Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jeff Garzik | 4355 | 53.01% | 2 | 2.78% |
James Ketrenos | 1445 | 17.59% | 9 | 12.50% |
Ivo van Doorn | 820 | 9.98% | 2 | 2.78% |
Yi Zhu | 411 | 5.00% | 5 | 6.94% |
Denys Vlasenko | 307 | 3.74% | 2 | 2.78% |
John W. Linville | 268 | 3.26% | 6 | 8.33% |
Daniel Drake | 226 | 2.75% | 3 | 4.17% |
Larry Finger | 115 | 1.40% | 3 | 4.17% |
Al Viro | 54 | 0.66% | 3 | 4.17% |
Helmut Schaa | 45 | 0.55% | 2 | 2.78% |
Arnaldo Carvalho de Melo | 29 | 0.35% | 6 | 8.33% |
Andy Shevchenko | 21 | 0.26% | 1 | 1.39% |
David S. Miller | 20 | 0.24% | 1 | 1.39% |
Stephen Hemminger | 20 | 0.24% | 1 | 1.39% |
Eric Sesterhenn / Snakebyte | 8 | 0.10% | 1 | 1.39% |
Johannes Berg | 7 | 0.09% | 1 | 1.39% |
Jiri Benc | 7 | 0.09% | 1 | 1.39% |
Ding Tianhong | 6 | 0.07% | 1 | 1.39% |
Tobias Klauser | 6 | 0.07% | 1 | 1.39% |
Simon Horman | 6 | 0.07% | 1 | 1.39% |
Joe Perches | 6 | 0.07% | 1 | 1.39% |
Dan J Williams | 4 | 0.05% | 1 | 1.39% |
Tejun Heo | 3 | 0.04% | 1 | 1.39% |
Adrian Bunk | 3 | 0.04% | 1 | 1.39% |
Hideaki Yoshifuji / 吉藤英明 | 3 | 0.04% | 2 | 2.78% |
Dan Carpenter | 3 | 0.04% | 2 | 2.78% |
Arend Van Spriel | 3 | 0.04% | 1 | 1.39% |
Takashi Iwai | 2 | 0.02% | 1 | 1.39% |
Hong Liu | 2 | 0.02% | 1 | 1.39% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.39% |
Lucas De Marchi | 1 | 0.01% | 1 | 1.39% |
Julia Lawall | 1 | 0.01% | 1 | 1.39% |
Bruno Randolf | 1 | 0.01% | 1 | 1.39% |
Arnd Bergmann | 1 | 0.01% | 1 | 1.39% |
Linus Torvalds | 1 | 0.01% | 1 | 1.39% |
zhong jiang | 1 | 0.01% | 1 | 1.39% |
Pete Zaitcev | 1 | 0.01% | 1 | 1.39% |
Masanari Iida | 1 | 0.01% | 1 | 1.39% |
Total | 8215 | 72 |
// SPDX-License-Identifier: GPL-2.0-only /* * Original code based Host AP (software wireless LAN access point) driver * for Intersil Prism2/2.5/3 - hostap.o module, common routines * * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen * <j@w1.fi> * Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi> * Copyright (c) 2004-2005, Intel Corporation */ #include <linux/compiler.h> #include <linux/errno.h> #include <linux/if_arp.h> #include <linux/in6.h> #include <linux/gfp.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/proc_fs.h> #include <linux/skbuff.h> #include <linux/tcp.h> #include <linux/types.h> #include <linux/wireless.h> #include <linux/etherdevice.h> #include <linux/uaccess.h> #include <linux/ctype.h> #include <net/lib80211.h> #include "libipw.h" static void libipw_monitor_rx(struct libipw_device *ieee, struct sk_buff *skb, struct libipw_rx_stats *rx_stats) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; u16 fc = le16_to_cpu(hdr->frame_control); skb->dev = ieee->dev; skb_reset_mac_header(skb); skb_pull(skb, libipw_get_hdrlen(fc)); skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_80211_RAW); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx(skb); } /* Called only as a tasklet (software IRQ) */ static struct libipw_frag_entry *libipw_frag_cache_find(struct libipw_device *ieee, unsigned int seq, unsigned int frag, u8 * src, u8 * dst) { struct libipw_frag_entry *entry; int i; for (i = 0; i < LIBIPW_FRAG_CACHE_LEN; i++) { entry = &ieee->frag_cache[i]; if (entry->skb != NULL && time_after(jiffies, entry->first_frag_time + 2 * HZ)) { LIBIPW_DEBUG_FRAG("expiring fragment cache entry " "seq=%u last_frag=%u\n", entry->seq, entry->last_frag); dev_kfree_skb_any(entry->skb); entry->skb = NULL; } if (entry->skb != NULL && entry->seq == seq && (entry->last_frag + 1 == frag || frag == -1) && ether_addr_equal(entry->src_addr, src) && ether_addr_equal(entry->dst_addr, dst)) return entry; } return NULL; } /* Called only as a tasklet (software IRQ) */ static struct sk_buff *libipw_frag_cache_get(struct libipw_device *ieee, struct libipw_hdr_4addr *hdr) { struct sk_buff *skb = NULL; u16 sc; unsigned int frag, seq; struct libipw_frag_entry *entry; sc = le16_to_cpu(hdr->seq_ctl); frag = WLAN_GET_SEQ_FRAG(sc); seq = WLAN_GET_SEQ_SEQ(sc); if (frag == 0) { /* Reserve enough space to fit maximum frame length */ skb = dev_alloc_skb(ieee->dev->mtu + sizeof(struct libipw_hdr_4addr) + 8 /* LLC */ + 2 /* alignment */ + 8 /* WEP */ + ETH_ALEN /* WDS */ ); if (skb == NULL) return NULL; entry = &ieee->frag_cache[ieee->frag_next_idx]; ieee->frag_next_idx++; if (ieee->frag_next_idx >= LIBIPW_FRAG_CACHE_LEN) ieee->frag_next_idx = 0; if (entry->skb != NULL) dev_kfree_skb_any(entry->skb); entry->first_frag_time = jiffies; entry->seq = seq; entry->last_frag = frag; entry->skb = skb; memcpy(entry->src_addr, hdr->addr2, ETH_ALEN); memcpy(entry->dst_addr, hdr->addr1, ETH_ALEN); } else { /* received a fragment of a frame for which the head fragment * should have already been received */ entry = libipw_frag_cache_find(ieee, seq, frag, hdr->addr2, hdr->addr1); if (entry != NULL) { entry->last_frag = frag; skb = entry->skb; } } return skb; } /* Called only as a tasklet (software IRQ) */ static int libipw_frag_cache_invalidate(struct libipw_device *ieee, struct libipw_hdr_4addr *hdr) { u16 sc; unsigned int seq; struct libipw_frag_entry *entry; sc = le16_to_cpu(hdr->seq_ctl); seq = WLAN_GET_SEQ_SEQ(sc); entry = libipw_frag_cache_find(ieee, seq, -1, hdr->addr2, hdr->addr1); if (entry == NULL) { LIBIPW_DEBUG_FRAG("could not invalidate fragment cache " "entry (seq=%u)\n", seq); return -1; } entry->skb = NULL; return 0; } #ifdef NOT_YET /* libipw_rx_frame_mgtmt * * Responsible for handling management control frames * * Called by libipw_rx */ static int libipw_rx_frame_mgmt(struct libipw_device *ieee, struct sk_buff *skb, struct libipw_rx_stats *rx_stats, u16 type, u16 stype) { if (ieee->iw_mode == IW_MODE_MASTER) { printk(KERN_DEBUG "%s: Master mode not yet supported.