Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Johannes Berg | 1329 | 99.03% | 3 | 37.50% |
Luciano Coelho | 9 | 0.67% | 3 | 37.50% |
Golan Ben-Ami | 2 | 0.15% | 1 | 12.50% |
Sara Sharon | 2 | 0.15% | 1 | 12.50% |
Total | 1342 | 8 |
/****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. * Copyright(c) 2018 - 2019 Intel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless <linuxwifi@intel.com> * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. * Copyright(c) 2018 - 2019 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ #include <linux/types.h> #include <linux/slab.h> #include <linux/export.h> #include "iwl-drv.h" #include "iwl-debug.h" #include "iwl-eeprom-read.h" #include "iwl-io.h" #include "iwl-prph.h" #include "iwl-csr.h" /* * EEPROM access time values: * * Driver initiates EEPROM read by writing byte address << 1 to CSR_EEPROM_REG. * Driver then polls CSR_EEPROM_REG for CSR_EEPROM_REG_READ_VALID_MSK (0x1). * When polling, wait 10 uSec between polling loops, up to a maximum 5000 uSec. * Driver reads 16-bit value from bits 31-16 of CSR_EEPROM_REG. */ #define IWL_EEPROM_ACCESS_TIMEOUT 5000 /* uSec */ #define IWL_EEPROM_SEM_TIMEOUT 10 /* microseconds */ #define IWL_EEPROM_SEM_RETRY_LIMIT 1000 /* number of attempts (not time) */ /* * The device's EEPROM semaphore prevents conflicts between driver and uCode * when accessing the EEPROM; each access is a series of pulses to/from the * EEPROM chip, not a single event, so even reads could conflict if they * weren't arbitrated by the semaphore. */ #define EEPROM_SEM_TIMEOUT 10 /* milliseconds */ #define EEPROM_SEM_RETRY_LIMIT 1000 /* number of attempts (not time) */ static int iwl_eeprom_acquire_semaphore(struct iwl_trans *trans) { u16 count; int ret; for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) { /* Request semaphore */ iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM); /* See if we got it */ ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM, EEPROM_SEM_TIMEOUT); if (ret >= 0) { IWL_DEBUG_EEPROM(trans->dev, "Acquired semaphore after %d tries.\n", count+1); return ret; } } return ret; } static void iwl_eeprom_release_semaphore(struct iwl_trans *trans) { iwl_clear_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM); } static int iwl_eeprom_verify_signature(struct iwl_trans *trans, bool nvm_is_otp) { u32 gp = iwl_read32(trans, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK; IWL_DEBUG_EEPROM(trans->dev, "EEPROM signature=0x%08x\n", gp); switch (gp) { case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP: if (!nvm_is_otp) { IWL_ERR(trans, "EEPROM with bad signature: 0x%08x\n", gp); return -ENOENT; } return 0; case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K: case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K: if (nvm_is_otp) { IWL_ERR(trans, "OTP with bad signature: 0x%08x\n", gp); return -ENOENT; } return 0; case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP: default: IWL_ERR(trans, "bad EEPROM/OTP signature, type=%s, EEPROM_GP=0x%08x\n", nvm_is_otp ? "OTP" : "EEPROM", gp); return -ENOENT; } } /****************************************************************************** * * OTP related functions * ******************************************************************************/ static void iwl_set_otp_access_absolute(struct iwl_trans *trans) { iwl_read32(trans, CSR_OTP_GP_REG); iwl_clear_bit(trans, CSR_OTP_GP_REG, CSR_OTP_GP_REG_OTP_ACCESS_MODE); } static int iwl_nvm_is_otp(struct iwl_trans *trans) { u32 otpgp; /* OTP