Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Larry Finger | 7871 | 96.20% | 13 | 54.17% |
Chaoming Li | 211 | 2.58% | 2 | 8.33% |
Ping-Ke Shih | 57 | 0.70% | 2 | 8.33% |
Joe Perches | 23 | 0.28% | 3 | 12.50% |
Ilia Mirkin | 11 | 0.13% | 1 | 4.17% |
Tobin C Harding | 4 | 0.05% | 1 | 4.17% |
Colin Ian King | 3 | 0.04% | 1 | 4.17% |
Paul Gortmaker | 2 | 0.02% | 1 | 4.17% |
Total | 8182 | 24 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2009-2012 Realtek Corporation.*/ #include "wifi.h" #include "efuse.h" #include "pci.h" #include <linux/export.h> static const u8 PGPKT_DATA_SIZE = 8; static const int EFUSE_MAX_SIZE = 512; #define START_ADDRESS 0x1000 #define REG_MCUFWDL 0x0080 static const struct rtl_efuse_ops efuse_ops = { .efuse_onebyte_read = efuse_one_byte_read, .efuse_logical_map_read = efuse_shadow_read, }; static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset, u8 *value); static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset, u16 *value); static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset, u32 *value); static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset, u8 value); static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset, u16 value); static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset, u32 value); static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data); static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse); static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data); static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset, u8 word_en, u8 *data); static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata, u8 *targetdata); static u8 enable_efuse_data_write(struct ieee80211_hw *hw, u16 efuse_addr, u8 word_en, u8 *data); static u16 efuse_get_current_size(struct ieee80211_hw *hw); static u8 efuse_calculate_word_cnts(u8 word_en); void efuse_initialize(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 bytetemp; u8 temp; bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1); temp = bytetemp | 0x20; rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp); bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1); temp = bytetemp & 0xFE; rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp); bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3); temp = bytetemp | 0x80; rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp); rtl_write_byte(rtlpriv, 0x2F8, 0x3); rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72); } u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 data; u8 bytetemp; u8 temp; u32 k = 0; const u32 efuse_len = rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE]; if (address < efuse_len) { temp = address & 0xFF; rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, temp); bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2); temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC); rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp); bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3); temp = bytetemp & 0x7F; rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp); bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3); while (!(bytetemp & 0x80)) { bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg-> maps[EFUSE_CTRL] + 3); k++; if (k == 1000) break; } data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); return data; } else return 0xFF; } EXPORT_SYMBOL(efuse_read_1byte); void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 bytetemp; u8 temp; u32 k = 0; const u32 efuse_len = rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE]; RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n", address, value); if (address < efuse_len) { rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value); temp = address & 0xFF; rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, temp); bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2); temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC); rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp); bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3); temp = bytetemp | 0x80; rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp); bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3); while (bytetemp & 0x80) { bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg-> maps[EFUSE_CTRL] + 3); k++; if (k == 100) { k = 0; break; } } } } void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 value32; u8 readbyte; u16 retry; rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (_offset & 0xff)); readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2); rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, ((_offset >> 8) & 0x03) | (readbyte & 0xfc)); readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3); rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, (readbyte & 0x7f)); retry = 0; value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) { value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); retry++; } udelay(50); value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); *pbuf = (u8) (value32 & 0xff); } EXPORT_SYMBOL_GPL(read_efuse_byte); void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 *efuse_tbl; u8 rtemp8[1]; u16 efuse_addr = 0; u8 offset, wren; u8 u1temp = 0; u16 i; u16 j; const u16 efuse_max_section = rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP]; const u32 efuse_len = rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE]; u16 **efuse_word; u16 efuse_utilized = 0; u8 efuse_usage; if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) { RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "read_efuse(): Invalid offset(%#x) with read bytes(%#x)!!