR_PHY_CALIBRATED_GAINS_0); if (nmeasurement > MAX_MEASUREMENT) nmeasurement = MAX_MEASUREMENT; /* * Skip normal outlier detection for AR9550. */ if (!AR_SREV_9550(ah)) { /* detect outlier only if nmeasurement > 1 */ if (nmeasurement > 1) { /* Detect magnitude outlier */ ar9003_hw_detect_outlier(coeff->mag_coeff[i], nmeasurement, MAX_MAG_DELTA); /* Detect phase outlier */ ar9003_hw_detect_outlier(coeff->phs_coeff[i], nmeasurement, MAX_PHS_DELTA); } } for (im = 0; im < nmeasurement; im++) { magnitude = coeff->mag_coeff[i][im][0]; phase = coeff->phs_coeff[i][im][0]; coeff->iqc_coeff[0] = (phase & 0x7f) | ((magnitude & 0x7f) << 7); if ((im % 2) == 0) REG_RMW_FIELD(ah, tx_corr_coeff[im][i], AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE, coeff->iqc_coeff[0]); else REG_RMW_FIELD(ah, tx_corr_coeff[im][i], AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE, coeff->iqc_coeff[0]); if (caldata) caldata->tx_corr_coeff[im][i] = coeff->iqc_coeff[0]; } if (caldata) caldata->num_measures[i] = nmeasurement; } REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3, AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1); REG_RMW_FIELD(ah, AR_PHY_RX_IQCAL_CORR_B0, AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN, 0x1); if (caldata) { if (is_reusable) set_bit(TXIQCAL_DONE, &caldata->cal_flags); else clear_bit(TXIQCAL_DONE, &caldata->cal_flags); } return; } static bool ar9003_hw_tx_iq_cal_run(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); u8 tx_gain_forced; tx_gain_forced = REG_READ_FIELD(ah, AR_PHY_TX_FORCED_GAIN, AR_PHY_TXGAIN_FORCE); if (tx_gain_forced) REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, AR_PHY_TXGAIN_FORCE, 0); REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_START, AR_PHY_TX_IQCAL_START_DO_CAL, 1); if (!ath9k_hw_wait(ah, AR_PHY_TX_IQCAL_START, AR_PHY_TX_IQCAL_START_DO_CAL, 0, AH_WAIT_TIMEOUT)) { ath_dbg(common, CALIBRATE, "Tx IQ Cal is not completed\n"); return false; } return true; } static void __ar955x_tx_iq_cal_sort(struct ath_hw *ah, struct coeff *coeff, int i, int nmeasurement) { struct ath_common *common = ath9k_hw_common(ah); int im, ix, iy, temp; for (im = 0; im < nmeasurement; im++) { for (ix = 0; ix < MAXIQCAL - 1; ix++) { for (iy = ix + 1; iy <= MAXIQCAL - 1; iy++) { if (coeff->mag_coeff[i][im][iy] < coeff->mag_coeff[i][im][ix]) { temp = coeff->mag_coeff[i][im][ix]; coeff->mag_coeff[i][im][ix] = coeff->mag_coeff[i][im][iy]; coeff->mag_coeff[i][im][iy] = temp; } if (coeff->phs_coeff[i][im][iy] < coeff->phs_coeff[i][im][ix]) { temp = coeff->phs_coeff[i][im][ix]; coeff->phs_coeff[i][im][ix] = coeff->phs_coeff[i][im][iy]; coeff->phs_coeff[i][im][iy] = temp; } } } coeff->mag_coeff[i][im][0] = coeff->mag_coeff[i][im][MAXIQCAL / 2]; coeff->phs_coeff[i][im][0] = coeff->phs_coeff[i][im][MAXIQCAL / 2]; ath_dbg(common, CALIBRATE, "IQCAL: Median [ch%d][gain%d]: mag = %d phase = %d\n", i, im, coeff->mag_coeff[i][im][0], coeff->phs_coeff[i][im][0]); } } static bool ar955x_tx_iq_cal_median(struct ath_hw *ah, struct coeff *coeff, int iqcal_idx, int nmeasurement) { int i; if ((iqcal_idx + 1) != MAXIQCAL) return false; for (i = 0; i < AR9300_MAX_CHAINS; i++) { __ar955x_tx_iq_cal_sort(ah, coeff, i, nmeasurement); } return true; } static