\n", ieee->dev->name); return 0; /* hostap_update_sta_ps(ieee, (struct hostap_libipw_hdr_4addr *) skb->data);*/ } if (ieee->hostapd && type == WLAN_FC_TYPE_MGMT) { if (stype == WLAN_FC_STYPE_BEACON && ieee->iw_mode == IW_MODE_MASTER) { struct sk_buff *skb2; /* Process beacon frames also in kernel driver to * update STA(AP) table statistics */ skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2) hostap_rx(skb2->dev, skb2, rx_stats); } /* send management frames to the user space daemon for * processing */ ieee->apdevstats.rx_packets++; ieee->apdevstats.rx_bytes += skb->len; prism2_rx_80211(ieee->apdev, skb, rx_stats, PRISM2_RX_MGMT); return 0; } if (ieee->iw_mode == IW_MODE_MASTER) { if (type != WLAN_FC_TYPE_MGMT && type != WLAN_FC_TYPE_CTRL) { printk(KERN_DEBUG "%s: unknown management frame " "(type=0x%02x, stype=0x%02x) dropped\n", skb->dev->name, type, stype); return -1; } hostap_rx(skb->dev, skb, rx_stats); return 0; } printk(KERN_DEBUG "%s: hostap_rx_frame_mgmt: management frame " "received in non-Host AP mode\n", skb->dev->name); return -1; } #endif /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ static unsigned char libipw_rfc1042_header[] = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ static unsigned char libipw_bridge_tunnel_header[] = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; /* No encapsulation header if EtherType < 0x600 (=length) */ /* Called by libipw_rx_frame_decrypt */ static int libipw_is_eapol_frame(struct libipw_device *ieee, struct sk_buff *skb) { struct net_device *dev = ieee->dev; u16 fc, ethertype; struct libipw_hdr_3addr *hdr; u8 *pos; if (skb->len < 24) return 0; hdr = (struct libipw_hdr_3addr *)skb->data; fc = le16_to_cpu(hdr->frame_ctl); /* check that the frame is unicast frame to us */ if ((fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) == IEEE80211_FCTL_TODS && ether_addr_equal(hdr->addr1, dev->dev_addr) && ether_addr_equal(hdr->addr3, dev->dev_addr)) { /* ToDS frame with own addr BSSID and DA */ } else if ((fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) == IEEE80211_FCTL_FROMDS && ether_addr_equal(hdr->addr1, dev->dev_addr)) { /* FromDS frame with own addr as DA */ } else return 0; if (skb->len < 24 + 8) return 0; /* check for port access entity Ethernet type */ pos = skb->data + 24; ethertype = (pos[6] << 8) | pos[7]; if (ethertype == ETH_P_PAE) return 1; return 0; } /* Called only as a tasklet (software IRQ), by libipw_rx */ static int libipw_rx_frame_decrypt(struct libipw_device *ieee, struct sk_buff *skb, struct lib80211_crypt_data *crypt) { struct libipw_hdr_3addr *hdr; int res, hdrlen; if (crypt == NULL || crypt->ops->decrypt_mpdu == NULL) return 0; hdr = (struct libipw_hdr_3addr *)skb->data; hdrlen = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl)); atomic_inc(&crypt->refcnt); res = crypt->ops->decrypt_mpdu(skb, hdrlen, crypt->priv); atomic_dec(&crypt->refcnt); if (res < 0) { LIBIPW_DEBUG_DROP("decryption failed (SA=%pM) res=%d\n", hdr->addr2, res); if (res == -2) LIBIPW_DEBUG_DROP("Decryption failed ICV " "mismatch (key %d)\n", skb->data[hdrlen + 3] >> 6); ieee->ieee_stats.rx_discards_undecryptable++; return -1; } return res; } /* Called only as a tasklet (software IRQ), by libipw_rx */ static int libipw_rx_frame_decrypt_msdu(struct libipw_device *ieee, struct sk_buff *skb, int keyidx, struct lib80211_crypt_data *crypt) { struct libipw_hdr_3addr *hdr; int res, hdrlen; if (crypt == NULL || crypt->ops->decrypt_msdu == NULL) return 0; hdr = (struct libipw_hdr_3addr *)skb->data; hdrlen = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl)); atomic_inc(&crypt->refcnt); res = crypt->ops->decrypt_msdu(skb, keyidx, hdrlen, crypt->priv); atomic_dec(&crypt->refcnt); if (res < 0) { printk(KERN_DEBUG "%s: MSDU decryption/MIC verification failed" " (SA=%pM keyidx=%d)\n", ieee->dev->name, hdr->addr2, keyidx); return -1; } return 0; } /* All received frames are sent to this function. @skb contains the frame in * IEEE 802.11 format, i.e., in the format it was sent over air. * This function is called only as a tasklet (software IRQ). */ int libipw_rx(struct libipw_device *ieee, struct sk_buff *skb, struct libipw_rx_stats *rx_stats) { struct net_device *dev = ieee->dev; struct libipw_hdr_4addr *hdr; size_t hdrlen; u16 fc, type, stype, sc; unsigned int frag; u8 *payload; u16 ethertype; #ifdef NOT_YET struct net_device *wds = NULL; struct sk_buff *skb2 = NULL; struct net_device *wds = NULL; int frame_authorized = 0; int from_assoc_ap = 0; void *sta = NULL; #endif u8 dst[ETH_ALEN]; u8 src[ETH_ALEN]; struct lib80211_crypt_data *crypt = NULL; int keyidx = 0; int can_be_decrypted = 0; hdr = (struct libipw_hdr_4addr *)skb->data; if (skb->len < 10) { printk(KERN_INFO "%s: SKB length < 10\n", dev->name); goto rx_dropped; } fc = le16_to_cpu(hdr->frame_ctl); type = WLAN_FC_GET_TYPE(fc); stype = WLAN_FC_GET_STYPE(fc); sc = le16_to_cpu(hdr->seq_ctl); frag = WLAN_GET_SEQ_FRAG(sc); hdrlen = libipw_get_hdrlen(fc); if (skb->len < hdrlen) { printk(KERN_INFO "%s: invalid SKB length %d\n", dev->name, skb->len); goto rx_dropped; } /* Put this code here so that we avoid duplicating it in all * Rx paths. - Jean II */ #ifdef CONFIG_WIRELESS_EXT #ifdef IW_WIRELESS_SPY /* defined in iw_handler.h */ /* If spy monitoring on */ if (ieee->spy_data.spy_number > 0) { struct iw_quality wstats; wstats.updated = 0; if (rx_stats->mask & LIBIPW_STATMASK_RSSI) { wstats.level = rx_stats->signal; wstats.updated |= IW_QUAL_LEVEL_UPDATED; } else wstats.updated |= IW_QUAL_LEVEL_INVALID; if (rx_stats->mask & LIBIPW_STATMASK_NOISE) { wstats.noise = rx_stats->noise; wstats.updated |= IW_QUAL_NOISE_UPDATED; } else wstats.updated |= IW_QUAL_NOISE_INVALID; if (rx_stats->mask & LIBIPW_STATMASK_SIGNAL) { wstats.qual = rx_stats->signal; wstats.updated |= IW_QUAL_QUAL_UPDATED; } else wstats.updated |= IW_QUAL_QUAL_INVALID; /* Update spy records */ wireless_spy_update(ieee->dev, hdr->addr2, &wstats); } #endif /* IW_WIRELESS_SPY */ #endif /* CONFIG_WIRELESS_EXT */ #ifdef NOT_YET hostap_update_rx_stats(local->ap, hdr, rx_stats); #endif if (ieee->iw_mode == IW_MODE_MONITOR) { dev->stats.rx_packets++; dev->stats.rx_bytes += skb->len; libipw_monitor_rx(ieee, skb, rx_stats); return 