Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vasanthakumar Thiagarajan | 3043 | 59.76% | 4 | 6.15% |
Felix Fietkau | 805 | 15.81% | 22 | 33.85% |
Sujith Manoharan | 583 | 11.45% | 8 | 12.31% |
Russell Hu | 248 | 4.87% | 1 | 1.54% |
Rajkumar Manoharan | 147 | 2.89% | 2 | 3.08% |
Luis R. Rodriguez | 108 | 2.12% | 10 | 15.38% |
Joe Perches | 38 | 0.75% | 3 | 4.62% |
Mohammed Shafi Shajakhan | 29 | 0.57% | 2 | 3.08% |
Oleksij Rempel | 28 | 0.55% | 2 | 3.08% |
Simon Wunderlich | 15 | 0.29% | 1 | 1.54% |
Johannes Berg | 15 | 0.29% | 3 | 4.62% |
Vivek Natarajan | 10 | 0.20% | 1 | 1.54% |
Senthil Balasubramanian | 9 | 0.18% | 2 | 3.08% |
Gabor Juhos | 5 | 0.10% | 1 | 1.54% |
Miaoqing Pan | 5 | 0.10% | 1 | 1.54% |
Paul Gortmaker | 3 | 0.06% | 1 | 1.54% |
Stanislaw Gruszka | 1 | 0.02% | 1 | 1.54% |
Total | 5092 | 65 |
/* * Copyright (c) 2008-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "hw.h" #include "hw-ops.h" #include <linux/export.h> static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah, struct ath9k_tx_queue_info *qi) { ath_dbg(ath9k_hw_common(ah), INTERRUPT, "tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", ah->txok_interrupt_mask, ah->txerr_interrupt_mask, ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask, ah->txurn_interrupt_mask); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_IMR_S0, SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK) | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC)); REG_WRITE(ah, AR_IMR_S1, SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR) | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL)); ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN; ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN); REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); REGWRITE_BUFFER_FLUSH(ah); } u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q) { return REG_READ(ah, AR_QTXDP(q)); } EXPORT_SYMBOL(ath9k_hw_gettxbuf); void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp) { REG_WRITE(ah, AR_QTXDP(q), txdp); } EXPORT_SYMBOL(ath9k_hw_puttxbuf); void ath9k_hw_txstart(struct ath_hw *ah, u32 q) { ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q); REG_WRITE(ah, AR_Q_TXE, 1 << q); } EXPORT_SYMBOL(ath9k_hw_txstart); u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q) { u32 npend; npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT; if (npend == 0) { if (REG_READ(ah, AR_Q_TXE) & (1 << q)) npend = 1; } return npend; } EXPORT_SYMBOL(ath9k_hw_numtxpending); /** * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level * * @ah: atheros hardware struct * @bIncTrigLevel: whether or not the frame trigger level should be updated * * The frame trigger level specifies the minimum number of bytes, * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO * before the PCU will initiate sending the frame on the air. This can * mean we initiate transmit before a full frame is on the PCU TX FIFO. * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs * first) * * Caution must be taken to ensure to set the frame trigger level based * on the DMA request size. For example if the DMA request size is set to * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because * there need to be enough space in the tx FIFO for the requested transfer * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set * the threshold to a value beyond 6, then the transmit will hang. * * Current dual stream devices have a PCU TX FIFO size of 8 KB. * Current single stream devices have a PCU TX FIFO size of 4 KB, however, * there is a hardware issue which forces us to use 2 KB instead so the * frame trigger level must not exceed 2 KB for these chipsets. */ bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel) { u32 txcfg, curLevel, newLevel; if (ah->tx_trig_level >= ah->config.max_txtrig_level) return false; ath9k_hw_disable_interrupts(ah); txcfg = REG_READ(ah, AR_TXCFG); curLevel = MS(txcfg, AR_FTRIG); newLevel = curLevel; if (bIncTrigLevel) { if (curLevel < ah->config.max_txtrig_level) newLevel++; } else if (curLevel > MIN_TX_FIFO_THRESHOLD) newLevel--; if (newLevel != curLevel) REG_WRITE(ah, AR_TXCFG, (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG)); ath9k_hw_enable_interrupts(ah); ah->tx_trig_level = newLevel; return newLevel != curLevel; } EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel); void ath9k_hw_abort_tx_dma(struct ath_hw *ah) { int maxdelay = 1000; int i, q; if (ah->curchan) { if (IS_CHAN_HALF_RATE(ah->curchan)) maxdelay *= 2; else if (IS_CHAN_QUARTER_RATE(ah->curchan)) maxdelay *= 4; } REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M); REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF); REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH); REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF); for (q = 0; q < AR_NUM_QCU; q++) { for (i = 0; i < maxdelay; i++) { if (i) udelay(5); if (!ath9k_hw_numtxpending(ah, q)) break; } } REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF); REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH); REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF); REG_WRITE(ah, AR_Q_TXD, 0); } EXPORT_SYMBOL(ath9k_hw_abort_tx_dma); bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q) { #define ATH9K_TX_STOP_DMA_TIMEOUT 1000 /* usec */ #define ATH9K_TIME_QUANTUM 100 /* usec */ int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM; int wait; REG_WRITE(ah, AR_Q_TXD, 1 << q); for (wait = wait_time; wait != 0; wait--) { if (wait != wait_time) udelay(ATH9K_TIME_QUANTUM); if (ath9k_hw_numtxpending(ah, q) == 0) break; } REG_WRITE(ah, AR_Q_TXD, 0); return wait != 0; #undef ATH9K_TX_STOP_DMA_TIMEOUT #undef ATH9K_TIME_QUANTUM } EXPORT_SYMBOL(ath9k_hw_stop_dma_queue); bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q, const struct ath9k_tx_queue_info *qinfo) { u32 cw; struct ath_common *common = ath9k_hw_common(ah); struct ath9k_tx_queue_info *qi; qi = &ah->txq[q]; if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) { ath_dbg(common, QUEUE, "Set TXQ properties, inactive queue: %u\n", q); return false; } ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q); qi->tqi_ver = qinfo->tqi_ver; qi->tqi_subtype = qinfo->tqi_subtype; qi->tqi_qflags = qinfo->tqi_qflags; qi->tqi_priority = qinfo->tqi_priority; if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT) qi->tqi_aifs = min(qinfo->tqi_aifs, 255U); else qi->tqi_aifs = INIT_AIFS; if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) { cw = min(qinfo->tqi_cwmin, 1024U); qi->tqi_cwmin = 1; while (qi->tqi_cwmin < cw) qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1; } else qi->tqi_cwmin = qinfo->tqi_cwmin; if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) { cw = min(qinfo->tqi_cwmax, 1024U); qi->tqi_cwmax = 1; while (qi->tqi_cwmax < cw) qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1; } else qi->tqi_cwmax = INIT_CWMAX; if (qinfo->tqi_shretry != 0) qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U); else qi->tqi_shretry = INIT_SH_RETRY; if (qinfo->tqi_lgretry != 0) qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U); else qi->tqi_lgretry = INIT_LG_RETRY; qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod; qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit; qi->tqi_burstTime = qinfo->tqi_burstTime; qi->tqi_readyTime = qinfo->tqi_readyTime; switch (qinfo->tqi_subtype) { case ATH9K_WME_UPSD: if (qi->tqi_type == ATH9K_TX_QUEUE_DATA) qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS; break; default: break; } return true; } EXPORT_SYMBOL(ath9k_hw_set_txq_props); bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q, struct ath9k_tx_queue_info *qinfo) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_tx_queue_info *qi; qi = &ah->txq[q]; if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) { ath_dbg(common, QUEUE, "Get TXQ properties, inactive queue: %u\n", q); return false; } qinfo->tqi_qflags = qi->tqi_qflags; qinfo->tqi_ver = qi->tqi_ver; qinfo->tqi_subtype = qi->tqi_subtype; qinfo->tqi_qflags = qi->tqi_qflags; qinfo->tqi_priority = qi->tqi_priority; qinfo->tqi_aifs = qi->tqi_aifs; qinfo->tqi_cwmin = qi->tqi_cwmin; qinfo->tqi_cwmax = qi->tqi_cwmax; qinfo->tqi_shretry = qi->tqi_shretry; qinfo->tqi_lgretry = qi->tqi_lgretry; qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod; qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit; qinfo->tqi_burstTime = qi->tqi_burstTime; qinfo->tqi_readyTime = qi->tqi_readyTime; return true; } EXPORT_SYMBOL(ath9k_hw_get_txq_props); int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type, const struct ath9k_tx_queue_info *qinfo) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_tx_queue_info *qi; int q; switch (type) { case ATH9K_TX_QUEUE_BEACON: q = ATH9K_NUM_TX_QUEUES - 1; break; case ATH9K_TX_QUEUE_CAB: q = ATH9K_NUM_TX_QUEUES - 2; break; case ATH9K_TX_QUEUE_PSPOLL: q = 1; break; case ATH9K_TX_QUEUE_UAPSD: q = ATH9K_NUM_TX_QUEUES - 3; break; case ATH9K_TX_QUEUE_DATA: q = qinfo->tqi_subtype; break; default: ath_err(common, "Invalid TX queue type: %u\n", type); return -1; } ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q); qi = &ah->txq[q]; if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) { ath_err(common, "TX queue: %u already active\n", q); return -1; } memset(qi, 0, sizeof(struct ath9k_tx_queue_info)); qi->tqi_type = type; qi->tqi_physCompBuf = qinfo->tqi_physCompBuf; (void) ath9k_hw_set_txq_props(ah, q, qinfo); return q; } EXPORT_SYMBOL(ath9k_hw_setuptxqueue); static void ath9k_hw_clear_queue_interrupts(struct ath_hw *ah, u32 q) { ah->txok_interrupt_mask &= ~(1 << q); ah->txerr_interrupt_mask &= ~(1 << q); ah->txdesc_interrupt_mask &= ~(1 << q); ah->txeol_interrupt_mask &= ~(1 << q); ah->txurn_interrupt_mask &= ~(1 << q); } bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_tx_queue_info *qi; qi = &ah->txq[q]; if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) { ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q); return false; } ath_dbg(common, QUEUE, "Release TX queue: %u\n", q); qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE; ath9k_hw_clear_queue_interrupts(ah, q); ath9k_hw_set_txq_interrupts(ah, qi); return true; } EXPORT_SYMBOL(ath9k_hw_releasetxqueue); bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_tx_queue_info *qi; u32 cwMin, chanCwMin, value; qi = &ah->txq[q]; if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) { ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q); return true; } ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q); if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) { chanCwMin = INIT_CWMIN; for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1); } else cwMin = qi->tqi_cwmin; ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_DLCL_IFS(q), SM(cwMin, AR_D_LCL_IFS_CWMIN) | SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS)); REG_WRITE(ah, AR_DRETRY_LIMIT(q), SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)); REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ); if (AR_SREV_9340(ah) && !AR_SREV_9340_13_OR_LATER(ah)) REG_WRITE(ah, AR_DMISC(q), AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1); else REG_WRITE(ah, AR_DMISC(q), AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2); if (qi->tqi_cbrPeriod) { REG_WRITE(ah, AR_QCBRCFG(q), SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) | SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH)); REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR | (qi->tqi_cbrOverflowLimit ? AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0)); } if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) { REG_WRITE(ah, AR_QRDYTIMECFG(q), SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) | AR_Q_RDYTIMECFG_EN); } REG_WRITE(ah, AR_DCHNTIME(q), SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) | (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0)); if (qi->tqi_burstTime && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)) REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY); if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE) REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS); REGWRITE_BUFFER_FLUSH(ah); if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE) REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN); switch (qi->tqi_type) { case ATH9K_TX_QUEUE_BEACON: ENABLE_REGWRITE_BUFFER(ah); REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE | AR_Q_MISC_CBR_INCR_DIS1); REG_SET_BIT(ah, AR_DMISC(q), (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL << AR_D_MISC_ARB_LOCKOUT_CNTRL_S) | AR_D_MISC_BEACON_USE | AR_D_MISC_POST_FR_BKOFF_DIS); REGWRITE_BUFFER_FLUSH(ah); /* * cwmin and cwmax should be 0 for beacon queue * but not for IBSS as we would create an imbalance * on beaconing fairness for participating nodes. */ if (AR_SREV_9300_20_OR_LATER(ah) && ah->opmode != NL80211_IFTYPE_ADHOC) { REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN) | SM(0, AR_D_LCL_IFS_CWMAX) | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS)); } break; case ATH9K_TX_QUEUE_CAB: ENABLE_REGWRITE_BUFFER(ah); REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 | AR_Q_MISC_CBR_INCR_DIS0); value = (qi->tqi_readyTime - (ah->config.sw_beacon_response_time - ah->config.dma_beacon_response_time)) * 1024; REG_WRITE(ah, AR_QRDYTIMECFG(q), value | AR_Q_RDYTIMECFG_EN); REG_SET_BIT(ah, AR_DMISC(q), (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL << AR_D_MISC_ARB_LOCKOUT_CNTRL_S)); REGWRITE_BUFFER_FLUSH(ah); break; case ATH9K_TX_QUEUE_PSPOLL: REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1); break; case ATH9K_TX_QUEUE_UAPSD: REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS); break; default: break; } if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) { REG_SET_BIT(ah, AR_DMISC(q), SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, AR_D_MISC_ARB_LOCKOUT_CNTRL) | AR_D_MISC_POST_FR_BKOFF_DIS); } if (AR_SREV_9300_20_OR_LATER(ah)) REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN); ath9k_hw_clear_queue_interrupts(ah, q); if (qi->tqi_qflags & TXQ_FLAG_TXINT_ENABLE) { ah->txok_interrupt_mask |= 1 << q; ah->txerr_interrupt_mask |= 1 << q; } if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE) ah->txdesc_interrupt_mask |= 1 << q; if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE) ah->txeol_interrupt_mask |= 1 << q; if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE) ah->txurn_interrupt_mask |= 1 << q; ath9k_hw_set_txq_interrupts(ah, qi); return true; } EXPORT_SYMBOL(ath9k_hw_resettxqueue); int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds, struct ath_rx_status *rs) { struct ar5416_desc ads; struct ar5416_desc *adsp = AR5416DESC(ds); u32 phyerr; if ((adsp->ds_rxstatus8 & AR_RxDone) == 0) return -EINPROGRESS; ads.u.rx = adsp->u.rx; rs->rs_status = 0; rs->rs_flags = 0; rs->enc_flags = 0; rs->bw = RATE_INFO_BW_20; rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen; rs->rs_tstamp = ads.AR_RcvTimestamp; if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) { rs->rs_rssi = ATH9K_RSSI_BAD; rs->rs_rssi_ctl[0] = ATH9K_RSSI_BAD; rs->rs_rssi_ctl[1] = ATH9K_RSSI_BAD; rs->rs_rssi_ctl[2] = ATH9K_RSSI_BAD; rs->rs_rssi_ext[0] = ATH9K_RSSI_BAD; rs->rs_rssi_ext[1] = ATH9K_RSSI_BAD; rs->rs_rssi_ext[2] = ATH9K_RSSI_BAD; } else { rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined); rs->rs_rssi_ctl[0] = MS(ads.ds_rxstatus0, AR_RxRSSIAnt00); rs->rs_rssi_ctl[1] = MS(ads.ds_rxstatus0, AR_RxRSSIAnt01); rs->rs_rssi_ctl[2] = MS(ads.ds_rxstatus0, AR_RxRSSIAnt02); rs->rs_rssi_ext[0] = MS(ads.ds_rxstatus4, AR_RxRSSIAnt10); rs->rs_rssi_ext[1] = MS(ads.ds_rxstatus4, AR_RxRSSIAnt11); rs->rs_rssi_ext[2] = MS(ads.ds_rxstatus4, AR_RxRSSIAnt12); } if (ads.ds_rxstatus8 & AR_RxKeyIdxValid) rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx); else rs->rs_keyix = ATH9K_RXKEYIX_INVALID; rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate); rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0; rs->rs_firstaggr = (ads.ds_rxstatus8 & AR_RxFirstAggr) ? 