\n", _offset, _size_byte); return; } /* allocate memory for efuse_tbl and efuse_word */ efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], GFP_ATOMIC); if (!efuse_tbl) return; efuse_word = kcalloc(EFUSE_MAX_WORD_UNIT, sizeof(u16 *), GFP_ATOMIC); if (!efuse_word) goto out; for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { efuse_word[i] = kcalloc(efuse_max_section, sizeof(u16), GFP_ATOMIC); if (!efuse_word[i]) goto done; } for (i = 0; i < efuse_max_section; i++) for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) efuse_word[j][i] = 0xFFFF; read_efuse_byte(hw, efuse_addr, rtemp8); if (*rtemp8 != 0xFF) { efuse_utilized++; RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL, "Addr=%d\n", efuse_addr); efuse_addr++; } while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) { /* Check PG header for section num. */ if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */ u1temp = ((*rtemp8 & 0xE0) >> 5); read_efuse_byte(hw, efuse_addr, rtemp8); if ((*rtemp8 & 0x0F) == 0x0F) { efuse_addr++; read_efuse_byte(hw, efuse_addr, rtemp8); if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) { efuse_addr++; } continue; } else { offset = ((*rtemp8 & 0xF0) >> 1) | u1temp; wren = (*rtemp8 & 0x0F); efuse_addr++; } } else { offset = ((*rtemp8 >> 4) & 0x0f); wren = (*rtemp8 & 0x0f); } if (offset < efuse_max_section) { RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL, "offset-%d Worden=%x\n", offset, wren); for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) { if (!(wren & 0x01)) { RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL, "Addr=%d\n", efuse_addr); read_efuse_byte(hw, efuse_addr, rtemp8); efuse_addr++; efuse_utilized++; efuse_word[i][offset] = (*rtemp8 & 0xff); if (efuse_addr >= efuse_len) break; RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL, "Addr=%d\n", efuse_addr); read_efuse_byte(hw, efuse_addr, rtemp8); efuse_addr++; efuse_utilized++; efuse_word[i][offset] |= (((u16)*rtemp8 << 8) & 0xff00); if (efuse_addr >= efuse_len) break; } wren >>= 1; } } RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL, "Addr=%d\n", efuse_addr); read_efuse_byte(hw, efuse_addr, rtemp8); if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) { efuse_utilized++; efuse_addr++; } } for (i = 0; i < efuse_max_section; i++) { for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) { efuse_tbl[(i * 8) + (j * 2)] = (efuse_word[j][i] & 0xff); efuse_tbl[(i * 8) + ((j * 2) + 1)] = ((efuse_word[j][i] >> 8) & 0xff); } } for (i = 0; i < _size_byte; i++) pbuf[i] = efuse_tbl[_offset + i]; rtlefuse->efuse_usedbytes = efuse_utilized; efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len); rtlefuse->efuse_usedpercentage = efuse_usage; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_utilized); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE, &efuse_usage); done: for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) kfree(efuse_word[i]); kfree(efuse_word); out: kfree(efuse_tbl); } bool efuse_shadow_update_chk(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 section_idx, i, base; u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used; bool wordchanged, result = true; for (section_idx = 0; section_idx < 16; section_idx++) { base = section_idx * 8; wordchanged = false; for (i = 0; i < 8; i = i + 2) { if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] != rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i] || rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i + 1] != rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i + 1]) { words_need++; wordchanged = true; } } if (wordchanged) hdr_num++; } totalbytes = hdr_num + words_need * 2; efuse_used = rtlefuse->efuse_usedbytes; if ((totalbytes + efuse_used) >= (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) result = false; RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "efuse_shadow_update_chk(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n", totalbytes, hdr_num, words_need, efuse_used); return result; } void efuse_shadow_read(struct ieee80211_hw *hw, u8 type, u16 offset, u32 *value) { if (type == 1) efuse_shadow_read_1byte(hw, offset, (u8 *)value); else if (type == 2) efuse_shadow_read_2byte(hw, offset, (u16 *)value); else if (type == 4) efuse_shadow_read_4byte(hw, offset, value); } EXPORT_SYMBOL(efuse_shadow_read); void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset, u32 value) { if (type == 1) efuse_shadow_write_1byte(hw, offset, (u8) value); else if (type == 2) efuse_shadow_write_2byte(hw, offset, (u16) value); else if (type == 4) efuse_shadow_write_4byte(hw, offset, value); } bool efuse_shadow_update(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u16 i, offset, base; u8 word_en = 0x0F; u8 first_pg = false; RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n"); if (!efuse_shadow_update_chk(hw)) { efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]); memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0], &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]); RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "efuse out of capacity!!