1; } can_be_decrypted = (is_multicast_ether_addr(hdr->addr1) || is_broadcast_ether_addr(hdr->addr2)) ? ieee->host_mc_decrypt : ieee->host_decrypt; if (can_be_decrypted) { if (skb->len >= hdrlen + 3) { /* Top two-bits of byte 3 are the key index */ keyidx = skb->data[hdrlen + 3] >> 6; } /* ieee->crypt[] is WEP_KEY (4) in length. Given that keyidx * is only allowed 2-bits of storage, no value of keyidx can * be provided via above code that would result in keyidx * being out of range */ crypt = ieee->crypt_info.crypt[keyidx]; #ifdef NOT_YET sta = NULL; /* Use station specific key to override default keys if the * receiver address is a unicast address ("individual RA"). If * bcrx_sta_key parameter is set, station specific key is used * even with broad/multicast targets (this is against IEEE * 802.11, but makes it easier to use different keys with * stations that do not support WEP key mapping). */ if (is_unicast_ether_addr(hdr->addr1) || local->bcrx_sta_key) (void)hostap_handle_sta_crypto(local, hdr, &crypt, &sta); #endif /* allow NULL decrypt to indicate an station specific override * for default encryption */ if (crypt && (crypt->ops == NULL || crypt->ops->decrypt_mpdu == NULL)) crypt = NULL; if (!crypt && (fc & IEEE80211_FCTL_PROTECTED)) { /* This seems to be triggered by some (multicast?) * frames from other than current BSS, so just drop the * frames silently instead of filling system log with * these reports. */ LIBIPW_DEBUG_DROP("Decryption failed (not set)" " (SA=%pM)\n", hdr->addr2); ieee->ieee_stats.rx_discards_undecryptable++; goto rx_dropped; } } #ifdef NOT_YET if (type != WLAN_FC_TYPE_DATA) { if (type == WLAN_FC_TYPE_MGMT && stype == WLAN_FC_STYPE_AUTH && fc & IEEE80211_FCTL_PROTECTED && ieee->host_decrypt && (keyidx = hostap_rx_frame_decrypt(ieee, skb, crypt)) < 0) { printk(KERN_DEBUG "%s: failed to decrypt mgmt::auth " "from %pM\n", dev->name, hdr->addr2); /* TODO: could inform hostapd about this so that it * could send auth failure report */ goto rx_dropped; } if (libipw_rx_frame_mgmt(ieee, skb, rx_stats, type, stype)) goto rx_dropped; else goto rx_exit; } #endif /* drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.29) */ if (sc == ieee->prev_seq_ctl) goto rx_dropped; else ieee->prev_seq_ctl = sc; /* Data frame - extract src/dst addresses */ if (skb->len < LIBIPW_3ADDR_LEN) goto rx_dropped; switch (fc & (IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS)) { case IEEE80211_FCTL_FROMDS: memcpy(dst, hdr->addr1, ETH_ALEN); memcpy(src, hdr->addr3, ETH_ALEN); break; case IEEE80211_FCTL_TODS: memcpy(dst, hdr->addr3, ETH_ALEN); memcpy(src, hdr->addr2, ETH_ALEN); break; case IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS: if (skb->len < LIBIPW_4ADDR_LEN) goto rx_dropped; memcpy(dst, hdr->addr3, ETH_ALEN); memcpy(src, hdr->addr4, ETH_ALEN); break; default: memcpy(dst, hdr->addr1, ETH_ALEN); memcpy(src, hdr->addr2, ETH_ALEN); break; } #ifdef NOT_YET if (hostap_rx_frame_wds(ieee, hdr, fc, &wds)) goto rx_dropped; if (wds) { skb->dev = dev = wds; stats = hostap_get_stats(dev); } if (ieee->iw_mode == IW_MODE_MASTER && !wds && (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) == IEEE80211_FCTL_FROMDS && ieee->stadev && ether_addr_equal(hdr->addr2, ieee->assoc_ap_addr)) { /* Frame from BSSID of the AP for which we are a client */ skb->dev = dev = ieee->stadev; stats = hostap_get_stats(dev); from_assoc_ap = 1; } #endif #ifdef NOT_YET if ((ieee->iw_mode == IW_MODE_MASTER || ieee->iw_mode == IW_MODE_REPEAT) && !from_assoc_ap) { switch (hostap_handle_sta_rx(ieee, dev, skb, rx_stats, wds != NULL)) { case AP_RX_CONTINUE_NOT_AUTHORIZED: frame_authorized = 0; break; case AP_RX_CONTINUE: frame_authorized = 1; break; case AP_RX_DROP: goto rx_dropped; case AP_RX_EXIT: goto rx_exit; } } #endif /* Nullfunc frames may have PS-bit set, so they must be passed to * hostap_handle_sta_rx() before being dropped here. */ stype &= ~IEEE80211_STYPE_QOS_DATA; if (stype != IEEE80211_STYPE_DATA && stype != IEEE80211_STYPE_DATA_CFACK && stype != IEEE80211_STYPE_DATA_CFPOLL && stype != IEEE80211_STYPE_DATA_CFACKPOLL) { if (stype != IEEE80211_STYPE_NULLFUNC) LIBIPW_DEBUG_DROP("RX: dropped data frame " "with no data (type=0x%02x, " "subtype=0x%02x, len=%d)\n", type, stype, skb->len); goto rx_dropped; } /* skb: hdr + (possibly fragmented, possibly encrypted) payload */ if ((fc & IEEE80211_FCTL_PROTECTED) && can_be_decrypted && (keyidx = libipw_rx_frame_decrypt(ieee, skb, crypt)) < 0) goto rx_dropped; hdr = (struct libipw_hdr_4addr *)skb->data; /* skb: hdr + (possibly fragmented) plaintext payload */ // PR: FIXME: hostap has additional conditions in the "if" below: // ieee->host_decrypt && (fc & IEEE80211_FCTL_PROTECTED) && if ((frag != 0) || (fc & IEEE80211_FCTL_MOREFRAGS)) { int flen; struct sk_buff *frag_skb = libipw_frag_cache_get(ieee, hdr); LIBIPW_DEBUG_FRAG("Rx Fragment received (%u)\n", frag); if (!frag_skb) { LIBIPW_DEBUG(LIBIPW_DL_RX | LIBIPW_DL_FRAG, "Rx cannot get skb from fragment " "cache (morefrag=%d seq=%u frag=%u)\n", (fc & IEEE80211_FCTL_MOREFRAGS) != 0, WLAN_GET_SEQ_SEQ(sc), frag); goto rx_dropped; } flen = skb->len; if (frag != 0) flen -= hdrlen; if (frag_skb->tail + flen > frag_skb->end) { printk(KERN_WARNING "%s: host decrypted and " "reassembled frame did not fit skb\n", dev->name); libipw_frag_cache_invalidate(ieee, hdr); goto rx_dropped; } if (frag == 0) { /* copy first fragment (including full headers) into * beginning of the fragment cache skb */ skb_copy_from_linear_data(skb, skb_put(frag_skb, flen), flen); } else { /* append frame payload to the end of the fragment * cache skb */ skb_copy_from_linear_data_offset(skb, hdrlen, skb_put(frag_skb, flen), flen); } dev_kfree_skb_any(skb); skb = NULL; if (fc & IEEE80211_FCTL_MOREFRAGS) { /* more fragments expected - leave the skb in fragment * cache for now; it will be delivered to upper layers * after all fragments have been received */ goto rx_exit; } /* this was the last fragment and the frame will be * delivered, so remove skb from fragment cache */ skb = frag_skb; hdr = (struct libipw_hdr_4addr *)skb->data; libipw_frag_cache_invalidate(ieee, hdr); } /* skb: hdr + (possible reassembled) full MSDU payload; possibly still * encrypted/authenticated */ if ((fc & IEEE80211_FCTL_PROTECTED) && can_be_decrypted && libipw_rx_frame_decrypt_msdu(ieee, skb, keyidx, crypt)) goto rx_dropped; hdr = (struct libipw_hdr_4addr *)skb->data; if (crypt && !