1 : 0; rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0; rs->rs_moreaggr = (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0; rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna); /* directly mapped flags for ieee80211_rx_status */ rs->enc_flags |= (ads.ds_rxstatus3 & AR_GI) ? RX_ENC_FLAG_SHORT_GI : 0; rs->bw = (ads.ds_rxstatus3 & AR_2040) ? RATE_INFO_BW_40 : RATE_INFO_BW_20; if (AR_SREV_9280_20_OR_LATER(ah)) rs->enc_flags |= (ads.ds_rxstatus3 & AR_STBC) ? /* we can only Nss=1 STBC */ (1 << RX_ENC_FLAG_STBC_SHIFT) : 0; if (ads.ds_rxstatus8 & AR_PreDelimCRCErr) rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE; if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST; if (ads.ds_rxstatus8 & AR_DecryptBusyErr) rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY; if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) { /* * Treat these errors as mutually exclusive to avoid spurious * extra error reports from the hardware. If a CRC error is * reported, then decryption and MIC errors are irrelevant, * the frame is going to be dropped either way */ if (ads.ds_rxstatus8 & AR_PHYErr) { rs->rs_status |= ATH9K_RXERR_PHY; phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode); rs->rs_phyerr = phyerr; } else if (ads.ds_rxstatus8 & AR_CRCErr) rs->rs_status |= ATH9K_RXERR_CRC; else if (ads.ds_rxstatus8 & AR_DecryptCRCErr) rs->rs_status |= ATH9K_RXERR_DECRYPT; else if (ads.ds_rxstatus8 & AR_MichaelErr) rs->rs_status |= ATH9K_RXERR_MIC; } else { if (ads.ds_rxstatus8 & (AR_CRCErr | AR_PHYErr | AR_DecryptCRCErr | AR_MichaelErr)) rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC; /* Only up to MCS16 supported, everything above is invalid */ if (rs->rs_rate >= 0x90) rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC; } if (ads.ds_rxstatus8 & AR_KeyMiss) rs->rs_status |= ATH9K_RXERR_KEYMISS; return 0; } EXPORT_SYMBOL(ath9k_hw_rxprocdesc); /* * This can stop or re-enables RX. * * If bool is set this will kill any frame which is currently being * transferred between the MAC and baseband and also prevent any new * frames from getting started. */ bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set) { u32 reg; if (set) { REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE, 0, AH_WAIT_TIMEOUT)) { REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); reg = REG_READ(ah, AR_OBS_BUS_1); ath_err(ath9k_hw_common(ah), "RX failed to go idle in 10 ms RXSM=0x%x\n", reg); return false; } } else { REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); } return true; } EXPORT_SYMBOL(ath9k_hw_setrxabort); void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp) { REG_WRITE(ah, AR_RXDP, rxdp); } EXPORT_SYMBOL(ath9k_hw_putrxbuf); void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning) { ath9k_enable_mib_counters(ah); ath9k_ani_reset(ah, is_scanning); REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); } EXPORT_SYMBOL(ath9k_hw_startpcureceive); void ath9k_hw_abortpcurecv(struct ath_hw *ah) { REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS); ath9k_hw_disable_mib_counters(ah); } EXPORT_SYMBOL(ath9k_hw_abortpcurecv); bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset) { #define AH_RX_STOP_DMA_TIMEOUT 10000 /* usec */ struct ath_common *common = ath9k_hw_common(ah); u32 mac_status, last_mac_status = 0; int i; /* Enable access to the DMA observation bus */ REG_WRITE(ah, AR_MACMISC, ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) | (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S))); REG_WRITE(ah, AR_CR, AR_CR_RXD); /* Wait for rx enable bit to go low */ for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) { if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0) break; if (!AR_SREV_9300_20_OR_LATER(ah)) { mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0; if (mac_status == 0x1c0 && mac_status == last_mac_status) { *reset = true; break; } last_mac_status = mac_status; } udelay(AH_TIME_QUANTUM); } if (i == 0) { ath_err(common, "DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n", AH_RX_STOP_DMA_TIMEOUT / 1000, REG_READ(ah, AR_CR), REG_READ(ah, AR_DIAG_SW), REG_READ(ah, AR_DMADBG_7)); return false; } else { return true; } #undef AH_RX_STOP_DMA_TIMEOUT } EXPORT_SYMBOL(ath9k_hw_stopdmarecv); int ath9k_hw_beaconq_setup(struct ath_hw *ah) { struct ath9k_tx_queue_info qi; memset(&qi, 0, sizeof(qi)); qi.tqi_aifs = 1; qi.tqi_cwmin = 0; qi.tqi_cwmax = 0; if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi); } EXPORT_SYMBOL(ath9k_hw_beaconq_setup); bool ath9k_hw_intrpend(struct ath_hw *ah) { u32 host_isr; if (AR_SREV_9100(ah)) return true; host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE); if (((host_isr & AR_INTR_MAC_IRQ) || (host_isr & AR_INTR_ASYNC_MASK_MCI)) && (host_isr != AR_INTR_SPURIOUS)) return true; host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE); if ((host_isr & AR_INTR_SYNC_DEFAULT) && (host_isr != AR_INTR_SPURIOUS)) return true; return false; } EXPORT_SYMBOL(ath9k_hw_intrpend); void ath9k_hw_kill_interrupts(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); ath_dbg(common, INTERRUPT, "disable IER\n"); REG_WRITE(ah, AR_IER, AR_IER_DISABLE); (void) REG_READ(ah, AR_IER); if (!AR_SREV_9100(ah)) { REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0); (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE); REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); (void) REG_READ(ah, AR_INTR_SYNC_ENABLE); } } EXPORT_SYMBOL(ath9k_hw_kill_interrupts); void ath9k_hw_disable_interrupts(struct ath_hw *ah) { if (!(ah->imask & ATH9K_INT_GLOBAL)) atomic_set(&ah->intr_ref_cnt, -1); else atomic_dec(&ah->intr_ref_cnt); ath9k_hw_kill_interrupts(ah); } EXPORT_SYMBOL(ath9k_hw_disable_interrupts); static void __ath9k_hw_enable_interrupts(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); u32 sync_default = AR_INTR_SYNC_DEFAULT; u32 async_mask; if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) sync_default &= ~AR_INTR_SYNC_HOST1_FATAL; async_mask = AR_INTR_MAC_IRQ; if (ah->imask & ATH9K_INT_MCI) async_mask |= AR_INTR_ASYNC_MASK_MCI; ath_dbg(common, INTERRUPT, "enable IER\n"); REG_WRITE(ah, AR_IER, AR_IER_ENABLE); if (!AR_SREV_9100(ah)) { REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, async_mask); REG_WRITE(ah, AR_INTR_ASYNC_MASK, async_mask); REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default); REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default); } ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n", REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER)); if (ah->msi_enabled) { u32 _msi_reg = 0; u32 i = 0; u32 msi_pend_addr_mask = AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64; ath_dbg(ath9k_hw_common(ah), INTERRUPT, "Enabling MSI, msi_mask=0x%X\n", ah->msi_mask); REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, ah->msi_mask); REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, ah->msi_mask); ath_dbg(ath9k_hw_common(ah), INTERRUPT, "AR_INTR_PRIO_ASYNC_ENABLE=0x%X, AR_INTR_PRIO_ASYNC_MASK=0x%X\n", REG_READ(ah, AR_INTR_PRIO_ASYNC_ENABLE), REG_READ(ah, AR_INTR_PRIO_ASYNC_MASK)); if (ah->msi_reg == 0) ah->msi_reg = REG_READ(ah, AR_PCIE_MSI); ath_dbg(ath9k_hw_common(ah), INTERRUPT, "AR_PCIE_MSI=0x%X, ah->msi_reg = 0x%X\n", AR_PCIE_MSI, ah->msi_reg); i = 0; do { REG_WRITE(ah, AR_PCIE_MSI, (ah->msi_reg | AR_PCIE_MSI_ENABLE) & msi_pend_addr_mask); _msi_reg = REG_READ(ah, AR_PCIE_MSI); i++; } while ((_msi_reg & AR_PCIE_MSI_ENABLE) == 0 && i < 200); if (i >= 200) ath_err(ath9k_hw_common(ah), "%s: _msi_reg = 0x%X\n", __func__, _msi_reg); } } void ath9k_hw_resume_interrupts(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); if (!