Contributors: 3
Author Tokens Token Proportion Commits Commit Proportion
Arend Van Spriel 916 99.67% 2 50.00%
Tobias Regnery 2 0.22% 1 25.00%
Stefan Agner 1 0.11% 1 25.00%
Total 919 4


// SPDX-License-Identifier: ISC
/*
 * Copyright (c) 2010 Broadcom Corporation
 */

#include "phy_qmath.h"

/*
 * Description: This function make 16 bit unsigned multiplication.
 * To fit the output into 16 bits the 32 bit multiplication result is right
 * shifted by 16 bits.
 */
u16 qm_mulu16(u16 op1, u16 op2)
{
	return (u16) (((u32) op1 * (u32) op2) >> 16);
}

/*
 * Description: This function make 16 bit multiplication and return the result
 * in 16 bits. To fit the multiplication result into 16 bits the multiplication
 * result is right shifted by 15 bits. Right shifting 15 bits instead of 16 bits
 * is done to remove the extra sign bit formed due to the multiplication.
 * When both the 16bit inputs are 0x8000 then the output is saturated to
 * 0x7fffffff.
 */
s16 qm_muls16(s16 op1, s16 op2)
{
	s32 result;
	if (op1 == (s16) 0x8000 && op2 == (s16) 0x8000)
		result = 0x7fffffff;
	else
		result = ((s32) (op1) * (s32) (op2));

	return (s16) (result >> 15);
}

/*
 * Description: This function add two 32 bit numbers and return the 32bit
 * result. If the result overflow 32 bits, the output will be saturated to
 * 32bits.
 */
s32 qm_add32(s32 op1, s32 op2)
{
	s32 result;
	result = op1 + op2;
	if (op1 < 0 && op2 < 0 && result > 0)
		result = 0x80000000;
	else if (op1 > 0 && op2 > 0 && result < 0)
		result = 0x7fffffff;

	return result;
}

/*
 * Description: This function add two 16 bit numbers and return the 16bit
 * result. If the result overflow 16 bits, the output will be saturated to
 * 16bits.
 */
s16 qm_add16(s16 op1, s16 op2)
{
	s16 result;
	s32 temp = (s32) op1 + (s32) op2;
	if (temp > (s32) 0x7fff)
		result = (s16) 0x7fff;
	else if (temp < (s32) 0xffff8000)
		result = (s16) 0xffff8000;
	else
		result = (s16) temp;

	return result;
}

/*
 * Description: This function make 16 bit subtraction and return the 16bit
 * result. If the result overflow 16 bits, the output will be saturated to
 * 16bits.
 */
s16 qm_sub16(s16 op1, s16 op2)
{
	s16 result;
	s32 temp = (s32) op1 - (s32) op2;
	if (temp > (s32) 0x7fff)
		result = (s16) 0x7fff;
	else if (temp < (s32) 0xffff8000)
		result = (s16) 0xffff8000;
	else
		result = (s16) temp;

	return result;
}

/*
 * Description: This function make a 32 bit saturated left shift when the
 * specified shift is +ve. This function will make a 32 bit right shift when
 * the specified shift is -ve. This function return the result after shifting
 * operation.
 */
s32 qm_shl32(s32 op, int shift)
{
	int i;
	s32 result;
	result = op;
	if (shift > 31)
		shift = 31;
	else if (shift < -31)
		shift = -31;
	if (shift >= 0) {
		for (i = 0; i < shift; i++)
			result = qm_add32(result, result);
	} else {
		result = result >> (-shift);
	}

	return result;
}

/*
 * Description: This function make a 16 bit saturated left shift when the
 * specified shift is +ve. This function will make a 16 bit right shift when
 * the specified shift is -ve. This function return the result after shifting
 * operation.
 */
s16 qm_shl16(s16 op, int shift)
{
	int i;
	s16 result;
	result = op;
	if (shift > 15)
		shift = 15;
	else if (shift < -15)
		shift = -15;
	if (shift > 0) {
		for (i = 0; i < shift; i++)
			result = qm_add16(result, result);
	} else {
		result = result >> (-shift);
	}

	return result;
}

/*
 * Description: This function make a 16 bit right shift when shift is +ve.
 * This function make a 16 bit saturated left shift when shift is -ve. This
 * function return the result of the shift operation.
 */
s16 qm_shr16(s16 op, int shift)
{
	return qm_shl16(op, -shift);
}

/*
 * Description: This function return the number of redundant sign bits in a
 * 32 bit number. Example: qm_norm32(0x00000080) = 23
 */
s16 qm_norm32(s32 op)
{
	u16 u16extraSignBits;
	if (op == 0) {
		return 31;
	} else {
		u16extraSignBits = 0;
		while ((op >> 31) == (op >> 30)) {
			u16extraSignBits++;
			op = op << 1;
		}
	}
	return u16extraSignBits;
}