(fc & IEEE80211_FCTL_PROTECTED) && !ieee->open_wep) { if ( /*ieee->ieee802_1x && */ libipw_is_eapol_frame(ieee, skb)) { /* pass unencrypted EAPOL frames even if encryption is * configured */ } else { LIBIPW_DEBUG_DROP("encryption configured, but RX " "frame not encrypted (SA=%pM)\n", hdr->addr2); goto rx_dropped; } } if (crypt && !(fc & IEEE80211_FCTL_PROTECTED) && !ieee->open_wep && !libipw_is_eapol_frame(ieee, skb)) { LIBIPW_DEBUG_DROP("dropped unencrypted RX data " "frame from %pM (drop_unencrypted=1)\n", hdr->addr2); goto rx_dropped; } /* If the frame was decrypted in hardware, we may need to strip off * any security data (IV, ICV, etc) that was left behind */ if (!can_be_decrypted && (fc & IEEE80211_FCTL_PROTECTED) && ieee->host_strip_iv_icv) { int trimlen = 0; /* Top two-bits of byte 3 are the key index */ if (skb->len >= hdrlen + 3) keyidx = skb->data[hdrlen + 3] >> 6; /* To strip off any security data which appears before the * payload, we simply increase hdrlen (as the header gets * chopped off immediately below). For the security data which * appears after the payload, we use skb_trim. */ switch (ieee->sec.encode_alg[keyidx]) { case SEC_ALG_WEP: /* 4 byte IV */ hdrlen += 4; /* 4 byte ICV */ trimlen = 4; break; case SEC_ALG_TKIP: /* 4 byte IV, 4 byte ExtIV */ hdrlen += 8; /* 8 byte MIC, 4 byte ICV */ trimlen = 12; break; case SEC_ALG_CCMP: /* 8 byte CCMP header */ hdrlen += 8; /* 8 byte MIC */ trimlen = 8; break; } if (skb->len < trimlen) goto rx_dropped; __skb_trim(skb, skb->len - trimlen); if (skb->len < hdrlen) goto rx_dropped; } /* skb: hdr + (possible reassembled) full plaintext payload */ payload = skb->data + hdrlen; ethertype = (payload[6] << 8) | payload[7]; #ifdef NOT_YET /* If IEEE 802.1X is used, check whether the port is authorized to send * the received frame. */ if (ieee->ieee802_1x && ieee->iw_mode == IW_MODE_MASTER) { if (ethertype == ETH_P_PAE) { printk(KERN_DEBUG "%s: RX: IEEE 802.1X frame\n", dev->name); if (ieee->hostapd && ieee->apdev) { /* Send IEEE 802.1X frames to the user * space daemon for processing */ prism2_rx_80211(ieee->apdev, skb, rx_stats, PRISM2_RX_MGMT); ieee->apdevstats.rx_packets++; ieee->apdevstats.rx_bytes += skb->len; goto rx_exit; } } else if (!frame_authorized) { printk(KERN_DEBUG "%s: dropped frame from " "unauthorized port (IEEE 802.1X): " "ethertype=0x%04x\n", dev->name, ethertype); goto rx_dropped; } } #endif /* convert hdr + possible LLC headers into Ethernet header */ if (skb->len - hdrlen >= 8 && ((memcmp(payload, libipw_rfc1042_header, SNAP_SIZE) == 0 && ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || memcmp(payload, libipw_bridge_tunnel_header, SNAP_SIZE) == 0)) { /* remove RFC1042 or Bridge-Tunnel encapsulation and * replace EtherType */ skb_pull(skb, hdrlen + SNAP_SIZE); memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); } else { __be16 len; /* Leave Ethernet header part of hdr and full payload */ skb_pull(skb, hdrlen); len = htons(skb->len); memcpy(skb_push(skb, 2), &len, 2); memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); } #ifdef NOT_YET if (wds && ((fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) == IEEE80211_FCTL_TODS) && skb->len >= ETH_HLEN + ETH_ALEN) { /* Non-standard frame: get addr4 from its bogus location after * the payload */ skb_copy_to_linear_data_offset(skb, ETH_ALEN, skb->data + skb->len - ETH_ALEN, ETH_ALEN); skb_trim(skb, skb->len - ETH_ALEN); } #endif dev->stats.rx_packets++; dev->stats.rx_bytes += skb->len; #ifdef NOT_YET if (ieee->iw_mode == IW_MODE_MASTER && !wds && ieee->ap->bridge_packets) { if (is_multicast_ether_addr(dst)) { /* copy multicast frame both to the higher layers and * to the wireless media */ ieee->ap->bridged_multicast++; skb2 = skb_clone(skb, GFP_ATOMIC); if (skb2 == NULL) printk(KERN_DEBUG "%s: skb_clone failed for " "multicast frame\n", dev->name); } else if (hostap_is_sta_assoc(ieee->ap, dst)) { /* send frame directly to the associated STA using * wireless media and not passing to higher layers */ ieee->ap->bridged_unicast++; skb2 = skb; skb = NULL; } } if (skb2 != NULL) { /* send to wireless media */ skb2->dev = dev; skb2->protocol = htons(ETH_P_802_3); skb_reset_mac_header(skb2); skb_reset_network_header(skb2); /* skb2->network_header += ETH_HLEN; */ dev_queue_xmit(skb2); } #endif if (skb) { skb->protocol = eth_type_trans(skb, dev); memset(skb->cb, 0, sizeof(skb->cb)); skb->ip_summed = CHECKSUM_NONE; /* 802.11 crc not sufficient */ if (netif_rx(skb) == NET_RX_DROP) { /* netif_rx always succeeds, but it might drop * the packet. If it drops the packet, we log that * in our stats. */ LIBIPW_DEBUG_DROP ("RX: netif_rx dropped the packet\n"); dev->stats.rx_dropped++; } } rx_exit: #ifdef NOT_YET if (sta) hostap_handle_sta_release(sta); #endif return 1; rx_dropped: dev->stats.rx_dropped++; /* Returning 0 indicates to caller that we have not handled the SKB-- * so it is still allocated and can be used again by underlying * hardware as a DMA target */ return 0; } /* Filter out unrelated packets, call libipw_rx[_mgt] * This function takes over the skb, it should not be used again after calling * this function. */ void libipw_rx_any(struct libipw_device *ieee, struct sk_buff *skb, struct libipw_rx_stats *stats) { struct libipw_hdr_4addr *hdr; int is_packet_for_us; u16 fc; if (ieee->iw_mode == IW_MODE_MONITOR) { if (!libipw_rx(ieee, skb, stats)) dev_kfree_skb_irq(skb); return; } if (skb->len < sizeof(struct ieee80211_hdr)) goto drop_free; hdr = (struct