void ar9003_hw_tx_iq_cal_post_proc(struct ath_hw *ah, int iqcal_idx, bool is_reusable) { struct ath_common *common = ath9k_hw_common(ah); const u32 txiqcal_status[AR9300_MAX_CHAINS] = { AR_PHY_TX_IQCAL_STATUS_B0, AR_PHY_TX_IQCAL_STATUS_B1, AR_PHY_TX_IQCAL_STATUS_B2, }; const u_int32_t chan_info_tab[] = { AR_PHY_CHAN_INFO_TAB_0, AR_PHY_CHAN_INFO_TAB_1, AR_PHY_CHAN_INFO_TAB_2, }; static struct coeff coeff; s32 iq_res[6]; int i, im, j; int nmeasurement = 0; bool outlier_detect = true; for (i = 0; i < AR9300_MAX_CHAINS; i++) { if (!(ah->txchainmask & (1 << i))) continue; nmeasurement = REG_READ_FIELD(ah, AR_PHY_TX_IQCAL_STATUS_B0, AR_PHY_CALIBRATED_GAINS_0); if (nmeasurement > MAX_MEASUREMENT) nmeasurement = MAX_MEASUREMENT; for (im = 0; im < nmeasurement; im++) { ath_dbg(common, CALIBRATE, "Doing Tx IQ Cal for chain %d\n", i); if (REG_READ(ah, txiqcal_status[i]) & AR_PHY_TX_IQCAL_STATUS_FAILED) { ath_dbg(common, CALIBRATE, "Tx IQ Cal failed for chain %d\n", i); goto tx_iqcal_fail; } for (j = 0; j < 3; j++) { u32 idx = 2 * j, offset = 4 * (3 * im + j); REG_RMW_FIELD(ah, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ, 0); /* 32 bits */ iq_res[idx] = REG_READ(ah, chan_info_tab[i] + offset); REG_RMW_FIELD(ah, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ, 1); /* 16 bits */ iq_res[idx + 1] = 0xffff & REG_READ(ah, chan_info_tab[i] + offset); ath_dbg(common, CALIBRATE, "IQ_RES[%d]=0x%x IQ_RES[%d]=0x%x\n", idx, iq_res[idx], idx + 1, iq_res[idx + 1]); } if (!ar9003_hw_calc_iq_corr(ah, i, iq_res, coeff.iqc_coeff)) { ath_dbg(common, CALIBRATE, "Failed in calculation of IQ correction\n"); goto tx_iqcal_fail; } coeff.phs_coeff[i][im][iqcal_idx] = coeff.iqc_coeff[0] & 0x7f; coeff.mag_coeff[i][im][iqcal_idx] = (coeff.iqc_coeff[0] >> 7) & 0x7f; if (coeff.mag_coeff[i][im][iqcal_idx] > 63) coeff.mag_coeff[i][im][iqcal_idx] -= 128; if (coeff.phs_coeff[i][im][iqcal_idx] > 63) coeff.phs_coeff[i][im][iqcal_idx] -= 128; } } if (AR_SREV_9550(ah)) outlier_detect = ar955x_tx_iq_cal_median(ah, &coeff, iqcal_idx, nmeasurement); if (outlier_detect) ar9003_hw_tx_iq_cal_outlier_detection(ah, &coeff, is_reusable); return; tx_iqcal_fail: ath_dbg(common, CALIBRATE, "Tx IQ Cal failed\n"); return; } static void ar9003_hw_tx_iq_cal_reload(struct ath_hw *ah) { struct ath9k_hw_cal_data *caldata = ah->caldata; u32 tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS]; int i, im; memset(tx_corr_coeff, 0, sizeof(tx_corr_coeff)); for (i = 0; i < MAX_MEASUREMENT / 2; i++) { tx_corr_coeff[i * 2][0] = tx_corr_coeff[(i * 2) + 1][0] = AR_PHY_TX_IQCAL_CORR_COEFF_B0(i); if (!AR_SREV_9485(ah)) { tx_corr_coeff[i * 2][1] = tx_corr_coeff[(i * 2) + 1][1] = AR_PHY_TX_IQCAL_CORR_COEFF_B1(i); tx_corr_coeff[i * 2][2] = tx_corr_coeff[(i * 2) + 1][2] = AR_PHY_TX_IQCAL_CORR_COEFF_B2(i); } } for (i = 0; i < AR9300_MAX_CHAINS; i++) { if (!