/* This table is log2(1+(i/32)) where i=[0:1:32], in q.15 format */
static const s16 log_table[] = {
	0,
	1455,
	2866,
	4236,
	5568,
	6863,
	8124,
	9352,
	10549,
	11716,
	12855,
	13968,
	15055,
	16117,
	17156,
	18173,
	19168,
	20143,
	21098,
	22034,
	22952,
	23852,
	24736,
	25604,
	26455,
	27292,
	28114,
	28922,
	29717,
	30498,
	31267,
	32024,
	32767
};

#define LOG_TABLE_SIZE 32       /* log_table size */
#define LOG2_LOG_TABLE_SIZE 5   /* log2(log_table size) */
#define Q_LOG_TABLE 15          /* qformat of log_table */
#define LOG10_2         19728   /* log10(2) in q.16 */

/*
 * Description:
 * This routine takes the input number N and its q format qN and compute
 * the log10(N). This routine first normalizes the input no N.	Then N is in
 * mag*(2^x) format. mag is any number in the range 2^30-(2^31 - 1).
 * Then log2(mag * 2^x) = log2(mag) + x is computed. From that
 * log10(mag * 2^x) = log2(mag * 2^x) * log10(2) is computed.
 * This routine looks the log2 value in the table considering
 * LOG2_LOG_TABLE_SIZE+1 MSBs. As the MSB is always 1, only next
 * LOG2_OF_LOG_TABLE_SIZE MSBs are used for table lookup. Next 16 MSBs are used
 * for interpolation.
 * Inputs:
 * N - number to which log10 has to be found.
 * qN - q format of N
 * log10N - address where log10(N) will be written.
 * qLog10N - address where log10N qformat will be written.
 * Note/Problem:
 * For accurate results input should be in normalized or near normalized form.
 */
void qm_log10(s32 N, s16 qN, s16 *log10N, s16 *qLog10N)
{
	s16 s16norm, s16tableIndex, s16errorApproximation;
	u16 u16offset;
	s32 s32log;

	/* normalize the N. */
	s16norm = qm_norm32(N);
	N = N << s16norm;

	/* The qformat of N after normalization.
	 * -30 is added to treat the no as between 1.0 to 2.0
	 * i.e. after adding the -30 to the qformat the decimal point will be
	 * just rigtht of the MSB. (i.e. after sign bit and 1st MSB). i.e.
	 * at the right side of 30th bit.
	 */
	qN = qN + s16norm - 30;

	/* take the table index as the LOG2_OF_LOG_TABLE_SIZE bits right of the
	 * MSB */
	s16tableIndex = (s16) (N >> (32 - (2 + LOG2_LOG_TABLE_SIZE)));

	/* remove the MSB. the MSB is always 1 after normalization. */
	s16tableIndex =
		s16tableIndex & (s16) ((1 << LOG2_LOG_TABLE_SIZE) - 1);

	/* remove the (1+LOG2_OF_LOG_TABLE_SIZE) MSBs in the N. */
	N = N & ((1 << (32 - (2 + LOG2_LOG_TABLE_SIZE))) - 1);

	/* take the offset as the 16 MSBS after table index.
	 */
	u16offset = (u16) (N >> (32 - (2 + LOG2_LOG_TABLE_SIZE + 16)));

	/* look the log value in the table. */
	s32log = log_table[s16tableIndex];      /* q.15 format */

	/* interpolate using the offset. q.15 format. */
	s16errorApproximation = (s16) qm_mulu16(u16offset,
				(u16) (log_table[s16tableIndex + 1] -
				       log_table[s16tableIndex]));

	 /* q.15 format */
	s32log = qm_add16((s16) s32log, s16errorApproximation);

	/* adjust for the qformat of the N as
	 * log2(mag * 2^x) = log2(mag) + x
	 */
	s32log = qm_add32(s32log, ((s32) -qN) << 15);   /* q.15 format */

	/* normalize the result. */
	s16norm = qm_norm32(s32log);

	/* bring all the important bits into lower 16 bits */
	/* q.15+s16norm-16 format */
	s32log = qm_shl32(s32log, s16norm - 16);

	/* compute the log10(N) by multiplying log2(N) with log10(2).
	 * as log10(mag * 2^x) = log2(mag * 2^x) * log10(2)
	 * log10N in q.15+s16norm-16+1 (LOG10_2 is in q.16)
	 */
	*log10N = qm_muls16((s16) s32log, (s16) LOG10_2);

	/* write the q format of the result. */
	*qLog10N = 15 + s16norm - 16 + 1;

	return;
}