only valid for CP/PP and after */ switch (trans->hw_rev & CSR_HW_REV_TYPE_MSK) { case CSR_HW_REV_TYPE_NONE: IWL_ERR(trans, "Unknown hardware type\n"); return -EIO; case CSR_HW_REV_TYPE_5300: case CSR_HW_REV_TYPE_5350: case CSR_HW_REV_TYPE_5100: case CSR_HW_REV_TYPE_5150: return 0; default: otpgp = iwl_read32(trans, CSR_OTP_GP_REG); if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT) return 1; return 0; } } static int iwl_init_otp_access(struct iwl_trans *trans) { int ret; ret = iwl_finish_nic_init(trans, trans->trans_cfg); if (ret) return ret; iwl_set_bits_prph(trans, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_RESET_REQ); udelay(5); iwl_clear_bits_prph(trans, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_RESET_REQ); /* * CSR auto clock gate disable bit - * this is only applicable for HW with OTP shadow RAM */ if (trans->trans_cfg->base_params->shadow_ram_support) iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, CSR_RESET_LINK_PWR_MGMT_DISABLED); return 0; } static int iwl_read_otp_word(struct iwl_trans *trans, u16 addr, __le16 *eeprom_data) { int ret = 0; u32 r; u32 otpgp; iwl_write32(trans, CSR_EEPROM_REG, CSR_EEPROM_REG_MSK_ADDR & (addr << 1)); ret = iwl_poll_bit(trans, CSR_EEPROM_REG, CSR_EEPROM_REG_READ_VALID_MSK, CSR_EEPROM_REG_READ_VALID_MSK, IWL_EEPROM_ACCESS_TIMEOUT); if (ret < 0) { IWL_ERR(trans, "Time out reading OTP[%d]\n", addr); return ret; } r = iwl_read32(trans, CSR_EEPROM_REG); /* check for ECC errors: */ otpgp = iwl_read32(trans, CSR_OTP_GP_REG); if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) { /* stop in this case */ /* set the uncorrectable OTP ECC bit for acknowledgment */ iwl_set_bit(trans, CSR_OTP_GP_REG, CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK); IWL_ERR(trans, "Uncorrectable OTP ECC error, abort OTP read\n"); return -EINVAL; } if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) { /* continue in this case */ /* set the correctable OTP ECC bit for acknowledgment */ iwl_set_bit(trans, CSR_OTP_GP_REG, CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK); IWL_ERR(trans, "Correctable OTP ECC error, continue read\n"); } *eeprom_data = cpu_to_le16(r >> 16); return 0; } /* * iwl_is_otp_empty: check for empty OTP */ static bool iwl_is_otp_empty(struct iwl_trans *trans) { u16 next_link_addr = 0; __le16 link_value; bool is_empty = false; /* locate the beginning of OTP link list */ if (!iwl_read_otp_word(trans, next_link_addr, &link_value)) { if (!link_value) { IWL_ERR(trans, "OTP is empty\n"); is_empty = true; } } else { IWL_ERR(trans, "Unable to read first block of OTP list.\n"); is_empty = true; } return is_empty; } /* * iwl_find_otp_image: find EEPROM image in OTP * finding the OTP block that contains the EEPROM image. * the last valid block on the link list (the block _before_ the last block) * is the block we should read and used to configure the device. * If all the available OTP blocks are full, the last block will be the block * we should read and used to configure the device. * only perform this operation if shadow RAM is disabled */ static int iwl_find_otp_image(struct iwl_trans *trans, u16 *validblockaddr) { u16 next_link_addr = 0, valid_addr; __le16 link_value = 0; int usedblocks = 0; /* set addressing mode to absolute to traverse the link list */ iwl_set_otp_access_absolute(trans); /* checking for empty OTP or error */ if (iwl_is_otp_empty(trans)) return -EINVAL; /* * start traverse link list * until reach the max number of OTP blocks * different devices