Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sujith Manoharan | 615 | 51.51% | 4 | 66.67% |
Rajkumar Manoharan | 576 | 48.24% | 1 | 16.67% |
Luis R. Rodriguez | 3 | 0.25% | 1 | 16.67% |
Total | 1194 | 6 |
/* * Copyright (c) 2010-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "hw.h" #include "hw-ops.h" #include "ar9003_phy.h" #include "ar9003_rtt.h" #define RTT_RESTORE_TIMEOUT 1000 #define RTT_ACCESS_TIMEOUT 100 #define RTT_BAD_VALUE 0x0bad0bad /* * RTT (Radio Retention Table) hardware implementation information * * There is an internal table (i.e. the rtt) for each chain (or bank). * Each table contains 6 entries and each entry is corresponding to * a specific calibration parameter as depicted below. * 0~2 - DC offset DAC calibration: loop, low, high (offsetI/Q_...) * 3 - Filter cal (filterfc) * 4 - RX gain settings * 5 - Peak detector offset calibration (agc_caldac) */ void ar9003_hw_rtt_enable(struct ath_hw *ah) { REG_WRITE(ah, AR_PHY_RTT_CTRL, 1); } void ar9003_hw_rtt_disable(struct ath_hw *ah) { REG_WRITE(ah, AR_PHY_RTT_CTRL, 0); } void ar9003_hw_rtt_set_mask(struct ath_hw *ah, u32 rtt_mask) { REG_RMW_FIELD(ah, AR_PHY_RTT_CTRL, AR_PHY_RTT_CTRL_RESTORE_MASK, rtt_mask); } bool ar9003_hw_rtt_force_restore(struct ath_hw *ah) { if (!ath9k_hw_wait(ah, AR_PHY_RTT_CTRL, AR_PHY_RTT_CTRL_FORCE_RADIO_RESTORE, 0, RTT_RESTORE_TIMEOUT)) return false; REG_RMW_FIELD(ah, AR_PHY_RTT_CTRL, AR_PHY_RTT_CTRL_FORCE_RADIO_RESTORE, 1); if (!ath9k_hw_wait(ah, AR_PHY_RTT_CTRL, AR_PHY_RTT_CTRL_FORCE_RADIO_RESTORE, 0, RTT_RESTORE_TIMEOUT)) return false; return true; } static void ar9003_hw_rtt_load_hist_entry(struct ath_hw *ah, u8 chain, u32 index, u32 data28) { u32 val; val = SM(data28, AR_PHY_RTT_SW_RTT_TABLE_DATA); REG_WRITE(ah, AR_PHY_RTT_TABLE_SW_INTF_1_B(chain), val); val = SM(0, AR_PHY_RTT_SW_RTT_TABLE_ACCESS) | SM(1, AR_PHY_RTT_SW_RTT_TABLE_WRITE) | SM(index, AR_PHY_RTT_SW_RTT_TABLE_ADDR); REG_WRITE(ah, AR_PHY_RTT_TABLE_SW_INTF_B(chain), val); udelay(1); val |= SM(1, AR_PHY_RTT_SW_RTT_TABLE_ACCESS); REG_WRITE(ah, AR_PHY_RTT_TABLE_SW_INTF_B(chain), val); udelay(1); if (!ath9k_hw_wait(ah, AR_PHY_RTT_TABLE_SW_INTF_B(chain), AR_PHY_RTT_SW_RTT_TABLE_ACCESS, 0, RTT_ACCESS_TIMEOUT)) return; val &= ~SM(1, AR_PHY_RTT_SW_RTT_TABLE_WRITE); REG_WRITE(ah, AR_PHY_RTT_TABLE_SW_INTF_B(chain), val); udelay(1); ath9k_hw_wait(ah, AR_PHY_RTT_TABLE_SW_INTF_B(chain), AR_PHY_RTT_SW_RTT_TABLE_ACCESS, 0, RTT_ACCESS_TIMEOUT); } void ar9003_hw_rtt_load_hist(struct ath_hw *ah) { int chain, i; for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) { if (!(ah->caps.rx_chainmask & (1 << chain))) continue; for (i = 0; i < MAX_RTT_TABLE_ENTRY; i++) { ar9003_hw_rtt_load_hist_entry(ah, chain, i, ah->caldata->rtt_table[chain][i]); ath_dbg(ath9k_hw_common(ah), CALIBRATE, "Load RTT value at idx %d, chain %d: 0x%x\n", i, chain, ah->caldata->rtt_table[chain][i]); } } } static void ar9003_hw_patch_rtt(struct ath_hw *ah, int index, int chain) { int agc, caldac; if (!test_bit(SW_PKDET_DONE, &ah->caldata->cal_flags)) return; if ((index != 5) || (chain >= 2)) return; agc = REG_READ_FIELD(ah, AR_PHY_65NM_RXRF_AGC(chain), AR_PHY_65NM_RXRF_AGC_AGC_OVERRIDE); if (!agc) return; caldac = ah->caldata->caldac[chain]; ah->caldata->rtt_table[chain][index] &= 0xFFFF05FF; caldac = (caldac & 0x20) | ((caldac & 0x1F) << 7); ah->caldata->rtt_table[chain][index] |= (caldac << 4); } static int ar9003_hw_rtt_fill_hist_entry(struct ath_hw *ah, u8 chain, u32 index) { u32 val; val = SM(0, AR_PHY_RTT_SW_RTT_TABLE_ACCESS) | SM(0, AR_PHY_RTT_SW_RTT_TABLE_WRITE) | SM(index, AR_PHY_RTT_SW_RTT_TABLE_ADDR); REG_WRITE(ah, AR_PHY_RTT_TABLE_SW_INTF_B(chain), val); udelay(1); val |= SM(1, AR_PHY_RTT_SW_RTT_TABLE_ACCESS); REG_WRITE(ah, AR_PHY_RTT_TABLE_SW_INTF_B(chain), val); udelay(1); if (!ath9k_hw_wait(ah, AR_PHY_RTT_TABLE_SW_INTF_B(chain), AR_PHY_RTT_SW_RTT_TABLE_ACCESS, 0, RTT_ACCESS_TIMEOUT)) return RTT_BAD_VALUE; val = MS(REG_READ(ah, AR_PHY_RTT_TABLE_SW_INTF_1_B(chain)), AR_PHY_RTT_SW_RTT_TABLE_DATA); return val; } void ar9003_hw_rtt_fill_hist(struct ath_hw *ah) { int chain, i; for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) { if (!(ah->caps.rx_chainmask & (1 << chain))) continue; for (i = 0; i < MAX_RTT_TABLE_ENTRY; i++) { ah->caldata->rtt_table[chain][i] = ar9003_hw_rtt_fill_hist_entry(ah, chain, i); ar9003_hw_patch_rtt(ah, i, chain); ath_dbg(ath9k_hw_common(ah), CALIBRATE, "RTT value at idx %d, chain %d is: 0x%x\n", i, chain, ah->caldata->rtt_table[chain][i]); } } set_bit(RTT_DONE, &ah->caldata->cal_flags); } void ar9003_hw_rtt_clear_hist(struct ath_hw *ah) { int chain, i; for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) { if (!(ah->caps.rx_chainmask & (1 << chain))) continue; for (i = 0; i < MAX_RTT_TABLE_ENTRY; i++) ar9003_hw_rtt_load_hist_entry(ah, chain, i, 0); } if (ah->caldata) clear_bit(RTT_DONE, &ah->caldata->cal_flags); } bool ar9003_hw_rtt_restore(struct ath_hw *ah, struct ath9k_channel *chan) { bool restore; if (!ah->caldata) return false; if (test_bit(SW_PKDET_DONE, &ah->caldata->cal_flags)) { if (IS_CHAN_2GHZ(chan)){ REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(0), AR_PHY_65NM_RXRF_AGC_AGC2G_CALDAC_OVR, ah->caldata->caldac[0]); REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(1), AR_PHY_65NM_RXRF_AGC_AGC2G_CALDAC_OVR, ah->caldata->caldac[1]); } else { REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(0), AR_PHY_65NM_RXRF_AGC_AGC5G_CALDAC_OVR, ah->caldata->caldac[0]); REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(1), AR_PHY_65NM_RXRF_AGC_AGC5G_CALDAC_OVR, ah->caldata->caldac[1]); } REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(1), AR_PHY_65NM_RXRF_AGC_AGC_OVERRIDE, 0x1); REG_RMW_FIELD(ah, AR_PHY_65NM_RXRF_AGC(0), AR_PHY_65NM_RXRF_AGC_AGC_OVERRIDE, 0x1); } if (!test_bit(RTT_DONE, &ah->caldata->cal_flags)) return false; ar9003_hw_rtt_enable(ah); if (test_bit(SW_PKDET_DONE, &ah->caldata->cal_flags)) ar9003_hw_rtt_set_mask(ah, 0x30); else ar9003_hw_rtt_set_mask(ah, 0x10); if (!ath9k_hw_rfbus_req(ah)) { ath_err(ath9k_hw_common(ah), "Could not stop baseband\n"); restore = false; goto fail; } ar9003_hw_rtt_load_hist(ah); restore = ar9003_hw_rtt_force_restore(ah); fail: ath9k_hw_rfbus_done(ah); ar9003_hw_rtt_disable(ah); return restore; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1