libipw_hdr_4addr *)skb->data; fc = le16_to_cpu(hdr->frame_ctl); if ((fc & IEEE80211_FCTL_VERS) != 0) goto drop_free; switch (fc & IEEE80211_FCTL_FTYPE) { case IEEE80211_FTYPE_MGMT: if (skb->len < sizeof(struct libipw_hdr_3addr)) goto drop_free; libipw_rx_mgt(ieee, hdr, stats); dev_kfree_skb_irq(skb); return; case IEEE80211_FTYPE_DATA: break; case IEEE80211_FTYPE_CTL: return; default: return; } is_packet_for_us = 0; switch (ieee->iw_mode) { case IW_MODE_ADHOC: /* our BSS and not from/to DS */ if (ether_addr_equal(hdr->addr3, ieee->bssid)) if ((fc & (IEEE80211_FCTL_TODS+IEEE80211_FCTL_FROMDS)) == 0) { /* promisc: get all */ if (ieee->dev->flags & IFF_PROMISC) is_packet_for_us = 1; /* to us */ else if (ether_addr_equal(hdr->addr1, ieee->dev->dev_addr)) is_packet_for_us = 1; /* mcast */ else if (is_multicast_ether_addr(hdr->addr1)) is_packet_for_us = 1; } break; case IW_MODE_INFRA: /* our BSS (== from our AP) and from DS */ if (ether_addr_equal(hdr->addr2, ieee->bssid)) if ((fc & (IEEE80211_FCTL_TODS+IEEE80211_FCTL_FROMDS)) == IEEE80211_FCTL_FROMDS) { /* promisc: get all */ if (ieee->dev->flags & IFF_PROMISC) is_packet_for_us = 1; /* to us */ else if (ether_addr_equal(hdr->addr1, ieee->dev->dev_addr)) is_packet_for_us = 1; /* mcast */ else if (is_multicast_ether_addr(hdr->addr1)) { /* not our own packet bcasted from AP */ if (!ether_addr_equal(hdr->addr3, ieee->dev->dev_addr)) is_packet_for_us = 1; } } break; default: /* ? */ break; } if (is_packet_for_us) if (!libipw_rx(ieee, skb, stats)) dev_kfree_skb_irq(skb); return; drop_free: dev_kfree_skb_irq(skb); ieee->dev->stats.rx_dropped++; } #define MGMT_FRAME_FIXED_PART_LENGTH 0x24 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 }; /* * Make the structure we read from the beacon packet to have * the right values */ static int libipw_verify_qos_info(struct libipw_qos_information_element *info_element, int sub_type) { if (info_element->qui_subtype != sub_type) return -1; if (memcmp(info_element->qui, qos_oui, QOS_OUI_LEN)) return -1; if (info_element->qui_type != QOS_OUI_TYPE) return -1; if (info_element->version != QOS_VERSION_1) return -1; return 0; } /* * Parse a QoS parameter element */ static int libipw_read_qos_param_element(struct libipw_qos_parameter_info *element_param, struct libipw_info_element *info_element) { int ret = 0; u16 size = sizeof(struct libipw_qos_parameter_info) - 2; if ((info_element == NULL) || (element_param == NULL)) return -1; if (info_element->id == QOS_ELEMENT_ID && info_element->len == size) { memcpy(element_param->info_element.qui, info_element->data, info_element->len); element_param->info_element.elementID = info_element->id; element_param->info_element.length = info_element->len; } else ret = -1; if (ret == 0) ret = libipw_verify_qos_info(&element_param->info_element, QOS_OUI_PARAM_SUB_TYPE); return ret; } /* * Parse a QoS information element */ static int libipw_read_qos_info_element(struct libipw_qos_information_element *element_info, struct libipw_info_element *info_element) { int ret = 0; u16 size = sizeof(struct libipw_qos_information_element) - 2; if (element_info == NULL) return -1; if (info_element == NULL) return -1; if ((info_element->id == QOS_ELEMENT_ID) && (info_element->len == size)) { memcpy(element_info->qui, info_element->data, info_element->len); element_info->elementID = info_element->id; element_info->length = info_element->len; } else ret = -1; if (ret == 0) ret = libipw_verify_qos_info(element_info, QOS_OUI_INFO_SUB_TYPE); return ret; } /* * Write QoS parameters from the ac parameters. */ static void libipw_qos_convert_ac_to_parameters(struct libipw_qos_parameter_info *param_elm, struct libipw_qos_parameters *qos_param) { int i; struct libipw_qos_ac_parameter *ac_params; u32 txop; u8 cw_min; u8 cw_max; for (i = 0; i < QOS_QUEUE_NUM; i++) { ac_params = &(param_elm->ac_params_record[i]); qos_param->aifs[i] = (ac_params->aci_aifsn) & 0x0F; qos_param->aifs[i] -= (qos_param->aifs[i] < 2) ? 0 : 2; cw_min = ac_params->ecw_min_max & 0x0F; qos_param->cw_min[i] = cpu_to_le16((1 << cw_min) - 1); cw_max = (ac_params->ecw_min_max & 0xF0) >> 4; qos_param->cw_max[i] = cpu_to_le16((1 << cw_max) - 1); qos_param->flag[i] = (ac_params->aci_aifsn & 0x10) ? 0x01 : 0x00; txop = le16_to_cpu(ac_params->tx_op_limit) * 32; qos_param->tx_op_limit[i] = cpu_to_le16(txop); } } /* * we have a generic data element which it may contain QoS information or * parameters element. check the information element length to decide * which type to read */ static int libipw_parse_qos_info_param_IE(struct libipw_info_element *info_element, struct libipw_network *network) { int rc = 0; struct libipw_qos_parameters *qos_param = NULL; struct libipw_qos_information_element qos_info_element; rc = libipw_read_qos_info_element(&qos_info_element, info_element); if (rc == 0) { network->qos_data.param_count = qos_info_element.ac_info & 0x0F; network->flags |= NETWORK_HAS_QOS_INFORMATION; } else { struct libipw_qos_parameter_info param_element; rc = libipw_read_qos_param_element(¶m_element, info_element); if (rc == 0) { qos_param = &(network->qos_data.parameters); libipw_qos_convert_ac_to_parameters(¶m_element, qos_param); network->flags |= NETWORK_HAS_QOS_PARAMETERS; network->qos_data.param_count = param_element.info_element.ac_info & 0x0F; } } if (rc == 0) { LIBIPW_DEBUG_QOS("QoS is supported\n"); network->qos_data.supported = 1; } return rc; } #ifdef CONFIG_LIBIPW_DEBUG #define MFIE_STRING(x) case WLAN_EID_ ##x: return #x static const char *get_info_element_string(u16 id) { switch (id) { MFIE_STRING(SSID); MFIE_STRING(SUPP_RATES); MFIE_STRING(FH_PARAMS); MFIE_STRING(DS_PARAMS); MFIE_STRING(CF_PARAMS); MFIE_STRING(TIM); MFIE_STRING(IBSS_PARAMS); MFIE_STRING(COUNTRY); MFIE_STRING(REQUEST); MFIE_STRING(CHALLENGE); MFIE_STRING(PWR_CONSTRAINT); MFIE_STRING(PWR_CAPABILITY); MFIE_STRING(TPC_REQUEST); MFIE_STRING(TPC_REPORT); MFIE_STRING(SUPPORTED_CHANNELS); MFIE_STRING(CHANNEL_SWITCH); MFIE_STRING(MEASURE_REQUEST); MFIE_STRING(MEASURE_REPORT); MFIE_STRING(QUIET); MFIE_STRING(IBSS_DFS); MFIE_STRING(ERP_INFO); MFIE_STRING(RSN); MFIE_STRING(EXT_SUPP_RATES); MFIE_STRING(VENDOR_SPECIFIC); MFIE_STRING(QOS_PARAMETER); default: return "UNKNOWN"; } } #endif static int libipw_parse_info_param(struct libipw_info_element *info_element, u16 length, struct libipw_network *network) { u8 i; #ifdef CONFIG_LIBIPW_DEBUG char rates_str[64]; char *p; #endif while (length >= sizeof(*info_element)) { if (sizeof(*info_element) + info_element->len > length) { LIBIPW_DEBUG_MGMT("Info elem: parse failed: " "info_element->len + 2 > left : " "info_element->len+2=%zd left=%d, id=%d.