(ah->txchainmask & (1 << i))) continue; for (im = 0; im < caldata->num_measures[i]; im++) { if ((im % 2) == 0) REG_RMW_FIELD(ah, tx_corr_coeff[im][i], AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE, caldata->tx_corr_coeff[im][i]); else REG_RMW_FIELD(ah, tx_corr_coeff[im][i], AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE, caldata->tx_corr_coeff[im][i]); } } REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3, AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1); REG_RMW_FIELD(ah, AR_PHY_RX_IQCAL_CORR_B0, AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN, 0x1); } static void ar9003_hw_manual_peak_cal(struct ath_hw *ah, u8 chain, bool is_2g) { int offset[8] = {0}, total = 0, test; int agc_out, i, peak_detect_threshold = 0; if (AR_SREV_9550(ah) || AR_SREV_9531(ah)) peak_detect_threshold = 8; else if (AR_SREV_9561(ah)) peak_detect_threshold = 11; /* * Turn off LNA/SW. */ REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain), AR_PHY_65NM_RXRF_GAINSTAGES_RX_OVERRIDE, 0x1); REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain), AR_PHY_65NM_RXRF_GAINSTAGES_LNAON_CALDC, 0x0); if (AR_SREV_9003_PCOEM(ah) || AR_SREV_9330_11(ah)) { if (is_2g) REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain), AR_PHY_65NM_RXRF_GAINSTAGES_LNA2G_GAIN_OVR, 0x0); else REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain), AR_PHY_65NM_RXRF_GAINSTAGES_LNA5G_GAIN_OVR, 0x0); } /* * Turn off RXON. */ REG_RMW_FIELD(ah, AR_PHY_65NM_RXTX2(chain), AR_PHY_65NM_RXTX2_RXON_OVR, 0x1); REG_RMW_FIELD(ah, AR_PHY_65NM_RXTX2(chain), AR_PHY_65NM_RXTX2_RXON, 0x0); /* * Turn on AGC for cal. */ REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain), AR_PHY_65NM_RXRF_AGC_AGC_OVERRIDE, 0x1); REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain), AR_PHY_65NM_RXRF_AGC_AGC_ON_OVR, 0x1); REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain), AR_PHY_65NM_RXRF_AGC_AGC_CAL_OVR, 0x1); if (AR_SREV_9330_11(ah)) REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain), AR_PHY_65NM_RXRF_AGC_AGC2G_CALDAC_OVR, 0x0); if (is_2g) REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain), AR_PHY_65NM_RXRF_AGC_AGC2G_DBDAC_OVR, peak_detect_threshold); else REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain), AR_PHY_65NM_RXRF_AGC_AGC5G_DBDAC_OVR, peak_detect_threshold); for (i = 6; i > 0; i--) { offset[i] = BIT(i - 1); test = total + offset[i]; if (is_2g) REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain), AR_PHY_65NM_RXRF_AGC_AGC2G_CALDAC_OVR, test); else REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain), AR_PHY_65NM_RXRF_AGC_AGC5G_CALDAC_OVR, test); udelay(100); agc_out = REG_READ_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain), AR_PHY_65NM_RXRF_AGC_AGC_OUT); offset[i] = (agc_out) ? 0 : 1; total += (offset[i] << (i - 1)); } if (is_2g) REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain), AR_PHY_65NM_RXRF_AGC_AGC2G_CALDAC_OVR, total); else REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain), AR_PHY_65NM_RXRF_AGC_AGC5G_CALDAC_OVR, total); /* * Turn on LNA. */ REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_GAINSTAGES(chain), AR_PHY_65NM_RXRF_GAINSTAGES_RX_OVERRIDE, 0); /* * Turn off RXON. */ REG_RMW_FIELD(ah, AR_PHY_65NM_RXTX2(chain), AR_PHY_65NM_RXTX2_RXON_OVR, 0); /* * Turn off peak detect calibration. */ REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain), AR_PHY_65NM_RXRF_AGC_AGC_CAL_OVR, 0); } static void ar9003_hw_do_pcoem_manual_peak_cal(struct ath_hw *ah, struct ath9k_channel *chan, bool run_rtt_cal) { struct ath9k_hw_cal_data *caldata = ah->caldata; int i; if ((ah->caps.hw_caps & ATH9K_HW_CAP_RTT) && !run_rtt_cal) return; for (i = 0; i < AR9300_MAX_CHAINS; i++) { if (!