have different number of OTP blocks */ do { /* save current valid block address * check for more block on the link list */ valid_addr = next_link_addr; next_link_addr = le16_to_cpu(link_value) * sizeof(u16); IWL_DEBUG_EEPROM(trans->dev, "OTP blocks %d addr 0x%x\n", usedblocks, next_link_addr); if (iwl_read_otp_word(trans, next_link_addr, &link_value)) return -EINVAL; if (!link_value) { /* * reach the end of link list, return success and * set address point to the starting address * of the image */ *validblockaddr = valid_addr; /* skip first 2 bytes (link list pointer) */ *validblockaddr += 2; return 0; } /* more in the link list, continue */ usedblocks++; } while (usedblocks <= trans->trans_cfg->base_params->max_ll_items); /* OTP has no valid blocks */ IWL_DEBUG_EEPROM(trans->dev, "OTP has no valid blocks\n"); return -EINVAL; } /** * iwl_read_eeprom - read EEPROM contents * * Load the EEPROM contents from adapter and return it * and its size. * * NOTE: This routine uses the non-debug IO access functions. */ int iwl_read_eeprom(struct iwl_trans *trans, u8 **eeprom, size_t *eeprom_size) { __le16 *e; u32 gp = iwl_read32(trans, CSR_EEPROM_GP); int sz; int ret; u16 addr; u16 validblockaddr = 0; u16 cache_addr = 0; int nvm_is_otp; if (!eeprom || !eeprom_size) return -EINVAL; nvm_is_otp = iwl_nvm_is_otp(trans); if (nvm_is_otp < 0) return nvm_is_otp; sz = trans->trans_cfg->base_params->eeprom_size; IWL_DEBUG_EEPROM(trans->dev, "NVM size = %d\n", sz); e = kmalloc(sz, GFP_KERNEL); if (!e) return -ENOMEM; ret = iwl_eeprom_verify_signature(trans, nvm_is_otp); if (ret < 0) { IWL_ERR(trans, "EEPROM not found, EEPROM_GP=0x%08x\n", gp); goto err_free; } /* Make sure driver (instead of uCode) is allowed to read EEPROM */ ret = iwl_eeprom_acquire_semaphore(trans); if (ret < 0) { IWL_ERR(trans, "Failed to acquire EEPROM semaphore.\n"); goto err_free; } if (nvm_is_otp) { ret = iwl_init_otp_access(trans); if (ret) { IWL_ERR(trans, "Failed to initialize OTP access.\n"); goto err_unlock; } iwl_write32(trans, CSR_EEPROM_GP, iwl_read32(trans, CSR_EEPROM_GP) & ~CSR_EEPROM_GP_IF_OWNER_MSK); iwl_set_bit(trans, CSR_OTP_GP_REG, CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK | CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK); /* traversing the linked list if no shadow ram supported */ if (!trans->trans_cfg->base_params->shadow_ram_support) { ret = iwl_find_otp_image(trans, &validblockaddr); if (ret) goto err_unlock; } for (addr = validblockaddr; addr < validblockaddr + sz; addr += sizeof(u16)) { __le16 eeprom_data; ret = iwl_read_otp_word(trans, addr, &eeprom_data); if (ret) goto err_unlock; e[cache_addr / 2] = eeprom_data; cache_addr += sizeof(u16); } } else { /* eeprom is an array of 16bit values */ for (addr = 0; addr < sz; addr += sizeof(u16)) { u32 r; iwl_write32(trans, CSR_EEPROM_REG, CSR_EEPROM_REG_MSK_ADDR & (addr << 1)); ret = iwl_poll_bit(trans, CSR_EEPROM_REG, CSR_EEPROM_REG_READ_VALID_MSK, CSR_EEPROM_REG_READ_VALID_MSK, IWL_EEPROM_ACCESS_TIMEOUT); if (ret < 0) { IWL_ERR(trans, "Time out reading EEPROM[%d]\n", addr); goto err_unlock; } r = iwl_read32(trans, CSR_EEPROM_REG); e[addr / 2] = cpu_to_le16(r >> 16); } } IWL_DEBUG_EEPROM(trans->dev, "NVM Type: %s\n", nvm_is_otp ? "OTP" : "EEPROM"); iwl_eeprom_release_semaphore(trans); *eeprom_size = sz; *eeprom = (u8 *)e; return 0; err_unlock: iwl_eeprom_release_semaphore(trans); err_free: kfree(e); return ret; } IWL_EXPORT_SYMBOL(iwl_read_eeprom);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1