(ah->imask & ATH9K_INT_GLOBAL)) return; if (atomic_read(&ah->intr_ref_cnt) != 0) { ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n", atomic_read(&ah->intr_ref_cnt)); return; } __ath9k_hw_enable_interrupts(ah); } EXPORT_SYMBOL(ath9k_hw_resume_interrupts); void ath9k_hw_enable_interrupts(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); if (!(ah->imask & ATH9K_INT_GLOBAL)) return; if (!atomic_inc_and_test(&ah->intr_ref_cnt)) { ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n", atomic_read(&ah->intr_ref_cnt)); return; } __ath9k_hw_enable_interrupts(ah); } EXPORT_SYMBOL(ath9k_hw_enable_interrupts); void ath9k_hw_set_interrupts(struct ath_hw *ah) { enum ath9k_int ints = ah->imask; u32 mask, mask2; struct ath9k_hw_capabilities *pCap = &ah->caps; struct ath_common *common = ath9k_hw_common(ah); if (!(ints & ATH9K_INT_GLOBAL)) ath9k_hw_disable_interrupts(ah); if (ah->msi_enabled) { ath_dbg(common, INTERRUPT, "Clearing AR_INTR_PRIO_ASYNC_ENABLE\n"); REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0); REG_READ(ah, AR_INTR_PRIO_ASYNC_ENABLE); } ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints); mask = ints & ATH9K_INT_COMMON; mask2 = 0; ah->msi_mask = 0; if (ints & ATH9K_INT_TX) { ah->msi_mask |= AR_INTR_PRIO_TX; if (ah->config.tx_intr_mitigation) mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM; else { if (ah->txok_interrupt_mask) mask |= AR_IMR_TXOK; if (ah->txdesc_interrupt_mask) mask |= AR_IMR_TXDESC; } if (ah->txerr_interrupt_mask) mask |= AR_IMR_TXERR; if (ah->txeol_interrupt_mask) mask |= AR_IMR_TXEOL; } if (ints & ATH9K_INT_RX) { ah->msi_mask |= AR_INTR_PRIO_RXLP | AR_INTR_PRIO_RXHP; if (AR_SREV_9300_20_OR_LATER(ah)) { mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP; if (ah->config.rx_intr_mitigation) { mask &= ~AR_IMR_RXOK_LP; mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM; } else { mask |= AR_IMR_RXOK_LP; } } else { if (ah->config.rx_intr_mitigation) mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM; else mask |= AR_IMR_RXOK | AR_IMR_RXDESC; } if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) mask |= AR_IMR_GENTMR; } if (ints & ATH9K_INT_GENTIMER) mask |= AR_IMR_GENTMR; if (ints & (ATH9K_INT_BMISC)) { mask |= AR_IMR_BCNMISC; if (ints & ATH9K_INT_TIM) mask2 |= AR_IMR_S2_TIM; if (ints & ATH9K_INT_DTIM) mask2 |= AR_IMR_S2_DTIM; if (ints & ATH9K_INT_DTIMSYNC) mask2 |= AR_IMR_S2_DTIMSYNC; if (ints & ATH9K_INT_CABEND) mask2 |= AR_IMR_S2_CABEND; if (ints & ATH9K_INT_TSFOOR) mask2 |= AR_IMR_S2_TSFOOR; } if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) { mask |= AR_IMR_BCNMISC; if (ints & ATH9K_INT_GTT) mask2 |= AR_IMR_S2_GTT; if (ints & ATH9K_INT_CST) mask2 |= AR_IMR_S2_CST; } if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) { if (ints & ATH9K_INT_BB_WATCHDOG) { mask |= AR_IMR_BCNMISC; mask2 |= AR_IMR_S2_BB_WATCHDOG; } } ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask); REG_WRITE(ah, AR_IMR, mask); ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST); if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) { if (ints & ATH9K_INT_BB_WATCHDOG) ah->imrs2_reg &= ~AR_IMR_S2_BB_WATCHDOG; } ah->imrs2_reg |= mask2; REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { if (ints & ATH9K_INT_TIM_TIMER) REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER); else REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER); } return; } EXPORT_SYMBOL(ath9k_hw_set_interrupts); #define ATH9K_HW_MAX_DCU 10 #define ATH9K_HW_SLICE_PER_DCU 16 #define ATH9K_HW_BIT_IN_SLICE 16 void ath9k_hw_set_tx_filter(struct ath_hw *ah, u8 destidx, bool set) { int dcu_idx; u32 filter; for (dcu_idx = 0; dcu_idx < 10; dcu_idx++) { filter = SM(set, AR_D_TXBLK_WRITE_COMMAND); filter |= SM(dcu_idx, AR_D_TXBLK_WRITE_DCU); filter |= SM((destidx / ATH9K_HW_SLICE_PER_DCU), AR_D_TXBLK_WRITE_SLICE); filter |= BIT(destidx % ATH9K_HW_BIT_IN_SLICE); ath_dbg(ath9k_hw_common(ah), PS, "DCU%d staid %d set %d txfilter %08x\n", dcu_idx, destidx, set, filter); REG_WRITE(ah, AR_D_TXBLK_BASE, filter); } } EXPORT_SYMBOL(ath9k_hw_set_tx_filter);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1