(ah->rxchainmask & (1 << i))) continue; ar9003_hw_manual_peak_cal(ah, i, IS_CHAN_2GHZ(chan)); } if (caldata) set_bit(SW_PKDET_DONE, &caldata->cal_flags); if ((ah->caps.hw_caps & ATH9K_HW_CAP_RTT) && caldata) { if (IS_CHAN_2GHZ(chan)){ caldata->caldac[0] = REG_READ_FIELD(ah, AR_PHY_65NM_RXRF_AGC(0), AR_PHY_65NM_RXRF_AGC_AGC2G_CALDAC_OVR); caldata->caldac[1] = REG_READ_FIELD(ah, AR_PHY_65NM_RXRF_AGC(1), AR_PHY_65NM_RXRF_AGC_AGC2G_CALDAC_OVR); } else { caldata->caldac[0] = REG_READ_FIELD(ah, AR_PHY_65NM_RXRF_AGC(0), AR_PHY_65NM_RXRF_AGC_AGC5G_CALDAC_OVR); caldata->caldac[1] = REG_READ_FIELD(ah, AR_PHY_65NM_RXRF_AGC(1), AR_PHY_65NM_RXRF_AGC_AGC5G_CALDAC_OVR); } } } static void ar9003_hw_cl_cal_post_proc(struct ath_hw *ah, bool is_reusable) { u32 cl_idx[AR9300_MAX_CHAINS] = { AR_PHY_CL_TAB_0, AR_PHY_CL_TAB_1, AR_PHY_CL_TAB_2 }; struct ath9k_hw_cal_data *caldata = ah->caldata; bool txclcal_done = false; int i, j; if (!caldata || !(ah->enabled_cals & TX_CL_CAL)) return; txclcal_done = !!(REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_CLC_SUCCESS); if (test_bit(TXCLCAL_DONE, &caldata->cal_flags)) { for (i = 0; i < AR9300_MAX_CHAINS; i++) { if (!(ah->txchainmask & (1 << i))) continue; for (j = 0; j < MAX_CL_TAB_ENTRY; j++) REG_WRITE(ah, CL_TAB_ENTRY(cl_idx[i]), caldata->tx_clcal[i][j]); } } else if (is_reusable && txclcal_done) { for (i = 0; i < AR9300_MAX_CHAINS; i++) { if (!(ah->txchainmask & (1 << i))) continue; for (j = 0; j < MAX_CL_TAB_ENTRY; j++) caldata->tx_clcal[i][j] = REG_READ(ah, CL_TAB_ENTRY(cl_idx[i])); } set_bit(TXCLCAL_DONE, &caldata->cal_flags); } } static void ar9003_hw_init_cal_common(struct ath_hw *ah) { struct ath9k_hw_cal_data *caldata = ah->caldata; /* Initialize list pointers */ ah->cal_list = ah->cal_list_last = ah->cal_list_curr = NULL; INIT_CAL(&ah->iq_caldata); INSERT_CAL(ah, &ah->iq_caldata); /* Initialize current pointer to first element in list */ ah->cal_list_curr = ah->cal_list; if (ah->cal_list_curr) ath9k_hw_reset_calibration(ah, ah->cal_list_curr); if (caldata) caldata->CalValid = 0; } static bool ar9003_hw_init_cal_pcoem(struct ath_hw *ah, struct ath9k_channel *chan) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_cal_data *caldata = ah->caldata; bool txiqcal_done = false; bool is_reusable = true, status = true; bool run_rtt_cal = false, run_agc_cal; bool rtt = !!(ah->caps.hw_caps & ATH9K_HW_CAP_RTT); u32 rx_delay = 0; u32 agc_ctrl = 0, agc_supp_cals = AR_PHY_AGC_CONTROL_OFFSET_CAL | AR_PHY_AGC_CONTROL_FLTR_CAL | AR_PHY_AGC_CONTROL_PKDET_CAL; /* Use chip chainmask only for calibration */ ar9003_hw_set_chain_masks(ah, ah->caps.rx_chainmask, ah->caps.tx_chainmask); if (rtt) { if (!ar9003_hw_rtt_restore(ah, chan)) run_rtt_cal = true; if (run_rtt_cal) ath_dbg(common, CALIBRATE, "RTT calibration to be done\n"); } run_agc_cal = run_rtt_cal; if (run_rtt_cal) { ar9003_hw_rtt_enable(ah); ar9003_hw_rtt_set_mask(ah, 0x00); ar9003_hw_rtt_clear_hist(ah); } if (rtt) { if (!run_rtt_cal) { agc_ctrl = REG_READ(ah, AR_PHY_AGC_CONTROL); agc_supp_cals &= agc_ctrl; agc_ctrl &= ~(AR_PHY_AGC_CONTROL_OFFSET_CAL | AR_PHY_AGC_CONTROL_FLTR_CAL | AR_PHY_AGC_CONTROL_PKDET_CAL); REG_WRITE(ah, AR_PHY_AGC_CONTROL, agc_ctrl); } else { if (ah->ah_flags & AH_FASTCC) run_agc_cal = true; } } if (ah->enabled_cals & TX_CL_CAL) { if (caldata && test_bit(TXCLCAL_DONE, &caldata->cal_flags)) REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); else { REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); run_agc_cal = true; } } if ((IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) || !