\n", info_element->len + sizeof(*info_element), length, info_element->id); /* We stop processing but don't return an error here * because some misbehaviour APs break this rule. ie. * Orinoco AP1000. */ break; } switch (info_element->id) { case WLAN_EID_SSID: network->ssid_len = min(info_element->len, (u8) IW_ESSID_MAX_SIZE); memcpy(network->ssid, info_element->data, network->ssid_len); if (network->ssid_len < IW_ESSID_MAX_SIZE) memset(network->ssid + network->ssid_len, 0, IW_ESSID_MAX_SIZE - network->ssid_len); LIBIPW_DEBUG_MGMT("WLAN_EID_SSID: '%*pE' len=%d.\n", network->ssid_len, network->ssid, network->ssid_len); break; case WLAN_EID_SUPP_RATES: #ifdef CONFIG_LIBIPW_DEBUG p = rates_str; #endif network->rates_len = min(info_element->len, MAX_RATES_LENGTH); for (i = 0; i < network->rates_len; i++) { network->rates[i] = info_element->data[i]; #ifdef CONFIG_LIBIPW_DEBUG p += scnprintf(p, sizeof(rates_str) - (p - rates_str), "%02X ", network->rates[i]); #endif if (libipw_is_ofdm_rate (info_element->data[i])) { network->flags |= NETWORK_HAS_OFDM; if (info_element->data[i] & LIBIPW_BASIC_RATE_MASK) network->flags &= ~NETWORK_HAS_CCK; } } LIBIPW_DEBUG_MGMT("WLAN_EID_SUPP_RATES: '%s' (%d)\n", rates_str, network->rates_len); break; case WLAN_EID_EXT_SUPP_RATES: #ifdef CONFIG_LIBIPW_DEBUG p = rates_str; #endif network->rates_ex_len = min(info_element->len, MAX_RATES_EX_LENGTH); for (i = 0; i < network->rates_ex_len; i++) { network->rates_ex[i] = info_element->data[i]; #ifdef CONFIG_LIBIPW_DEBUG p += scnprintf(p, sizeof(rates_str) - (p - rates_str), "%02X ", network->rates_ex[i]); #endif if (libipw_is_ofdm_rate (info_element->data[i])) { network->flags |= NETWORK_HAS_OFDM; if (info_element->data[i] & LIBIPW_BASIC_RATE_MASK) network->flags &= ~NETWORK_HAS_CCK; } } LIBIPW_DEBUG_MGMT("WLAN_EID_EXT_SUPP_RATES: '%s' (%d)\n", rates_str, network->rates_ex_len); break; case WLAN_EID_DS_PARAMS: LIBIPW_DEBUG_MGMT("WLAN_EID_DS_PARAMS: %d\n", info_element->data[0]); network->channel = info_element->data[0]; break; case WLAN_EID_FH_PARAMS: LIBIPW_DEBUG_MGMT("WLAN_EID_FH_PARAMS: ignored\n"); break; case WLAN_EID_CF_PARAMS: LIBIPW_DEBUG_MGMT("WLAN_EID_CF_PARAMS: ignored\n"); break; case WLAN_EID_TIM: network->tim.tim_count = info_element->data[0]; network->tim.tim_period = info_element->data[1]; LIBIPW_DEBUG_MGMT("WLAN_EID_TIM: partially ignored\n"); break; case WLAN_EID_ERP_INFO: network->erp_value = info_element->data[0]; network->flags |= NETWORK_HAS_ERP_VALUE; LIBIPW_DEBUG_MGMT("MFIE_TYPE_ERP_SET: %d\n", network->erp_value); break; case WLAN_EID_IBSS_PARAMS: network->atim_window = info_element->data[0]; LIBIPW_DEBUG_MGMT("WLAN_EID_IBSS_PARAMS: %d\n", network->atim_window); break; case WLAN_EID_CHALLENGE: LIBIPW_DEBUG_MGMT("WLAN_EID_CHALLENGE: ignored\n"); break; case WLAN_EID_VENDOR_SPECIFIC: LIBIPW_DEBUG_MGMT("WLAN_EID_VENDOR_SPECIFIC: %d bytes\n", info_element->len); if (!libipw_parse_qos_info_param_IE(info_element, network)) break; if (info_element->len >= 4 && info_element->data[0] == 0x00 && info_element->data[1] == 0x50 && info_element->data[2] == 0xf2 && info_element->data[3] == 0x01) { network->wpa_ie_len = min(info_element->len + 2, MAX_WPA_IE_LEN); memcpy(network->wpa_ie, info_element, network->wpa_ie_len); } break; case WLAN_EID_RSN: LIBIPW_DEBUG_MGMT("WLAN_EID_RSN: %d bytes\n", info_element->len); network->rsn_ie_len = min(info_element->len + 2, MAX_WPA_IE_LEN); memcpy(network->rsn_ie, info_element, network->rsn_ie_len); break; case WLAN_EID_QOS_PARAMETER: printk(KERN_ERR "QoS Error need to parse QOS_PARAMETER IE\n"); break; /* 802.11h */ case WLAN_EID_PWR_CONSTRAINT: network->power_constraint = info_element->data[0]; network->flags |= NETWORK_HAS_POWER_CONSTRAINT; break; case WLAN_EID_CHANNEL_SWITCH: network->power_constraint = info_element->data[0]; network->flags |= NETWORK_HAS_CSA; break; case WLAN_EID_QUIET: network->quiet.count = info_element->data[0]; network->quiet.period = info_element->data[1]; network->quiet.duration = info_element->data[2]; network->quiet.offset = info_element->data[3]; network->flags |= NETWORK_HAS_QUIET; break; case WLAN_EID_IBSS_DFS: network->flags |= NETWORK_HAS_IBSS_DFS; break; case WLAN_EID_TPC_REPORT: network->tpc_report.transmit_power = info_element->data[0]; network->tpc_report.link_margin = info_element->data[1]; network->flags |= NETWORK_HAS_TPC_REPORT; break; default: LIBIPW_DEBUG_MGMT ("Unsupported info element: %s (%d)\n", get_info_element_string(info_element->id), info_element->id); break; } length -= sizeof(*info_element) + info_element->len; info_element = (struct libipw_info_element *)&info_element-> data[info_element->len]; } return 0; } static int libipw_handle_assoc_resp(struct libipw_device *ieee, struct libipw_assoc_response *frame, struct libipw_rx_stats *stats) { struct libipw_network network_resp = { }; struct libipw_network *network = &network_resp; struct net_device *dev = ieee->dev; network->flags = 0; network->qos_data.active = 0; network->qos_data.supported = 0; network->qos_data.param_count = 0; network->qos_data.old_param_count = 0; //network->atim_window = le16_to_cpu(frame->aid) & (0x3FFF); network->atim_window = le16_to_cpu(frame->aid); network->listen_interval = le16_to_cpu(frame->status); memcpy(network->bssid, frame->header.addr3, ETH_ALEN); network->capability = le16_to_cpu(frame->capability); network->last_scanned = jiffies; network->rates_len = network->rates_ex_len = 0; network->last_associate = 0; network->ssid_len = 0; network->erp_value = (network->capability & WLAN_CAPABILITY_IBSS) ? 