\n"); return false; } efuse_power_switch(hw, true, true); for (offset = 0; offset < 16; offset++) { word_en = 0x0F; base = offset * 8; for (i = 0; i < 8; i++) { if (first_pg) { word_en &= ~(BIT(i / 2)); rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]; } else { if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] != rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) { word_en &= ~(BIT(i / 2)); rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]; } } } if (word_en != 0x0F) { u8 tmpdata[8]; memcpy(tmpdata, &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base], 8); RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD, "U-efuse\n", tmpdata, 8); if (!efuse_pg_packet_write(hw, (u8) offset, word_en, tmpdata)) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "PG section(%#x) fail!!\n", offset); break; } } } efuse_power_switch(hw, true, false); efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]); memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0], &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]); RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n"); return true; } void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); if (rtlefuse->autoload_failflag) memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]), 0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]); else efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]); memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0], &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]); } EXPORT_SYMBOL(rtl_efuse_shadow_map_update); void efuse_force_write_vendor_id(struct ieee80211_hw *hw) { u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF }; efuse_power_switch(hw, true, true); efuse_pg_packet_write(hw, 1, 0xD, tmpdata); efuse_power_switch(hw, true, false); } void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx) { } static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset, u8 *value) { struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset]; } static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset, u16 *value) { struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset]; *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8; } static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset, u32 *value) { struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset]; *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8; *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16; *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24; } static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset, u8 value) { struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value; } static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset, u16 value) { struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF; rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8; } static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset, u32 value) { struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = (u8) (value & 0x000000FF); rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = (u8) ((value >> 8) & 0x0000FF); rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] = (u8) ((value >> 16) & 0x00FF); rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] = (u8) ((value >> 24) & 0xFF); } int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmpidx = 0; int result; rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff)); rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, ((u8) ((addr >> 8) & 0x03)) | (rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2) & 0xFC)); rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72); while (!(0x80 & rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) && (tmpidx < 100)) { tmpidx++; } if (tmpidx < 100) { *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]); result = true; } else { *data = 0xff; result = false; } return result; } EXPORT_SYMBOL(efuse_one_byte_read); static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmpidx = 0; RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr = %x Data=%x\n", addr, data); rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff)); rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2, (rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2) & 0xFC) | (u8) ((addr >> 8) & 0x03)); rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data); rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2); while ((0x80 & rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) && (tmpidx < 100)) { tmpidx++; } if (tmpidx < 100) return true; return false; } static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse) { struct rtl_priv *rtlpriv = rtl_priv(hw); efuse_power_switch(hw, false, true); read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse); efuse_power_switch(hw, false, false); } static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr, u8 efuse_data, u8 offset, u8 *tmpdata, u8 *readstate) { bool dataempty = true; u8 hoffset; u8 tmpidx; u8 hworden; u8 word_cnts; hoffset = (efuse_data >> 4) & 0x0F; hworden = efuse_data & 0x0F; word_cnts = efuse_calculate_word_cnts(hworden); if (hoffset == offset) { for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) { if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx, &efuse_data)) { tmpdata[tmpidx] = efuse_data; if (efuse_data != 0xff) dataempty = false; } } if (!dataempty) { *readstate = PG_STATE_DATA; } else { *efuse_addr = *efuse_addr + (word_cnts * 2) + 1; *readstate = PG_STATE_HEADER; } } else { *efuse_addr = *efuse_addr + (word_cnts * 2) + 1; *readstate = PG_STATE_HEADER; } } static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data) { u8 readstate = PG_STATE_HEADER; bool continual = true; u8 efuse_data, word_cnts = 0; u16 efuse_addr = 0; u8 tmpdata[8]; if (data == NULL) return false; if (offset > 15) return false; memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8)); memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8)); while (continual && (efuse_addr < EFUSE_MAX_SIZE)) { if (readstate & PG_STATE_HEADER) { if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) && (efuse_data != 0xFF)) efuse_read_data_case1(hw, &efuse_addr, efuse_data, offset, tmpdata, &readstate); else continual = false; } else if (readstate & PG_STATE_DATA) { efuse_word_enable_data_read(0, tmpdata, data); efuse_addr = efuse_addr + (word_cnts * 2) + 1; readstate = PG_STATE_HEADER; } } if ((data[0] == 0xff) && (data[1] == 0xff) && (data[2] == 0xff) && (data[3] == 0xff) && (data[4] == 0xff) && (data[5] == 0xff) && (data[6] == 0xff) && (data[7] == 0xff)) return false; else return true; } static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr, u8 efuse_data, u8 offset, int *continual, u8 *write_state, struct pgpkt_struct *target_pkt, int *repeat_times, int *result, u8 word_en) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct pgpkt_struct tmp_pkt; int dataempty = true; u8 originaldata[8 * sizeof(u8)]; u8 badworden = 0x0F; u8 match_word_en, tmp_word_en; u8 tmpindex; u8 tmp_header = efuse_data; u8 tmp_word_cnts; tmp_pkt.offset = (tmp_header >> 4) & 0x0F; tmp_pkt.word_en = tmp_header & 0x0F; tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en); if (tmp_pkt.offset != target_pkt->offset) { *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1; *write_state = PG_STATE_HEADER; } else { for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) { if (efuse_one_byte_read(hw, (*efuse_addr + 1 + tmpindex), &efuse_data) && (efuse_data != 0xFF)) dataempty = false; } if (!dataempty) { *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1; *write_state = PG_STATE_HEADER; } else { match_word_en = 0x0F; if (!((target_pkt->word_en & BIT(0)) | (tmp_pkt.word_en & BIT(0)))) match_word_en &= (~BIT(0)); if (!((target_pkt->word_en & BIT(1)) | (tmp_pkt.word_en & BIT(1)))) match_word_en &= (~BIT(1)); if (!((target_pkt->word_en & BIT(2)) | (tmp_pkt.word_en & BIT(2)))) match_word_en &= (~BIT(2)); if (!((target_pkt->word_en & BIT(3)) | (tmp_pkt.word_en & BIT(3)))) match_word_en &= (~BIT(3)); if ((match_word_en & 0x0F) != 0x0F) { badworden = enable_efuse_data_write(hw, *efuse_addr + 1, tmp_pkt.word_en, target_pkt->data); if (0x0F != (badworden & 0x0F)) { u8 reorg_offset = offset; u8 reorg_worden = badworden; efuse_pg_packet_write(hw, reorg_offset, reorg_worden, originaldata); } tmp_word_en = 0x0F; if ((target_pkt->word_en & BIT(0)) ^ (match_word_en & BIT(0))) tmp_word_en &= (~BIT(0)); if ((target_pkt->word_en & BIT(1)) ^ (match_word_en & BIT(1))) tmp_word_en &= (~BIT(1)); if ((target_pkt->word_en & BIT(2)) ^ (match_word_en & BIT(2))) tmp_word_en &= (~BIT(2)); if ((target_pkt->word_en & BIT(3)) ^ (match_word_en & BIT(3))) tmp_word_en &= (~BIT(3)); if ((tmp_word_en & 0x0F) != 0x0F) { *efuse_addr = efuse_get_current_size(hw); target_pkt->offset = offset; target_pkt->word_en = tmp_word_en; } else { *continual = false; } *write_state = PG_STATE_HEADER; *repeat_times += 1; if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) { *continual = false; *result = false; } } else { *efuse_addr += (2 * tmp_word_cnts) + 1; target_pkt->offset = offset; target_pkt->word_en = word_en; *write_state = PG_STATE_HEADER; } } } RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n"); } static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr, int *continual, u8 *write_state, struct pgpkt_struct target_pkt, int *repeat_times, int *result) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct pgpkt_struct tmp_pkt; u8 pg_header; u8 tmp_header; u8 originaldata[8 * sizeof(u8)]; u8 tmp_word_cnts; u8 badworden = 0x0F; pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en; efuse_one_byte_write(hw, *efuse_addr, pg_header); efuse_one_byte_read(hw, *efuse_addr, &tmp_header); if (tmp_header == pg_header) { *write_state = PG_STATE_DATA; } else if (tmp_header == 0xFF) { *write_state = PG_STATE_HEADER; *repeat_times += 1; if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) { *continual = false; *result = false; } } else { tmp_pkt.offset = (tmp_header >> 4) & 0x0F; tmp_pkt.word_en = tmp_header & 0x0F; tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en); memset(originaldata, 0xff, 8 * sizeof(u8)); if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) { badworden = enable_efuse_data_write(hw, *efuse_addr + 1, tmp_pkt.word_en, originaldata); if (0x0F != (badworden & 0x0F)) { u8 reorg_offset = tmp_pkt.offset; u8 reorg_worden = badworden; efuse_pg_packet_write(hw, reorg_offset, reorg_worden, originaldata); *efuse_addr = efuse_get_current_size(hw); } else { *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1; } } else { *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1; } *write_state = PG_STATE_HEADER; *repeat_times += 1; if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) { *continual = false; *result = false; } RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-2\n"); } } static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset, u8 word_en, u8 *data) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct pgpkt_struct target_pkt; u8 write_state = PG_STATE_HEADER; int continual = true, result = true; u16 efuse_addr = 0; u8 efuse_data; u8 target_word_cnts = 0; u8 badworden = 0x0F; static int repeat_times; if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) { RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse_pg_packet_write error\n"); return false; } target_pkt.offset = offset; target_pkt.word_en = word_en; memset(target_pkt.data, 0xFF, 8 * sizeof(u8)); efuse_word_enable_data_read(word_en, data, target_pkt.data); target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en); RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n"); while (continual && (efuse_addr < (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) { if (write_state == PG_STATE_HEADER) { badworden = 0x0F; RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER\n"); if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) && (efuse_data != 0xFF)) efuse_write_data_case1(hw, &efuse_addr, efuse_data, offset, &continual, &write_state, &target_pkt, &repeat_times, &result, word_en); else efuse_write_data_case2(hw, &efuse_addr, &continual, &write_state, target_pkt, &repeat_times, &result); } else if (write_state == PG_STATE_DATA) { RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_DATA\n"); badworden = enable_efuse_data_write(hw, efuse_addr + 1, target_pkt.word_en, target_pkt.data); if ((badworden & 0x0F) == 0x0F) { continual = false; } else { efuse_addr = efuse_addr + (2 * target_word_cnts) + 1; target_pkt.offset = offset; target_pkt.word_en = badworden; target_word_cnts = efuse_calculate_word_cnts(target_pkt. word_en); write_state = PG_STATE_HEADER; repeat_times++; if (repeat_times > EFUSE_REPEAT_THRESHOLD_) { continual = false; result = false; } RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-3\n"); } } } if (efuse_addr >= (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) { RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "efuse_addr(%#x) Out of size!!\n", efuse_addr); } return true; } static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata, u8 *targetdata) { if (!(word_en & BIT(0))) { targetdata[0] = sourdata[0]; targetdata[1] = sourdata[1]; } if (!(word_en & BIT(1))) { targetdata[2] = sourdata[2]; targetdata[3] = sourdata[3]; } if (!(word_en & BIT(2))) { targetdata[4] = sourdata[4]; targetdata[5] = sourdata[5]; } if (!(word_en & BIT(3))) { targetdata[6] = sourdata[6]; targetdata[7] = sourdata[7]; } } static u8 enable_efuse_data_write(struct ieee80211_hw *hw, u16 efuse_addr, u8 word_en, u8 *data) { struct rtl_priv *rtlpriv = rtl_priv(hw); u16 tmpaddr; u16 start_addr = efuse_addr; u8 badworden = 0x0F; u8 tmpdata[8]; memset(tmpdata, 0xff, PGPKT_DATA_SIZE); RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "word_en = %x efuse_addr=%x\n", word_en, efuse_addr); if (!(word_en & BIT(0))) { tmpaddr = start_addr; efuse_one_byte_write(hw, start_addr++, data[0]); efuse_one_byte_write(hw, start_addr++, data[1]); efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]); efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]); if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) badworden &= (~BIT(0)); } if (!(word_en & BIT(1))) { tmpaddr = start_addr; efuse_one_byte_write(hw, start_addr++, data[2]); efuse_one_byte_write(hw, start_addr++, data[3]); efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]); efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]); if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) badworden &= (~BIT(1)); } if (!(word_en & BIT(2))) { tmpaddr = start_addr; efuse_one_byte_write(hw, start_addr++, data[4]); efuse_one_byte_write(hw, start_addr++, data[5]); efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]); efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]); if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) badworden &= (~BIT(2)); } if (!(word_en & BIT(3))) { tmpaddr = start_addr; efuse_one_byte_write(hw, start_addr++, data[6]); efuse_one_byte_write(hw, start_addr++, data[7]); efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]); efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]); if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) badworden &= (~BIT(3)); } return badworden; } void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 tempval; u16 tmpv16; if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) { if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE && rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) { rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69); } else { tmpv16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL]); if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) { tmpv16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V]; rtl_write_word(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL], tmpv16); } } tmpv16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN]); if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) { tmpv16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR]; rtl_write_word(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN], tmpv16); } tmpv16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]); if ((!