(ah->enabled_cals & TX_IQ_CAL)) goto skip_tx_iqcal; /* Do Tx IQ Calibration */ REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_1, AR_PHY_TX_IQCAL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT); /* * For AR9485 or later chips, TxIQ cal runs as part of * AGC calibration */ if (ah->enabled_cals & TX_IQ_ON_AGC_CAL) { if (caldata && !test_bit(TXIQCAL_DONE, &caldata->cal_flags)) REG_SET_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0, AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL); else REG_CLR_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0, AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL); txiqcal_done = run_agc_cal = true; } skip_tx_iqcal: if (ath9k_hw_mci_is_enabled(ah) && IS_CHAN_2GHZ(chan) && run_agc_cal) ar9003_mci_init_cal_req(ah, &is_reusable); if (REG_READ(ah, AR_PHY_CL_CAL_CTL) & AR_PHY_CL_CAL_ENABLE) { rx_delay = REG_READ(ah, AR_PHY_RX_DELAY); /* Disable BB_active */ REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); udelay(5); REG_WRITE(ah, AR_PHY_RX_DELAY, AR_PHY_RX_DELAY_DELAY); REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); } if (run_agc_cal || !(ah->ah_flags & AH_FASTCC)) { /* Calibrate the AGC */ REG_WRITE(ah, AR_PHY_AGC_CONTROL, REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL); /* Poll for offset calibration complete */ status = ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0, AH_WAIT_TIMEOUT); ar9003_hw_do_pcoem_manual_peak_cal(ah, chan, run_rtt_cal); } if (REG_READ(ah, AR_PHY_CL_CAL_CTL) & AR_PHY_CL_CAL_ENABLE) { REG_WRITE(ah, AR_PHY_RX_DELAY, rx_delay); udelay(5); } if (ath9k_hw_mci_is_enabled(ah) && IS_CHAN_2GHZ(chan) && run_agc_cal) ar9003_mci_init_cal_done(ah); if (rtt && !run_rtt_cal) { agc_ctrl |= agc_supp_cals; REG_WRITE(ah, AR_PHY_AGC_CONTROL, agc_ctrl); } if (!status) { if (run_rtt_cal) ar9003_hw_rtt_disable(ah); ath_dbg(common, CALIBRATE, "offset calibration failed to complete in %d ms; noisy environment?\n", AH_WAIT_TIMEOUT / 1000); return false; } if (txiqcal_done) ar9003_hw_tx_iq_cal_post_proc(ah, 0, is_reusable); else if (caldata && test_bit(TXIQCAL_DONE, &caldata->cal_flags)) ar9003_hw_tx_iq_cal_reload(ah); ar9003_hw_cl_cal_post_proc(ah, is_reusable); if (run_rtt_cal && caldata) { if (is_reusable) { if (!ath9k_hw_rfbus_req(ah)) { ath_err(ath9k_hw_common(ah), "Could not stop baseband\n"); } else { ar9003_hw_rtt_fill_hist(ah); if (test_bit(SW_PKDET_DONE, &caldata->cal_flags)) ar9003_hw_rtt_load_hist(ah); } ath9k_hw_rfbus_done(ah); } ar9003_hw_rtt_disable(ah); } /* Revert chainmask to runtime parameters */ ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask); ar9003_hw_init_cal_common(ah); return true; } static bool do_ar9003_agc_cal(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); bool status; REG_WRITE(ah, AR_PHY_AGC_CONTROL, REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL); status = ath9k_hw_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0, AH_WAIT_TIMEOUT); if (!status) { ath_dbg(common, CALIBRATE, "offset calibration failed to complete in %d ms," "noisy environment?