0x3 : 0x0; if (stats->freq == LIBIPW_52GHZ_BAND) { /* for A band (No DS info) */ network->channel = stats->received_channel; } else network->flags |= NETWORK_HAS_CCK; network->wpa_ie_len = 0; network->rsn_ie_len = 0; if (libipw_parse_info_param (frame->info_element, stats->len - sizeof(*frame), network)) return 1; network->mode = 0; if (stats->freq == LIBIPW_52GHZ_BAND) network->mode = IEEE_A; else { if (network->flags & NETWORK_HAS_OFDM) network->mode |= IEEE_G; if (network->flags & NETWORK_HAS_CCK) network->mode |= IEEE_B; } memcpy(&network->stats, stats, sizeof(network->stats)); if (ieee->handle_assoc_response != NULL) ieee->handle_assoc_response(dev, frame, network); return 0; } /***************************************************/ static int libipw_network_init(struct libipw_device *ieee, struct libipw_probe_response *beacon, struct libipw_network *network, struct libipw_rx_stats *stats) { network->qos_data.active = 0; network->qos_data.supported = 0; network->qos_data.param_count = 0; network->qos_data.old_param_count = 0; /* Pull out fixed field data */ memcpy(network->bssid, beacon->header.addr3, ETH_ALEN); network->capability = le16_to_cpu(beacon->capability); network->last_scanned = jiffies; network->time_stamp[0] = le32_to_cpu(beacon->time_stamp[0]); network->time_stamp[1] = le32_to_cpu(beacon->time_stamp[1]); network->beacon_interval = le16_to_cpu(beacon->beacon_interval); /* Where to pull this? beacon->listen_interval; */ network->listen_interval = 0x0A; network->rates_len = network->rates_ex_len = 0; network->last_associate = 0; network->ssid_len = 0; network->flags = 0; network->atim_window = 0; network->erp_value = (network->capability & WLAN_CAPABILITY_IBSS) ? 0x3 : 0x0; if (stats->freq == LIBIPW_52GHZ_BAND) { /* for A band (No DS info) */ network->channel = stats->received_channel; } else network->flags |= NETWORK_HAS_CCK; network->wpa_ie_len = 0; network->rsn_ie_len = 0; if (libipw_parse_info_param (beacon->info_element, stats->len - sizeof(*beacon), network)) return 1; network->mode = 0; if (stats->freq == LIBIPW_52GHZ_BAND) network->mode = IEEE_A; else { if (network->flags & NETWORK_HAS_OFDM) network->mode |= IEEE_G; if (network->flags & NETWORK_HAS_CCK) network->mode |= IEEE_B; } if (network->mode == 0) { LIBIPW_DEBUG_SCAN("Filtered out '%*pE (%pM)' network.\n", network->ssid_len, network->ssid, network->bssid); return 1; } memcpy(&network->stats, stats, sizeof(network->stats)); return 0; } static inline int is_same_network(struct libipw_network *src, struct libipw_network *dst) { /* A network is only a duplicate if the channel, BSSID, and ESSID * all match. We treat all <hidden> with the same BSSID and channel * as one network */ return ((src->ssid_len == dst->ssid_len) && (src->channel == dst->channel) && ether_addr_equal_64bits(src->bssid, dst->bssid) && !memcmp(src->ssid, dst->ssid, src->ssid_len)); } static void update_network(struct libipw_network *dst, struct libipw_network *src) { int qos_active; u8 old_param; /* We only update the statistics if they were created by receiving * the network information on the actual channel the network is on. * * This keeps beacons received on neighbor channels from bringing * down the signal level of an AP. */ if (dst->channel == src->stats.received_channel) memcpy(&dst->stats, &src->stats, sizeof(struct libipw_rx_stats)); else LIBIPW_DEBUG_SCAN("Network %pM info received " "off channel (%d vs. %d)\n", src->bssid, dst->channel, src->stats.received_channel); dst->capability = src->capability; memcpy(dst->rates, src->rates, src->rates_len); dst->rates_len = src->rates_len; memcpy(dst->rates_ex, src->rates_ex, src->rates_ex_len); dst->rates_ex_len = src->rates_ex_len; dst->mode = src->mode; dst->flags = src->flags; dst->time_stamp[0] = src->time_stamp[0]; dst->time_stamp[1] = src->time_stamp[1]; dst->beacon_interval = src->beacon_interval; dst->listen_interval = src->listen_interval; dst->atim_window = src->atim_window; dst->erp_value = src->erp_value; dst->tim = src->tim; memcpy(dst->wpa_ie, src->wpa_ie, src->wpa_ie_len); dst->wpa_ie_len = src->wpa_ie_len; memcpy(dst->rsn_ie, src->rsn_ie, src->rsn_ie_len); dst->rsn_ie_len = src->rsn_ie_len; dst->last_scanned = jiffies; qos_active = src->qos_data.active; old_param = dst->qos_data.old_param_count; if (dst->flags & NETWORK_HAS_QOS_MASK) memcpy(&dst->qos_data, &src->qos_data, sizeof(struct libipw_qos_data)); else { dst->qos_data.supported = src->qos_data.supported; dst->qos_data.param_count = src->qos_data.param_count; } if (dst->qos_data.supported == 1) { if (dst->ssid_len) LIBIPW_DEBUG_QOS ("QoS the network %s is QoS supported\n", dst->ssid); else LIBIPW_DEBUG_QOS ("QoS the network is QoS supported\n"); } dst->qos_data.active = qos_active; dst->qos_data.old_param_count = old_param; /* dst->last_associate is not overwritten */ } static inline int is_beacon(__le16 fc) { return (WLAN_FC_GET_STYPE(le16_to_cpu(fc)) == IEEE80211_STYPE_BEACON); } static void libipw_process_probe_response(struct libipw_device *ieee, struct libipw_probe_response *beacon, struct libipw_rx_stats *stats) { struct net_device *dev = ieee->dev; struct libipw_network network = { }; struct libipw_network *target; struct libipw_network *oldest = NULL; #ifdef CONFIG_LIBIPW_DEBUG struct libipw_info_element *info_element = beacon->info_element; #endif unsigned long flags; LIBIPW_DEBUG_SCAN("'%*pE' (%pM): %c%c%c%c %c%c%c%c-%c%c%c%c %c%c%c%c\n", info_element->len, info_element->data, beacon->header.addr3, (beacon->capability & cpu_to_le16(1 << 0xf)) ? '1' : '0', (beacon->capability & cpu_to_le16(1 << 0xe)) ? '1' : '0', (beacon->capability & cpu_to_le16(1 << 0xd)) ? '1' : '0', (beacon->capability & cpu_to_le16(1 << 0xc)) ? '1' : '0', (beacon->capability & cpu_to_le16(1 << 0xb)) ? '1' : '0', (beacon->capability & cpu_to_le16(1 << 0xa)) ? '1' : '0', (beacon->capability & cpu_to_le16(1 << 0x9)) ? '1' : '0', (beacon->capability & cpu_to_le16(1 << 0x8)) ? '1' : '0', (beacon->capability & cpu_to_le16(1 << 0x7)) ? '1' : '0', (beacon->capability & cpu_to_le16(1 << 0x6)) ? '1' : '0', (beacon->capability & cpu_to_le16(1 << 0x5)) ? '1' : '0', (beacon->capability & cpu_to_le16(1 << 0x4)) ? '1' : '0', (beacon->capability & cpu_to_le16(1 << 0x3)) ? '1' : '0', (beacon->capability & cpu_to_le16(1 << 0x2)) ? '1' : '0', (beacon->capability & cpu_to_le16(1 << 0x1)) ? '1' : '0', (beacon->capability & cpu_to_le16(1 << 0x0)) ? '1' : '0'); if (libipw_network_init(ieee, beacon, &network, stats)) { LIBIPW_DEBUG_SCAN("Dropped '%*pE' (%pM) via %s.