(tmpv16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) || (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) { tmpv16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] | rtlpriv->cfg->maps[EFUSE_ANA8M]); rtl_write_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK], tmpv16); } } if (pwrstate) { if (write) { tempval = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3); if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) { tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6)); tempval |= (VOLTAGE_V25 << 3); } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) { tempval &= 0x0F; tempval |= (VOLTAGE_V25 << 4); } rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, (tempval | 0x80)); } if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) { rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK], 0x03); } } else { if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE && rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_ACCESS], 0); if (write) { tempval = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3); rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, (tempval & 0x7F)); } if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) { rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK], 0x02); } } } EXPORT_SYMBOL(efuse_power_switch); static u16 efuse_get_current_size(struct ieee80211_hw *hw) { int continual = true; u16 efuse_addr = 0; u8 hworden; u8 efuse_data, word_cnts; while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) && (efuse_addr < EFUSE_MAX_SIZE)) { if (efuse_data != 0xFF) { hworden = efuse_data & 0x0F; word_cnts = efuse_calculate_word_cnts(hworden); efuse_addr = efuse_addr + (word_cnts * 2) + 1; } else { continual = false; } } return efuse_addr; } static u8 efuse_calculate_word_cnts(u8 word_en) { u8 word_cnts = 0; if (!(word_en & BIT(0))) word_cnts++; if (!(word_en & BIT(1))) word_cnts++; if (!(word_en & BIT(2))) word_cnts++; if (!(word_en & BIT(3))) word_cnts++; return word_cnts; } int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv, int max_size, u8 *hwinfo, int *params) { struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw); struct device *dev = &rtlpcipriv->dev.pdev->dev; u16 eeprom_id; u16 i, usvalue; switch (rtlefuse->epromtype) { case EEPROM_BOOT_EFUSE: rtl_efuse_shadow_map_update(hw); break; case EEPROM_93C46: pr_err("RTL8XXX did not boot from eeprom, check it !!\n"); return 1; default: dev_warn(dev, "no efuse data\n"); return 1; } memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size); RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP", hwinfo, max_size); eeprom_id = *((u16 *)&hwinfo[0]); if (eeprom_id != params[0]) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "EEPROM ID(%#x) is invalid!!\n", eeprom_id); rtlefuse->autoload_failflag = true; } else { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); rtlefuse->autoload_failflag = false; } if (rtlefuse->autoload_failflag) return 1; rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]]; rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]]; rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]]; rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]]; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROMId = 0x%4x\n", eeprom_id); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid); for (i = 0; i < 6; i += 2) { usvalue = *(u16 *)&hwinfo[params[5] + i]; *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue; } RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr); rtlefuse->eeprom_channelplan = *&hwinfo[params[6]]; rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]]; rtlefuse->txpwr_fromeprom = true; rtlefuse->eeprom_oemid = *&hwinfo[params[8]]; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid); /* set channel plan to world wide 13 */ rtlefuse->channel_plan = params[9]; return 0; } EXPORT_SYMBOL_GPL(rtl_get_hwinfo); void rtl_fw_block_write(struct ieee80211_hw *hw, const u8 *buffer, u32 size) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 *pu4byteptr = (u8 *)buffer; u32 i; for (i = 0; i < size; i++) rtl_write_byte(rtlpriv, (START_ADDRESS + i), *(pu4byteptr + i)); } EXPORT_SYMBOL_GPL(rtl_fw_block_write); void rtl_fw_page_write(struct ieee80211_hw *hw, u32 page, const u8 *buffer, u32 size) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 value8; u8 u8page = (u8)(page & 0x07); value8 = (rtl_read_byte(rtlpriv, REG_MCUFWDL + 2) & 0xF8) | u8page; rtl_write_byte(rtlpriv, (REG_MCUFWDL + 2), value8); rtl_fw_block_write(hw, buffer, size); } EXPORT_SYMBOL_GPL(rtl_fw_page_write); void rtl_fill_dummy(u8 *pfwbuf, u32 *pfwlen) { u32 fwlen = *pfwlen; u8 remain = (u8)(fwlen % 4); remain = (remain == 0) ? 0 : (4 - remain); while (remain > 0) { pfwbuf[fwlen] = 0; fwlen++; remain--; } *pfwlen = fwlen; } EXPORT_SYMBOL_GPL(rtl_fill_dummy); void rtl_efuse_ops_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpriv->efuse.efuse_ops = &efuse_ops; } EXPORT_SYMBOL_GPL(rtl_efuse_ops_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1