\n", AH_WAIT_TIMEOUT / 1000); return false; } return true; } static bool ar9003_hw_init_cal_soc(struct ath_hw *ah, struct ath9k_channel *chan) { bool txiqcal_done = false; bool status = true; bool run_agc_cal = false, sep_iq_cal = false; int i = 0; /* Use chip chainmask only for calibration */ ar9003_hw_set_chain_masks(ah, ah->caps.rx_chainmask, ah->caps.tx_chainmask); if (ah->enabled_cals & TX_CL_CAL) { REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); run_agc_cal = true; } if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) goto skip_tx_iqcal; /* Do Tx IQ Calibration */ REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_1, AR_PHY_TX_IQCAL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT); /* * For AR9485 or later chips, TxIQ cal runs as part of * AGC calibration. Specifically, AR9550 in SoC chips. */ if (ah->enabled_cals & TX_IQ_ON_AGC_CAL) { if (REG_READ_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_0, AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL)) { txiqcal_done = true; } else { txiqcal_done = false; } run_agc_cal = true; } else { sep_iq_cal = true; run_agc_cal = true; } /* * In the SoC family, this will run for AR9300, AR9331 and AR9340. */ if (sep_iq_cal) { txiqcal_done = ar9003_hw_tx_iq_cal_run(ah); REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); udelay(5); REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); } if (AR_SREV_9550(ah) && IS_CHAN_2GHZ(chan)) { if (!ar9003_hw_dynamic_osdac_selection(ah, txiqcal_done)) return false; } skip_tx_iqcal: if (run_agc_cal || !(ah->ah_flags & AH_FASTCC)) { for (i = 0; i < AR9300_MAX_CHAINS; i++) { if (!(ah->rxchainmask & (1 << i))) continue; ar9003_hw_manual_peak_cal(ah, i, IS_CHAN_2GHZ(chan)); } /* * For non-AR9550 chips, we just trigger AGC calibration * in the HW, poll for completion and then process * the results. * * For AR955x, we run it multiple times and use * median IQ correction. */ if (!AR_SREV_9550(ah)) { status = do_ar9003_agc_cal(ah); if (!status) return false; if (txiqcal_done) ar9003_hw_tx_iq_cal_post_proc(ah, 0, false); } else { if (!txiqcal_done) { status = do_ar9003_agc_cal(ah); if (!status) return false; } else { for (i = 0; i < MAXIQCAL; i++) { status = do_ar9003_agc_cal(ah); if (!status) return false; ar9003_hw_tx_iq_cal_post_proc(ah, i, false); } } } } /* Revert chainmask to runtime parameters */ ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask); ar9003_hw_init_cal_common(ah); return true; } void ar9003_hw_attach_calib_ops(struct ath_hw *ah) { struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah); struct ath_hw_ops *ops = ath9k_hw_ops(ah); if (AR_SREV_9003_PCOEM(ah)) priv_ops->init_cal = ar9003_hw_init_cal_pcoem; else priv_ops->init_cal = ar9003_hw_init_cal_soc; priv_ops->init_cal_settings = ar9003_hw_init_cal_settings; priv_ops->setup_calibration = ar9003_hw_setup_calibration; ops->calibrate = ar9003_hw_calibrate; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1