\n", info_element->len, info_element->data, beacon->header.addr3, is_beacon(beacon->header.frame_ctl) ? "BEACON" : "PROBE RESPONSE"); return; } /* The network parsed correctly -- so now we scan our known networks * to see if we can find it in our list. * * NOTE: This search is definitely not optimized. Once its doing * the "right thing" we'll optimize it for efficiency if * necessary */ /* Search for this entry in the list and update it if it is * already there. */ spin_lock_irqsave(&ieee->lock, flags); list_for_each_entry(target, &ieee->network_list, list) { if (is_same_network(target, &network)) break; if ((oldest == NULL) || time_before(target->last_scanned, oldest->last_scanned)) oldest = target; } /* If we didn't find a match, then get a new network slot to initialize * with this beacon's information */ if (&target->list == &ieee->network_list) { if (list_empty(&ieee->network_free_list)) { /* If there are no more slots, expire the oldest */ list_del(&oldest->list); target = oldest; LIBIPW_DEBUG_SCAN("Expired '%*pE' (%pM) from network list.\n", target->ssid_len, target->ssid, target->bssid); } else { /* Otherwise just pull from the free list */ target = list_entry(ieee->network_free_list.next, struct libipw_network, list); list_del(ieee->network_free_list.next); } #ifdef CONFIG_LIBIPW_DEBUG LIBIPW_DEBUG_SCAN("Adding '%*pE' (%pM) via %s.\n", network.ssid_len, network.ssid, network.bssid, is_beacon(beacon->header.frame_ctl) ? "BEACON" : "PROBE RESPONSE"); #endif memcpy(target, &network, sizeof(*target)); list_add_tail(&target->list, &ieee->network_list); } else { LIBIPW_DEBUG_SCAN("Updating '%*pE' (%pM) via %s.\n", target->ssid_len, target->ssid, target->bssid, is_beacon(beacon->header.frame_ctl) ? "BEACON" : "PROBE RESPONSE"); update_network(target, &network); } spin_unlock_irqrestore(&ieee->lock, flags); if (is_beacon(beacon->header.frame_ctl)) { if (ieee->handle_beacon != NULL) ieee->handle_beacon(dev, beacon, target); } else { if (ieee->handle_probe_response != NULL) ieee->handle_probe_response(dev, beacon, target); } } void libipw_rx_mgt(struct libipw_device *ieee, struct libipw_hdr_4addr *header, struct libipw_rx_stats *stats) { switch (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl))) { case IEEE80211_STYPE_ASSOC_RESP: LIBIPW_DEBUG_MGMT("received ASSOCIATION RESPONSE (%d)\n", WLAN_FC_GET_STYPE(le16_to_cpu (header->frame_ctl))); libipw_handle_assoc_resp(ieee, (struct libipw_assoc_response *) header, stats); break; case IEEE80211_STYPE_REASSOC_RESP: LIBIPW_DEBUG_MGMT("received REASSOCIATION RESPONSE (%d)\n", WLAN_FC_GET_STYPE(le16_to_cpu (header->frame_ctl))); break; case IEEE80211_STYPE_PROBE_REQ: LIBIPW_DEBUG_MGMT("received auth (%d)\n", WLAN_FC_GET_STYPE(le16_to_cpu (header->frame_ctl))); if (ieee->handle_probe_request != NULL) ieee->handle_probe_request(ieee->dev, (struct libipw_probe_request *) header, stats); break; case IEEE80211_STYPE_PROBE_RESP: LIBIPW_DEBUG_MGMT("received PROBE RESPONSE (%d)\n", WLAN_FC_GET_STYPE(le16_to_cpu (header->frame_ctl))); LIBIPW_DEBUG_SCAN("Probe response\n"); libipw_process_probe_response(ieee, (struct libipw_probe_response *) header, stats); break; case IEEE80211_STYPE_BEACON: LIBIPW_DEBUG_MGMT("received BEACON (%d)\n", WLAN_FC_GET_STYPE(le16_to_cpu (header->frame_ctl))); LIBIPW_DEBUG_SCAN("Beacon\n"); libipw_process_probe_response(ieee, (struct libipw_probe_response *) header, stats); break; case IEEE80211_STYPE_AUTH: LIBIPW_DEBUG_MGMT("received auth (%d)\n", WLAN_FC_GET_STYPE(le16_to_cpu (header->frame_ctl))); if (ieee->handle_auth != NULL) ieee->handle_auth(ieee->dev, (struct libipw_auth *)header); break; case IEEE80211_STYPE_DISASSOC: if (ieee->handle_disassoc != NULL) ieee->handle_disassoc(ieee->dev, (struct libipw_disassoc *) header); break; case IEEE80211_STYPE_ACTION: LIBIPW_DEBUG_MGMT("ACTION\n"); if (ieee->handle_action) ieee->handle_action(ieee->dev, (struct libipw_action *) header, stats); break; case IEEE80211_STYPE_REASSOC_REQ: LIBIPW_DEBUG_MGMT("received reassoc (%d)\n", WLAN_FC_GET_STYPE(le16_to_cpu (header->frame_ctl))); LIBIPW_DEBUG_MGMT("%s: LIBIPW_REASSOC_REQ received\n", ieee->dev->name); if (ieee->handle_reassoc_request != NULL) ieee->handle_reassoc_request(ieee->dev, (struct libipw_reassoc_request *) header); break; case IEEE80211_STYPE_ASSOC_REQ: LIBIPW_DEBUG_MGMT("received assoc (%d)\n", WLAN_FC_GET_STYPE(le16_to_cpu (header->frame_ctl))); LIBIPW_DEBUG_MGMT("%s: LIBIPW_ASSOC_REQ received\n", ieee->dev->name); if (ieee->handle_assoc_request != NULL) ieee->handle_assoc_request(ieee->dev); break; case IEEE80211_STYPE_DEAUTH: LIBIPW_DEBUG_MGMT("DEAUTH\n"); if (ieee->handle_deauth != NULL) ieee->handle_deauth(ieee->dev, (struct libipw_deauth *) header); break; default: LIBIPW_DEBUG_MGMT("received UNKNOWN (%d)\n", WLAN_FC_GET_STYPE(le16_to_cpu (header->frame_ctl))); LIBIPW_DEBUG_MGMT("%s: Unknown management packet: %d\n", ieee->dev->name, WLAN_FC_GET_STYPE(le16_to_cpu (header->frame_ctl))); break; } } EXPORT_SYMBOL_GPL(libipw_rx_any); EXPORT_SYMBOL(libipw_rx_mgt); EXPORT_SYMBOL(libipw_rx);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1